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Abstract
We propose the geometry-informed neural operator (GINO), a highly efficient1

approach to learning the solution operator of large-scale partial differential equa-2

tions with varying geometries. GINO uses a signed distance function (SDF) and3

point-cloud representations of the input shape and neural operators based on graph4

and Fourier architectures to learn the solution operator. The graph neural operator5

handles irregular grids and transforms them into and from regular latent grids on6

which Fourier neural operator can be efficiently applied. We provide an efficient7

implementation of GINO using an optimized hashing approach, which allows8

efficient learning in a shared, compressed latent space with reduced computation9

and memory costs. GINO is discretization-invariant, meaning the trained model10

can be applied to arbitrary discretizations of the continuous domain and applies to11

any shape or resolution. To empirically validate the performance of our method12

on large-scale simulation, we generate the industry-standard aerodynamics dataset13

of 3D vehicle geometries with Reynolds numbers as high as five million. For14

this large-scale 3D fluid simulation, numerical methods are expensive to compute15

surface pressure. We successfully trained GINO to predict the pressure on car16

surfaces using only five hundred data points. We obtained a 100, 000× speed-up17

compared to optimized GPU-based computational fluid dynamics (CFD) simula-18

tors. When tested on new combinations of geometries and boundary conditions19

(inlet velocities), GINO obtains a 2× reduction in error rate compared to deep20

neural network approaches. Our method is the first ML method to do full-field 3D21

CDF simulations at this level of complexity and realism.22

1 Introduction23

Computational sciences aim to understand natural phenomena and develop computational models to24

study the physical world around us. Many natural phenomena follow the first principles of physics25

and are often described as evolution on function spaces, governed by partial differential equations26

(PDE). Various numerical methods, including finite difference and finite element methods, have been27

developed as computational approaches for solving PDEs. However, these methods need to be run at28

very high resolutions to capture detailed physics, which are time-consuming and expensive, and often29

beyond the available computation capacity. For instance, in computational fluid dynamics (CFD),30

given a shape design, the goal is to solve the Navier-Stokes equation and estimate physical properties31

such as pressure and velocity. Finding the optimal shape design often requires solving thousands of32

trial shapes, each of which can take more than ten hours even with GPUs [1].33

To overcome these computational challenges, recent works propose deep learning-based methods,34

particularly neural operators [2], to speed up the simulation and inverse design. Neural operators35

generalize neural networks and learn operators, which are mappings between infinite-dimensional36

function spaces [2]. Neural operators are discretization invariant and can approximate general37

operators [3]. The input function to neural operators can be presented at any discretization, grid,38
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Figure 1: The architecture of GINO. The input geometries are irregular and change for each sample.
These are discretized into point clouds and passed on to a GNO layer, which maps from the given
geometry to a latent regular grid. The output of this GNO layer is concatenated with the SDF features
and passed into an FNO model. The output from the FNO model is projected back onto the domain
of the input geometry for each query point using another GNO layer. This is used to predict the target
function (e.g., pressure), which is used to compute the loss that is optimized end-to-end for training.

resolution, or mesh, and the output function can be evaluated at any arbitrary point. Neural operators39

have shown promise in learning solution operators in partial differential equations (PDE) [3] with40

numerous applications in scientific computing, including weather forecasting [4], carbon dioxide41

storage and reservoir engineering [5], with a tremendous speedup over traditional methods. Prior42

works on neural operators developed a series of principled neural operator architectures to tackle43

a variety of scientific computing applications. Among the neural operators, graph neural operators44

(GNO) [2], and Fourier neural operators (FNO) [6] have been popular in various applications.45

GNO implements kernel integration with graph structures and is applicable to complex geometries46

and irregular grids. The kernel integration in GNO shares similarities with the message-passing47

implementation of graph neural networks (GNN) [7], which is also used in scientific computing [8–48

10]. However, the main difference is that GNO defines the graph connection in a ball defined on49

the physical space, while GNN typically assumes a fixed set of neighbors, e.g., k-nearest neighbors,50

see Figure 4. Such nearest-neighbor connectivity in GNN violates discretization invariance, and51

it degenerates into a pointwise operator at high resolutions, leading to a poor approximation of52

the ground-truth operator using GNN. In contrast, GNO adapts the graph based on points within a53

physical space, allowing for universal approximation of operators. However, one limitation of graph-54

based methods is the computational complexity when applied to problems with long-range global55

interactions. To overcome this, prior works propose using multi-pole methods or multi-level graphs56

[11, 12] to help with global connectivity. However, they do not fully alleviate the problem since they57

require many such levels to capture global dependence, which still makes them expensive.58

While GNO performs kernel integration in the physical space using graph operations, FNO leverages59

Fourier transform to represent the kernel integration in the spectral domain using Fourier modes. This60

architecture is applicable to general geometries and domains since the (continuous) Fourier transform61

can be defined on any domain. However, it becomes computationally efficient when applied to regular62

input grids since the continuous Fourier transform can then be efficiently approximated using discrete63

Fast Fourier transform (FFT) [13], giving FNO a significant quasi-linear computational complexity.64

However, FFT limits FNO to regular grids and cannot directly deal with complex geometries and65

irregular grids. A recent model, termed GeoFNO, learns a deformation from a given geometry to66

a latent regular grid [14] so that the FFT can be applied in the latent space. In order to transform67

the latent regular grid back to the irregular physical domain, discrete Fourier transform (DFT) on68

irregular grids is employed. However, DFT on irregular grids is more expensive than FFT, quadratic69

vs. quasi-linear, and does not approximate the Fourier transform in a discretization invariant manner.70

This is because, unlike in the regular setting, the points are not sampled at regular intervals, and71

therefore the integral does not take into account the underlying measure. Other attempts share a72

similar computational barrier as shown in Table 1, which we discussed in Section 5.73

In this paper, we consider learning the solution operator for large-scale PDEs, in particular, 3D74

CFD simulations. We propose the geometry-informed neural operator (GINO), a neural operator75

architecture for arbitrary geometries and mesh discretizations. It uses a signed distance function76

(SDF) to represent the geometry and composes GNO and FNO architectures together in a principled77

manner to exploit the strengths of both frameworks.78
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Table 1: Computational complexity of standard deep learning models. N is the number of mesh
points; d is the dimension of the domain and degree is the maximum degree of the graph. Even though
GNO and transformer both work on irregular grids and are discretization invariant, they become too
expensive on large-scale problems.

Model Range Complexity Irregular grid Discretization invariant
GNN local O(Ndegree) ✔ ✗
CNN local O(N) ✗ ✗
UNet global O(N) ✗ ✗
Transformer global O(N2) ✔ ✔
GNO (kernel) radius r O(Ndegree) ✔ ✔
FNO (FFT) global O(N logN) ✗ ✔
GINO [Ours] global O(N logN +Ndegree) ✔ ✔

The GNO by itself can handle irregular grids through graphs but is able to operate only locally under79

a limited computational budget, while the FNO can capture global interactions, but requires a regular80

grid. By using GNO to transform the irregular grid into a regular one for the FNO block, we can get81

the best of both worlds, i.e., computational efficiency and accuracy of the approximation. Thus, this82

architecture tackles the issue of expensive global integration operations that were unaddressed in83

prior works, while maintaining discretization invariance.84

Specifically, GINO has three main components, (i) Geometry encoder: multiple local kernel85

integration layers through GNO with graph operations, (ii) Global model: a sequence of FNO86

layers for global kernel integration, and (iii) Geometry decoder: the final kernel integral layers, as87

shown in Figure 1. The input to the GINO is the input surface (as a point cloud) along with the SDF,88

representing the distance of each 3D point to the surface. GINO is trained end-to-end to predict output89

(e.g., car surface pressure in our experiments), a function defined on the geometry surfaces.90

Geometry encoder: the first component in the GINO architecture uses the surface (i.e., point cloud)91

and SDF features as inputs. The irregular grid representation of the surface is encoded through92

local kernel integration layers implemented with GNOs, consisting of local graphs that can handle93

different geometries and irregular grids. The encoded function is evaluated on a regular grid, which94

is concatenated with the SDF input evaluated on the same grid. Global model: the output of the first95

component is encoded on a regular grid, enabling efficient learning with an FNO using FFT. Our96

second component consists of multiple FNO layers for efficient global integration. In practice, we97

find that this step can be performed at a lower resolution without significantly impacting accuracy,98

giving a further computational advantage. Geometry decoder: the final component is composed99

of local GNO-based layers with graph operations, that decode the output of the FNO and project100

it back onto the desired geometry, making it possible to efficiently query the output function on101

irregular meshes. The GNO layers in our framework are accelerated using our GPU-based hash-table102

implementation of neighborhood search for graph connectivity of meshes.103

We validate our findings on two large-scale 3D CFD datasets. We generate our own large-scale104

industry-standard Ahmed’s body geometries using GPU-based OpenFOAM [15], composed of 500+105

car geometries with O(105) mesh points on the surface and O(107) mesh points in space. Each106

simulation takes 7-19 hours on 16 CPU cores and 2 Nvidia V100 GPUs. Further, we also study a107

lower resolution dataset with more realistic car shapes, viz., Shape-Net car geometries generated by108

[16]. GINO takes the point clouds and SDF features as the input and predicts the pressure fields on the109

surfaces of the vehicles. We demonstrate that GINO enjoys a 100, 000× speed-up over the GPU-based110

OpenFOAM solver while achieving 8.31% (Ahmed-body) and 7.29% (Shape-Net car) error rates,111

which is only about half compared to existing neural networks such as U-Net [17, 18]. Further, GINO112

is capable of zero-shot super-resolution, training with only one-eighth of the mesh points, and having113

a good accuracy when evaluated on the full mesh that is not seen during training.114

2 Problem setting115

We are interested in learning the map from the geometry of a PDE to its solution. We will first give a116

general framework and then discuss the Navier-Stokes equation in CFD as an example. Let D ⊂ Rd117

be a Lipschitz domain and A a Banach space of real-valued functions on D. We consider the set of118
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distance functions T ⊂ A so that, for each function T ∈ T , its zero set ST = {x ∈ D : T (x) = 0}119

defines a (d− 1)-dimensional sub-manifold. We assume ST is simply connected, closed, smooth,120

and that there exists ϵ > 0 such that Bϵ(x) ∩ ∂D = ∅ for every x ∈ ST and T ∈ T . We denote121

by QT ⊂ D, the open volume enclosed by the sub-manifold ST and assume that QT is a Lipschitz122

domain with ∂QT = ST . We define the Lipschitz domain ΩT := D \ Q̄T so that, ∂ΩT = ∂D ∪ ST .123

Let L denote a partial differential operator and consider the problem124

L(u) = f, in ΩT ,

u = g, in ∂ΩT ,
(1)

for some f ∈ F , g ∈ B where B, F denote Banach spaces of functions on Rd with the assumption125

that the evaluation functional is continuous in B. We assume that L is such that, for any triplet126

(T, f, g), the PDE (1) has a unique solution u ∈ UT where UT denotes a Banach space of functions127

on ΩT . Let U denote a Banach space of functions on D and let {ET : UT → U : T ∈ T } be a128

family of extension operators which are linear and bounded. We define the mapping from the distance129

function to the solution function130

Ψ : T × F × B → U (2)
by (T, f, g) 7→ ET (u) which is our operator of interest.131

Navier-Stokes Equation. We illustrate the above abstract formulation with the following example.132

Let D = (0, 1)d be the unit cube and let A = C(D̄). We take T ⊂ A to be some subset such that the133

zero level set of every element defines a (d− 1)-dimensional closed surface which can be realized as134

the graph of a Lipschitz function and that there exists ϵ > 0 such that each surface is at least distance135

ϵ away from the boundary of D. We now consider the steady Naiver-Stokes equations,136

−ν∆v + (v · ∇)v +∇p = f, in ΩT ,

∇ · v = 0, in ΩT ,

v = q, in ∂D,

v = 0, in ST ,

(3)

where v : ΩT → Rd is the velocity, p : ΩT → R is the pressure, ν is the viscosity, and f, q : Rd → Rd137

are the forcing and boundary functions. The condition that v = 0 in ST is commonly known as a “no138

slip” boundary and is prevalent in many engineering applications. The function q, on the other hand,139

defines the inlet and outlet boundary conditions for the flow. We assume that f ∈ H−1(Rd;Rd) and140

q ∈ C(Rd;Rd). We can then define our boundary function g ∈ C(Rd;Rd) such that g(x) = 0 for141

any x ∈ D with dist(x, ∂D) ≥ ϵ and g(x) = q(x) for any x ∈ D with, dist(x, ∂D) > ϵ/2 as well142

as any x ̸∈ D. Continuity of g can be ensured by an appropriate extension for any x ∈ D such that143

dist(x, ∂D) < ϵ and dist(x, ∂D) ≥ ϵ/2 [19]. We define u : ΩT → Rd+1 by u = (v, p) as the unique144

weak solution of (3) with UT = H1(ΩT ;Rd) × L2(ΩT )/R [20]. We define U = H1(D;Rd) ×145

L2(D)/R and the family of extension operators {ET : UT → U} by ET (u) =
(
Ev

T (v), E
p
T (p)

)
146

where Ev
T : H1(ΩT ;Rd) → H1(D;Rd) and Ep

T : L2(ΩT )/R → L2(D)/R are defined as the147

restriction onto D of the extension operators defined in [21, Chapter VI, Theorem 5]. This establishes148

the existence of the operator Ψ : T ×H−1(Rd;Rd)×C(Rd;Rd) → H1(D;Rd)×L2(D)/R mapping149

the geometry, forcing, and boundary condition to the (extended) solution of the steady Navier-Stokes150

equation (3). Homomorphic extensions of deformation-based operators have been shown in [22]. We151

leave for future work studying the regularity properties of the presently defined operator.152

3 Geometric-Informed Neural Operator153

We propose a geometry-informed neural operator (GINO), a neural operator architecture for varying154

geometries and mesh regularities. GINO is a deep neural operator model consisting of three main155

components, (i) multiple local kernel integration layers, (ii) a sequence of FNO layers for global156

kernel integration which precedes (iii) the final kernel integral layers. Each layer of GINO follows157

the form of generic kernel integral of the form (5). Local integration is computed using graphs, while158

global integration is done in Fourier space.159

3.1 Neural operator160

A neural operator Ψ [3] maps the input functions a = (T, f, g) to the solution function u. The neural161

operator Ψ is composed of multiple layers of point-wise and integral operators,162

Ψ = Q ◦ KL ◦ . . . ◦ K1 ◦ P. (4)
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The first layer P is a pointwise operator parameterized by a neural network. It transforms the input163

function a into a higher-dimensional latent space P : a 7→ v0. Similarly, the last layer acts as a164

projection layer, which is a pointwise operator Q : vl 7→ u, parameterized by a neural network Q.165

The model consists of L layers of integral operators Kl : vl−1 7→ vl in between.166

vl(x) =

∫
D

κl(x, y)vl−1(y)dy (5)

where κl is a learnable kernel function. Non-linear activation functions are incorporated between167

each layer.168

3.2 Graph operator block169

To efficiently compute the integral in equation (5), we truncate the integral to a local ball at x with170

radius r > 0, as done in [2],171

vl =

∫
Br(x)

κ(x, y)vl−1(y) dy. (6)

We discretize the space and use a Riemann sum to compute the integral. This process involves172

uniformly sampling the input mesh points and connecting them with a graph for efficient parallel173

computation. Specifically, for each point x ∈ D, we randomly sample points {y1, . . . , yM} ⊂ Br(x)174

and approximate equation (6) as175

vl(x) ≈
M∑
i=1

κ(x, yi)vl−1(yi)µ(yi), (7)

where µ denotes the Riemannian sum weights corresponding to the ambient space of Br(x). For a176

fixed input mesh of N points, the computational cost of equation (7) scales with the number of edges,177

denoted as O(E) = O(MN). Here, the number of sampling points M is the degree of the graph. It178

can be either fixed to a constant sampling size, or scale with the area of the ball.179

Encoder. Given an input point cloud {xin
1 , . . . , x

in
N} ⊂ ST , we employ a GNO-encoder to transform180

it to a function on a uniform latent grid {xgrid
1 , . . . , xgrid

S } ⊂ D. The encoder is computed as181

discretization of an integral operator v0(xgrid) ≈
∑M

i=1 κ(x
grid, yin

i )µ(y
in
i ) over ball Brin(x

grid). To182

inform the grid density, GINO computes Riemannian sum weights µ(yin
i ). Further, we use Fourier183

features in the kernel [23]. For simple geometries, this encoder can be omitted, see Section 4.184

Decoder. Similarly, given a function defined on the uniform latent grid {xgrid
1 , . . . , xgrid

S } ⊂ D, we185

use a GNO-decoder to query arbitrary output points {xout
1 , . . . , xout

N } ⊂ ΩT . The output is evaluated186

as u(xout) ≈
∑M

i=1 κ(x
out, ygrid

i )vl(y
grid
i )µ(ygrid

i ) over ball Brout(x
out). Here, the Riemannian weight,187

µ(ygrid
i ) = 1/S since we choose the latent space to be regular grid. Since the queries are independent,188

we divide the output points into small batches and run them in parallel, which enables us to use much189

larger models by saving memory.190

Efficient graph construction. The graph construction requires finding neighbors to each node191

that are within a certain radius. The simplest solution is to compute all possible distances between192

neighbors, which requires O(N2) computation and memory. However, as the N gets larger, e.g., 10193

∼ 100 million, computation and memory become prohibitive even on modern GPUs. Instead, we194

use a hash grid-based implementation to efficiently prune candidates that are outside of a ℓ∞-ball195

first and then compute the ℓ2 distance between only the candidates that survive. This reduces the196

computational complexity to O(Ndr3) where d denotes unit density and r is the radius. This can be197

efficiently done using first creating a hash table of voxels with size r. Then, for each node, we go over198

all immediate neighbors to the current voxel that the current node falls into and compute the distance199

between all points in these neighboring voxels. Specifically, we use the CUDA implementation from200

Open3D [24]. Then, using the neighbors, we compute the kernel integration using gather-scatter201

operations from torch-scatter [25]. Further, if the degree of the graph gets larger, we can add Nyström202

approximation by sampling nodes [2].203

3.3 Fourier operator block204

The geometry encoding v0 and the geometry specifying map T , both evaluated on a regular grid205

discretizing D are passed to a FNO block. We describe the basic FNO block as first outlined in [6].206

5



Ground-truth pressure Predicted pressure Relative error

0.00  0.200 0.400 0.600 0.800 
-197. -96.7 3.54  104.  204.  

-2.82e+03 -1.90e+03 -991. -79.0 833.  0.00  0.370 0.739 1.11  1.48  

Figure 2: Visualization of a ground-truth pressure and corresponding prediction by GINO from
the Shape-Net Car (top) and Ahmed-body (bottom) datasets, as well as the absolute error.

We will first define global convolution in the Fourier space and use it to build the full FNO operator207

block. To that end, we will work on the d-dimensional unit torus Td. We define an integral operator208

with kernel κ ∈ L2(Td;Rn×m) as the mapping C : L2(Td;Rm) → L2(Td;Rn) given by209

C(v) = F−1
(
F(κ) · F(v)

)
, ∀ v ∈ L2(Td;Rm)

Here F ,F−1 are the Fourier transform and its inverse respectively, defined for L2 by the appropriate210

limiting procedure. The Fourier transform of the function κ will be parameterized directly by some211

fixed number of Fourier modes, denoted α ∈ N. In particular, we assume212

κ(x) =
∑
γ∈I

cγei⟨γ,x⟩, ∀ x ∈ Td

for some index set I ⊂ Zd with |I| = α and coefficients cγ ∈ Cn×m. Then we may view213

F : L2(Td;Rn×m) → ℓ2(Zd;Cn×m) so that F(κ)(γ) = cγ if γ ∈ I and F(κ)(γ) = 0 if γ ̸∈ I .214

We directly learn the coefficients cγ without ever having to evaluate κ in physical space. We then215

define the full operator block K : L2(Td;Rm) → L2(Td;Rn) by216

K(v)(x) = σ
(
Wv(x) + C(v)

)
, ∀ x ∈ Td

where σ is a pointwise non-linearity and W ∈ Rn×m is a learnable matrix. We further modify the217

layer by learning the kernel coefficients in tensorized form, adding skip connections, normalization218

layers, and learnable activations as outlined in [26]. We refer the reader to this work for further219

details.220

Adaptive instance normalization. For many engineering problems of interest, the boundary in-221

formation is a fixed, scalar, inlet velocity specified on some portion of ∂D. In order to efficiently222

incorporate this scalar information into our architecture, we use a learnable adaptive instance nor-223

malization [27] combined with a Fourier feature embedding [23]. In particular, the scalar velocity is224

embedded into a vector with Fourier features. This vector then goes through a learnable MLP, which225

outputs the scale and shift parameters of an instance normalization layer [28]. In problems where the226

velocity information is not fixed, we replace the normalization layers of the FNO blocks with this227

adaptive normalization. We find this technique improves performance, since the magnitude of the228

output fields usually strongly depends on the magnitude of the inlet velocity.229

4 Experiments230

We explore a range of models on two CFD datasets. The large-scale Ahmed-Body dataset, which231

we generated, and also the Shape-Net Car dataset from [16]. Both datasets contain simulations of232
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Table 2: Benchmark comparison on the Ahmed-body and Shape-Net Car dataset.

Model Ahmed-body (100k points) Shape-Net Car (3.7k points)
training error test error training error test error

GNO - - 24.89% 18.77%

Geo-FNO (sphere) - - 10.79% 15.85%

UNet (interp) 14.34% 14.80% 12.48% 12.83%
FNO (interp) 12.97% 12.59% 9.65% 9.42%
GINO (encoder-decoder) 9.36% 9.01% 7.95% 9.47%
GINO (decoder) 9.34% 8.31% 6.37% 7.12%

Previous works such as GNO and Geo-FNO cannot scale to large meshes with 100k points. For
UNet, FNO, and GINO, we fix the latent grid to 64× 64× 64. The training error is normalized L2;

the test error is de-normalized L2.

the Reynold-Averaged Navier-Stokes (RANS) equations for a chosen turbulence model. The goal233

is to estimate the full pressure field given the shape of the vehicle as input. We consider GNO [2],234

GeoFNO [14], 3D UNet [18] with linear interpolation, FNO [6], and GINO. We train each model for235

100 epochs with Adam optimizer and step learning rate scheduler. The implementation details can be236

found in the Appendix. All models run on a single Nvidia V100 GPU.237

4.1 Ahmed-Body dataset238

We generate the industry-level vehicle aerodynamics simulation based on the Ahmed-body shapes239

[29]. The shapes are parameterized with six design parameters: length, width, height, ground240

clearance, slant angle, and fillet radius. We also vary the inlet velocity from 10m/s to 70m/s, leading241

to Reynolds numbers ranging from 4.35×105 to 6.82×106. We use the GPU-accelerated OpenFOAM242

solver for steady state simulation using the SST k − ω turbulence model [30] with 7.2 million mesh243

points in total with 100k mesh points on the surface. Each simulation takes 7-19 hours on 2 Nvidia244

v100 GPUs with 16 CPU cores. We generate 551 shapes in total and divide them into 500 for training245

and 51 for validation.246

4.2 Shape-Net Car dataset247

We also consider the Car dataset generated by [16]. The input shapes are from the ShapeNet Car248

category [31]. In [16], the shapes are manually modified to remove the side mirrors, spoilers, and249

tires. The RANS equations with the k − ϵ turbulence model and SUPG stabilization are simulated250

to obtain the time-averaged velocity and pressure fields using a finite element solver [32]. The inlet251

velocity is fixed at 20m/s (72km/h) and the estimated Reynolds number is 5× 106. Each simulation252

takes approximately 50 minutes. The car surfaces are stored with 3.7k mesh points. We take the 611253

water-tight shapes out of the 889 instances, and divide the 611 instances into 500 for training and 111254

for validation.255

As shown in Table 2 and Figure 2, GINO achieves the best error rate with a large margin compared256

with previous methods. It takes 0.1 seconds to evaluate, which is 100,000x faster than the GPU-257

parallel OpenFOAM solver that take 10 hours to generates the data.258

4.3 Discretization-invariance and ablation studies259

We investigate discretization-invariance by varying different parts of GINO. Specifically, we vary the260

latent grid resolution and the sampling rates for input-output meshes. In these experiments, we fixed261

the training and test samples to be the same, i.e., same latent grid resolution or sampling rate, but262

varied the shape and input conditions.263

Discretization-invariance wrt the latent grid. Here, each model is trained and tested on (the264

same) latent resolutions, specifically 32, 48, 64, 80, and 88, and the architecture is the same. As265

depicted in Figure 3(a), GINO demonstrates a comparable error rate across all resolutions. A minor266

improvement in errors is observed when employing a larger latent space. Conversely, the errors267

associated with the UNet model grow as the resolution is decreased due to the decreasing receptive268

field of its local convolution kernels.269
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(a) Varying resolutions of the
latent grid (same resolution for
training and testing).

(b) Varying the sampling rates of
the input-output mesh (same rate
for training and testing).

(c) Train with a low sampling rate
and test on full mesh (zero-shot super-
resolution).

Figure 3: Discretization-invariant studies and zero-shot super-resolution.

Discretization-invariance in the input-output mesh. Here, GINO is trained and tested with sub-270

sampled input-output meshes at various sampling rates (2x, 4x, 6x, 8x). As illustrated in Figure 3(b),271

GINO exhibits a consistent error rate across all sampling rates. A slight increase in errors is observed272

on coarser meshes.273

Zero-shot super-resolution. GINO possesses the ability to perform zero-shot super-resolution.274

The model is trained on a coarse dataset, sub-sampled by 2x, 4x, 6x, and 8x, and subsequently tested275

on the full mesh, that is not seen during training. The error remains consistent across all sampling276

rates 3(c). This characteristic enables the model to be trained at a coarse resolution when the mesh is277

dense, consequently reducing the computational requirements.278

5 Related Work279

The study of neural operators and their extended applications in learning solution operators in PDE280

has been gaining momentum [3, 33–35]. A method that stands out is FNO, which uses Fourier281

transform [6]. The FNO and its variations have proven to highly accelerate the simulations for282

large-scale flow problems, including weather forecasting [4], seismology [36, 37] and multi-phase283

flow [5]. However, a challenge with the FNO is that its computation superiority is gained when284

applied on a regular grid, where the Fourier transform is approximated using FFT. Therefore, its285

reliance on FFT limits its use with irregular grids or complex geometries. There have been attempts286

to modify the FNO to work with these irregular structures, but scalability to large-scale 3D PDEs287

remains an issue. One such attempt is GeoFNO, which learns a coordinate transformation to map288

irregular inputs to a regular latent space [14]. This method, while innovative, requires a geometric289

discrete Fourier transform, which is computationally demanding and lacks discretization insurance.290

To circumvent this, GINO limits the Fourier transform to a local GNO to improve efficiency. The291

locality is defined assuming the metrics of the physical space.292

Additionally, the Non-Equispaced Fourier neural solvers (NFS) merge the FNO with non-equispaced293

interpolation layers, a method similar to global GNO [38]. However, at the architecture level, their294

method replaces the integration of GNO with the summation of the nearest neighbor points on the295

graph. This step transitions this method to a neural network, failing to deliver a discretization invariant296

approach. The Domain-Agnostic Fourier Neural Operators (DAFNO) represents another attempt at297

improvement, applying an FNO to inputs where the geometry is represented as an indicator function298

[39]. However, this method lacks a strategy for handling irregular point clouds. Simultaneously,299

researchers are exploring the combination of FNO with the attention mechanisms [3] for irregular300

meshes. This includes the Operator Transformer (OFormer) [40], Mesh-Independent Neural Op-301

erator (MINO) [41], and the General Neural Operator Transformer (GNOT) [42]. Although these302

methods incorporate attention layers, which are special types of kernel integration [3] with quadratic303

complexity, they face challenges when scaling up for large-scale problems.304

GNNs are incorporated in the prior attempts in physical simulations involving complex geometry,305

primarily due to the inherent flexibility of graph structures. Early research [7, 43–45] laid the306

foundation for GNNs, demonstrating that physical entities, when represented as graph nodes, and307

their interactions, as edges, could predict the dynamics of various systems. The introduction of graph308

element networks [46] marked a significant development, being the first to apply GNNs to PDEs by309

discretizing the domain into elements. Another line of work, mesh graph networks [8–10], further310
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discretization Coarser 
discretization …

Input geometries Discretized geometries at various fine to coarse levels of discretizations

(a) An input geometry (continuous function) is first discretized into a series of points by subsampling it. Note
that in practice, the discretization can be highly irregular. A key challenge with several scientific computing
applications is that we want a method that can work on arbitrary geometries, but also that is discretization invariant,
meaning that the method converges to a unique operator as we make the discretization finer.

Finer
discretization

Target
Geometry

(b) GNN connects each point in the latent subspace
(red) to its nearest neighbors in the original space
(top). This is very discretization dependent, and as we
increase the resolution (sample points more densely),
the method becomes increasingly local and fails to
capture context. In addition, the operator at the dis-
cretization limit is non-unique and depends on how
the discretization is done.

Finer
discretization

Target
Geometry

(c) GNO instead connects each point in the latent
subspace (red) to all its neighbors within an epsilon
ball in the original space (top). This induces con-
vergence to a discretization invariant solution as we
increase the resolution (sample points more densely).
This means GNO converges to a unique operator as
the discretization becomes finer and scales to large
problems without becoming overly local.

Figure 4: Comparison of GNN and GNO as the discretization becomes finer. GNN is discretization
dependent, while GNO is discretization invariant and converges to a unique operator.

explored PDEs in the context of fluid and solid mechanics. [47, 48] train a Graph convolutional neural311

works on the ShapeNet car dataset for inverse design. However, GNN architectures’ limitations hinder312

their use in operator learning for PDEs. GNNs connect each node to its nearest neighbors according313

to the graph’s metrics, not the metrics of the physical domain. As the input function’s discretization314

becomes finer, each node’s nearest neighbors eventually converge to the same node, contradicting the315

expectation of improved model performance with finer discretization. Furthermore, GNNs’ model316

behavior at the continuous function limit lacks a unique definition, failing the discretization invariance317

criterion. Consequently, as pointwise operators in function spaces at the continuous limit, GNNs318

struggle to approximate general operators between function spaces, Figure 4.319

6 Conclusion320

In this work, we propose the GINO model for 3D PDEs with complex geometries. The GINO model321

consists of the graph-kernel blocks for the encoder and decoder that go to a latent uniform space,322

where the Fourier blocks run on the latent space to capture the global interaction. We experiment323

on two CFD datasets: Shape-Net car geometries and large-scale Ahmed’s body geometries, the324

latter encompassing over 600 car geometries featuring hundreds of thousands of mesh points. The325

evidence from these case studies illustrates that our method offers a substantial speed improvement,326

with a factor of 100,000 times acceleration in comparison to the GPU-based OpenFOAM solver.327

Concurrently, our approach has achieved almost half the error rates compared to prevailing neural328

networks such as 3D U-Net. This underscores the potential of our method to significantly enhance329

computational efficiency while maintaining a competitive level of accuracy within the realm of CFD330

applications. Limitation: The trained surrogate model is limited to a specific category of shapes.331

The quality of the model depends on the quality of the training dataset. For CFD with more complex332

shapes, it is not easy to obtain a large training dataset. We will explore physics-informed approaches333

[49] and generate time-dependent high-fidelity simulations in the future.334
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7 Appendix470

7.1 Experiments and Ablations471

Benchmarks. This study analyzes several existing models, including GNO, GeoFNO, and 3D472

UNet. All models are trained using the Adam optimizer for 100 epochs, with the learning rate halved473

at the 50th epoch. We consider starting learning rates such as [0.002, 0.001, 0.0005, 0.00025, 0.0001],474

with the most favorable results attained at the rates 0.00025 and 0.0001. For GeoFNO, a 2D spherical475

latent space is employed due to instability with 3D deformation, leading to a faster runtime than other476

3D-based models. In the 3D UNet model, we evaluate channel dimensions ranging from [64, 128,477

256] and depths from [4, 5, 6]. Utilizing a larger model can reduce UNet’s error rate to 11.1%. For478

the GINO model, we consider channel dimensions [32, 48, 64, 80], latent space [32, 48, 64, 80], and479

radius from 0.025 to 0.055 (with the domain size normalized to [-1, 1]). As depicted in Figure 3(a)480

and Table 3, larger latent spaces and radii yield superior results.481

Encoder and Decoder. For the GINO model, we contemplate two configurations: an encoder-482

decoder design utilizing GNO layers for both input and output, and a decoder-only design which483

takes the fixed SDF input directly from the latent space and employs the GNO layer solely for output.484

When the input mesh significantly exceeds the latent grid in size, the encoder proves beneficial in485

information extraction. However, when the size of the latent grid matches or surpasses the input mesh,486

an encoder becomes redundant. As depicted in Table 4, both the encoder-decoder and decoder-only487

designs exhibit comparable performance.488

Parallelism. Data parallelism is incorporated in the GNO decoder. In each batch, the model489

sub-samples 5,000 mesh points to calculate the pressure field. As query points are independent, they490

can be effortlessly batched. This parallel strategy allows for a larger radius in the decoder GNO.491

Without a parallel implementation, a radius of 0.025 leads to 300,000 edges, rapidly depleting GPU492

memory. Yet, with parallelism, the algorithm can handle a radius of 0.055. Implementing parallelism493

in the encoder is left for future exploration.494

Weights in the Riemann Sum. As mentioned in the GNO section, the integral is approximated495

as a Riemann sum. In the decoder, the weight µ(y) is constant, reflecting the uniformity of the496

latent space. Conversely, in the encoder, weights are determined as the area of the triangle. For497

increased expressiveness, the weight is also integrated into the kernel, resulting in a kernel of the498

form κ(x, y, µ(y)). However, it’s worth noting that the encoder’s significance diminishes when a499

large latent space is in use.500

Sub-sampling and Super-resolution. The computational cost of the models increases rapidly501

with the number of mesh points. Training models with sub-sampled meshes saves significant502

computational resources. Discretization-invariant models can achieve such super-resolution; they503

can be trained on coarse mesh points and generalized to a fine evaluation mesh. We investigate the504

super-resolution capabilities of UNet (interp), FNO (interp), and GINO. As demonstrated in Table 5,505

GINO maintains consistency across all resolutions. UNet (interp) and FNO (interp) can also adapt506

to denser test meshes, albeit with a marginally higher error rate, based on linear interpolation. The507

results corroborate GINO’s discretization-invariant nature.508

Hash-table-based Graph Construction. For graph construction and kernel integration compu-509

tation in this work, we utilize the CUDA implementation from Open3D [24] and torch-scatter510

[25], respectively. This approach is 40% faster compared to a previous GNO implementation that511

constructed the graphs with pairwise distance and used the PyTorch Geometric library[50]. These512

implementations are Incorporated into the GNO encoder and decoder in GINO.513

In addition, the CUDA hash based implementation requires less memory footprint O(Ndr3) compare514

to the standard pairwise distance which requires O(N2) memory and computation complexity.515

For 10k points, hash-based implementation requires 6GB of GPU memory while the pairwise516

method requires 24GB of GPU memory; making the hash-based method more scalable for larger517

graphs.518

7.2 Data Generation519

Industry-standard vehicle aerodynamics simulations are generated in this study, utilizing the Ahmed-520

body shapes as a foundation [29]. Examples are illustrated in Figure 5. These shapes are characterized521

by six design parameters: length, width, height, ground clearance, slant angle, and fillet radius, as522

outlined in Table 6. The inlet velocity varies from 10m/s to 70m/s, consequently resulting in523
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Table 3: Ablation on the Ahmed-body with different sizes of the latent space

Model latent resolution radius training error test error
GINO 32 0.055 14.11% 13.59%
GINO 48 0.055 8.99% 10.20%
GINO 64 0.055 6.00% 8.47%
GINO 80 0.055 5.77% 7.87%
GINO 32 0.110 8.66% 10.10%
GINO 48 0.073 7.25% 9.17%
GINO 64 0.055 6.00% 8.47%
GINO 80 0.044 6.22% 7.89%

When fixing the radius, larger latent resolutions lead to better performance. The gaps become smaller
when fixing the number of edges and scaling the radius correspondingly.

Table 4: Ablation on the Ahmed-body with different choices of the radius.

Model radius 0.025 radius 0.035
training error test error training error test error

GINO (encoder-decoder) 12.91% 13.07% 8.65% 10.32%
GINO (encoder-decoder, weighted) 12.94% 12.76% 9.26% 9.90%
GINO (decoder) 12.62% 12.74% 8.82% 9.39%

The choice of radius is significant. A larger radius leads to better performance for all models.

Reynolds numbers ranging from 4.35× 105 to 6.82× 106. This varying input adds complexity to524

the problem.525

The simulations employ the GPU-accelerated OpenFOAM solver for steady-state analyses, applying526

the SST k − ω turbulence model. Consisting of 7.2 million mesh points in total, including 100k527

surface mesh points, each simulation is run on 2 Nvidia v100 GPUs and 16 CPU cores, taking528

between 7 to 19 hours to complete.529

For this study, the focus is solely on the prediction of the pressure field. It is our hope that this dataset530

can be utilized in future research, potentially aiding in full-field simulation of the velocity field, as531

well as the inverse design.532
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Table 5: Super-resolution on sub-sampled meshes

Model Sampling rate 1/2 1/4 1/6 1/8
Unet (interp) 16.5% 13.8% 13.9% 15.6%
FNO (interp) 14.2% 14.1% 13.3% 11.5%
GINO (encoder-decoder) 8.8% 9.4% 9.4% 9.7%

Table 6: Design of the Ahmed-body shapes

Parameters steps lower bound upper bound
Length 20 644 1444
Width 10 239 539
Height 5 208 368
Ground Clearance 2.5 30 90
Slant Angle 2.5 0 40
Fillet Radius 2.5 80 120
Velocity 4 10 70
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Figure 5: Examples of the Ahmed-body Dataset
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