A Omitted proofs

Proof of[Theorem 1| Let f := (f;)k, be the objective function vector, z be any solution, Z = {i :
fi(z) = 0}, if |Z| = k then z is an extreme solution, so P 1-approximates z. Assume otherwise,
we define A € (0,1]% where A; = €/8; if i € Z and A; := €/[(k — |Z])fi(z)] otherwise for some
sufficiently small e > 0. By definition of sufficient solution set and Observation|[I] there is x € P
minimizing AT f, i.e. ATf(x) < ATf(z) = e. If fi(x) > 0 for some i € Z or fi(x) > (k — |Z|) fi(z)

for some i ¢ Z, then since f(x) € IR’;O, we have AT f(x) > e, a contradiction. Therefore, x, and by

extension P, (k — |Z|)-approximates z. Since z can assume positive values in all objectivesﬂ this
factor simplifies to k.

We show tightness by construction. Let € € (0,k), m := K2, 6; = 25:_01 ejp—j fori =1,...,k
where e; is the jth unit vector in R™, we define a non-negative k-objective instance over {0, 1}™:

min, {f(x) := (6/x — € ?;01 xl-k_j)ll.“:1 : |x| = k}. We see that the set of all supported solutions

is precisely S := {Qi}le. Let z := Zfz_ol eik+1 be a solution, for all i = 1,...,k, f;(6;) =k —€ >
(k — €) fi(z) (equality holds if k > 1). This means S fails to (k — € — ¢)-approximate z for any ¢ > 0,
and e can be arbitrarily small. Since S is a complete solution set, the claim follows. O

Proof of[Lemma 1] Let c be any point in Int(Q), by definition of A, wi(c) = wj(c) iff §; ; = 0, and w'®)

admits multiple minima iff they contain different elements among those sharing weights in w(¢),
while sharing all other elements. Indeed, let x and y be a pair of minima violating this condition, they
must contain different sets of weights so for all bijection y between x \ y and y \ x, thereisu € x \ y

where w,ﬁ”) + wﬁi ) this leads to a contradiction when combined with the base exchange property.

This means these optima share image under w, and bases not having the same image do not minimize
()
wlc),

Let b be any point on the boundary of Q and L be the set of points between b and ¢ excluding

endpoints, we show that 7, also sorts w(®). Let i.j € E where wi(c> < wj(.c), then wi(b) > w](.b) implies
wl.(d) = WJ(.d) for some d € L, meaning L meets a hyperplane in A, a contradiction as L C Int(Q).
© _ ®) _
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for, so 7, sorts w(®). Therefore, since Greedy guarantees optimality, any base minimizing w(®) also
minimizes w(®), yielding the claim. O

For all pairs i, j € E where w w}@, 6i,j=0sow w;b). With this, every pair is accounted

Proof of[Corollary 1] We see that |A’| = |Ha|, which is upper bounded by the number of half-space
intersections from hyperplanes in A. Since these are (k — 2)-dimensional hyperplanes, applying the

formula in [32]] gives |[Ha| < Zle (l"_q{) which is increasing in |A|, so the claim follows from |A| <

m(m—1)/2. We have A’ is a sufficient trade-off set following from Lemma and Ugep, Q=U. O

Proof of[Lemma 2] Let0 < A,, < Ag < 1 such that b := (1 —b)a+ba’ € A" and forall A € [Ac, Ap),
(1-2)a+2Ad ¢ A", and let ¢ := (1 — A.)a + A.a’, then elements sharing weight in w®) must be

mapped to consecutive positions in .. Indeed, let p,q € E (n.(p) < 7.(q)) where wl(,b) = w;b),

if there is o € E where 7.(0) € (m:(p), m.(q)) and wéb) # w[(,b), then since the former implies

w'® e (w(c),w‘(;)), we have w'? = wi(,d) or w'? = wfgd) for some d in the open line segment
connecting b and ¢ which implies d € A*, a contradiction. Each such consecutive sequence of [

positions contains [(I — 1)/2 pairs. From here, we consider two cases:

* If such a sequence contains no pair (i, j) where J; ; = 0, then the aforementioned pairs correspond
to [(I — 1)/2 duplicates of b in A*. Furthermore, since the weights are transformed linearly w.r.t.
trade-off, for all sufficiently small € > 0, these sequences are reversed between 7. and 7mp¢(p—c).
whereas positions not in these sequences are stationary. Reversing ! consecutive positions requires
I(I - 1)/2 adjacent swaps, so the Kendall distance between 7. and 7y (p—c) €quals the multiplicity
of bin A*.

SIf |Z| > Kk’ for all solutions z, the instance is reducible to (k — k’)-objective instances, and the guarantee
factor is likewise tight.
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* If such a sequence contains h > 1 elements with the same weight at all trade-off, then these must
occupy consecutive positions in 7. As we assumed, the relative ordering among these elements is
fixed, so exactly h(h — 1)/2 swaps are saved. Furthermore, any pair (i, j) among these elements is
such that A; ; ¢ A, meaning these h(h — 1) /2 pairs are already subtracted from A*.

In any case, we can assign to each duplicate of b in A* a permutation sorting w'?) so that these form
a sequence of adjacent swap from 7¢ t0 Tpye(p—c) including 7y (p—c) and not .. This directly yields
the claim if a and a* are not in A*.

Assume otherwise, then for all hyperplanes A; ; containing a, wl.(“) = WJ(.“), so for every such pair

(i, j), we arrange r, so that their pairwise ordering in 7, is the reverse of that in 7,. We likewise
give a’ the same treatmenﬂ With this, the Kendall distance between i, and 7, is maximized and
equal to |A*]. o

Proof of[Lemma 3| LetE, = {a € E : 7(a) < 7(0)} be the set of elements Greedy considers adding
to x before o € E whenrunon 7, we have x NE, =x’ NE,.Ifv € xorv ¢ x’ oru ¢ x or u € x’ then
x = x’, as can be seen from how Greedy selects elements:

» Ifou € x, then v € x’ since Greedy observes v before u when run on 7’. Whether Greedy adds u to
x only depends on whether there is a circuit in (x N E,) U {u} = (x’ N E,) U {u}, so it makes the
same decision when run on 7’. Afterwards, it proceeds identically on both permutations, leading to
the same outcome, so x = x’. By symmetry, the same follows from u € x’.

e If u ¢ x, then there is a circuit in (x N E,) U {u} = (x’ N E,) U {u}, sou ¢ x’. By the same
argument, Greedy makes the same decision regarding v on both permutations, leading to x = x’.
By symmetry, the same follows from v ¢ x’.

Assume otherwise, it is a known property of bases [20] that x U {v} contains a unique circuit C
and that v € C. Greedy not adding v to x implies that C C (x N E,) U {v} = (x' N E,) U {u, v}.
Let v’ be the first element after v that x and x” differ at and assume w.l.o.g. v’ € x \ x’, we have
(x’ NEy) U{u} = (x N Ey) U {v} and since o’ is not added into x” before Greedy terminates, there
must be another circuitin (x’ N E,) U {0’} C x U {o} containing o, which is distinct from the unique
circuit C. The contradiction implies that x and x” do not differ after v, so x ® x” = {u, v}. ]

Proof of[Theorem 2] We define I := (1 —c)a+cbforc € [0,1],1et 0 < 6 < 6" < 1 where 7, and
my,, are an adjacent swap apar and the Greedy solutions on them, x and x’, are such that |[x ® x| = 2.
Let u,0 € E where x N {u,0} = {u} and x’ N {u,0} = {v}, Lemmaimplies m,(u) < m,(v)
and m, (u) > m,, (v), s0 me(u) < me(v). This means as the trade-off moves from a to b, the
Greedy solution minimizing the scalarized weight changes incrementally by having exactly one
element shifted to the right on 7, (to a position not occupied by the current solution). Since at most
hm —h(h+1)/2 such changes can be done sequentially, Greedy produces at most hm —h(h+1)/2+1
distinct solutions in total across all trade-offs between a and b.

To show this upper bound, we keep track of the following variables as the trade-off moves from
a to b. Since each solution contains n elements, let p; be the ith leftmost position on 7z, among
those occupied by the current Greedy solution for i = 1,. .., n, we see that upon each change, there
is at least a j € {1,...,n} where p ; increases. Furthermore, for all i, p; can increase by at most
m — n since it cannot be outside of [i,m — n +i], so the quantity p := X', p; can increase by at
most n(m — n). We see that p increases by [ when the change is incurred by a swap in the Greedy
solution such that the added element is positioned [ to the right of the removed element on 7., we
call this a [-move. Furthermore, each element pair participates in at most one swap, so p can be
increased by at most m — I [-moves for every [ = 1 ..., m — 1. Therefore, to upper bound the number
of moves, we can assume smallest possible distance in each move, and the increase in p from using

all possible I-moves for all [ = 1,...,his Z?=1 j(m = j) = n(m — n). This means no more than
Zﬁ':l (m— j) = hm —h(h+ 1)/2 moves can be used to increase p by at most n(m — n). |

This is also done for any A j containing both a and a’.
81f 0 = 0/, we assume 7y, is closer to 7, in Kendall distance.
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Proof of[Lemma 4] First, we observe that a set supersets a base iff its rank is n. We see that for all
A€ [0,1] and x,y € {0, 1}™, r(x) > r(y) implies f;(x) < f1(y). Thus, for each A € A, MOEA/D
performs (1+1)-EA search toward a base’s superset with fitness fj, which concludes in O(mlog n)
expected steps [26]. The claim follows from the fact that MOEA/D produces |A| search points in
each step. O

Proof of[Theorem 3] We assume each solution in P, supersets a base for all A € A; this occurs within
expected time O(|A|mlogn), according to Lemmaf4] Since for each A € A, the best improvement
in fj is retained in each step, the expected number of steps MOEA/D needs to minimizes f) is at
most the expected time (1+1)-EA needs to minimizes f;. We thus fix a trade-off A and assume the
behaviors of (1+1)-EA. Note that we use d; - w?) in the analysis instead for integral weights; we
scale fj and OPT) accordingly.

We call the bit flips described in Lemma [5] good flips. Let s be the current search point, if good
1-bit flips incur larger total weight reduction than good 2-bit flips on s, we call s 1-step, and 2-
step otherwise. If at least half the steps from s to the MWB z are 1-steps, Lemma [5] implies the
optimality gap of s is multiplied by at most 1 — 1/2(m — n) on average after each good 1-bit flip.
Therefore, from f)(s) < djy(m — n)wpax + OPTy, the expected difference Dy, after L good 1-bit flips
is E[Dr] < dy(m = n)Wpax(1 = 1/2(m = n))L. AtL = [(2In2)(m — n) log(2d)(m — n)Wmax + 1)1,
E[Dr] < 1/2 and by Markov’s inequality and the fact that D; > 0, Pr[Dy < 1] > 1/2. Since
weights are integral, Dy < 1 implies that z is reached. The probability of making a good 1-bit flip is
©((m — n)/m), so the expected number of steps before L good 1-bit flips occur is O(Lm/(m — n)) =
O(m(log(m — n) + log wiax +logdy)). Since 1-steps take up most steps between s and z, the bound
holds.

If at least half the steps from s to z are 2-steps, Lemma [5|implies the optimality gap of s is multiplied
by at most 1 — 1/2n on average after each good 2-bit flip. Repeating the argument with L =
[(2In2)nlog(2dy(m — n)Wpmax + 1)] and the probability of making a good 2-bit flip being ©(n/m?),
we get the bound O(m?(log(m — n) + 10g Wimax + logd;)). Summing this over all 1 € A gives the
total bound. O

Proof of[Theorem 4] From Corollary [2] to collect a new point in C, it is sufficient to perform a 2-bit
flip on some supported solution. In worst-case, there can be only one trade-off A € A such that all
non-extreme supported solutions minimize w*), so the correct solution is mutated with probability
at least 1/I in each iteration, where [ is the number of already collected points. Since |A| search
points are generated in each iteration, the expected number of search points required to enumerate C

is 0(JAlm? 2)1 1) = O(|AllCIPm?). O
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