Appendix

Training a Scoring Function

We further explored an alternative loss function that is closer to CLIP’s original objective. In this loss function, we also incorporate the remaining examples in the batch as in-batch negatives. To elaborate, considering the notation established in Section 3 and y_{k}^{1}, y_{k}^{2} denoting the images corresponding to the k-th example in the batch, we formulate \hat{p}_{k} as follows:

\[
\hat{p}_{k} = \frac{\exp s(x, y_{k}^{i})}{\sum_{h} \sum_{j=1}^{2} \exp s(x, y_{j}^{k})} \tag{1}
\]

We anticipated that this objective function would maintain the general capabilities of CLIP with minimal loss in performance. However, our findings demonstrated that PickScore significantly outperforms this objective function, as the latter only produced a scoring function that achieves an accuracy of 65.2 on the Pick-a-Pic test set.