
A Omitted proofs

Proof of Theorem 1. Let 𝑓 := (𝑓𝑖 )𝑘𝑖=1 be the objective function vector, 𝑧 be any solution, 𝑍 = {𝑖 :
𝑓𝑖 (𝑧) = 0}, if |𝑍 | = 𝑘 then 𝑧 is an extreme solution, so 𝑃 1-approximates 𝑧. Assume otherwise,
we define 𝜆 ∈ (0, 1]𝑘 where 𝜆𝑖 := 𝜖/𝛿𝑖 if 𝑖 ∈ 𝑍 and 𝜆𝑖 := 𝜖/[(𝑘 − |𝑍 |) 𝑓𝑖 (𝑧)] otherwise for some
sufficiently small 𝜖 > 0. By definition of sufficient solution set and Observation 1, there is 𝑥 ∈ 𝑃
minimizing 𝜆⊺ 𝑓 , i.e. 𝜆⊺ 𝑓 (𝑥) ≤ 𝜆⊺ 𝑓 (𝑧) = 𝜖. If 𝑓𝑖 (𝑥) > 0 for some 𝑖 ∈ 𝑍 or 𝑓𝑖 (𝑥) > (𝑘 − |𝑍 |) 𝑓𝑖 (𝑧)
for some 𝑖 ∉ 𝑍 , then since 𝑓 (𝑥) ∈ ℝ𝑘

≥0, we have 𝜆⊺ 𝑓 (𝑥) > 𝜖, a contradiction. Therefore, 𝑥 , and by
extension 𝑃 , (𝑘 − |𝑍 |)-approximates 𝑧. Since 𝑧 can assume positive values in all objectives6, this
factor simplifies to 𝑘 .

We show tightness by construction. Let 𝜖 ∈ (0, 𝑘), 𝑚 := 𝑘2, 𝜃𝑖 :=
∑𝑘−1

𝑗=0 𝑒𝑖𝑘− 𝑗 for 𝑖 = 1, . . . , 𝑘
where 𝑒 𝑗 is the 𝑗 th unit vector in ℝ𝑚 , we define a non-negative 𝑘-objective instance over {0, 1}𝑚:
min𝑥 {𝑓 (𝑥) := (𝜃⊺

𝑖
𝑥 − 𝜖∏𝑘−1

𝑗=0 𝑥𝑖𝑘− 𝑗 )𝑘𝑖=1 : |𝑥 | ≥ 𝑘}. We see that the set of all supported solutions
is precisely 𝑆 := {𝜃𝑖 }𝑘𝑖=1. Let 𝑧 :=

∑𝑘−1
𝑖=0 𝑒𝑖𝑘+1 be a solution, for all 𝑖 = 1, . . . , 𝑘, 𝑓𝑖 (𝜃𝑖 ) = 𝑘 − 𝜖 ≥

(𝑘 − 𝜖) 𝑓𝑖 (𝑧) (equality holds if 𝑘 > 1). This means 𝑆 fails to (𝑘 − 𝜖 − 𝜀)-approximate 𝑧 for any 𝜀 > 0,
and 𝜖 can be arbitrarily small. Since 𝑆 is a complete solution set, the claim follows. □

Proof of Lemma 1. Let 𝑐 be any point in Int(𝑄), by definition of 𝐴,𝑤 (𝑐 )
𝑖

= 𝑤
(𝑐 )
𝑗

iff 𝛿𝑖, 𝑗 = 0, and𝑤 (𝑐 )

admits multiple minima iff they contain different elements among those sharing weights in 𝑤 (𝑐 ) ,
while sharing all other elements. Indeed, let 𝑥 and 𝑦 be a pair of minima violating this condition, they
must contain different sets of weights so for all bijection 𝛾 between 𝑥 \ 𝑦 and 𝑦 \ 𝑥 , there is 𝑢 ∈ 𝑥 \ 𝑦
where𝑤 (𝑐 )𝑢 ≠ 𝑤

(𝑐 )
𝛾 (𝑢 ) ; this leads to a contradiction when combined with the base exchange property.

This means these optima share image under𝑤 , and bases not having the same image do not minimize
𝑤 (𝑐 ) .

Let 𝑏 be any point on the boundary of 𝑄 and 𝐿 be the set of points between 𝑏 and 𝑐 excluding
endpoints, we show that 𝜋𝑐 also sorts𝑤 (𝑏 ) . Let 𝑖 . 𝑗 ∈ 𝐸 where𝑤 (𝑐 )

𝑖
< 𝑤

(𝑐 )
𝑗

, then𝑤 (𝑏 )
𝑖

> 𝑤
(𝑏 )
𝑗

implies

𝑤
(𝑑 )
𝑖

= 𝑤
(𝑑 )
𝑗

for some 𝑑 ∈ 𝐿, meaning 𝐿 meets a hyperplane in 𝐴, a contradiction as 𝐿 ⊆ Int(𝑄).
For all pairs 𝑖, 𝑗 ∈ 𝐸 where 𝑤 (𝑐 )

𝑖
= 𝑤

(𝑐 )
𝑗

, 𝛿𝑖, 𝑗 = 0 so 𝑤 (𝑏 )
𝑖

= 𝑤
(𝑏 )
𝑗

. With this, every pair is accounted
for, so 𝜋𝑐 sorts𝑤 (𝑏 ) . Therefore, since Greedy guarantees optimality, any base minimizing𝑤 (𝑐 ) also
minimizes𝑤 (𝑏 ) , yielding the claim. □

Proof of Corollary 1. We see that |𝐴′ | = |𝐻𝐴 |, which is upper bounded by the number of half-space
intersections from hyperplanes in 𝐴. Since these are (𝑘 − 2)-dimensional hyperplanes, applying the
formula in [32] gives |𝐻𝐴 | ≤

∑𝑘
𝑖=1

( |𝐴 |
𝑖−1

)
which is increasing in |𝐴|, so the claim follows from |𝐴| ≤

𝑚(𝑚 − 1)/2. We have 𝐴′ is a sufficient trade-off set following from Lemma 1 and
⋃

𝑄∈𝐻𝐴
𝑄 = 𝑈 . □

Proof of Lemma 2. Let 0 < 𝜆𝑐 , < 𝜆𝑑 < 1 such that 𝑏 := (1 − 𝑏)𝑎 + 𝑏𝑎′ ∈ 𝐴∗ and for all 𝜆 ∈ [𝜆𝑐 , 𝜆𝑏),
(1 − 𝜆)𝑎 + 𝜆𝑎′ ∉ 𝐴∗, and let 𝑐 := (1 − 𝜆𝑐 )𝑎 + 𝜆𝑐𝑎′, then elements sharing weight in 𝑤 (𝑏 ) must be
mapped to consecutive positions in 𝜋𝑐 . Indeed, let 𝑝, 𝑞 ∈ 𝐸 (𝜋𝑐 (𝑝) < 𝜋𝑐 (𝑞)) where 𝑤 (𝑏 )𝑝 = 𝑤

(𝑏 )
𝑞 ,

if there is 𝑜 ∈ 𝐸 where 𝜋𝑐 (𝑜) ∈ (𝜋𝑐 (𝑝), 𝜋𝑐 (𝑞)) and 𝑤 (𝑏 )𝑜 ≠ 𝑤
(𝑏 )
𝑝 , then since the former implies

𝑤
(𝑐 )
𝑜 ∈ (𝑤 (𝑐 )𝑝 ,𝑤

(𝑐 )
𝑞 ), we have 𝑤 (𝑑 )𝑜 = 𝑤

(𝑑 )
𝑝 or 𝑤 (𝑑 )𝑜 = 𝑤

(𝑑 )
𝑞 for some 𝑑 in the open line segment

connecting 𝑏 and 𝑐 which implies 𝑑 ∈ 𝐴∗, a contradiction. Each such consecutive sequence of 𝑙
positions contains 𝑙 (𝑙 − 1)/2 pairs. From here, we consider two cases:

• If such a sequence contains no pair (𝑖, 𝑗) where 𝛿𝑖, 𝑗 = 0, then the aforementioned pairs correspond
to 𝑙 (𝑙 − 1)/2 duplicates of 𝑏 in 𝐴∗. Furthermore, since the weights are transformed linearly w.r.t.
trade-off, for all sufficiently small 𝜖 > 0, these sequences are reversed between 𝜋𝑐 and 𝜋𝑏+𝜖 (𝑏−𝑐 ) ,
whereas positions not in these sequences are stationary. Reversing 𝑙 consecutive positions requires
𝑙 (𝑙 − 1)/2 adjacent swaps, so the Kendall distance between 𝜋𝑐 and 𝜋𝑏+𝜖 (𝑏−𝑐 ) equals the multiplicity
of 𝑏 in 𝐴∗.
6If |𝑍 | ≥ 𝑘′ for all solutions 𝑧, the instance is reducible to (𝑘 − 𝑘′)-objective instances, and the guarantee

factor is likewise tight.
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• If such a sequence contains ℎ > 1 elements with the same weight at all trade-off, then these must
occupy consecutive positions in 𝜋𝑐 . As we assumed, the relative ordering among these elements is
fixed, so exactly ℎ(ℎ − 1)/2 swaps are saved. Furthermore, any pair (𝑖, 𝑗) among these elements is
such that Δ𝑖, 𝑗 ∉ 𝐴, meaning these ℎ(ℎ − 1)/2 pairs are already subtracted from 𝐴∗.

In any case, we can assign to each duplicate of 𝑏 in 𝐴∗ a permutation sorting𝑤 (𝑏 ) so that these form
a sequence of adjacent swap from 𝜋𝑐 to 𝜋𝑏+𝜖 (𝑏−𝑐 ) including 𝜋𝑏+𝜖 (𝑏−𝑐 ) and not 𝜋𝑐 . This directly yields
the claim if 𝑎 and 𝑎∗ are not in 𝐴∗.

Assume otherwise, then for all hyperplanes Δ𝑖, 𝑗 containing 𝑎, 𝑤 (𝑎)
𝑖

= 𝑤
(𝑎)
𝑗

, so for every such pair
(𝑖, 𝑗), we arrange 𝜋𝑎 so that their pairwise ordering in 𝜋𝑎 is the reverse of that in 𝜋𝑎′ . We likewise
give 𝑎′ the same treatment7. With this, the Kendall distance between 𝜋𝑎 and 𝜋𝑎′ is maximized and
equal to |𝐴∗ |. □

Proof of Lemma 3. Let 𝐸𝑜 := {𝑎 ∈ 𝐸 : 𝜏 (𝑎) < 𝜏 (𝑜)} be the set of elements Greedy considers adding
to 𝑥 before 𝑜 ∈ 𝐸 when run on 𝜏 , we have 𝑥 ∩ 𝐸𝑢 = 𝑥 ′ ∩ 𝐸𝑢 . If 𝑣 ∈ 𝑥 or 𝑣 ∉ 𝑥 ′ or 𝑢 ∉ 𝑥 or 𝑢 ∈ 𝑥 ′ then
𝑥 = 𝑥 ′, as can be seen from how Greedy selects elements:

• If 𝑣 ∈ 𝑥 , then 𝑣 ∈ 𝑥 ′ since Greedy observes 𝑣 before 𝑢 when run on 𝜏 ′. Whether Greedy adds 𝑢 to
𝑥 only depends on whether there is a circuit in (𝑥 ∩ 𝐸𝑢) ∪ {𝑢} = (𝑥 ′ ∩ 𝐸𝑢) ∪ {𝑢}, so it makes the
same decision when run on 𝜏 ′. Afterwards, it proceeds identically on both permutations, leading to
the same outcome, so 𝑥 = 𝑥 ′. By symmetry, the same follows from 𝑢 ∈ 𝑥 ′.

• If 𝑢 ∉ 𝑥 , then there is a circuit in (𝑥 ∩ 𝐸𝑢) ∪ {𝑢} = (𝑥 ′ ∩ 𝐸𝑢) ∪ {𝑢}, so 𝑢 ∉ 𝑥 ′. By the same
argument, Greedy makes the same decision regarding 𝑣 on both permutations, leading to 𝑥 = 𝑥 ′.
By symmetry, the same follows from 𝑣 ∉ 𝑥 ′.

Assume otherwise, it is a known property of bases [20] that 𝑥 ∪ {𝑣} contains a unique circuit 𝐶
and that 𝑣 ∈ 𝐶. Greedy not adding 𝑣 to 𝑥 implies that 𝐶 ⊆ (𝑥 ∩ 𝐸𝑣) ∪ {𝑣} = (𝑥 ′ ∩ 𝐸𝑣) ∪ {𝑢, 𝑣}.
Let 𝑣 ′ be the first element after 𝑣 that 𝑥 and 𝑥 ′ differ at and assume w.l.o.g. 𝑣 ′ ∈ 𝑥 \ 𝑥 ′, we have
(𝑥 ′ ∩ 𝐸𝑣′ ) ∪ {𝑢} = (𝑥 ∩ 𝐸𝑣′ ) ∪ {𝑣} and since 𝑣 ′ is not added into 𝑥 ′ before Greedy terminates, there
must be another circuit in (𝑥 ′ ∩ 𝐸𝑣′ ) ∪ {𝑣 ′} ⊂ 𝑥 ∪ {𝑣} containing 𝑣 ′, which is distinct from the unique
circuit 𝐶. The contradiction implies that 𝑥 and 𝑥 ′ do not differ after 𝑣 , so 𝑥 ⊗ 𝑥 ′ = {𝑢, 𝑣}. □

Proof of Theorem 2. We define 𝑙𝑐 := (1 − 𝑐)𝑎 + 𝑐𝑏 for 𝑐 ∈ [0, 1], let 0 ≤ 𝜃 ≤ 𝜃 ′ ≤ 1 where 𝜋𝑙𝜃 and
𝜋𝑙𝜃 ′ are an adjacent swap apart8 and the Greedy solutions on them, 𝑥 and 𝑥 ′, are such that |𝑥 ⊗ 𝑥 ′ | = 2.
Let 𝑢, 𝑣 ∈ 𝐸 where 𝑥 ∩ {𝑢, 𝑣} = {𝑢} and 𝑥 ′ ∩ {𝑢, 𝑣} = {𝑣}, Lemma 3 implies 𝜋𝑙𝜃 (𝑢) < 𝜋𝑙𝜃 (𝑣)
and 𝜋𝑙𝜃 ′ (𝑢) > 𝜋𝑙𝜃 ′ (𝑣), so 𝜋𝑎 (𝑢) < 𝜋𝑎 (𝑣). This means as the trade-off moves from 𝑎 to 𝑏, the
Greedy solution minimizing the scalarized weight changes incrementally by having exactly one
element shifted to the right on 𝜋𝑎 (to a position not occupied by the current solution). Since at most
ℎ𝑚 −ℎ(ℎ + 1)/2 such changes can be done sequentially, Greedy produces at most ℎ𝑚 −ℎ(ℎ + 1)/2+ 1
distinct solutions in total across all trade-offs between 𝑎 and 𝑏.

To show this upper bound, we keep track of the following variables as the trade-off moves from
𝑎 to 𝑏. Since each solution contains 𝑛 elements, let 𝑝𝑖 be the 𝑖th leftmost position on 𝜋𝑎 among
those occupied by the current Greedy solution for 𝑖 = 1, . . . , 𝑛, we see that upon each change, there
is at least a 𝑗 ∈ {1, . . . , 𝑛} where 𝑝 𝑗 increases. Furthermore, for all 𝑖, 𝑝𝑖 can increase by at most
𝑚 − 𝑛 since it cannot be outside of [𝑖,𝑚 − 𝑛 + 𝑖], so the quantity 𝑝 :=

∑𝑛
𝑖=1 𝑝𝑖 can increase by at

most 𝑛(𝑚 − 𝑛). We see that 𝑝 increases by 𝑙 when the change is incurred by a swap in the Greedy
solution such that the added element is positioned 𝑙 to the right of the removed element on 𝜋𝑎, we
call this a 𝑙-move. Furthermore, each element pair participates in at most one swap, so 𝑝 can be
increased by at most𝑚 − 𝑙 𝑙-moves for every 𝑙 = 1 . . . ,𝑚 − 1. Therefore, to upper bound the number
of moves, we can assume smallest possible distance in each move, and the increase in 𝑝 from using
all possible 𝑙-moves for all 𝑙 = 1, . . . , ℎ is

∑ℎ
𝑗=1 𝑗 (𝑚 − 𝑗) ≥ 𝑛(𝑚 − 𝑛). This means no more than∑ℎ

𝑗=1 (𝑚 − 𝑗) = ℎ𝑚 − ℎ(ℎ + 1)/2 moves can be used to increase 𝑝 by at most 𝑛(𝑚 − 𝑛). □

7This is also done for any Δ𝑖, 𝑗 containing both 𝑎 and 𝑎′.
8If 𝜃 = 𝜃 ′, we assume 𝜋𝑙𝜃 is closer to 𝜋𝑎 in Kendall distance.
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Proof of Lemma 4. First, we observe that a set supersets a base iff its rank is 𝑛. We see that for all
𝜆 ∈ [0, 1] and 𝑥,𝑦 ∈ {0, 1}𝑚 , 𝑟 (𝑥) > 𝑟 (𝑦) implies 𝑓𝜆 (𝑥) < 𝑓𝜆 (𝑦). Thus, for each 𝜆 ∈ Λ, MOEA/D
performs (1+1)-EA search toward a base’s superset with fitness 𝑓𝜆, which concludes in 𝑂 (𝑚 log𝑛)
expected steps [26]. The claim follows from the fact that MOEA/D produces |Λ| search points in
each step. □

Proof of Theorem 3. We assume each solution in 𝑃𝜆 supersets a base for all 𝜆 ∈ Λ; this occurs within
expected time 𝑂 ( |Λ|𝑚 log𝑛), according to Lemma 4. Since for each 𝜆 ∈ Λ, the best improvement
in 𝑓𝜆 is retained in each step, the expected number of steps MOEA/D needs to minimizes 𝑓𝜆 is at
most the expected time (1+1)-EA needs to minimizes 𝑓𝜆. We thus fix a trade-off 𝜆 and assume the
behaviors of (1+1)-EA. Note that we use 𝑑𝜆 ·𝑤 (𝜆) in the analysis instead for integral weights; we
scale 𝑓𝜆 and 𝑂𝑃𝑇𝜆 accordingly.

We call the bit flips described in Lemma 5 good flips. Let 𝑠 be the current search point, if good
1-bit flips incur larger total weight reduction than good 2-bit flips on 𝑠, we call 𝑠 1-step, and 2-
step otherwise. If at least half the steps from 𝑠 to the MWB 𝑧 are 1-steps, Lemma 5 implies the
optimality gap of 𝑠 is multiplied by at most 1 − 1/2(𝑚 − 𝑛) on average after each good 1-bit flip.
Therefore, from 𝑓𝜆 (𝑠) ≤ 𝑑𝜆 (𝑚 − 𝑛)𝑤𝑚𝑎𝑥 +𝑂𝑃𝑇𝜆 , the expected difference 𝐷𝐿 after 𝐿 good 1-bit flips
is 𝐸 [𝐷𝐿] ≤ 𝑑𝜆 (𝑚 − 𝑛)𝑤𝑚𝑎𝑥 (1 − 1/2(𝑚 − 𝑛))𝐿. At 𝐿 = ⌈(2 ln 2) (𝑚 − 𝑛) log(2𝑑𝜆 (𝑚 − 𝑛)𝑤𝑚𝑎𝑥 + 1)⌉,
𝐸 [𝐷𝐿] ≤ 1/2 and by Markov’s inequality and the fact that 𝐷𝐿 ≥ 0, Pr[𝐷𝐿 < 1] ≥ 1/2. Since
weights are integral, 𝐷𝐿 < 1 implies that 𝑧 is reached. The probability of making a good 1-bit flip is
Θ((𝑚 − 𝑛)/𝑚), so the expected number of steps before 𝐿 good 1-bit flips occur is 𝑂 (𝐿𝑚/(𝑚 − 𝑛)) =
𝑂 (𝑚(log(𝑚 − 𝑛) + log𝑤𝑚𝑎𝑥 + log𝑑𝜆)). Since 1-steps take up most steps between 𝑠 and 𝑧, the bound
holds.

If at least half the steps from 𝑠 to 𝑧 are 2-steps, Lemma 5 implies the optimality gap of 𝑠 is multiplied
by at most 1 − 1/2𝑛 on average after each good 2-bit flip. Repeating the argument with 𝐿 =

⌈(2 ln 2)𝑛 log(2𝑑𝜆 (𝑚 − 𝑛)𝑤𝑚𝑎𝑥 + 1)⌉ and the probability of making a good 2-bit flip being Θ(𝑛/𝑚2),
we get the bound 𝑂 (𝑚2 (log(𝑚 − 𝑛) + log𝑤𝑚𝑎𝑥 + log𝑑𝜆)). Summing this over all 𝜆 ∈ Λ gives the
total bound. □

Proof of Theorem 4. From Corollary 2, to collect a new point in 𝐶, it is sufficient to perform a 2-bit
flip on some supported solution. In worst-case, there can be only one trade-off 𝜆 ∈ Λ such that all
non-extreme supported solutions minimize𝑤 (𝜆) , so the correct solution is mutated with probability
at least 1/𝑙 in each iteration, where 𝑙 is the number of already collected points. Since |Λ| search
points are generated in each iteration, the expected number of search points required to enumerate 𝐶
is 𝑂 ( |Λ|𝑚2 ∑ |𝐶 |

𝑙=1 𝑙) = 𝑂 ( |Λ| |𝐶 |
2𝑚2). □
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