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Proof of Theorem 5.4

For completeness, we state Theorem 1 from Marx et al. (2022) here in adapted form, which we then
use to prove Theorem 5.4.
Lemma 8.1 (Marx et al. (2022), Theorem 1). Let ¢ : X x R — R be a function such that that
o(x,y), xy ~ I is an absolutely continuous random variable and, for any fixed x* € X, p(x*, )
is strictly monotonically increasing. Furthermore, for a set of calibration data Dy = {x¢,, v}, }
with Negj = |Deqi| and a permutation iy, ... iy, € [1,2,..., Nea| such that
P @ s Yerr) < (@i Yol )
let H:R — [0, 1] be a monotonically non-decreasing function, such that H(p(ax"?,, 4% ) = ﬁ
holds forall j = 1,..., Noy. Then
1 1
Pyt (H (@) <) € [0 6+
o (H(o(.) <6) € |3 5 b

} Vo e [0,1].

The idea behind the proof of Theorem 5.4 is to show that the solution ¢ (x, y) of the implicit equation
y— 1, (6%, 2) — Blp(@,y))o (0 (p(@,y) . z) =0 (10)

satisfies the requirements stipulated by Lemma 8.1, where 3(0) and 0(4) are arbitrary continuous
functions such that

lim S(0) = oo, lim A3(8) = —oo,
0—00 d——o00

~ - (11)
lim 6(5) = oo, lim 6(0) = oo,
0—00 d——o00
/3(8) is strictly monotonically increasing for all § € R
6(9) is monotonically increasing for all § € {6 € R | 5(6) > 0} (12)

6(5) is monotonically decreasing for all § € {§ € R | 5(d) < 0}.

6(5) is monotonically increasing with respect to & forall § € {6 € R | 3(6) > 0}, and monotonically
decreasing with respect to § for all § € {6 € R | 3(§) < 0}. Note that the functions 3(¢) and
é(d ) can be easily extended within the real axis to satisfy the requirements mentioned above, which
means that they are contained within the set from which 5(5 ) and 0 (9). The reason why we choose

arbitrary 3(8) and (9), as opposed to the functions 3(8) and (), is because we need (. y) to
be independent of the calibration data D, in order to be able to employ Lemma 8.1. Showing that

©(x, y) satisfies the requirements of Lemma 8.1 for any 3(8) and 6(5) then implies that we can also
choose any function within this class that minimizes sharpness, meaning that these properties also

extend to 5(8) and 6(5).
To prove Theorem 5.4, we will require the following result.

Lemma 8.2. Consider the regressor yp, (0%, -), and let 5(6) and 0(3) be functions that satisfy (11)
and (12). Then, for arbitrary fixed y and x,

y— i, (0%.) = ()0 (00) ) (13)
is strictly monotonically decreasing with 6.

Proof. The proof follows directly from Assumption 4.1 and the properties (11) and (12). a

Proof of Theorem 5.4. Let 3(6) and é(é) be functions that satisfy (11) and (12). Due to Lemma 8.2,
we can define the function ¢ : X x R — [0, 1] as the unique solution to the implicit equation

y =, (0%, 2) = Bl y)o (0 (p(2.y) @) = 0. a4

13



Note that, since y — up, (8%, ) is strictly monotonically increasing with y, ¢(x,y) is a strictly
monotonically increasing function of y for any fixed x. Furthermore, since y is absolutely continuous,

i R i j R j
yéal - MDu-(B ’wzal) 7é ygal - MD“.(B ’wgal)

holds for all ¢ # j almost surely, which implies p(x’,, %) # @(xl,, yca]) for all # # j almost
surely. Hence, o(x,y), @,y ~ II, corresponds to an absolutely continuous random variable. Hence,
given any monotonically non-decreasing function H (-) that satisfies the requirement

i, b J
H (S"(‘Bzapyéal)) = New+1°

Lemma 8.1 implies that

[5 R—
cal+ 1 Afcal"’1

Paynt (H (ol ) | wicoa  as

Since 3(6) and @ (6) are arbitrary, and /3 (5) and 6 () are continuous and also satisfy (11) and (12)
within § € [0, 1], we can substitute (-, -) in (15) with ¢(+, -), which is the unique solution of the
implicit equation

y— 1, (07.2) — Be(@,y))o (0(4(.y) @) =0. (16)
Now, in the particular case of @(-, -), due to (7), we have that

S 7
SO( cal’ycal) Ncal+ 17

meaning that H(ap(mcal, 7/ca1)) = cﬁ(mgl,yz;l), i.e., (15) holds for ¢(-,-) = ¢(+,-) and the identity

function H(0) = ¢. Furthermore, since $(-, -) is uniquely defined by the implicit equation (16) and
B(8)op, (8(8), ) is monotonically increasing with 4, this in turn implies

oy (40 ):Pm,y~n<5<¢<w,y>>a(é<¢< v).@) < Bo)e (é<>,w)>

M( i, (07, )g5(5>0—(5<5>,m)).

Since 3(8) and 0 () are arbitrary, and 3(6) and 6 (6) which, together with (15), implies the desired
result. .
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Comparison with Capone et al. (2022)

In this section, we briefly examine how our approach compares to that of Capone et al. (2022) when
used to compute uniform error bounds, i.e., 100 percent credible intervals, for three different data sets.
We carried out each experiment 10 times. In the following, we report the rate of uniform error bound
violation and the average length of the 100 percent credible intervals. The method of Capone et al.
(2022) is purely Bayesian and thus heavily dependent on the prior. The resulting credible intervals
are well-calibrated, i.e., they cover most of the data. However, our approach is much better regarding
sharpness. This is because Capone et al. (2022) is Bayesian and requires symmetric intervals, whereas
our approach is frequentist and allows for asymmetric credible intervals. Our approach also exhibits a
lower rate of uniform error bound violations than Capone et al. (2022) in most cases, which suggests
that a frequentist approach is more adequate for computing uniform error bounds than a Bayesian
one.

Table 2: Rate of uniform error bound violation (RUEBV) and 100% confidence interval width
obtained with our approach and that of Capone et al. (2022). Lower is better for all metrics.

DATA SET METRIC OURS CAPONE ET AL. (2022)
RATE OF UNIFORM ERROR BOUND VIOLATION  0.00376 0.000172
BOSTON LENGTH OF 100% CI 1.2 28.3
RATE OF UNIFORM ERROR BOUND VIOLATION 0.004 0.0065
MPG LENGTH OF 100% CI 1.7 24.13
RATE OF UNIFORM ERROR BOUND VIOLATION  0.00072 0.00096
WINE LENGTH OF 100% CI 4.7 24.8
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Bayesian Optimization

We now investigate how the proposed calibration approach can be employed in a Bayesian op-
timization context using two commonly used benchmark functions, the Ackley and Rosenbrock
functions.

In Bayesian optimization, the goal is to find a point in input space that maximizes an unknown
function f(-). In particular, we investigate how our calibrated GP bound performs when used as an
upper confidence bound (UCB) for a GP-UCB type acquisition function. Simply put, given a data set
D, of size t, the GP-UCB algorithm chooses a query point by maximizing the acquisition function

m;—ﬁ-l = arg IIl;LX UD, (0R7 m) + ﬂDt op, (aRa (L’), (17)

where (p, is a tuning parameter that stipulates the trade-off between exploration and exploitation,
and may or may not depend on the data set D;. It has been shown that if the unknown function f(-)
belongs to the RKHS associated with the kernel k(0. -, -), and Bp, is chosen sufficiently large, then
the GP-UCB achieves sublinear regret (Chowdhury & Gopalan, 2017). However, both assumptions
typically cannot be verified in practice, and choosing both the kernel k(8% -, -) and the scaling
factor Op, in a principled manner remains an open problem. We propose employing the modified
acquisition function

¥ = arg max jip, (GR, x) + Bsop, (05, ), (18)
xT

where the hyperparameters 65 are obtained via a calibrated model and a suitable choice of confidence
parameter §. In the experiments, we set Sp, = 1 and compute the calibrated hyperparameters by
setting § = 0.01, meaning that we set expect only one percent of the evaluations to lie outside the
confidence region. Note that even though the underlying function is fixed, it is reasonable to expect
that some of the data lies outside the confidence region due to noise, and we can only expect the
data to lie fully within the confidence region in the noiseless case, which we do not consider in this
paper. Furthermore, we refrain from retraining the hyperparameters after each data point is collected,
following the convention of other Bayesian optimization approaches (Srinivas et al., 2012; Chowdhury
& Gopalan, 2017). While this does not enable us to employ the theoretical guarantees developed in
Section 5, it reduces computational time significantly. We additionally compare our results to the
vanilla UCB algorithm, where the hyperparameters, chosen via log-likelihood maximization, are
identical for both the posterior mean and variance, and we set Sp, = 2.

We evaluate the results both in terms of cumulative regret and simple regret. Cumulative regret after
T steps corresponds to the metric

T
Rymi — 3 (maxf(w) - f(am)) , (19)

reX
t=1

whereas simple regret is given by

simple - o
Rp™ = max f() rtnga%f(wt)- (20)

Typically, a Bayesian optimization algorithm is deemed useful if cumulative regret exhibits sublinear
growth, implying that the average regret goes to zero. Simple regret, by contrast, corresponds to
the best query among all past queries and is an important metric whenever evaluation costs are low
(Berkenkamp et al., 2019).

In the case of the Ackley experiment, our approach typically chose lengthscales that were smaller
than those computed via likelihood maximization. This results in more exhaustive exploration than
vanilla UCB, which in turn means that local minima are explored more carefully before the focus
of the optimization is shifted elsewhere. This results in better performance than when using vanilla
UCB, both in terms of cumulative and simple regret. The results correspond to the top two figures in
Figure 3.

In contrast to the Ackley experiment, in the Rosenbrock experiment our approach selects lengthscales
that are larger than those suggested by the likelihood maximum. Roughly speaking, this means that
the confidence intervals produced by the likelihood maximum hyperparameters are too conservative,
and our approach attempts to compensate for this by indicating more confidence in the posterior
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Figure 3: Regret of Ackley (top) and Rosenbrock (bottom) experiment over the number of Bayesian

optimization iterations with UCB.

mean obtained with the vanilla GP. This means that local minima are explored less meticulously than
with the vanilla UCB algorithm. This choice is justified by the cumulative regret obtained with our
approach, as it is slightly smaller than that obtained by the vanilla UCB algorithm. However, this also
results in worse simple regret than the vanilla UCB algorithm, which is intuitive, as our approach
opts to explore local minima less accurately than the vanilla UCB algorithm. We also note that both
algorithms converge towards the same simple regret as the number of iterations increases. The results

correspond to the bottom two figures in Figure 3.
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