
A More discussions

A.1 Implementation details

Dataset selection. All of our experiments are performed on ImageNet-1k. All images come from
validation set. We fix the random seed to be 2022. Then 100 classes are selected uniformly at random.
For each class, an image from that class is selected uniformly at random.

Models. The models we use are pretrained models from torchvison.models. The weights
parameter is set to IMAGENET1K_V1.

Feature transformation. For each image, we first crop it into size (224,224,3). Then
quickshift is used to segment the image into super-pixels. We use implementation
from scikit-image and parameters are set as follows: kernel_size=4, max_dist=200,
ratio=0.2, random_seed=2023. The setting we adopt is the same as the default setting in LIME
except that we fix random seed. By fixing random seed, for the same image, we can always get
the same super-pixels so that instability is only due to randomness in computing explanations. For
different images, they are still segmented in different ways.

Computing explanations. Our implementation is based on LIME’s original implementation. We fix
hide_color=None so that the average value of each super-pixel will be used as reference for it when
that super-pixel is removed. distance_metric to determine weight is set to l2 which is suggested
for image data in LIME [22]. Default value of alpha in Ridge regression is 1 if not otherwise
mentioned. For each image, its most probable label is inferred from model f . Then, explanation w.r.t.
this label is computed for that image. Explanations under 10 different random seeds are computed for
each image. The parameter random_seed in LimeImageExplainer and its explain_instance
function is fixed to these random seeds.

A.2 Stability of LIME and GLIME

In Figure 7, top-1,5,10 and average Jaccard index are presented. The average Jaccard index the the
average of top-k Jaccard index for k = 1, · · · , d. Results are similar with Figure 4a. By reformulating,
GLIME produces more stable explanations than LIME.

A.3 LIME and GLIME-BINOMIAL converges to the same limit

In Figure 8, we can observe the difference and correlation between the explanations produced by
LIME and GLIME-BINOMIAL. As the sample size increases, LIME and GLIME-BINOMIAL become
more similar and highly correlated. The difference between their explanations converges to zero
rapidly when � is very large (e.g., � = 5). Since LIME converges very slow when � is small, it
may be intractable to sample until their difference fully converges. However, we can still observe
that their correlation becomes stronger as more samples are used. This indicates that LIME and
GLIME-BINOMIAL converge to the same limit as the sample size increases.

A.4 LIME explanation is different for different references.

Previous work [14] has pointed out that LIME is unstable with respect to references. As we argued
in Section 4.2, this is due to sampling distribution of LIME is determined by reference chosen. In
Figure 9, empirical evidence is presented. We choose six different references: black, white, red,
blue, yellow image and the average value of removed super-pixel (which is the default setting for
LIME). The average Jaccard index among explanations computed with these references is reported
in Figure 9. Obviously, LIME is sensitive to references. Different references cause LIME to select
different features as the most influential even when over 2000 samples are used. The top-1 Jaccard
index is less than 0.7 when sample size is over 2000.

A.5 Local fidelity of GLIME

Figure 5 shows local fidelity of GLIME by sampling from `2 neighborhood {z|kz � xk2  ✏} of
x. Figure 10 and Figure 11 present local fidelity of GLIME by sampling from `1 neighborhood
{z|kz� xk1  ✏} and `1 neighborhood {z|kz� xk1  ✏}, respectively.
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(a) Top-1 Jaccard index of different methods.
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(b) Top-5 Jaccard index of different methods.
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(c) Top-10 Jaccard index of different methods.
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(d) Average Jaccard index of different methods.

Figure 7: Top-1,5,10 and average Jaccard index of different methods. Average Jaccard index is the
average of top-1, · · · , d Jaccard index.
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Figure 8: Difference/correlation of LIME and GLIME-BINOMIAL explanations. MSE, MAE
are used to measure the difference between LIME and GLIME-BINOMIAL. Pearson and Spearman
correlation are correlation measures. When the number of samples increases, their explanations
become more similar. Difference/correlation converge faster when � is larger.
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Figure 9: Top-K Jaccard index among explanations computed with different references. The top-1
Jaccard index is less than 0.7 even when sample size is over 2000.
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Figure 10: Local fidelity of GLIME in `1 neighborhood

By comparing Figure 5 and Figure 10, it can be observed that under the same �, GLIME can explain
local behaviors of f in `1 neighborhood with a larger radius than `2 neighborhood. This is due to
the fact that under the same radius ✏, {z|kz� xk2  ✏} defines a larger neighborhood than that of
{z|kz� xk1  ✏}.

Similarly, {z|kz� xk1  ✏} defines a larger neighborhood than that of {z|kz� xk2  ✏}. Under
the same �, the local fidelity peaks at a smaller radius ✏ for `1 neighborhood than that of `2
neighborhood.

GLIME-LAPLACE generally has a better local fidelity than GLIME-GAUSS and GLIME-UNIFORM
but for large ✏, GLIME-GAUSS sometimes performs the best. Users should choose the sampling
distribution according to the radius of the local neighborhood they aims to explain.

A.6 Previous methods GLIME unifies

KernelSHAP [19]. KernelSHAP is essentially LIME+Shapley value. LIME use a linear explnation
model to locally approximate f . KernelSHAP seeks for a linear explanation model that satisfies
axioms of Shapley values: local accuracy, missingness and consistency [19]. This is achieved by
choosing the loss function `(·, ·), weighting function ⇡(·) and regularization term R. The LIME
choices for these parameters violate local accuracy and/or consistency [19]. However, the Ker-
nelSHAP choices for these parameters are proved to satisfiy these axioms (see Theorem 2 in [19]).
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Figure 11: Local fidelity of GLIME in `1 neighborhood
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(a) Stability of different methods (tiny Swin-
Transformer). Top-20 Jaccard index is reported.
LIME+� = 0 and LIME+⇡ = 1 are LIME with-
out regularization and weighting respectively. LIME
is unstable when � is small while GLIME is more
stable for different �. Without weighting or regular-
ization, LIME becomes much more stable when � is
small. Regularization and weighting show little effect
on stability of LIME when � is large.
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(b) R2 of LIME and several methods produced
by GLIME with different sampling distributions
(tiny Swin-Transformer). 2048 samples are used to
compute explanation and corresponding R2 for each
image and each method. LIME shows almost zero
R2 when � = 0.25, 0.5. This indicates that LIME
produce almost zero explanation. R2 of LIME is gen-
erally lower than that of GLIME which demonstrates
that GLIME improves local fidelity of LIME.

Figure 12: GLIME significantly improves stability and local fidelity upon LIME for different �.

Gradient [2, 27]. It returns rf to measure the influence of each feature under infinitesimal perturba-
tion [2, 27].

SmoothGrad [28]. Vanilla gradient explanations are shown to be noisy. SmoothGrad proposes to
smooth out noise by averaging gradients at local neighborhood [28]. The feature importance is thus
E✏⇠N (0,�2I)[rf(x+ ✏)].

DLIME [37]. Instead of random sampling, DLIME aims to design a deterministic way to obtain
samples. DLIME first uses agglomerative Hierarchical Clustering to group the training data together
and K-Nearest Neighbour to select the relevant cluster of the explained instance. Explanation is
generated by compute a linear model on data points in the cluster found.

ALIME [24]. ALIME utilizes an auto-encoder to weight samples. An auto-encoder AE(·) is first
trained on training data. n nearest points of x are sampled from training dataset. The distances
between samples and explained instance x are measured by `2 distance between their embeddings
obtained by applying the auto-encoder AE(·). For a sample z, its distance with x is kAE(z) �
AE(x)k2 and its weight is exp(�kAE(z) � AE(x)k2). Finally, the explanation is obtained by
solving a weighted Ridge regression problem.

A.7 Results on tiny Swin-Transformer [18]

Results on tiny Swin-Transformer is similar with results on ResNet18 which further confirms that
GLIME improves stability and local fidelity over LIME.

A.8 Comparing GLIME with ALIME

Although ALIME [24] improves stability and local fidelity over LIME, GLIME still outperforms
ALIME. One major difference between ALIME and LIME is that ALIME uses an encoder to encode
samples into embedding space and compute their distance with the input to be explained in embedding
space kAE(z)�AE(x)k2 while LIME uses a binary vector z 2 {0, 1}d to represent a sample, and
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(a) Top-1 Jaccard index of different methods (tiny
Swin-Transformer).
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(b) Top-5 Jaccard index of different methods (tiny
Swin-Transformer).
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(c) Top-10 Jaccard index of different methods (tiny
Swin-Transformer).
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(d) Average Jaccard index of different methods (tiny
Swin-Transformer).

Figure 13: Top-1,5,10 and average Jaccard index of different methods. Average Jaccard index is the
average of top-1, · · · , d Jaccard index (tiny Swin-Transformer).
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Figure 14: Difference/correlation of LIME and GLIME-BINOMIAL explanations (tiny Swin-
Transformer). MSE, MAE are used to measure the difference between LIME and GLIME-BINOMIAL.
Pearson and Spearman correlation are correlation measures. When the number of samples increases,
their explanations become more similar. Difference/correlation converge faster when � is larger.
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use k1� zk2 as the distance between the sample and the explained input. ALIME use distance in
embedding space to weight samples. Therefore, if the samples generated by ALIME is distant from
x, sample weights may still be very small and may cause instability problem.

We conduct experiments to compare GLIME and ALIME. We utilize the VGG16 model provided
by the repository2 as the encoder in ALIME for our experiments on ImageNet. Table 1 shows the
results of the experiments. It can be observed that although ALIME has improved stability compared
to LIME, the improvement is still not as significant as that of GLIME, especially when � is small or
the sample size is small.

Table 1: Top-20 Jaccard Index of GLIME-BINOMIAL, GLIME-GAUSS and ALIME. GLIME-
BINOMIAL and GLIME-GAUSS is much more stable than ALIME, especially when � is small or only
limited samples are available.

# samples 128 256 512 1024

� = 0.25
GLIME-BINOMIAL 0.952 0.981 0.993 0.998
GLIME-GAUSS 0.872 0.885 0.898 0.911
ALIME 0.618 0.691 0.750 0.803

� = 0.5
GLIME-BINOMIAL 0.596 0.688 0.739 0.772
GLIME-GAUSS 0.875 0.891 0.904 0.912
ALIME 0.525 0.588 0.641 0.688

� = 1
GLIME-BINOMIAL 0.533 0.602 0.676 0.725
GLIME-GAUSS 0.883 0.894 0.908 0.915
ALIME 0.519 0.567 0.615 0.660

� = 5
GLIME-BINOMIAL 0.493 0.545 0.605 0.661
GLIME-GAUSS 0.865 0.883 0.898 0.910
ALIME 0.489 0.539 0.589 0.640

A.9 Experiment Results on IMDb

Experiments on text data are conducting on text dara by utilizing the DistilBERT model. 100 data
points are selected from the IMDb dataset as inputs for explanation. In our experiments, we compare
the performance of GLIME-BINOMIAL and LIME, and the Jaccard Index results are presented in
Figure 15. Our findings indicate that GLIME-BINOMIAL exhibits significantly higher stability than
LIME across various values of � and sample sizes. Particularly, when � is small, GLIME-BINOMIAL
demonstrates a substantial improvement in stability compared to LIME.

B Proofs

B.1 Equivalent GLIME formulation without ⇡(·)

When n ! 1, the regularization in Equation 2 could be omitted and the problem to solve is

wGLIME =argmin
v

Ez0⇠P [⇡(z
0)`(f(z), g(z0))] + �R(v)

= argmin
v

Z

Rd

⇡(z0)`(f(z), g(z0))P(z)dz+ �R(v)

=
argminv

R
Rd `(f(z), g(z0))⇡(z0)P(z)dz+ �R(v)R

Rd ⇡(u0)P(u)du

=argmin
v

R
Rd `(f(z), g(z0))⇡(z0)P(z)dzR

Rd ⇡(u0)P(u)du
+

�R(v)R
Rd ⇡(u0)P(u)du

=argmin
v

Z

Rd

`(f(z), g(z0)) eP(z)dz+
�

Z
R(v) eP(z) =

⇡(z0)P(z)

Z
, Z =

Z

Rd

⇡(u0)P(u)du

=argmin
v

Ez0⇠ eP [`(f(z), g(z
0))] +

�

Z
R(v)

2
https://github.com/Horizon2333/imagenet-autoencoder
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(a) Stability of GLIME-BINOMIAL and LIME. Top-
20 Jaccard index is reported. GLIME is more stable for
different � while � does not affect GLIME’s stability.
For LIME, it is more stable when � is larger.

(b) R2 of LIME and GLIME-BINOMIAL with differ-
ent sampling distributions. 2048 samples are used to
compute explanation and corresponding R2 for each
image and each method. LIME shows almost zero R2

when � = 0.25.

Figure 15: GLIME significantly improves stability and local fidelity upon LIME for different �.

B.2 Equivalence between LIME and GLIME-BINOMIAL

For LIME, the probability that a sample z0 with kz0k0 = k could be sampled is 1
2d , so that

Z =

Z

Rd

⇡(u0)P(u)du =
dX

k=0

e(k�d)/�2

�d
k

�

2d
=

e�d/�2

2d
(1 + e1/�2

)d

Thus, we have

eP(z) =
⇡(z0)P(z)

Z
=

e(k�d)/�2

2�d

Z
=

ek/�
2

(1 + e1/�2)d

Therefore, GLIME-BINOMIAL is equivalent to LIME.

B.3 LIME requires more samples to omit the influence of regularization.

Theorem B.1. Suppose we have samples {zi}ni=1 ⇠ Uni({0, 1}d). Let ↵0 =

Ez⇠Uni({0,1}d)[⇡(z)kzk0/d]. For any t > 0, � 2 (0, 1), if n  2�t↵0�
p

2�t↵0 log 1
�

2↵2
0

, for LIME
explanation, we have

P( 1
n

nX

i=1

⇡(z0i)
X

j

zij/d <
�

n
t) � 1� �

Theorem B.2. Suppose we have samples {z0i}ni=1 ⇠ P such that z0i,j , i = 1, · · · , n, j = 1, · · · , d

are sub-gaussian variables with mean �, i.e., E[e(z0
i,j)

2/⌫2

]  2, 8t 2 R. Let � = Ez⇠P [kzk2
2/d].

For any t > 0, � 2 (0, 1), if n  2c�t��
p

2cb2�t� log 1
�

2c�2 where c is an absolute constant, we have

P( 1
n

X

i

kzik2
2/d <

�

n
t) � 1� �

Corollary B.3. Suppose we have samples {zi}ni=1 ⇠ P̃. Let � = Ez⇠P̃[kzk0/d]. For any t > 0, � 2

(0, 1), if n  2�t��
p

2�t� log 1
�

2�2 , we have

P( 1
n

X

i

kzik0/d <
�

n
t) � 1� �

1
n

Pn
i=1 ⇡(z0i)

P
j zij/d can be regarded as the coefficient of kvk in the sum-of-square-term in

Equation 1. Theorem B.1 shows the number of samples required for this coefficient to be large
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than regularization strength �. As will be proved ↵0 = 1
2

✓
1+e

� 1
�2

2

◆d�1

, � 2 (1/2, 1), comparing

the results of LIME and GLIME-BINOMIAL, we can see that LUIME requires exponentially more
samples than GLIME-BINOMIAL.

B.4 Proof of Theorem B.1

Proof. Let yi = ⇡(z0i)
P

j zij/d, ŷ = 1
n

P
i yi, then

↵0 = E[yi] =
dX

k=0

k

d

�d
k

�

2d
e

k�d
�2 =

dX

k=0

�d�1
k�1
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2d
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k�d
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1

2

✓
1 + e�

1
�2
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For n  2�t↵0�
p

2�t↵0 log 1
�

2↵2
0

 �t
↵0

ŷ >
�

n
t () ŷ � ↵0 >

�t

n
� ↵0 > 0

Since 0  yi  1, thus by Hoeffding inequality, we have

P(ŷ � ↵0 >
�t

n
� ↵0)  exp

�
� 2n(

�t

n
� ↵0)

2
�

Because

n <
2�t↵0 �

q
2�t↵0 log

1
�

2↵2
0


4�t↵0 + log 1
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q
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1
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0 + log2 1
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n
� ↵0)
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That is

P( 1
n

nX

i=1

⇡(z0i)
X

j

zij/d >
�

n
t)  �

B.5 Proof of Theorem B.2 and Corollary B.3

Proof of Theorem B.2. Let wi = kzik2
2/d, ŵ = 1

n

P
i wi. The distribution of wi is as follows:

E[wi] = E[
X

j

z2
i,j/d] = �,E[ŵ] = �

For n  2�t��
p

2�t� log 1
�

2�2  �t
�

ŵ >
�

n
t () ŵ � � >

�t

n
� � > 0

Since 0  yi  1, thus by Bernstein’s inequality (refer to Theorem 2.8.1 in [34]), we have

P(ŵ � � >
�t

n
� �)  exp

�
� 2

nc

b2
(
�t

n
� �)2

�
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where c is an absolute constant. Because

n <
2�t�c �

q
2cb2�t� log 1

�

2�2c


4�t�c + b2 log 1
� �

q
8cb2�t� log 1
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That is
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Proof of Corollary B.3. Since z0i 2 {0, 1}d, kz0ik2
2 = kz0ik0. We can prove that � = Ez⇠P̃[kzk0/d] 2

( 1
2 , 1)

Ez⇠P̃[kzk0/d] =
dX

k=0

k

d

�d
k

�
ek/�

2

(1 + e1/�2)d
=

dX

k=1

�d�1
k�1

�
ek/�

2

(1 + e1/�2)d
=

(1 + e1/�2

)(d � 1)e1/�2

(1 + e1/�2)d
=

e1/�2

1 + e1/�2

Since
e1/�2

1 + e1/�2 =
1

1 + e�1/�2 2 (
1

2
, 1),

we have � 2 ( 1
2 , 1).

B.6 Proof of Theorem 4.1

Theorem B.4. Suppose samples {z0i}ni=1 ⇠ Uni({0, 1}d) are used to compute LIME explanation. For
any ✏ > 0, � 2 (0, 1), if n = ⌦((1+�)2✏�2d524de4/�2

log(4d/�)), we have P(kŵLIME�wLIMEk2 <
✏) � 1� �. wLIME = limn!1 ŵLIME.

Proof. To compute LIME explanation with n samples, we solve

ŵLIME = argmin
v

1

n

nX

i=1

⇡(z0i)(f(zi)� v>z0i)
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n
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2
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2
2, set the gradient of L w.r.t v to zero, we have
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0
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Denote ⌃n = 1
n

Pn
i=1 ⇡(z0i)z

0
i(z

0
i)

> + �
n ,�n = 1

n

Pn
i=1 ⇡(z0i)z

0
if(zi),⌃ = limn!1 ⌃n,� =

limn!1 �n, then
ŵLIME = ⌃�1

n �n,wLIME = ⌃�1�,

To prove concentration of ŵLIME, we follows the proofs in [8]: (1) We first prove the concentration of
⌃n (2) then bound k⌃�1k2

F (3) then prove the concentration of �n (4) and finally use the following
inequality:

k⌃�1
n �n �⌃�1�k  2k⌃�1kF k�n � �k2 + 2k⌃�1k2

F k�kk⌃n �⌃k

when k⌃�1(⌃n �⌃)k  0.32 [8].

Before proving concentration, we first derive the expression for ⌃.
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Expression of ⌃.
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By taking n ! 1, we have
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By Sherman-Morrison formula, we have
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In the following, we will prove the concentration of ŵLIME.
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Concentration of ⌃n. Since 0  ⇡(·)  1, zi 2 {0, 1}d, we have each element in ⌃n is in [0, 1+ �
n ].

In addition, as
1
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By matrix Heoffding’s inequality [32], we have 8t > 0
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Concentration of �n. Since |f |  1, we have elements in �n and � are all in range [0, 1]. By matrix
Hoeffding’s inequality [32], we have 8t > 0

P(k�n � �k � t)  2d exp(�nt2

8d
)

Concentration of ŵLIME. When k⌃�1(⌃n �⌃)k  0.32 [8], we have
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In this case, with probability at least 1� �
2 we have
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Therefore, overall, we can choose n � max{n1, n2, n3}, and then we have 8✏ > 0, � 2 (0, 1)

P(k⌃�1
n �n �⌃�1�k � ✏)  �

B.7 Proof of Theorem 4.2 and Corollary 4.3

Theorem B.5. Suppose z0⇠P such that the largest eigenvalue of z0(z0)> is bounded by R and
E[z0(z0)>] = (↵1 � ↵2)I + ↵211>, kVar(z0(z0)>)k2  ⌫2, |(z0f(z))i|  M for some M > 0.
{z0i}ni=1 are i.i.d. samples from P and are used to compute GLIME explanation ŵGLIME. For any
✏ > 0, � 2 (0, 1), if n = ⌦(✏�2M2⌫2d3�4 log(4d/�)) where �2 = d�2
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with probability at least 1� �/2
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Corollary B.6. Suppose {z0i}ni=1 are i.i.d. samples from P(z0, kz0k0 = k) = ek/�
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Proof. For GLIME-BINOMIAL, we have each coordinate of z0(z0)> follows a Bernoulli distribution
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�
ek/�

2

(1 + e1/�2)d

=
dX

k=0

�d�2
k�2

�
ek/�

2

(1 + e1/�2)d

=
(1 + e1/�2

)d�2

(1 + e1/�2)d
e2/�2

=
e2/�2

(1 + e1/�2)2
= ↵2

1

|�1|2 = | ↵1 + � + (d � 2)↵2

(↵1 + � � ↵2)(↵1 + � + (d � 1)↵2)
|2  | 1

↵1 + � � ↵2
|  1

|↵1 � ↵2|
= e�1/�2

(1+e1/�2

)2  4e1/�2
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|�2|2 =|� ↵2

(↵1 + � � ↵2)(↵1 + � + (d � 1)↵2)
|2

 ↵2
2

(↵1 � ↵2)(↵1 + � + (d � 1)↵2)2

=
↵1↵2

(1� ↵1)(↵1 + (d � 1)↵2)2

 ↵1↵2

(1� ↵1)((d � 1)↵2)2
=

e�1/�2

(1 + e1/�2

)2

(d � 1)2
 22e1/�2

(d � 1)2

Therefore,

d�2
1 + (d2 � d)�2

2  de1/�2

+ e1/�2 d

d � 1
 de1/�2

B.8 Formulation of SmoothGrad

Proposition B.7. SmoothGrad is equivalent to GLIME formulation with z = z0 + x where z0 ⇠
N (0, �2I), `(f(z), g(z0)) = (f(z)� g(z0))2 and ⇡(z) = 1,⌦(v) = 0.

The explanation returned by GLIME for f at x with infinitely many samples under the above setting is

w⇤ =
1

�2
Ez0⇠N (0,�2I)[z

0f(z0 + x)] = Ez0⇠N (0,�2I)[rf(x+ z0)]

which is exactly SmoothGrad explanation. When � ! 0, w⇤ ! rf(x+ z)|z=0.

Proof. To prove this proposition, we first derive the expression of GLIME explanation w⇤.

Exact Expression of ⌃. z0i ⇠ N (0, �2I), 8i = 1, · · · , n. In this case

⌃̂n =

2

64

1
n

P
k(z

2
k1)

0 · · · 1
n

P
k z0l1z

0
kd

...
. . .

...
1
n

P
k z0kdz

0
k1 · · · 1

n

P
k(z

2
kd)

0

3

75

Then we have

⌃ = Ez0⇠N (0,�2I[z
0(z0)>] =

2

64
�2 · · · 0
...

. . .
...

0 · · · �2

3

75

⌃�1 =

2

64

1
�2 · · · 0
...

. . .
...

0 · · · 1
�2

3

75

As a direct consequence, we have

w⇤ = ⌃�1� =
1

�2
Ez0⇠N (0,�2I)[z

0f(x+ z0)] = Ez0⇠N (0,�2I)[rf(x+ z0)]

The last equality directly follows from Stein’s lemma [17].
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