
Appendix

A Preliminaries on correlative entropy and mutual information

In this section, we present the essential background on correlative entropy and information measures
that will be employed in our proposed approach.

A.1 Correlative entropy and correlative mutual information

Consider a random vector x ∈ Rm with a correlation matrix Rx = E(xxT). The correlative entropy
for this random vector x is defined as follows [36, 54]:

H(ϵ)(x) =
1

2
log det(Rx + ϵI) +

m

2
log(2πe), (A.1)

where ϵ > 0 is a small positive constant. Please note that (A.1) is an adapted version of Shannon’s
differential entropy for Gaussian vectors. However, we utilize it as an entropy definition based
on second-order statistics, independent of the distribution of the vector x. Furthermore, the joint
correlative entropy of two random vectors x ∈ Rm and y ∈ Rn can be expressed as:

H(ϵ)(x,y) =
1

2
log det(R[

x
y

] + ϵI) +
m+ n

2
log det(2πe) (A.2)

=
1

2
log det

([
Rx + ϵI Rxy

Ryx Ry + ϵI

])
+

m+ n

2
log det(2πe)

=
1

2
log
(
det(Rx + ϵI) det(Ry + ϵI −RT

xy(Rx + ϵI)−1Rxy)
)

+
m+ n

2
log det(2πe)

=
1

2
log det(Rx + ϵI) +

m

2
log(2πe) +

1

2
log det(Re + ϵI) +

n

2
log(2πe),

where Rxy = E(xyT), and Re = Ry − RT
xy(Rx + ϵI)−1Rxy is the autocorrelation matrix

of the error vector corresponding to the best linear minimum mean square estimator (MMSE) of
y from x, and the third equality is obtained by writing the determinant in terms of a principle
submatrix and its Schur’s complement [55]. This derivation naturally leads to the expression of
H(ϵ)(x,y) = H(ϵ)(x) +H(ϵ)(y|Lx). Note that we use the notation |L to distinguish that H(ϵ)(x|y)
requires to use Rx|y that is not equal to Rx −RT

yx(Ry + ϵI)−1Ryx in general. Therefore, we can
express the conditional correlative entropy definitions as [36]

H(ϵ)(y|Lx) =
1

2
log det(Ry −RT

xy(Rx + ϵI)−1Rxy + ϵI) +
n

2
log(2πe)

H(ϵ)(x|Ly) =
1

2
log det(Rx −RT

yx(Ry + ϵI)−1Ryx + ϵI) +
m

2
log(2πe).

Using the alternative Schur’s complement in (A.2), it can be also shown that H(ϵ)(x,y) = H(ϵ)(y)+
H(ϵ)(x|Ly). Based on these definitions, the correlative mutual information (CMI) is defined as
follows

I(ϵ)(x,y) = H(ϵ)(y)−H(ϵ)(y|Lx),
= H(ϵ)(x)−H(ϵ)(x|Ly), (A.3)

= H(ϵ)(x) +H(ϵ)(y)−H(ϵ)(x,y),

More explicitly, we can write the correlative mutual information using the following two alternative
yet equivalent expressions,

I(ϵ)(x,y) =
1

2
log det(Rx + ϵI)− 1

2
log det(Rx −RT

yx(Ry + ϵI)−1Ryx + ϵI),

=
1

2
log det(Ry + ϵI)− 1

2
log det(Ry −RT

xy(Rx + ϵI)−1Rxy + ϵI).

At its core, the correlative mutual information, I(ϵ)(x,y), quantifies the degree of correlation or
linear association between the random vectors x and y [36].

15

A.2 On the interpretation of ϵ parameter

The definition of correlative entropy as presented in equation (A.1) includes a perturbation term, ϵ, in
the eigenvalues of the correlation matrix argument of the log-determinant. At first glance, this term
appears to function as a correction factor to compensate for rank-deficient correlation matrices of
degenerate random vectors. From this perspective, this adjustment serves two primary purposes:

i. To establish a finite lower bound for the entropy, and
ii. To circumvent numerical optimization issues, given that the derivative of the log det function is the

inverse of its argument.

In fact, robust matrix factorization methods that rely on determinant-maximization often use the
perturbation term ϵI for these reasons, as suggested by Fu et al. [56].

Beyond these, upon examining the expression for correlative mutual information more closely,

I(ϵ)(x,y) =
1

2
log det(Rx + ϵI)− 1

2
log det(Rex|y + ϵI), (A.4)

we can draw the following insights:

• The matrix Rex|y = Rx −RT
yx(Ry + ϵI)−1Ryx corresponds to the error correlation matrix for

the best linear regularized minimum mean square estimator of x from y. This estimator is obtained
as the solution of the optimization problem

minimize
Wx|y

E(∥x−Wx|yy∥22) + ϵ∥Wx|y∥2F . (A.5)

In this context, ϵ parameter acts as a regularizing coefficient for the linear estimation problem
integral to measuring linear dependence between the two arguments of the CMI.

• Maximizing the CMI given by equation (A.4) can be accomplished by increasing the correlative
entropy of x while decreasing the correlative entropy of the estimation error ex|y. Given the
relationship Rx ⪰ Rex|y , we anticipate that the choice of ϵ will primarily influence the correlative
entropy of ex|y. Indeed, since ϵ is added to all the eigenvalues of Rex|y , reducing its eigenvalues
below ϵ would have only incremental increase in the mutual information. As such, a smallerϵ value
will place greater emphasis on reducing the estimation error ex|y. Consequently, one can consider
ϵ−1 can be viewed as an indicator of the sensitivity of the CMI to the levels of estimation error
ex|y, determining how far we need to push down the estimation error values to increase the CMI.

• The role of ϵ parameter in adjusting sensitivity to estimation errors becomes evident when we lin-
earize the Rex|y dependent (second) term in (A.4) using the truncated Taylor series approximation
equation (A.8) in Appendix B (by choosing A = ϵI and ∆ = Rex|y in (A.8)):

I(ϵ)(x,y) ≈ 1

2
log det(Rx)−

ϵ−1

2
Tr(Rex|y) +

m

2
log(ϵ). (A.6)

In the above expression, we have assumed that the choice of ϵ is less than the eigenvalues of Rx, so
that we can approximate Rx + ϵI ≈ Rx, and greater than the eigenvalues of Rex|y . As apparent
from equation (A.6), ϵ−1 serves as a sensitivity parameter that determines the contribution of
estimation errors ex|y to the CMI.

B Linear approximation of correlative entropy

In this section, we provide linear approximation of the log det terms on the rightmost terms of (7) and
(8). For this purpose we utilize the the first-order Taylor series approximation of the log det function:

log det(A+∆) ≈ log det(A) + Tr(∇A log det(A)T∆) (A.7)

≈ log det(A) + Tr(A−1∆), (A.8)

assuming A is Hermitian (or real symmetric). Therefore, using (A.8) and choosing A = ϵkI and
∆ = R̂→

e
(k+1) [t], we can approximate the rightmost term of (7) corresponding to the correlative

16

entropy of forward error
→
e
(k+1)

log det
(
R̂→

e
(k+1) [t] + ϵkI

)
≈ 1

ϵk
Tr
(
R̂→

e
(k+1) [t]

)
+Nk+1 log(ϵk)

=
1

ϵk

t∑
i=1

λt−i
r ∥r(k+1)[i]−W

(k)
ff,∗[t]r

(k)[i]∥22 + ϵk∥W (k)
ff,∗[t]∥

2
F +Nk+1 log(ϵk). (A.9)

This approximation would be more accurate for prediction error correlation matrices with smaller
eigenvalues.

Similarly, using (A.8) and choosing A = ϵkI and ∆ = R̂→
e

(k) [t], we can approximate the rightmost

term of (8) corresponding to the correlative entropy of forward error
←
e
(k)

log det
(
R̂←

e
(k) [t] + ϵkI

)
≈ 1

ϵk
Tr
(
R̂←

e
(k) [t]

)
+Nk log(ϵk)

=
1

ϵk

t∑
i=1

λt−i
r ∥r(k)[i]−W

(k)
fb,∗[t]r

(k+1)[i]∥22 + ϵk∥W (k)
fb,∗[t]∥

2
F +Nk log(ϵk). (A.10)

Note that in (A.9), W(k)
ff,∗[t] denotes the optimal linear regularized weighted least squares forward

predictor coefficients in predicting r(k+1)[i] from r(k)[i] for i = 1, . . . , t. Likewise, W(k)
fb,∗[t] in

(A.10) represents the optimal linear regularized weighted least squares backward predictor coefficients
in predicting r(k)[i] from r(k+1)[i] for i = 1, . . . , t.

C Background on polytopic representations

Convex polytopes, compact sets formed by the intersections of halfspaces [57], serve as constraint do-
mains for latent representations. The choice of a particular polytope reflects the attribute assignments
to these vectors. For instance, the ℓ1-norm-ball polytope enforces sparsity and finds extensive use in
machine learning, signal processing and computational neuroscience [58, 59, 60, 61]. Conversely, the
ℓ∞-norm-ball polytope is prevalent in antisparse (democratic) representations, especially in bounded
component analysis applications [62, 63, 64].

The Polytopic Matrix Factorization (PMF) extends these examples to an infinite set of polytopes,
incorporating specific symmetry restrictions for identifiability [40]. In the PMF paradigm, observation
vectors {y1, . . . ,yN} ⊂ RM are modeled as unknown linear transformations of latent vectors
{s1, . . . , sN} from a selected polytope P:

[y1 y2 . . . yN]︸ ︷︷ ︸
Y

= H [s1 s2 . . . sN]︸ ︷︷ ︸
S

, (A.11)

where H denotes the unknown linear transformation. The PMF’s primary objective is to deduce
the factors H and S from the observation matrix Y, by exploiting the information that the columns
of S as "representative" samples from P . The shape of the chosen polytope determine the latent
vector features by combining common attributes such as sparsity, nonnegativity and anti-sparsity in
subvector level. For example, the reference [11] proposes the canonical polytope description

P =
{
s ∈ Rn | si ∈ [−1, 1]∀i ∈ Is, si ∈ [0, 1]∀i ∈ I+, ∥sJl

∥1 ≤ 1, Jl ⊆ Z+
n , l ∈ Z+

L

}
,

where L is the number of mutually sparse subvector constraints, I+ is the index set of nonnegative
elements, Is is the index set of signed elements, the sets Jl, l ∈ Z+

L are the index sets for the sparse
subvectors. The availability of infinitely many polytope options provides a powerful and diverse
toolkit for representing and characterizing latent vectors.

The online correlative information maximization solution for obtaining factors in (A.11), combined
with the polytopic constraints on the columns of S results in biologically plausible neural networks
with local learning rules [65]. These polytopic constraints manifest as piecewise linear neural
activation functions, such as ReLU and clipping functions.

In a vein similar to the unsupervised problem in [65], our proposed framework employs polytopic
representations to characterize embedding vectors for each network layer. The inclusion of polytopic
constraints influences:

17

• The characterization of embeddings based on assigned attributes.
• The network’s nonlinear component via piecewise activation functions.

In summary, polytopic representations offer a versatile and mathematically rigorous framework
for modeling latent vectors in various applications, from machine learning to signal processing.
Their ability to encapsulate diverse attributes, such as sparsity and non-negativity, provides a rich
characterization of latent features.

D Gradient derivation for the CorInfoMax objective

In this section, we offer a derivation of the gradients for the CorInfoMax objective function
Ĵ(r(1), . . . , r(P)) in (9a) with respect to the layer activation vector r(k). As outlined in Section
2.2.2, the components of Ĵ(r(1), . . . , r(P)) containing r(k) can be expressed as:

Ĵk(r
(k))[t] =

→
Î(ϵk−1)(r(k−1), r(k))[t] +

←
Î(ϵk)(r(k), r(k+1))[t], (A.12)

for k = 1, . . . , P , and

ĴP (r
(P))[t] =

→
Î(ϵP−1)(r(P−1), r(P))[t]− β

2
∥r(P)[t]− yT [t]∥22. (A.13)

To simplify our derivations, as explained in Appendix B, we replace the correlative entropy terms
for the prediction errors (the rightmost terms of (7) and (8)) with their linear approximations in
(A.9)-(A.10). Thus, the resulting gradient with respect to r(k)[t] can be expressed as:

∇r(k) Ĵ(r(1), . . . , r(P))[t] = ∇r(k) Ĵk(r
(k))[t]

= ∇r(k)

→
Î(ϵk−1)(r(k−1), r(k))[t] +∇r(k)

←
Î(ϵk)(r(k), r(k+1))[t]

=
1

2
∇r(k)(log det(R̂r(k) [t] + ϵk−1I) + log det(R̂r(k) [t] + ϵkI))

− 1

ϵk−1

→
e
(k)

[t]− 1

ϵk

←
e
(k)

[t], (A.14)

where

→
e
(k)

[t] = r(k)[t]−W
(k−1)
ff [t]r(k−1)[t],

←
e
(k)

[t] = r(k)[t]−W
(k)
fb [t]r(k+1)[t] (A.15)

are the forward and backward prediction errors at level-k, based on the current estimates of the
corresponding predictor matrices. Following the procedure detailed in [11], for the gradient term in
(A.14), we obtain:

1

2
∇r(k)(log det(R̂r(k) [t] + ϵk−1I) + log det(R̂r(k) [t] + ϵkI)) = 2γBr(k) [t]r(k)[t], (A.16)

where Br(k)[t] = (R̂r(k)[t] + ϵk−1I)
−1 ≈ (R̂r(k)[t] + ϵkI)

−1 and γ = 1−λr

λr
. The gradient of the

objective for the final layer can be written as:

∇r(P) ĴP (r
(P))[t] = γBr(P) [t]r(P)[t]− 1

ϵP−1

→
e
(P)

[t]− β(r(P)[t]− yT [t]). (A.17)

In conclusion, combining expressions (A.18)-(A.17), we can formulate:

∇r(k) Ĵ(r(1), . . . , r(P))[t] = 2γBr(k) [t]r(k)[t]−
1

ϵk−1

→
e
(k)

[t]− 1

ϵk

←
e
(k)

[t], (A.18)

for k = 1, . . . , P − 1, and

∇r(P) Ĵ(r(1), . . . , r(P))[t] = γBr(P) [t]r(P)[t]− 1

ϵP−1

→
e
(P)

[t]− β(r(P)[t]− yT [t]). (A.19)

18

E Derivation of CorInfoMax network dynamics

In this section, we provide details about the derivation of the CorInfoMax network dynamics equations
(15)-(17) in Section 2.3.1.

As discussed in Section 2.2.2, network dynamics naturally emerge from the application of the
projected gradient ascent algorithm to obtain solution of the optimization problem (9). Therefore,
we update layer activations r(k)[t] using ∇r(k) Ĵ(r(1), . . . , r(P)) and then project the result to the
presumed domain P(k) = B∞,+.

Following the approach in [66], we define pre-projection signal u(k), which is updated with gradient,
and then project it onto P(k) = B∞. We use continuous dynamic update in the form

τu
du(k)[t; s]

ds
= ∇(k)

r Ĵ(r(1), . . . , r(P))[t; s] (A.20)

r(k)[t; s] = σ+(u
(k)[t; s]). (A.21)

In above equations, t is the discrete data index, referring to the index of input (x[t]) and label (yT [t])
samples, as defined in Section 2.1. Whereas, s is the continuous time index corresponding to network
dynamics. Furthermore, σ+ represents the elementwise clipped-ReLU function corresponding to the
projection onto the nonnegative unit-hypercube B∞,+, defined as σ+(u) = min(1,max(u, 0)).

We can plug in the gradient expression in (12) in (A.20) to obtain

τu
du(k)[t; s]

ds
= 2γBr(k) [t]r(k)[t; s]−

1

ϵk−1

→
e
(k)

[t; s]− 1

ϵk

←
e
(k)

[t; s] (A.22)

→
e
(k)

u [t; s] = u(k)[t; s]−W
(k−1)
ff [t]r(k−1)[t; s],

←
e
(k)

u [t; s] = u(k)[t; s]−W
(k)
fb [t]r(k+1)

(A.23)

r(k)[t; s] = σ+(u
(k)[t; s]). (A.24)

In order to covert neural dynamics in (A.22)-(A.24) to leaky-integrate-and-fire form, we add leaky
term −glku

(k)[t; s] and modify the output feedback form to compensate this addition:

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] + (2γBr(k) [t] + glkI)r
(k)[t]− 1

ϵk−1

→
e
(k)

[t]− 1

ϵk

←
e
(k)

[t] (A.25)

→
e
(k)

u [t; s] = u(k)[t; s]−W
(k−1)
ff [t]r(k−1)[t; s],

←
e
(k)

u [t; s] = u(k)[t; s]−W
(k)
fb [t]r(k+1)

(A.26)

r(k)[t; s] = σ+(u
(k)[t; s]). (A.27)

Finally, substituting M (k)[t] = ϵk(2γBr(k) [t] + glkI), we can rewrite the neural dynamics as

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] +
1

ϵk
M (k)[t]r(k)[t]− 1

ϵk−1

→
e
(k)

[t]− 1

ϵk

←
e
(k)

[t] (A.28)

→
e
(k)

u [t; s] = u(k)[t; s]−W
(k−1)
ff [t]r(k−1)[t; s],

←
e
(k)

u [t; s] = u(k)[t; s]−W
(k)
fb [t]r(k+1)

(A.29)

r(k)[t; s] = σ+(u
(k)[t; s]). (A.30)

F Derivation of lateral weight updates in terms of autopses and lateral
inhibition synapses

Here, we provide the derivation of the lateral weight updates provided in (29) and (30). Recall that in
Section 2.3.1, we defined M (k)[t] = ϵk(2γBr(k) [t] + glkI). Therefore, using (28), we can write:

M(k)[t+ 1] = ϵk(2γλ
−1
r (B(k)[t]− γz(k)[t]z(k)[t]T) + glkI) (A.31)

= λ−1r ϵk2γB
(k)[t]− λ−1r ϵk2γ

2z(k)[t]z(k)[t]T + ϵkglkI (A.32)

19

Using the relationship B(k)[t] = 1
ϵk2γ

M(k)[t]− glk
2γ I, we can rearrange the right-hand side of (A.32)

such that

M(k)[t+ 1] = λ−1r M(k)[t]− λ−1r ϵk2γ
2z(k)[t]z(k)[t]T + ϵkglk(1− λ−1r)I (A.33)

Here, z(k)[t] =
(

1
ϵk2γ

M(k)[t]r(k) − glk
2γ r

(k)
) ∣∣∣

β=β′
. It’s worth noting that in Section 2.3.1, we

decomposed M(k)[t] into D(k)[t] and O(k)[t] as M(k)[t] = D(k)[t]−O(k)[t], representing autapses
and lateral inhibition synapses, respectively. Therefore, the update rule in (A.33) leads to the following
updates:

D
(k)
ii [t+ 1] = λ−1r D

(k)
ii [t]− λ−1r ϵk2γ

2(z
(k)
i [t])2 + ϵkglk(1− λ−1r), ∀i ∈ {1, . . . , Nk} (A.34)

O
(k)
ij [t+ 1] = λ−1r O(k)[t]ij + λ−1r ϵk2γ

2z
(k)
i [t]z

(k)
j [t], ∀i, j ∈ {1, . . . , Nk}, where i ̸= j (A.35)

G On the asymmetry of feedforward and feedback weights

In the main article, we emphasized that one of the key contributions of the proposed supervised
CorInfoMax framework is to offer a natural resolution to the weight symmetry problem found in
some biologically plausible neural network frameworks. In this section, we aim to expand upon this
aspect and supplement the discussion provided in Section 3.

G.1 The importance of the choice of alternative CMI expressions

In developing the update formula for the layer activation r(k), we used the gradient (A.14). This

gradient comprises two alternative expressions of CMI: the first,
→

Î(ϵk−1)(r(k−1), r(k))[t] represents
the CMI with the preceding layer, incorporating the forward prediction error for estimating r(k).

The second,
←

Î(ϵk)(r(k), r(k+1))[t], signifies the CMI with the subsequent layer, encompassing the
backward prediction error for forecasting r(k). These carefully selected expressions were pivotal in
realizing a canonical network model that is free from the weight symmetry issue.

To underscore the significance of our selection, let’s examine an alternate form of (A.14):

∇r(k) Ĵk(r
(k))[t] = ∇r(k)

→
Î(ϵk−1)(r(k−1), r(k))[t] +∇r(k)

→
Î(ϵk)(r(k), r(k+1))[t]

=
1

2
∇r(k)(log det(R̂r(k) [t] + ϵk−1I)−

1

ϵk−1

→
e
(k)

[t]− 1

ϵk
W

(k)
ff

T→
e
(k+1)

[t]. (A.36)

In this case, both the CMI expressions are founded on forward prediction errors. The gradient

expression in (A.36) incorporates both the forward prediction error
→
e
(k)

[t] and the backpropagated

forward prediction error
→
e
(k+1)

[t], weighted by W
(k)
ff

T
. Consequently, choosing (A.36) would result

in a derived network model displaying symmetric feedforward and feedback weights.

This condition is typically encountered in predictive coding-based supervised schemes, such as
[22, 23], where the loss function is formulated based on feedforward prediction errors, and the
symmetric feedback path arises from calculating the gradient for this loss function. Recently, Golkar
et al. [10] proposed a loss function that involves two alternative feedforward prediction error
elements for the same branch. By coupling this with an upper bound optimization and a whitening
assumption, they manage to sidestep the weight symmetry issue. In contrast, our CorInfoMax
framework provides a natural solution to the weight transport problem encountered in predictive
coding networks by carefully selecting alternative CMI expressions, thus eliminating the need for the
whitening assumption.

G.2 The analytical comparison of forward and backward prediction coefficients

Regarding the correlative mutual information component of the proposed stochastic objective pre-
sented in (1), the optimal solutions for both feedforward and feedback weights are found as solutions

20

to problems (3) and (5) respectively. To be more specific, these expressions can be framed as follows:

W
(k)
ff,∗ = RT

r(k)r(k+1)(Rr(k) + ϵkI)
−1, (A.37)

W
(k)
fb,∗ = Rr(k)r(k+1)(Rr(k+1) + ϵkI)

−1. (A.38)

Consequently, the condition W
(k)
ff, = W

(k)
fb,

T
does not generally hold true. Symmetry might be

anticipated in very specific scenarios - such as when layer activations are signed with a zero mean,
and the autocorrelation matrices meet the whiteness condition, i.e., Rr(k) = σ2

rI and Rr(k+1) = σ2
rI.

This analysis only considers the mutual information maximization component of the objective, yet it
offers insight into the expected asymmetry of the forward and backward weights.

While this analysis focuses solely on the mutual information maximization component of the objective,
it still provides valuable insight into the anticipated asymmetry of the forward and backward weights.

G.3 Empirical angle between forward and backward weights

To test the level of symmetry between the forward prediction synaptic weight matrix W
(k)
ff and the

transpose of the backward prediction synaptic weight matrix W
(k)
fb , we investigate the cosine angle

between them. This measure is calculated using [17]:

Θ(k) = arccos

 Tr
(
W

(k)
ff W

(k)
fb

)
∥W (k)

ff ∥F ∥W (k)
fb ∥F

 . (A.39)

This metric serves as an indicator of alignment - with a cosine angle of Θ(k) = 0 degrees signifying
perfect symmetry, and Θ(k) = 90 degrees indicating orthogonality and, thus, a significant degree of
asymmetry. To provide a clearer illustration of the asymmetry between feedforward and feedback
weights for the proposed CorInfoMax networks, we carried out a numerical evaluation of this metric
in the context of the experiments documented in Table 1. It’s worth noting that in these experiments,
the feedforward and feedback weights were independently initialized with random values.

0 20 40 60 80 100 120 140
Number of Iterations / 103

55
60
65
70
75
80
85
90

An
gl

e
(in

 d
eg

re
e)

MNIST - Θ(2)

FashionMNIST - Θ(2)

CIFAR10 - Θ(2)

Figure 2: The angle between the feedforward and the transpose of the feedback weights between
hidden and output layers (averaged over n = 10 runs associated with the corresponding ± std
envelopes) as a function of weight update iterations for CorInfoMax-B∞,+.

Figure 2 presents the experimental alignment results as a function of iterations for the MNIST,
Fashion MNIST, and CIFAR10 datasets. According to this figure, the curves initially start at 90
degrees due to the independent random selection of initial weights. As the iterations progress, the
angle does indeed lessen, however, the steady-state levels largely persist, suggesting a noteworthy
degree of asymmetry between the feedforward and feedback weights.

21

H Alternative expression for the feedforward weight updates

In Section 2.4, we derived the partial derivative of the forward prediction cost with respect to the
feedforward weights as follows:

∂Cff (W
(k)
ff [t])

∂W
(k)
ff

= 2ϵkW
(k)
ff [t]− 2

→
e
(k+1)

[t]r(k)[t]T . (A.40)

In this equation,
→
e
(k+1)

[t] symbolizes the feedforward error value at the point when system dynamics
have stabilized. In order to characterize this steady state value, we look at the optimal value of the
optimization problem employed to derive the system dynamics:

maximize
r(k)[t]

(
1
2 (log det(R̂r(k) [t] + ϵk−1I) + log det(R̂r(k) [t] + ϵkI))

− 1
2ϵk−1

∥∥∥∥→e (k)
[t]

∥∥∥∥2
2

− 1
2ϵk

∥∥∥∥←e (k)
[t]

∥∥∥∥2
2

)
(A.41)

subject to 0 ≼ r(k)[t] ≼ 1.

We formulate the corresponding Lagrangian function for this optimization as

L(r(k)[t],q1[t],q2[t]) = O(r(k)[t]) + q1[t]
T (r(k)[t]) + q2[t]

T (1− r(k)[t]) (A.42)

where O(r(k)[t]) corresponds to the objective in(A.41), and q1[t],q2[t] ≽ 0. Applying the KKT
optimality conditions [67], we find

∇r(k)L(r
(k)
∗ [t],q1∗[t],q2∗[t]) = 0, (A.43)

at the optimal point (r(k)∗ [t],q1∗,q2∗[t]). This results in

2gB,k
→
e
(k+1)

∗ [t] + 2
(
gA,kv

(k)
A [t]− (glk + gAk

)r
(k)
∗ [t]

)
+ q1∗[t] + q2∗[t] = 0, (A.44)

where q1∗[t] and q2∗[t] are entirely null except at the indices where r
(k)
∗ [t] equals 0 or 1, owing to

the nonnegative-clipping operation of σ+(u
(k)
∗ [t]).

Thus, by defining q∗[t] = q1∗[t] + q2∗[t], the outer product term in (A.40) used in the feedforward
weight update can be equivalently expressed as

−2
→
e
(k+1)

[t]r(k)[t]T =
2

gB,k

(
gA,kv

(k)
A [t]− (glk + gAk

)r
(k)
∗ [t] +

1

2
q∗[t]

)
r(k)[t]T . (A.45)

Based on r
(k)
∗ [t] = σ+(u

(k)
∗ [t]), we can express the relationship between r

(k)
∗ [t] and u

(k)
∗ [t] as

r
(k)
∗ [t] = u

(k)
∗ [t]+d[t], where d[t] has non-zero values only at the indices u(k) is negative or exceeds

1. Consequently, we can rewrite the outer product term in (A.45) as

−2
→
e
(k+1)

[t]r(k)[t]T =
2

gB,k

(
gA,kv

(k)
A [t]− (glk + gAk

)u
(k)
∗ [t] + h∗[t]

)
r(k)[t]T , (A.46)

where h∗[t] =
1
2q∗[t]− (glk + gAk

)d[t].

Ultimately, following a similar approach as in [10], we infer that the update expression for the
feedforward term can be derived from the difference between the soma’s membrane voltages and the
distal apical compartments. This conclusion aligns with experimental observations that emphasize
the dependence of basal synaptic plasticity on apical calcium plateau potentials [7].

I Employing sparsity assumption on neuronal activities

In this section, we elaborate on the structure of the CorInfoMax network and the corresponding
neuronal dynamics that emerge with the selection of the activation domain P(k) = B1,+ = {r :

22

∥r∥1 ≤ 1,0 ≼ r}. It’s important to note that this domain corresponds to the intersection of the
ℓ1-norm ball and the nonnegative orthant.

To derive the network dynamics corresponding to r(k)[t], we consider the following constrained
optimization similar to (A.41),

maximize
r(k)[t]

(
1
2 (log det(R̂r(k) [t] + ϵk−1I) + log det(R̂r(k) [t] + ϵkI))

− 1
2ϵk−1

∥∥∥∥→e (k)
[t]

∥∥∥∥2
2

− 1
2ϵk

∥∥∥∥←e (k)
[t]

∥∥∥∥2
2

)
(A.47)

subject to ∥r(k)[t]∥1 ≤ 1,

0 ≼ r(k)[t].

We can write down the Lagrangian min-max problem corresponding to this optimization as

minimize
q(k)[t]≥0

maximize
r(k)[t]≽0

L(r(k)[t], q(k)[t]) = O(r(k)[t]) + q(k)[t](1− ∥r(k)[t]∥1). (A.48)

Here O(r(k)[t]) signifies the objective in (A.47). By applying the proximal gradient update [68] for
r(k)[t] using the gradient expression in (A.14), we can represent the output dynamics for layer-k as

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] +
1

ϵk
M (k)[t]r(k)[t; s]− 1

ϵk−1

→
e
(k)

u [t; s]− 1

ϵk

←
e
(k)

u [t; s],

→
e
(k)

u [t; s] = u(k)[t; s]−W
(k−1)
ff [t]r(k−1)[t; s],

←
e
(k)

u [t; s] = u(k)[t; s]−W
(k)
fb [t]r(k+1)[t; s],

r(k)[t; s] = ReLU(u(k)[t; s]− q(k)[t; s]1).

In this formulation, we introduce the intermediate variable u(k), where ReLU represents the element-
wise rectified linear unit. We then define the apical and basal potentials as

v
(k)
A [t; s] = M (k)[t]r(k)[t; s] +W

(k)
fb [t]r(k+1)[t; s]− 1

gA,k
q(k)[t; s]1,

v
(k)
B [t; s] = W

(k−1)
ff [t]r(k−1)[t; s].

With these potentials in place, we can restate the output dynamics in a format similar to (19) and (20),

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] + gA,k(v
(k)
A [t; s]− u(k)[t; s]) + gB,k(v

(k)
B [t; s]− u(k)[t; s]),

(A.49)

r(k)[t; s] = ReLU(u(k)[t; s]). (A.50)

For the Lagrangian variable q(k)[t; s], we can derive the update based on the dual minimization as
follows,

da(k)[t; s]

ds
= −a(k)[t; s] +

Nk∑
j=1

r
(k)
j [t; s]− 1 + q(k)[t; s], q(k)[t; s] = ReLU(a(k)[t; s]). (A.51)

In the above formulation, the Lagrangian variable q(k) equates to an inhibitory inter-neuron that re-
ceives input from all neurons of layer-k and generates an inhibitory signal to the apical compartments
of all these neurons.

23

J Supplementary on numerical experiments

In the forthcoming subsections, we delve into the specifics of our experimental setup, which covers
everything from hyperparameters to an in-depth analysis. We utilize four image classification tasks to
evalutate the effectiveness of our proposed framework: MNIST [50], Fashion MNIST [51], CIFAR10,
and CIFAR100 [52]. These image datasets are all acquired from the Pytorch library [69].

The MNIST dataset includes 60000 grayscale training images of hand-drawn digits and 10000 test
images, each with a dimension of 28× 28. The Fashion MNIST dataset mirrors the MNIST in terms
of format, size, and quantity of training and test images. However, instead of digits, it features images
of clothing items, divided into 10 categories.

On a larger scale, we have the CIFAR10 and CIFAR100 datasets, which contain 32×32 RGB images.
CIFAR10 consists of 50000 training images and 10000 test images, each associated with one of
10 object labels. CIFAR100, while maintaining the same quantity of training and test images as
CIFAR10, is distinguished by its 100 object categories.

We initially map the image pixels to the range [0, 1] by rescaling them by 255. For the CIFAR10 and
CIFAR100 datasets, normalization is performed using the mean and standard deviation values cited
in the published codes of [25, 26]. To accommodate our training of MLP architectures, the images
are flattened prior to being fed into the neural networks. Lastly, we have opted not to employ any
augmentation in our numerical experiments.

J.1 On the computation of neural dynamics

The neural dynamics equations defined by (19)-(20) implicitely determines the input-output relations
of the CorInfoMax-B∞,+ network for each segments. We obtain the solution of these equations
by applying the discrete-time method that is provided in Algorithm 1. Within this algorithm, µu[s]
refers to the learning rate of the neural dynamics during the gradual time scale indicated by index s.
Additionally, smax stands for the highest count of iterations in the loop-driven calculations of neural
dynamics.

Algorithm 1 CorInfoMax neural dynamic iterations: P(k) = B∞,+

1: Initialize r(k)[t; 1], u(k)[t; 1], µu[1], smax, and s = 1
2: while s < smax do
3: for k = 1, . . . , P do
4: τu

du(k)[t;s]
ds = −glku

(k)[t; s] + gA,k(v
(k)
A [t; s]− u(k)[t; s]) + gB,k(v

(k)
B [t; s]− u(k)[t; s])

5: u(k)[t; s+ 1] = u(k)[t; s] + µu[s]τu
du(k)[t;s]

ds

6: r(k)[t; s+ 1] = σ+(u
(k)[t; s+ 1])

7: end for
8: s = s+ 1, and adjust µu[s] if necessary.
9: end while

Similarly, the equations defined by (A.49), (A.50), and (A.51 implicitely determines the input-output
relations of the CorInfoMax-B1,+ network for each segment with an additional inhibition signal
q(k). In an analogous manner, we use the following discrete-time method outlined in Algorithm 2 to
obtain the solution of these equations. In contrast to Algorithm 1, Algorithm 2 introduces an extra
hyperparameter denoted as µa[s]. This hyperparameter governs the learning rate of supplementary
inhibitory neurons q(k). Detailed discussions concerning the specific values of each hyperparameter
related to the neural dynamics for individual tasks are presented in the subsequent subsections.

24

Algorithm 2 CorInfoMax neural dynamic iterations: P(k) = B1,+

1: Initialize r(k)[t; 1], u(k)[t; 1], a(k)[t; 1], q(k)[t; 1], µu[1], µa[1], smax, and s = 1
2: while s < smax do
3: for k = 1, . . . , P do
4: τu

du(k)[t;s]
ds = −glku

(k)[t; s] + gA,k(v
(k)
A [t; s]− u(k)[t; s]) + gB,k(v

(k)
B [t; s]− u(k)[t; s])

5: da(k)[t;s]
ds = −a(k)[t; s] +

∑Nk

j=1 r
(k)
j [t; s]− 1 + q(k)[t; s]

6: u(k)[t; s+ 1] = u(k)[t; s] + µu[s]τu
du(k)[t;s]

ds

7: r(k)[t; s+ 1] = ReLU(u(k)[t; s+ 1])

8: a(k)[t; s+ 1] = a(k)[t; s]) + µa[s]
da(k)[t;s]

ds

9: q(k)[t; s+ 1] = ReLU(a(k)[t; s+ 1])
10: end for
11: s = s+ 1, and adjust µu[s] and µa[s] if necessary.
12: end while

J.2 Learning Dynamics

We outline the comprehensive learning dynamics of our proposed framework in Algorithm 3. As
we mentioned earlier, we adopt the Equilibrium Propagation technique [24], leading our approach
through two distinct phases of neural dynamics prior to weight updates: i) the free phase, and ii)
the nudged phase. Initially, we execute the free phase by setting β = 0. Subsequently, we proceed
with the nudged phase, activating the neural dynamics with β = β′ > 0. The adjustments to the
feedforward and feedback weights are then determined by contrasting neural activities between the
nudged and free phases. Concerning the update equation for the forward weights in (26), the error

vector
→
e
(k+1)

[t] evaluated at (
→
e
(k+1)

[t]r(k)[t]T)
∣∣
β=β′

corresponds to
→
e
(k)

[t]β=β′ = r(k)[t]β=β′ −
W

(k−1)
ff [t]r(k−1)[t]β=β′ . Similarly, for the update expression of the backward weights in (27),

the error vector
←
e
(k)

[t] at (
←
e
(k)

[t]r(k+1)[t]T)
∣∣
β=β′

corresponds to
←
e
(k)

[t]
∣∣
β=β′

= r(k)[t]
∣∣
β=β′

−
W

(k)
fb [t]r(k+1)[t]

∣∣
β=β′

. In Algorithm 3, the learning rates for the forward and backward weights are
denoted as µff and µfb, respectively. Lateral weight updates adhere to the learning rule outlined in
[11], and we rewrite them in terms of autapses and lateral inhibition synapses (Appendix F). These
updates are performed based on the neural activities subsequent to the nudged phase.

Algorithm 3 CorInfoMax network learning dynamics

1: Initialize network parameters: W (k)
ff [1], W (k)

fb [1], B(k)[1], ϵk, (for each k), λr, glk
2: Initialize hyperparameters: β′, Tfree, Tnudged, µff, µfb, µu, µa (if P = B1,+)
3: for t = 1, 2, . . . do
4: Run neural dynamics with β = 0 for smax = Tfree to collect r(k)[t]

∣∣
β=0

(k = 1, . . . P)

5: Run neural dynamics with β = β′ for smax = Tnudged to collect r(k)[t]
∣∣
β=β′

(k = 1, . . . P)
6: Update synaptic weights with (26) and (27) for each k:

W
(k)
ff [t+ 1] = W

(k)
ff [t] + µff

1

β′

(
(
→
e
(k+1)

[t]r(k)[t]T)

∣∣∣∣
β=β′

− (
→
e
(k+1)

[t]r(k)[t]T)

∣∣∣∣
β=0

)

W
(k)
fb [t+ 1] = W

(k)
fb [t] + µfb

1

β′

(
(
←
e
(k)

[t]r(k+1)[t]T)

∣∣∣∣
β=β′

− (
←
e
(k)

[t]r(k+1)[t]T)

∣∣∣∣
β=0

)

7: Update lateral weights for each k (see Appendix F):

D
(k)
ii [t+ 1] = λ−1r D

(k)
ii [t]− λ−1r ϵk2γ

2(z
(k)
i [t])2 + ϵkglk(1− λ−1r), ∀i ∈ {1, . . . , Nk}

O
(k)
ij [t+ 1] = λ−1r O

(k)
ij [t] + λ−1r ϵk2γ

2z
(k)
i [t]z

(k)
j [t], ∀i, j ∈ {1, . . . , Nk}, where i ̸= j

8: end for

25

J.3 Description of hyperparameters

In the upcoming sections, we present the hyperparameters and their effects in our experiments.
Therefore, Table 2 describes notation for the hyperparameters used in CorInfoMax neural dynamics
and learning updates.

Table 2: Description of the hyperparameter notations.

Hyperparameter Description

Architecture An array containing the dimension of each layer.
Tfree Number of neural dynamics iterations for the free phase.
Tnudged Number of neural dynamics iterations for the nudged phase.
µff An array containing the learning rates for feedforward weights.
µfb An array containing the learning rates for feedback weights.
λr Forgetting factor for sample the auto correlation matrices in (6).
ϵk Perturbation coefficient for autocorrelation matrices in (2) and (4).
β′ Nudging parameter for the nudged neural dynamics.
glk Leak coefficient for the neural dynamics in (20) and (A.50).
µu Learning rate for the neural dynamics in Algorithm 1 and 2.
µa Learning rate for the inhibition neuron in Algorithm 2.
lr decay Learning rate decay that multiplies the µff and µfb after each epoch.

J.4 Two layer CorInfoMax-B∞,+ network

In this section, we provide supplementary experimental results for the CorInfoMax-B∞,+ network
with a single hidden layer.

J.4.1 Network architecture

Figure 3 provides a depiction of a CorInfoMax network with a single hidden layer. In this instance,
both the hidden and output layers have the same constraint set P = B∞,+.

Figure 3: Two layer correlative information maximization based neural network with non-negative
antisparsity constraint: 0 ≼ r(l) ≼ 1, l = 1, 2.

J.4.2 Hyperparameters

Table 3 provides the hyperparameters to train 2-layer CorInfoMax networks on MNIST, Fashion
MNIST, and CIFAR10, for which the corresponding test accuracy results are provided in Section 4
and in Appendix J.4.3.

26

Table 3: Hyperparameters used to train CorInfoMax-B∞,+ networks with single hidden layer. (In the
row stating the lr decay, ep. and O/W means epoch and otherwise, respectively.)

Hyperparameter MNIST Fashion-MNIST CIFAR10

Batch size 20 20 20
Architecture [784, 500, 10] [784, 500, 10] [3072, 1000, 10]
Tfree 30 30 30
Tnudged 10 10 10
µff [1.0, 0.7] [0.3, 0.22] [0.08, 0.04]
µfb [−, 0.15] [−, 0.07] [−, 0.04]
λr 1− 10−5 1− 10−5 1− 5× 10−5

ϵk 0.15 ∀k 0.15 ∀k 0.15 ∀k
β′ 1.0 1.0 1.0
glk 0.5 0.3 0.1
µu max{ 0.05

s×10−2+1 , 10
−3} max{ 0.07

s×10−2+1 , 10
−3} 0.05

lr decay
{

0.95 ep. < 15
0.9 O/W.

{
0.95 ep. < 20
0.9 20 ≤ ep. < 25
0.8 O/W.

{
0.95 ep. < 15
0.9 O/W.

J.4.3 Test accuracy results

Figure 4 compares the test accuracy performance of CorInfoMax-B∞,+ network (as a function of
training epochs) with CSM, EP, PC, and PC-Nudge algorithms for the MNIST dataset.

0 10 20 30 40 50
Number of Epochs

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

CorInfoMax
CSM
EP
PC
PCN

Figure 4: Test accuracy convergences of CorInfoMax-B∞,+ networks and other (CSM, EP, PC,
and PC-Nudge) algorithms as a function of epochs (averaged over n = 10 runs associated with the
corresponding ± std envelopes) for the MNIST dataset.

Figure 5 compares the test accuracy performance of CorInfoMax-B∞,+ network (as a function of
training epochs) with CSM, EP, PC, and PC-Nudge algorithms for the Fashion MNIST dataset.

27

0 10 20 30 40 50
Number of Epochs

0.80

0.82

0.84

0.86

0.88

0.90

Ac
cu

ra
cy

CorInfoMax
CSM
EP
PC
PCN

Figure 5: Test accuracy convergences of CorInfoMax-B∞,+ networks and other (CSM, EP, PC,
and PC-Nudge) algorithms as a function of epochs (averaged over n = 10 runs associated with the
corresponding ± std envelopes) for the Fashion MNIST dataset.

Figure 6 compares the test accuracy performance of CorInfoMax-B∞,+ network (as a function of
training epochs) with CSM, EP, PC, and PC-Nudge algorithms for the CIFAR10 dataset.

0 10 20 30 40 50
Number of Epochs

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

Ac
cu

ra
cy

CorInfoMax
EP
PCN

Figure 6: Test accuracy convergences of CorInfoMax-B∞,+ networks and other (CSM, EP, PC,
and PC-Nudge) algorithms as a function of epochs (averaged over n = 10 runs associated with the
corresponding ± std envelopes) for the CIFAR10 dataset.

28

J.5 Three layer CorInfoMax-B∞,+ network

In this section, we consider the extension of the CorInfoMax-B∞,+ network in Figure 3, obtained by
inserting an additional hidden layer.

J.5.1 Hyperparameters

Table 4: Hyperparameters used to train CorInfoMax-B∞,+ networks with two hidden layers.(In the
row stating the lr decay, ep. and O/W means epoch and otherwise, respectively.)

Hyperparameter MNIST CIFAR10 CIFAR100

Batch size 20 20 20
Architecture [784, 500, 500, 10] [3072, 1000, 500, 10] [3072, 2000, 1000, 100]
Tfree 30 30 50
Tnudged 10 10 20
µff [1.1, 0.75, 0.6] [0.11, 0.06, 0.035] [0.18, 0.15, 0.09]
µfb [−, 0.17, 0.07] [−, 0.045, 0.015] [−, 0.08, 0.06]
λr 1− 10−5 1− 10−5 1− 10−5

ϵk 0.15 ∀k 0.15 ∀k 0.15 ∀k
β′ 1.0 1.0 1.0
glk 0.5 0.1 0.1
µu 0.05 0.05 0.06

lr decay
{

0.95 ep. < 15
0.9 O/W.

{
0.95 ep. < 15
0.9 O/W.

{
0.99 ep. < 20
0.9 O/W.

J.5.2 Test accuracy results

Table 5 displays the test accuracy results for the 3-layer CorInfoMax-B∞,+ networks on MNIST,
CIFAR10 and CIFAR100 datasets in comparison with Feedback Alignment and Backpropagation
algorihtms.

Table 5: Test accuracy (n = 10 runs ± stddev) of CorInfoMax-B∞,+ networks with two hidden
layers.

MNIST CIFAR10 CIFAR100

Top-1 (%) Top-1 (%) Top-1 (%) / Top5 (%)

CorInfoMax-B∞,+ 97.58± 0.1 50.97± 0.4 20.84± 0.4 / 37.86± 0.8

Feedback Alignment (with MSE Loss) 98.18± 0.0 50.26± 1.4 - / -
Feedback Alignment (with CrossEntropy Loss) 97.96± 0.2 51.64± 0.6 - / -
BP (with MSE Loss) 97.74± 0.1 55.49± 0.4 26.56± 0.2 / 40.64± 0.4
BP (with CrossEntropy Loss) 98.28± 0.08 56.14± 0.3 28.93± 0.3 / 54.13± 0.4

29

Figure 7 reports the test accuracy performance of CorInfoMax-B∞,+ network with two hidden layers
as a function of training epochs for the MNIST, CIFAR10 and CIFAR100 image classification tasks.

0 10 20 30 40 50
Number of Epochs

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Te
st

 A
cc

ur
ac

y

CorInfoMax

(a)

0 10 20 30 40 50
Number of Epochs

0.30

0.35

0.40

0.45

0.50

Te
st

 A
cc

ur
ac

y

CorInfoMax

(b)

0 10 20 30 40 50
Number of Epochs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

CorInfoMax - Top-5 (%)
CorInfoMax - Top-1 (%)

(c)

Figure 7: Test accuracy convergence of CorInfoMax-B∞,+ network with two hidden layers as a
function of epochs (averaged over n = 10 runs associated with the corresponding ± std envelopes)
for the (a) MNIST dataset, (b) CIFAR10 dataset, and (c) CIFAR100 dataset (Top-1(%) and Top-5(%)
test accuracy convergences)

J.5.3 Angle measurement results

Figure 8 provides the angle between feedforward and the transpose of the feedback weights (as
defined in (A.39)) results for the 3-layer CorInfoMax-B∞,+ network for the MNIST, CIFAR10 and
CIFAR100 datasets. These results also confirm the asymmetry between the feedforward and feedback
weights corresponding to the same segment.

0 20 40 60 80 100 120 140
Number of Iterations / 103

65

70

75

80

85

90

An
gl

e
(in

 d
eg

re
e)

Θ(2)

Θ(3)

(a)

0 20 40 60 80 100 120
Number of Iterations / 103

70

75

80

85

90

An
gl

e
(in

 d
eg

re
e)

Θ(2)

Θ(3)

(b)

0 20 40 60 80 100 120
Number of Iterations / 103

80

82

84

86

88

90

An
gl

e
(in

 d
eg

re
e)

Θ(2)

Θ(3)

(c)

Figure 8: The angle between the feedforward and the transpose of the feedback weights (based on
(A.39) for the 3-layer CorInfoMax-B∞,+ network (averaged over n = 10 runs associated with the
corresponding ± std envelopes) for (a) MNIST, (b) CIFAR10, and (c) CIFAR100 datasets.

30

J.6 Two layer CorInfoMax-B1,+ network

J.6.1 Network architecture

Figure 9 provides a depiction of a CorInfoMax network with a single hidden layer. In this instance,
both the hidden and output layers have the same constraint set P = B1,+. Relative to the CorInfoMax-
B∞,+ network structure in Figure 3, this network contains additional interneurons, namely q(1) and
q(2) to impose sparsity constraint on hidden and output layer networks.

Figure 9: Two layer correlative information maximization based neural network with non-negative
sparsity constraint: ∥r(l)∥1 ≤ 1, and r(l) ≽ 0, l = 1, 2. Interneurons with activations q(1) and q(2)

are to impose ℓ1−norm constraints for both layers.

J.6.2 Hyperparameters

Table 6: Hyperparameters used to train two layers CorInfoMax-B1,+ network. (In the row stating the
lr decay, ep. and O/W means epoch and otherwise, respectively.)

Hyperparameter MNIST FashionMNIST CIFAR10

Batch size 20 20 20
Architecture [784, 500, 10] [784, 500, 10] [3072, 1000, 10]
Tfree 20 20 30
Tnudged 4 10 10
µff [1.0, 0.7] [0.35, 0.23] [0.095, 0.075]
µfb [−, 0.12] [−, 0.06] [−, 0.05]
λr 1− 10−5 1− 10−5 1− 10−5

ϵk 0.15 ∀k 0.15 ∀k 0.15 ∀k
β′ 1.0 1.0 1.0
glk 0.5 0.2 0.1
µu 0.05 max{ 0.045

s×10−2+1 , 10
−3} max{ 0.025

s×10−2+1 , 10
−3}

µa [1e− 6, 0.01] [1e− 6, 0.01] [1e− 5, 0.01]

lr decay
{

0.95 ep. < 15
0.9 O/W.

{
0.95 ep. < 11
0.9 O/W.

{
0.95 ep. < 15
0.9 O/W.

31

J.6.3 Test accuracy results

Figure 10 reports the test accuracy performance of CorInfoMax-B1,+ network with single hidden layer
as a function of training epochs for the MNIST, FashionMNIST, and CIFAR10 image classification
tasks.

0 10 20 30 40 50
Number of Epochs

0.94

0.95

0.96

0.97

0.98

Te
st

 A
cc

ur
ac

y

CorInfoMax

(a)

0 10 20 30 40 50
Number of Epochs

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Te
st

 A
cc

ur
ac

y

CorInfoMax

(b)

0 10 20 30 40 50
Number of Epochs

0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52

Te
st

 A
cc

ur
ac

y

CorInfoMax

(c)

Figure 10: Test accuracy convergence of CorInfoMax-B1,+ network with single hidden layer as a
function of epochs (averaged over n = 10 runs associated with the corresponding ± std envelopes)
for the (a) MNIST dataset, (b) FashionMNIST dataset, and (c) CIFAR10 dataset.

J.6.4 Angle measurement results

The angle measurements between the feedforward and feedback weights demonstrated in Figure 11
confirm the typical asymmetry between these weights.

0 20 40 60 80 100 120 140
Number of Iterations / 103

55
60
65
70
75
80
85
90

An
gl

e
(in

 d
eg

re
e)

MNIST - Θ(2)

FashionMNIST - Θ(2)

CIFAR10 - Θ(2)

Figure 11: The angle between the feedforward and the transpose of the feedback weights between
hidden and output layers (averaged over n = 10 runs associated with the corresponding ± std
envelopes) as a function of weight update iterations for CorInfoMax-B1,+.

J.7 Compute sources

All the simulations are carried out in an HPC cluster using either a single Tesla T4 or a single Tesla
V100 GPU. Although the simulation times are dependent on the memory utilization and number of
CPUs, the following list declares the approximate training periods for our experiments:

• One epoch training of CorInfoMax-B∞,+ networks with single hidden layer on MNIST, Fashion
MNIST, and CIFAR10 datasets using batch size 20 takes approximately 1-2 minutes,

• One epoch training of CorInfoMax-B∞,+ network with two hidden layers on CIFAR10 dataset
using batch size 20 takes approximately 2-3 minutes,

• One epoch training of CorInfoMax-B∞,+ network with two hidden layers on CIFAR100 dataset
using batch size 20 takes approximately 3-4 minutes,

• One epoch training of CorInfoMax-B1,+ network with single hidden layer on MNIST, Fashion
MNIST, and CIFAR10 datasets using batch size 20 takes approximately 1-2 minutes.

32

K Ablation studies: the effect of hyperparameters

In this section, we examine the influence of various hyperparameters on the performance of our
proposed framework. To achieve this, we conducted a series of simulations over a selected grid of
parameters. The outcomes, in terms of training and test accuracy, from these grid-based experiments
are detailed here.

K.1 Neural dynamic’s learning rate and leakage conductance glk

Table 7 presents the effect of the neural dynamic’s learning rate and the value of glk on the training
and test accuracies for CorInfoMax-B∞,+ network with single hidden layer on the MNIST image
classification task. We observe fairly stable performance over the selected range of values.

Table 7: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to
the combination of neural dynamic’s learning rate and glk for the MNIST simulations with 2-layer
CorInfoMax-B∞,+ network. The other hyperparameters are as specified in Table 3.

µu glk Train accuracy Test accuracy

max{ 0.05
s×10−2+1 , 10

−3} 0.5 98.915± 0.06 97.613± 0.11

max{ 0.05
s×10−2+1 , 10

−3} 0.2 98.919± 0.04 97.610± 0.10
0.05 0.5 98.930± 0.05 97.622± 0.12
0.05 0.2 98.929± 0.04 97.622± 0.10

Similarly, Table 8 demonstrates the impression of the learning rate for neural dynamics and the
leakage conductance glk for CorInfoMax-B1,+ with single hidden layer. We note that the training
and test accuracy results in the first row of Table 8 is low with high variance. This is due to the fact
that one out of ten runs has diverged after epoch 35 for this hyperparameter combination.

Table 8: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to
the combination of neural dynamic’s learning rate and glk for the MNIST simulations with 2-layer
CorInfoMax-B1,+ network. The other hyperparameters are as specified in Table 6.

µu glk Train accuracy Test accuracy

max{ 0.05
s×10−2+1 , 10

−3} 0.5 89.793± 28.1 88.891± 27.79

max{ 0.05
s×10−2+1 , 10

−3} 0.2 98.634± 0.13 97.634± 0.12
0.05 0.5 98.698± 0.06 97.711± 0.10
0.05 0.2 98.695± 0.05 97.724± 0.08

33

K.2 Learning rates for synapses and network dynamics

Table 9 reports performance variation for different choices of neural dynamic and synaptic learning
rates for CorInfoMax-B∞,+ with single hidden layer on the Fashion MNIST classification task.
Better performance is achieved for relatively higher feedforward synapse learning rates and relatively
smaller feedback synapse learning rates.

Table 9: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to the
combination of feedforward and feedback learning rates, and neural dynamic’s learning rate for the
Fashion MNIST simulations with 2-layer CorInfoMax-B∞,+ network. The other hyperparameters
are as specified in Table 3.

µff µfb µu Train accuracy Test accuracy

[0.3, 0.22] [−, 0.07] max{ 0.07
s×10−2+1 , 10

−3} 91.468± 0.22 88.138± 0.28

[0.3, 0.22] [−, 0.07] max{ 0.05
s×10−2+1 , 10

−3} 91.230± 0.11 88.140± 0.16

[0.25, 0.15] [−, 0.09] max{ 0.07
s×10−2+1 , 10

−3} 89.961± 2.79 87.215± 2.37

[0.25, 0.15] [−, 0.09] max{ 0.05
s×10−2+1 , 10

−3} 90.530± 0.12 87.770± 0.23

K.3 Forgetting factor and learning rates

Table 10 shows the impact of forgetting factor λr together with synaptic learning rates for CorInfoMax-
B∞,+ with single hidden layer on the CIFAR10 classification accuracy. Overall, a slightly improved
performance is observed when using relatively higher values of µff and relatively smaller values of
µfb.

Table 10: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to the
combination of feedforward and feedback learning rates, and λr for the CIFAR10 simulations with
2-layer CorInfoMax-B∞,+ network. The other hyperparameters are as specified in Table 3.

µff µfb λr Train accuracy Test accuracy

[0.08, 0.04] [−, 0.04] 1− 10−5 64.841± 0.17 51.732± 0.34
[0.07, 0.03] [−, 0.05] 1− 10−5 62.427± 0.11 51.065± 0.37
[0.08, 0.04] [−, 0.04] 1− 5× 10−5 64.848± 0.16 51.856± 0.33
[0.07, 0.03] [−, 0.05] 1− 5× 10−5 62.456± 0.18 51.066± 0.32

Likewise, Table 11 illustrates the effect of the variations on the same set of hyperparameters for
CorInfoMax-B1,+ with a single hidden layer for CIFAR10 classification task. Comparatively, the
resulting performances exhibit a moderate level of stability when compared to the CorInfoMax-B∞,+

results presented in Table 10.

Table 11: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to the
combination of feedforward and feedback learning rates, and λr for the CIFAR10 simulations with
2-layer CorInfoMax-B1,+ network. The other hyperparameters are as specified in Table 6.

µff µfb λr Train accuracy Test accuracy

[0.09, 0.07] [−, 0.045] 1− 10−5 63.005± 0.48 51.047± 0.40
[0.095, 0.075] [−, 0.05] 1− 10−5 63.719± 0.56 51.188± 0.36
[0.09, 0.07] [−, 0.045] 1− 5× 10−5 63.003± 0.54 51.062± 0.32
[0.095, 0.075] [−, 0.05] 1− 5× 10−5 63.716± 0.53 51.106± 0.38

34

K.4 Learning rate decay, free phase iterations, synaptic learning rates

Table 12 investigates the influence of learning rate decay, the number of free phase iterations, and
synaptic learning rates on classification accuracy for CorInfoMax-B∞,+ with two hidden layers on
the CIFAR100 classification task. The best train and test results are acquired by utilizing higher
values of µff and µfb, along with implementing a learning rate decay during the initial epochs.

Table 12: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to the
combination of feedforward and feedback learning rates, learning rate decay, and number of iterations
for the free phase (Tfree) for the CIFAR100 simulations with 3-layer CorInfoMax-B∞,+ network.
The other hyperparameters are as specified in Table 4. (In the row stating the lr decay, ep. and O/W
means epoch and otherwise, respectively.)

µff µfb lr decay Tfree Train acc. Test acc.

Top-1/5 Top-1/5

[0.16, 0.13, 0.08] [−, 0.06, 0.04]

{
1.0 ep. < 15
0.9 O/W.

50 23.9/40.9 19.1/36.4

[0.16, 0.13, 0.08] [−, 0.06, 0.04]

{
0.99 ep. < 20
0.9 O/W.

50 26.0/42.8 20.2/37.6

[0.16, 0.13, 0.08] [−, 0.06, 0.04]

{
1.0 ep. < 15
0.9 O/W.

60 23.9/41.0 19.1/36.5

[0.18, 0.15, 0.09] [−, 0.08, 0.06]

{
0.99 ep. < 20
0.9 O/W.

50 27.7/43.5 20.8/37.9

K.5 Larger variations on forward mapping learning rate and neural dynamic learning rate

To assess the impact of larger variations in certain hyperparameters on performance, we conducted
two additional ablation studies using both the MNIST and CIFAR10 datasets. These experiments
were conducted using a two-layered CorInfoMax-B∞,+ network. Specifically, we explored variations
in the selection of the learning rate for the forward mapping (µff) and the initial learning rate for
neural dynamics (µu[1]).

Figure 12a presents the test accuracy curves for the MNIST classification task, showcasing different
selections of µff averaged over five runs, with standard deviation envelopes (±std). The remaining
hyperparameters of the CorInfoMax-B∞,+ network were kept constant at the values reported in Table
3, including the learning rate decay. It is important to note that the specific value of µff = [1.0, 0.7]
corresponds to the value reported in Table 3 for our experiments. Our observations indicate that as
the forward mapping learning rate approaches this reported value, the accuracy curve exhibits gradual
improvement. Conversely, for relatively small values of µff , the resulting accuracy is lower and
exhibits higher variance.

Figure 12b presents the same experiment conducted for the CIFAR10 classification task. Once again,
we observe that as µff approaches the value reported in Table 3, the accuracy improves.

In addition, we conducted experiments to investigate the impact of varying the initial learning rate for
neural dynamics, denoted as µu[1]. Figure 13 presents test accuracy curves for the MNIST classifica-
tion task with two-layered CorInfoMax-B∞,+, which were obtained by averaging results from five
runs and displaying standard deviation envelopes (±std). The remaining hyperparameters were held
constant at the values specified in Table 3. In Table 3, we define µu[s] as max{ µu[1]

s×10−2+1 , 10
−3}.

Consequently, for this experiment, we applied the same decay rule to all selected values of µu[1].
Notably, our results indicate that µu[1] values of 0.05 or 0.075 consistently yield reliable accuracy
outcomes, while other values fail to provide dependable accuracy estimates.

35

0 10 20 30 40 50
Number of Epochs

90

92

94

96

98

Ac
cu

ra
cy

μff = 0.1 × [1.0, 0.7]
μff = 0.25 × [1.0, 0.7]
μff = 0.5 × [1.0, 0.7]
μff = 0.75 × [1.0, 0.7]
μff = 1.0 × [1.0, 0.7]

(a)

0 10 20 30 40 50
Number of Epochs

15
20
25
30
35
40
45
50

Ac
cu

ra
cy

μff = 0.1 × [0.08, 0.04]
μff = 0.25 × [0.08, 0.04]
μff = 0.5 × [0.08, 0.04]
μff = 0.75 × [0.08, 0.04]
μff = 1.0 × [0.08, 0.04]

(b)

Figure 12: Ablation study on µff variations for two-layered CorInfoMax-B∞,+ networks. (a)
Convergence of test accuracy across different selections of µff for the MNIST classification task
(averaged over n = 5 runs associated with the corresponding ± std envelopes). (b) Convergence of
test accuracy across different selections of µff for the CIFAR-10 classification task (averaged over
n = 5 runs associated with the corresponding ± std envelopes).

0 10 20 30 40 50
Number of Epochs

0

20

40

60

80

100

Ac
cu

ra
cy

Zoomed In

μu[1] = 0.015
μu[1] = 0.05
μu[1] = 0.075
μu[1] = 0.1
μu[1] = 0.15
μu[1] = 0.3

35 40 45 50

Number of Epochs
97.3

97.4

97.5

Figure 13: Ablation study on µu[1] variations: Test accuracy curves in a two-layered CorInfoMax-
B∞,+ network for MNIST classification (averaged over n = 5 runs associated with the corresponding
± std envelopes). Convergence to approximately 97.5% accuracy is observed for µu[1] values of
0.05 and 0.075.

Similarly, we conducted the same experiment using a two-layered CorInfoMax-B∞,+ network for the
CIFAR10 classification task. Figure 14 illustrates the test accuracy curves obtained for the CIFAR10
classification task, representing the average results of five runs with standard deviation envelopes
(±std). The remaining hyperparameters were held constant at the values specified in Table 3. It is
worth noting that, for the CIFAR10 task, we did not implement decay rule for the neural dynamics
learning rate, i.e., µu[s] = µu[1] ∀s. Figure 14 demonstrates that our method achieves convergence
to approximately 52% accuracy when µu[1] falls within the range of 0.05 to 0.1. However, when
µu[1] is set to 0.015, the accuracy slightly decreases, converging to around 49.5%. Notably, relatively
higher values of µu[1], such as 0.15 and 0.3, lead to divergence

36

0 10 20 30 40 50
Number of Epochs

10

20

30

40

50

Ac
cu

ra
cy

Zoomed In

μu[1] = 0.015
μu[1] = 0.05
μu[1] = 0.075
μu[1] = 0.1
μu[1] = 0.15
μu[1] = 0.3

35 40 45 50

Number of Epochs
49

50

51

52

Figure 14: Ablation study on µu[1] variations: Test accuracy curves in a two-layered CorInfoMax-
B∞,+ network for CIFAR10 classification (averaged over n = 5 runs associated with the correspond-
ing ± std envelopes). Convergence to approximately 52% accuracy is observed for µu[1] values
between 0.05 and 0.1.

37

