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Abstract

We study private and robust multi-armed bandits (MABs), where the agent receives
Huber’s contaminated heavy-tailed rewards and meanwhile needs to ensure dif-
ferential privacy. We consider both the finite k-th raw moment and the finite k-th
central moment settings for heavy-tailed rewards distributions with k ≥ 2. We
first present its minimax lower bound, characterizing the information-theoretic
limit of regret with respect to privacy budget, contamination level, and heavy-
tailedness. Then, we propose a meta-algorithm that builds on a private and robust
mean estimation sub-routine PRM that essentially relies on reward truncation and
the Laplace mechanism. For the above two different heavy-tailed settings, we
give corresponding schemes of PRM, which enable us to achieve nearly-optimal
regrets. Moreover, our two proposed truncation-based or histogram-based PRM
schemes achieve the optimal trade-off between estimation accuracy, privacy and
robustness. Finally, we support our theoretical results and show the effectiveness
of our algorithms with experimental studies.

1 Introduction

The multi-armed bandit (MAB) [1] problem provides a fundamental framework for sequential
decision-making under uncertainty with bandit feedback, which has drawn a wide range of appli-
cations in medicine [2], finance [3, 4], recommendation system [5], and online advertising [6], to
name a few. Consider a portfolio selection in finance as an example. At each decision round t ∈ [T ],
the learning agent selects an action at ∈ [K] (i.e., a choice of assets to user t) and receives a reward
rt (e.g., the corresponding payoff) that is i.i.d. drawn from an unknown probability distribution
associated with the portfolio choice. The goal is to learn to maximize its cumulative payoff.

In practice, applying the celebrated MAB formulation to real-life applications (e.g., the above finance
example) needs to deal with both robustness and privacy issues. On the one hand, it is known that
financial data is often heavy-tailed (rather than sub-Gaussian) [7, 8]. Moreover, the received payoff
data in finance often contains outliers [9] due to data contamination. On the other hand, privacy
concern in finance is growing [10–12]. For instance, even if the adversary does not have direct access
to the dataset, they are still able to reconstruct other customers’ personal information by interacting
with the pricing platform and observing its decisions [13].

Motivated by this, a line of work on MABs has focused on designing robust algorithms with respect to
heavy-tailed rewards [14], adversary contamination [15, 16], or both [17]. Another line of recent work
has studied privacy protection in MABs via different trust models of differential privacy (DP) [18]
such as central DP [19, 20], local DP [21, 22] and distributed DP [23, 24]. Moreover, there have also
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been recent advances in understanding the close relationship between robustness and privacy for the
mean estimation problem (e.g., robustness induces privacy [25, 26] and vice versa [27]). In light of
this, a fundamental question we are interested in this paper is:

Is there a simple algorithm that can tackle privacy and robustness in MABs simultaneously?

Our contributions. We give an affirmative answer to it by showing that a unified truncation-based
algorithm could achieve a nearly optimal trade-off between regret, privacy, and robustness for MABs
under two different heavy-tailed settings. The key intuition is that reward truncation not only helps to
reduce outliers (due to both heavy tails and contamination), but also bound its sensitivity (useful for
DP guarantees). To make our intuition rigorous, we take the following principled approaches.

(i) We first establish the minimax regret lower bound for private and robust MABs, i.e., heavy-tailed
MABs with both privacy constraints and Huber’s contamination (see section 4) where the reward
distribution of each action has finite k-th moment for k ≥ 2. This characterizes the information-
theoretic limit of regret with respect to privacy budget, contamination level and heavy-tailedness.

(ii) To match the lower bound, we first propose a meta-algorithm (see section 5), which builds upon
the idea of batched successive elimination and relies on a generic private and robust mean estimation
sub-routine denoted by PRM. Then, for two different settings of (heavy-tailed) reward distributions
(i.e., finite raw or central moments), we propose corresponding schemes for the sub-routine PRM,
both of which require truncation and the Laplace mechanism to guarantee robustness and privacy,
simultaneously. Armed with these, our meta-algorithm can enjoy nearly matching regret upper
bounds (see section 6). Experimental studies also corroborate our theoretical results.

(iii) Along the way, several results could be of independent interest. In particular, our proposed PRM
shows that reward truncation is sufficient to help achieve the optimal high-probability concentration
for private and robust mean estimation in the one-dimension case. Moreover, without contamination,
our regret upper bounds not only match the optimal one for private heavy-tailed MABs with finite raw
moments, but also provide the first results for the case with finite central moments, hence a complete
study for private bandits as well.

Due to space limit, experiments (section A in Appendix), technical lemmas, and all proofs are
relegated to Appendix.

2 Related Work
Robust MABs. The studies on robust bandits can be largely categorized into two groups. The first
group of work mainly focuses on the setting where the total contamination is bounded, i.e., the
cumulative difference between observed reward and true reward is bounded by some constant [15].
The second group considers Huber’s α-contamination model [28] (which is also the focus of our
paper) or a similar α-fraction model. In these cases, the reward for each round can be contaminated
by an arbitrary distribution with probability α ∈ [0, 1/2) [29, 16, 30], or at most α-fraction of the
rewards are arbitrarily contaminated [31]. The existing work in this group has mainly focused on
the light-tailed setting where the true inlier distribution is Gaussian or sub-Gaussian and uses a
robust median or trimmed-mean estimator. A very recent work [17] studies the (non-private) setting
where the inlier distribution only has finite variance and uses Huber’s estimator to establish problem-
dependent bounds. In contrast, we take the perspective of minimax regret, i.e., problem-independent
bounds, and also account for privacy protection.

Private MABs. In addition to the above mentioned results on private MABs with light-tailed
rewards, [22] studies private heavy-tailed MABs with finite raw moments under both central and
local models of DP. However, how to design private algorithms for heavy-tailed distributions with
finite central moments is left as an important problem. In this paper, we resolve the problem as a
byproduct of our main results.

Robust and private mean estimation. Our work is also related to robust and private mean estimation,
especially the one-dimensional case. On the robustness side with Huber’s model, a high-probability
concentration bound for the median of Gaussian (hence the mean by symmetry) is first established
in [32]. Recently, [30] gives a high probability mean concentration via a trimmed-mean estimator
for general sub-Gaussian inlier distributions while [33] focuses on the heavy-tailed setting. We
refer the reader to the survey paper [34] on high-dimensional robust statistics focusing on robust
mean estimation. On the robustness side with heavy-tail, we refer the reader to the survey paper
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[35] for mean estimation and regression under heavy-tailed distributions. Besides median-of-means
techniques and trimmed mean we mentioned above to handle heavy-tailed data, Catoni’s estimator
is a very different estimator for heavy tail [36, 37] and also used in bandits [14]. On the privacy
side, one close work is [38], which presents the first high-probability mean concentration for private
heavy-tailed distributions with finite central moments (via a medians-of-means approach). It is
worth noting that there are recent exciting advances in understanding the close relationship between
robustness and privacy (e.g., robustness induces privacy [25, 26] and vice versa [27]). From this
aspect, our results imply that for the one-dimensional mean estimation problem, truncation alone
suffices to help to achieve both.

Concurrent and independent work. While preparing this submission, we have noticed that [39]
also studies private and robust bandits problems under the Huber model. However, there are many
differences between our work and theirs. First, for the differential privacy and bandit models,
we investigate the multi-armed bandit problem under central differential privacy while they study
stochastic linear bandits under the local differential privacy model. For the assumption of rewards,
we focus on the heavy-tailed cases where the distribution of reward has finite k-th raw moment and
central moment for k ≥ 2 while they essentially assume that the rewards are bounded2.

3 Preliminaries

In this section, we first formally introduce our problem of private and robust MABs and subsequently
present its corresponding regret notions.

3.1 Private and Robust MABs

In this paper, we consider the multi-armed bandits problem where the agent interacts with the
environment for T rounds. In each round t, the agent chooses an action at ∈ [K] and then standard
reward rt is generated independently from inlier distribution. After contamination, the agent observes
contaminated reward xt.

As mentioned before, by robustness, we aim to handle both reward contamination and possible heavy-
tailed inlier distributions. To this end, we first introduce the following two classes of heavy-tailed
reward distributions.

Definition 3.1 (Finite k-th raw moment). A distribution over R is said to have a finite k-th raw
moment if it is within

Pk =
{
P : EX∼P

[
|X|k

]
≤ 1
}
, k ≥ 2, (1)

where k is considered fixed but arbitrary.

Definition 3.2 (Finite k-th central moment [40, 38]). A distribution over R is said to have a finite
k-th central moment if it is within

Pc
k =

{
P : EX∼P

[
|X − µ|k

]
≤ 1
}
, k ≥ 2, (2)

where µ := EX∼P [X] ∈ [−D,D] and D ≥ 1.

The relationship between the finite raw moment and the finite central moment has been discussed in
[22]. We further consider the celebrated Huber contamination model [28] in heavy-tailed MABs.

Definition 3.3 (Heavy-tailed MABs with Huber contamination). Given the corruption level α ∈
[0, 1/2). For each round t ∈ [T ], the observed reward3 xt for action at, is sampled independently
from the true distribution Pat

∈ Pk (or Pat
∈ Pc

k) with probability 1− α; otherwise is sampled from
some arbitrary and unknown contamination distribution Gat

∈ G.

In addition to robustness, we also consider the privacy protection in MABs via the lens of DP. In
particular, we consider the standard central model of DP for MABs (e.g., [41]), where the learning
agent has access to users’ raw data (i.e., rewards) and guarantees that its output (i.e., sequence

2Note that although the general problem formulation in [39] considers sub-Gaussian rewards, their privacy
guarantee only holds for bounded rewards.

3Here we use xt in the contaminated case to distinguish with standard reward rt.
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of actions) are indistinguishable in probability on two neighboring reward sequences. Due to
contamination, the reward data accessed by the learning agent at round t could have already been
contaminated. More precisely, we let DT = (x1, . . . , xT ) ∈ RT be a reward sequence generated
in the learning process and M(DT ) = (a1, . . . , aT ) ∈ [K]T to denote the sequence of all actions
recommended by a learning algorithm M. With this setup, we have the following formal definition.
Definition 3.4 (Differential Privacy for MABs). For any ϵ > 0, a learning algorithm M : RT →
[K]T is ϵ-DP if for all sequences DT ,D′

T ∈ RT differing only in a single element and for all events
E ⊂ [K]T , we have

P [M(DT ) ∈ E] ≤ eϵ · P [M (D′
T ) ∈ E] .

In other words, we protect the privacy of any individual user who interacts with the learning agent in
the sense that an adversary observing the output of the learning agent (i.e., a sequence of actions)
cannot infer too much about whether any particular individual has participated in this process, or the
specific reward feedback of this individual. In this paper, we will leverage the well-known Laplace
mechanism to guarantee differential privacy.
Definition 3.5 (Laplace Mechanism). Given a function f : Xn → Rd, the Laplacian mechanism is
given by

ML(Dn, f, ϵ) = f(Dn) + (Y1, Y2, · · · , Yd),

where Yi is i.i.d. drawn from a Laplacian Distribution4 Lap(∆1(f)
ϵ ), where ∆1(f) is the ℓ1-sensitivity

of the function f , i.e., ∆1(f) = supDn∼D′
n
||f(Dn) − f(D′

n)||1. Then, for any ϵ > 0, Laplacian
mechanism satisfies ϵ-DP.

In the following sections, for brevity, we will simply use private and robust MABs to refer to our
setting, i.e., heavy-tailed MABs with Huber contamination and privacy constraints.

3.2 Regrets for Private and Robust MABs

In the contamination case, the standard regret using observed (contaminated) rewards {xt}t∈[T ] is
ill-defined [31]. Instead, the literature focuses on the clean regret, that is, to compete with the best
policy in hindsight as measured by the expected true uncontaminated rewards [31, 17, 42]. Hence, let
µa be the mean of the inlier distribution of arm a ∈ [K] and µ∗ = maxa∈[K] µa. We also let Πϵ be
the set of all ϵ-DP MAB algorithms and Eα,k be the set of all instances of heavy-tailed MABs (with
parameter k) with Huber contamination (of level α).
Definition 3.6 (Clean Regret). Fix an algorithm π ∈ Πϵ and an instance ν ∈ Eα,k. Then, the clean
regret of π under ν is given by RT (π, ν) := Eπ,ν [Tµ

∗ −
∑T

t=1 µat
].

Note that here the expectation is taken over the randomness generated by the contaminated environ-
ment and ϵ-DP MAB algorithm while the means are of the true inlier distributions.

To capture the intrinsic difficulty of the private and robust MAB problem, we are also interested in its
minimax regret.
Definition 3.7 (Minimax Regret). The minimax regret of our private and robust MAB problem is
defined as Rminimax

ϵ,α,k := infπ∈Πϵ supν∈Eα,k
Eπ,ν [Tµ

∗ −
∑T

t=1 µat
].

4 Lower Bound

We start with the following lower bound on the minimax regret, which characterizes the fundamental
impact of privacy budget (via ϵ), contamination level (via α) and heavy-tailedness of rewards (via k)
in the regret. Note that this lower bound is mainly established under Definition 3.1, which in turn
also serves as one valid lower bound for the central moment case in Definition 3.2.
Theorem 4.1. Consider a private and robust MAB problem where inlier distributions have finite k-th
raw (or central) moments (k ≥ 2). Then, its minimax regret satisifes

Rminimax
ϵ,α,k = Ω

(√
KT + (K/ϵ)

1− 1
k T

1
k + Tα1− 1

k

)
.

4For a parameter λ, the Laplacian distribution has the density function Lap(λ)(x) = 1
2λ

exp(− |x|
λ
).
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Algorithm 1 Private and Robust Arm Elimination
1: Input: Number of arms K, time horizon T , privacy budget ϵ, Huber parameter α ∈ (0, 1/2),

error probability δ ∈ (0, 1], inliner distribution parameters i.e., k and optional D.
2: Initialize: τ = 0, active set of arms S = {1, · · · ,K}.
3: for batch τ = 1, 2, . . . do
4: Set batch size Bτ = 2τ .
5: if Bτ < T then
6: Randomly select an action a ∈ [K].
7: Play action a for Bτ times.
8: else
9: for each active arm a ∈ S do

10: for i from 1 to Bτ do
11: Pull arm a, observe contaminated reward xa

i .
12: If total number of pulls reaches T , exit.
13: end for
14: Set truncation threshold Mτ .
15: Set additional parameters Φ.
16: Compute estimate µ̃a = PRM({xa

i }
Bτ
i=1,Mτ ,Φ).

17: end for
18: Set confidence radius βτ .
19: Let µ̃max = maxa∈S µ̃a.
20: Remove all arms a from S s.t. µ̃max − µ̃a > 2βτ .
21: end if
22: end for

This lower bound basically takes a maximum of three terms. The first term comes from the standard
regret for Gaussian rewards, the second one captures the additional cost in regret due to privacy and
heavy-tailed rewards, and the last term indicates the additional cost in regret due to contamination and
heavy-tailed rewards. Note that, for a given k, the impact of privacy and contamination is separable.
It would also be helpful to compare our lower bound with the related ones, as discussed below.
Remark 4.2. First, when k = ∞ and α = 0, our lower bound recovers the state-of-the-art lower
bound for private MABs with sub-Gaussian rewards [20]; Second, when there is no privacy protection,
a very recent work [17] establishes a problem-dependent regret lower bound for robust MABs while
we are interested in the problem-independent lower bound with further privacy protection.

5 Our Approach: A Meta-Algorithm

In this section, we first introduce a meta-algorithm for private and robust MABs, which not only
allows us to tackle inlier distributions with bounded raw or central moments in a unified way, but also
highlights the key component, i.e., a private and robust mean estimation sub-routine building on the
main idea of reward truncation.

Our meta-algorithm, at a high level, can be viewed as a batched version of the celebrated successive
arm elimination [43] along with a private and robust mean estimation sub-routine PRM (see Algo-
rithm 1). That is, it divides the time horizon T into batches with exponentially increasing size and
eliminates sub-optimal arms successively based on the mean estimate via PRM. More specifically,
based on the batch size, it consists of two phases. That is, when the batch size is less than a threshold
T , it simply recommends actions randomly (line 5-7) (more on this will be explained soon). Oth-
erwise, for each active arm a in batch τ , it first prescribes a to a batch of Bτ = 2τ fresh new users
(i.e., “doubling”) and observes possibly contaminated rewards (line 8). Then, it calls the sub-routine
PRM to compute a private and robust mean estimate for each active arm a (line 12). In particular, it
only uses the rewards within the most recent batch (i.e., “forgetting”) along with a proper reward
truncation threshold Mτ . Finally, it adopts the classic idea of arm elimination with a proper choice of
confidence radius βτ to remove sub-optimal arms with high confidence (line 18-20).

We now provide more intuitions behind our algorithm design by highlighting how its main components
work in concert. First, the reason behind the first phase (i.e., Bτ ≤ T ), named forced exploration, is
necessary as it ensures that concentration is satisfied so that the optimal arm will not be eliminated.
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Algorithm 2 PRM for the finite raw moment case
1: Input: A collection of data {xi}ni=1, truncation parameter M , additional parameters Φ = {ϵ}.
2: for i = 1, 2, . . . , n do
3: Truncate data x̄i = xi · 1{|xi|≤M}.
4: end for
5: Return private estimate µ̃ =

∑n
i=1 x̄i

n + Lap( 2Mnϵ ).

This is due to the fact that in the contamination case, a well-behaved concentration only kicks in
when the number of samples is larger than a threshold. Thus, one cannot adopt arm elimination
in this phase since it might eliminate the optimal arm. Note that, instead of our choice of random
selection, one can also use other methods for the first phase (see Remark 5.1 below). Second, for
the second phase, the idea of doubling batching and forgetting is the key to achieving privacy with a
minimal amount of noise (hence better regret). This is because now any single reward feedback only
impacts one computation of estimate. This is in sharp contrast to standard arm elimination (e.g., [43])
where each mean estimate is based on all samples so far (as no batching is used), and hence a single
reward change could impact O(T ) mean estimations5. Third, the simple idea of reward truncation in
PRM turns out to be extremely useful for both robustness and privacy. On the one hand, truncation
helps to reduce the impact of outliers (due to both heavy tails and contamination); On the other hand,
truncation also helps to bound the sensitivity, which is necessary for privacy. In fact, as we will show
later, a well-tuned truncation threshold enables us to achieve a near-optimal trade-off between regret,
privacy and robustness. Finally, in contrast to the first phase, we can now eliminate sub-optimal arms
with high confidence due to the high probability concentration of mean estimate when batch size is
larger than T (more details will be given later for specific choices of PRM and hence the choice of T ).

We choose to use the successive elimination (SE) technique here because it suffices to enable us to
achieve optimal order-wise regret later. In fact, once armed with our novel PRM module, one can also
use other exploration strategies like UCB in [20]. One difference is that now instead of first pulling
each arm once, it needs to pull each arm T times to ensure that concentration kicks in later. This is in
fact not surprising since on the high-level, the analysis of SE and UCB is very similar, i.e., doubling
(batching) and forgetting. We also note that instead of UCB, one can also adapt it to the Thompson
sampling strategy, e.g., [45], with our PRM module. Again, the key idea is batching and forgetting.

Remark 5.1. The algorithmic choice of the first phase can be flexible. For example, instead of
playing a randomly selected action for the whole batch, one can choose to play a randomly selected
action for each round. Moreover, one can also choose to be greedy or probabilistically greedy with
respect to the mean estimate by PRM, which also only uses the rewards collected within the last batch
for each arm. All of these choices have the same theoretical guarantees, though some will help to
improve the empirical performance.

We then present the following remark that places our meta-algorithm in the existing literature.

Remark 5.2 (Comparison with existing literature). For private MABs (without contamination), the
state-of-the-art also builds upon the idea of batching and forgetting [19, 20, 24] to achieve optimal
regret. For robust MABs (without privacy), existing works take different robust mean estimations. For
example, both [31, 30] use a trimmed mean estimator for sub-Gaussian inlier distributions while [17]
adopts Huber’s estimator to handle inlier distributions with only bounded variance. We are the first to
study privacy and robustness simultaneously, via a simple truncation-based estimator, which in turn
reveals the close relationship between privacy and robustness in MABs. This complements the recent
advances in capturing the connection between these two in (high-dimensional) statistics [25, 27].

6 Upper Bounds

In this section, we establish the regret upper bounds for two specific instantiations of our meta-
algorithm – one for the finite raw moment case and another for the finite central moment case. The
results could match our lower bound up to a log factor on T , demonstrating their near-optimality.

5One can use the tree-based mechanism [44] to reduce it to O(log T ), but it is still sub-optimal [19].
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6.1 Finite Raw Moment Case

In this section, we will focus on private and robust MABs where the inlier distributions have a finite
k-th raw moment as given by Definition 3.1. In particular, we first introduce the choice of PRM in
this case (see Algorithm 2) and establish its concentration property, which plays a key role in our
implementation of meta-algorithm.

The PRM in Algorithm 2 is simply a truncation-based Laplace mechanism. That is, it first truncates all
the received data with the threshold M (line 3). Then, Laplace noise is added to the empirical mean
to preserve privacy (line 5). We highlight again that truncation here helps with both robustness (via
removing outliers) and privacy (via bounding the sensitivity of empirical mean).

As in the standard algorithm design of MABs, the key is to utilize the concentration of the mean
estimator. To this end, we first give the following high-probability concentration result for the mean
estimate returned by PRM in Algorithm 2.
Theorem 6.1 (Concentration of Mean Estimate). Given a collection of Huber-contaminated data
{xi}ni=1 where the inlier distribution satisfies Definition 3.1 with mean µ, let µ̃ be the mean estimate
by Algorithm 2. Then, for any privacy budget ϵ > 0 and δ ∈ (0, 1), the following results hold:

Uncontaminated case. For α = 0, we have |µ̃− µ| = O

(√
log(1/δ)

n + M log(1/δ)
nϵ + 1

Mk−1

)
, with

probability at least 1 − δ. Thus, choosing the truncation threshold M = Θ
(

nϵ
log(1/δ)

) 1
k

yields

|µ̃− µ| = O

(√
log(1/δ)

n +
(

log(1/δ)
nϵ

)1− 1
k

)
.

Contaminated case. For 0 < α ≤ α1 ∈ (0, 1/2) and n = Ω
(

log(1/δ)
α1

)
, we have the following

with probability at least 1 − δ, |µ̃ − µ|=O

(√
log(1/δ)

n +M log(1/δ)
nϵ + 1

Mk−1 +α1M

)
. Therefore,

choosing the truncation threshold M = Θ

(
min

{(
nϵ

log(1/δ)

) 1
k

, α
− 1

k
1

})
, yields |µ̃−µ| ≤ β, where

β = O

(√
log(1/δ)

n +
(

log(1/δ)
nϵ

)1− 1
k

+ α
1− 1

k
1

)
.

With the above result, several remarks are in order. First, for the uncontaminated case, our concentra-
tion result consists of the standard sub-Gaussian term and a new one due to privacy and heavy-tailed
data. It can be translated into a sample complexity bound, i.e., to guarantee |µ̃ − µ| ≤ η for any
η ∈ (0, 1), it requires the sample size to be n ≥ O( log(1/δ)η2 + log(1/δ)

ϵηk/(k−1) ), which is optimal since it
matches the lower bound for private heavy-tail mean estimation (cf. Theorem 7.2 in [46]). Second,
for the contaminated case, it has an additional bias term O(α

1−1/k
1 ), which is also known to be

information-theoretically optimal [47]. Thus, via truncation, the PRM given by Algorithm 2 achieves
the optimal trade-off between accuracy, privacy and robustness, which in turn shows its potential to
be integrated into our meta-algorithm. Note that α1 here is any upper bound (e.g., estimate) on the
true contamination level α.

Now, based on the concentration result, we can set other missing parameters in our meta-algorithm
accordingly. In particular, we have the following theorem that states the specific instantiation along
with its performance guarantees.
Theorem 6.2 (Performance Guarantees). Consider a private and robust MAB with inlier distributions
satisfying Definition 3.1 and 0 < α ≤ α1 ∈ (0, 1/2). Let Algorithm 1 be instantiated with
Algorithm 2 and Mτ , βτ be given by Theorem 6.1 with n replaced by Bτ . Set T = Ω( log(1/δ)α1

) and
δ = 1/T . Then Algorithm 1 is ϵ-DP with its regret upper bound

RT = O

(√
KT log T+

(
K log T

ϵ

) k−1
k

T
1
k +Tα

1− 1
k

1 +
K log T

α1

)
.

The above theorem presents the first achievable regret guarantee for private and robust bandits. The
first three terms match our lower bound in Theorem 4.1 up to log T factor. The last additive term is
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Algorithm 3 PRM for the finite central moment case
1: Input: A collection of data {xi}2ni=1, truncation parameter M , additional parameters Φ =

{ϵ,D, r}, r ∈ R.
2: // First step: initial estimate
3: Bj = [j, j + r), j ∈ J = {−D,−D + r, . . . ,D − r}.

4: Compute private histogram using the first fold of data: p̃j =
∑n

i=1 1{Xi∈Bj}

n + Lap
(

2
nϵ

)
.

5: Get the initial estimate J = argmaxj∈J p̃j .
6: // Second step: final estimate
7: Get final estimator using the second fold of data: µ̃ = J + 1

n

∑2n
i=n+1(Xi − J)1{|Xi−J|≤M} +

Lap
(
2M
nϵ

)
.

mainly due to the fact that the mean concentration result only holds when the sample size is larger
than T = Ω( log(1/δ)α1

). As a result, each sub-optimal has to be played at least Ω( log(1/δ)α1
) times.

However, for a sufficiently large T and a constant α, the last term is dominated by other terms. The
last term is also exactly the reason that we choose an upper bound α1 on the actual contamination
level α and state the upper bound results in terms of α1 rather than α . That is, for a very small but
non-zero α , one can choose a larger α1 to balance the regret. This subtle issue is also mentioned in
one nice related work [42], see the remark after Theorem 7.4 and Remark 5.4 in their work.

Remark 6.3. For the uncontaminated case with α = 0, using the uncontaminated concentration
bound in Theorem 6.1 and the same analysis, we achieve a regret upper bound O(

√
KT log T +

(K log T
ϵ )

k−1
k T

1
k), which also matches the lower bound in Theorem 4.1 up to a factor of O(log T ).

6.2 Finite Central Moment Case

The setting in the last section for the finite raw moment case may not be entirely satisfactory as it
essentially assumes that the mean of arms is bounded within a small range (hence the sub-optimal
gaps). Thus, in this section, we turn to private and robust MABs where the inlier distributions have a
finite k-th central moment as given by Definition 3.2 for a reward distribution with large mean but
small variability around the mean. To this end, we first need a new PRM, since now simply truncating
around zero as in Algorithm 2 will not work well (as discussed in detail in Remark 6.13).

Our new PRM is presented in Algorithm 3, which consists of two steps. The intuition is simple: the
first step aims to have a rough estimate of the mean, which is necessary since now the mean could be
far away from zero. Then, in the second step, it truncates around the initial estimate to return the final
result. More specifically, in the first step, we first construct bins over the range [−D,D], which is
assumed to contain the true mean by Definition 3.2. Then, we compute the private histogram via the
Laplace mechanism. The initial estimate is given by the left endpoint of the bin that has the largest
empirical mass. Next, in the second step, it simply truncates around the initial estimate and again
adds Laplace noise for privacy.

Remark 6.4. It is worth noting that a similar idea of two-step estimation has been used in previous
work on robust mean estimation in the one-dimensional heavy-tailed case [33, 38, 40]. However, there
are several differences in our algorithm design and analysis. In particular, while [33] considers mean
estimation under Huber’s model without privacy constraints, we further impose differential privacy
requirements. As a result, the estimates for both two steps are in different forms in our case compared
to [33], though they share the same high-level intuition. On the other hand, while [38] considers mean
estimation under differential privacy, there is no consideration of Huber contamination as in our case.
Moreover, our second estimate is based on truncation while their method is via medians-of-means. In
fact, as will be shown later (see Remark 6.7), when our result reduces to the uncontaminated case, it
achieves improvement over the one in [38]. Finally, [40] considers both Huber contamination and
local differential privacy, and establishes the corresponding mean square error (MSE). In contrast, we
consider the central differential privacy and aim to establish a high-probability tail concentration. To
this end, we take a different truncation method (i.e., using an indicator function in Line 7) compared
to the one in [40] (Section 3.2 in its first arxiv version).
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As before, we first present the concentration property of our new PRM, which will manifest in the
specific instantiation of our meta-algorithm. In particular, we first give the following general theorem
and then state two more detailed corollaries.
Theorem 6.5 (Concentration of Mean Estimate). Given a collection of Huber-contaminated data
{xi}2ni=1 where the inlier distribution satisfies Definition 3.2 with mean µ, let µ̃ be the mean estimate
by Algorithm 3. For any α ≤ α1 ∈ (0, αmax), ϵ ∈ (0, 1] and δ ∈ (0, 1), there exist some constants
T (α1, ϵ, δ), r, M and D ≥ 2r such that for all n ≥ T (α1, ϵ, δ), with probability at least 1− δ

|µ̃− µ|≤O

(√
log(1/δ)

n
+
M log(1/δ)

nϵ
+

1

Mk−1
+α1M

)
,

where αmax < 1/2 is the breakdown point.

The above theorem follows the same pattern as the one for the raw moment case (Theorem 6.1).
The key differences are the threshold value T (α, ϵ, δ) and the breakdown point αmax, which are
summarized in the following results.
Corollary 6.6 (Mean Concentration, α = 0). Let the same assumptions in Theorem 6.5 hold. For

any ϵ ∈ (0, 1], setting r = 101/k and M = Θ
(

nϵ
log(1/δ)

)1/k
, then for all n ≥ Ω (log(D/δ)/ϵ)

and D ≥ 2r, we have that for any δ ∈ (0, 1), with probability at least 1 − δ, |µ̃ − µ| ≤ β where

β = O

(√
log(1/δ)

n +
(

log(1/δ)
nϵ

)1− 1
k

)
. In other words, taking number of samples n such that

n ≥ O

(
log(1/δ)

η2 + log(1/δ)

ϵη
k

k−1
+ log(D/δ)

ϵ

)
we have |µ̃− µ| ≤ η with probability at least 1− δ.

Remark 6.7. The above lemma strictly improves the result in [38, Theorem 3.5]6. In particular, it
uses the method of medians-of-means and achieves logD·log(1/δ)

ϵ for the third term. In contrast, our
third term is additive rather than multiplicative. In fact, our concentration is optimal, which matches
the lower bound for the one-dimensional case (see [46, Theorem 7.2]).
Corollary 6.8 (Mean Concentration, α > 0). Let the same assumptions in Theorem 6.5 hold.
For any ϵ ∈ (0, 1] and 0 < α ≤ α1 ∈ (0, 0.133), we let r = ι1/k where ι = 1−α

0.249−α and

M = Θ(min{
(

nϵ
log(1/δ)

)1/k
, (α1)

−1/k}). Then, there exists constant c1, for all n such that n ≥

T = Ω(max{ ι log(1/δ)
ϵ , c1 log(D/δ)

ϵ , log(1/δ)
α2

1
}) and D ≥ 2r, we have that for any δ ∈ (0, 1), with

probability at least 1− δ, |µ̃− µ| ≤ β with β = O

(√
log(1/δ)

n +
(

log(1/δ)
nϵ

)1− 1
k

+ α
1− 1

k
1

)
.

Remark 6.9. The above concentration has the same form as the one in Theorem 6.1. Specifically,
for a large sample size n, it has the optimal concentration (for small α). The threshold T on n
depends on both α, ϵ now. We note that even for the sub-Gaussian inlier distributions without privacy
protection, the existing concentration also has a threshold T = log(1/δ)

α2
1

(see Lemma 4.1 in [30]).
The finite central moment assumption will help us get logarithmic results for sample complexity on D
of n ≥ Ω (log(D/δ)/ϵ) which is better than the polynomial results on D from the finite raw moment.
Actually, finding a private estimator that achieves an error on the logarithmic of the range of the
parameter is significant in the topic of DP estimation (see [48–50] on the importance of the problem).

Now, we are left to leverage the above two concentration results to design specific instantiations
of our meta-algorithm and establish their performance guarantees. Our first instantiation is for the
uncontaminated case, i.e., α = 0. Therefore, robustness is then only with respect to heavy-tailed
rewards while privacy is still preserved.
Theorem 6.10 (Performance Guarantees, α = 0). Consider a private and robust MAB with inlier
distributions satisfying Definition 3.2 and α = 0. Let Algorithm 1 be instantiated with Algorithm 3,
and r, Mτ , βτ be given by Corollary 6.6 with n replaced by Bτ . Set T = Ω( log(D/δ)

ϵ ) and δ = 1/T .
Then, Algorithm 1 is ϵ-DP with its regret upper bound

RT = O
(√

KT log T+(K log T/ϵ)
k−1
k T

1
k +γ

)
,

where γ := O (KD log(DT )/ϵ).
6We also note that the main focus of [38] is not on achieving the optimal estimate though.
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Remark 6.11. To the best of our knowledge, this is the first result on private and heavy-tailed bandits
with the finite central moment assumption. The state-of-the-art result only focuses on the simpler
case, i.e., the finite raw moment assumption [22].

Finally, armed with Corollary 6.8, we have the second instantiation of our meta-algorithm that deals
with the contaminated case.

Theorem 6.12 (Performance Guarantees, α > 0). Consider a private and robust MAB with inlier
distributions satisfying Definition 3.2 and α ≤ α1 ∈ (0, 0.133). Let Algorithm 1 be instantiated with
Algorithm 3, and r, T , Mτ , βτ be given by Corollary 6.8 with n replaced by Bτ . Set δ = 1/T , then
Algorithm 1 is ϵ-DP with its regret upper bound

RT = O
(√

KT log T+(K log T/ϵ)
k−1
k T

1
k +Tα

1− 1
k

1 +γ̂
)
,

where γ̂ := O
(

DK log T
α2

1
+ ιDK log T

ϵ + DK log(DT )
ϵ

)
and ι = 1−α

0.249−α .

Remark 6.13. The above upper bound also matches our lower bound up to log factor and O(γ̂),
which is dominated by other terms for a sufficiently large T and small α,D. A comparison between
the results in Theorem 6.2 (Remark 6.3) and Theorem 6.12 (Theorem 6.10) for contaminated case
(uncontaminated case), respectively, allows us to address a fundamental question: why we do not
first transform the central moment condition to the raw moment condition, and then simply apply
Algorithms 1 and 2 to get a regret upper bound? This is because the central moment condition implies
E[|X|k] = O(Dk). By employing a simple scaling technique, Algorithms 1 and 2 would yield a
regret bound of O(D · Reg), where Reg corresponds to the bound stated in Theorem 6.2. Thus, a
significant contrast arises when comparing this result with Theorem 6.12, where the dependence
on D is only an additive linear term rather than a multiplicative factor of O(D). Consequently,
the bounds presented in Theorem 6.12 and Theorem 6.10 prove to be substantially tighter when D
assumes larger values, hence highlighting the contributions of our new PRM module in Algorithm 3.

7 Simulations and Conclusion

We refer readers to Appendix A for our simulation results. In this paper, we investigated private and
robust multi-armed bandits with heavy-tailed rewards under Huber’s contamination model as well as
differential privacy constraints. We proposed a meta-algorithm that builds on a private and robust
mean estimation sub-routine PRM for different heavy-tailed assumptions of rewards, i.e. finite k-th
raw moment and finite k-th central moment with k ≥ 2. Moreover, we also established regret upper
bounds for these algorithms, which nearly match our derived minimax lower bound.

There remain many open questions in this direction. First, the problem-dependent lower bound is
unclear for private and robust bandits but some work has been done for corrupted heavy-tailed bandits
(see Theorem 1 in [17]). One interesting future direction is to study how to leverage both the insights
in [17] and the lower bound under privacy to derive a problem-dependent lower bound for private
and robust bandits. Second, how to design algorithms and analyze the theoretical results for private
and robust bandits under other corrupted models such as "bandits with total corruption budget" in
[15]. Third, throughout the paper T is known in advance, and it remains to see how to handle the
case where T is unknown and infinity.
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A Experiments

In this section, we empirically evaluate the practical performance of our private and robust arm
elimination algorithms, denoted as PRAE-R and PRAE-C. These algorithms employ PRM as a sub-
routine, which can be either Algorithm 2 for the finite raw moment case or Algorithm 3 for the finite
central moment case. We benchmark our algorithms against DPRSE [22], which attains the optimal
regret bound for DP heavy-tailed MAB, and RUCB [16], which is a non-private robust algorithm.
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(i) α = 10%, ϵ = 1.0

Figure 1: Comparison of cumulative regret for PRAE-R, PRAE-C and DPRSE under Pareto reward.

A.1 Experiment Setup

We consider the case where there are K = 11 arms, and the mean of each arm is within the range of
[0, 100]. We set the means of the optimal arm and the worst arm to be 100 and 0, respectively, and
the means of other arms scale linearly with a gap of 10.Specifically, for each arm a ∈ [k], we have
µa = 100− 100(a−1)

K−1 . We consider the following two types of heavy-tailed distributions for the true
inlier reward generation:

• Pareto distribution: For each pull of arm a, we generate a reward that is sampled from
the distribution µa + η − 2.5, where η ∼ sxs

m

xs+11{x≥xm} for x ∈ R and we set the shape
parameter s = 3 and the scale parameter xm = 40.

• Student’s t-distribution: For each pull of arm a we generate a reward that is sampled from

the distribution µa + η, where η ∼ Γ( ν+1
2 )√

νπΓ( ν
2 )

(
1 + x2

ν

)− ν+1
2

. Here we set the degree of
freedom ν = 2.0017.
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Figure 2: Comparison of cumulative regret for PRAE-R, PRAE-C and DPRSE under Student’s t
reward.

For both cases, the stochastic rewards have finite second central moment of 35. The main difference
between the above two types of distribution is that the Student’s t-distribution is symmetric while the
Pareto distribution is one-sided.

To generate contaminated rewards, we still use Gaussian distribution. For the optimal arm, we set the
mean of the Gaussian corruption distribution to be 0. For the other sub-optimal arms, we let the mean
of their corrupted reward be 100. This way, the optimal arm is under-evaluated and the non-optimal
arms are over-evaluated.

In our experiments, we will vary α and ϵ in {2%, 5%, 10%} and {0.2, 0.5, 1}, respectively. For each
case, we repeat 30 times and set the total number of round T = 105 (thus we set δ = 10−5). We will
report the average of cumulative regrets RT with respect to the number of rounds.

A.2 Results and Discussions

We present the experimental results under Pareto reward and Student’s t reward in Figure 1 and
Figure 2, respectively. From these results, we can make the following observations:

• Firstly, by comparing the cumulative regret, we see that for all cases, PRAE-R and PRAE-C
achieve smaller cumulative regret and thus better expected performance than DPRSE. In
particular, when the Huber parameter α increases, DPRSE diverges to a larger regret, while
PRAE-R and PRAE-C are only slightly affected. This is because DPRSE adopts more
aggressive truncation thresholds that incorporate more outliers. In contrast, the truncation
thresholds in PRAE-R and PRAE-C are carefully designed and thus provide robustness
against contaminated rewards.
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• Secondly, by looking at the error bars, we notice that PRAE-R and PRAE-C have smaller
variance compared with both the private baseline and robust baseline under both symmetric
and one-sided types of heavy-tailed distribution. In particular, although RUCB provides
lower bounds on the performance with privacy for all the settings, PRAE-R and PRAE-C are
more stable. The main reason could be that their robust mean estimator is based on median,
which incurs smaller estimation error than the estimators developed in our paper.

• Thirdly, for both PRAE-R and PRAE-C, we also observe that when ϵ is smaller or α is larger,
the regret will increase for both types of distributions, which is consistent with the fact that
the regret bound is proportional to 1/ϵ and α when T is large enough. Moreover, compared
with PRAE-R, we can see that the regret of PRAE-C is lower in most cases. This is due to
the fact that the PRM subroutine for PRAE-C leverages the prior information (i.e., range
D) of mean for each arm, which could provide tighter performance bound. In summary, all
these results corroborate our theoretical analysis.

B Useful Lemmas

Lemma B.1 (Post-Processing [51]). Let M : X → Y be a randomized algorithm that is (ϵ, δ)-
differentially private. Let f : Y → Z be an arbitrary randomize mapping. Then f ◦M : X → Z is
(ϵ, δ)-differentially private.
Lemma B.2 (Parallel Composition [52]). Suppose there are n ϵ-differentially private mechanisms
{Mi}ni=1 and n disjoint datasets denoted by {Di}ni=1. Then for the algorithm which applies each
Mi on the corresponding Di, it is ϵ-DP.
Lemma B.3 (Markov’s inequality). If Y ∈ R is a random variable and a > 0, we have

P (|Y | ≥ a) ≤
E
(
|Y |k

)
ak

Lemma B.4 (Chebyshev’s inequality). For a real-valued random variable Y ∈ R, a > 0 and k ∈ N,
we have

P(|Y − EY | ≥ a) = P
(
|Y − EY |k ≥ ak

)
≤

E
(
|Y − EY |k

)
ak

Lemma B.5 (Tail Bound of Laplacian Vairable [18]). If X ∼ Lap(b), then

P(|X| ≥ t · b) = exp(−t).

Lemma B.6 (Hoeffding’s inequality). Let Z1, . . . , Zn be independent bounded random variables
with Zi ∈ [a, b] for all i, where −∞ < a < b < ∞. Then

P

(∣∣∣∣∣ 1n
n∑

i=1

(Zi − E [Zi])

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2nt2

(b− a)2

)
Lemma B.7 (Hölder’s Inequality). Let X,Y be random variables over R, and let k > 1. Then,

E[|XY |] ≤
(
E
[
|X|k

]) 1
k

(
E
[
|Y |

k
k−1

]) k−1
k

Lemma B.8 (Bernstein’s Inequality [53]). Let X1, · · ·Xn be n independent zero-mean random
variables. Suppose |Xi| ≤ M and E[X2

i ] ≤ s for all i. Then for any t > 0, we have

P

{∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

(
−

1
2 t

2n

s+ 1
3Mt

)

C Proofs of Section 4

Lemma C.1 (Upper Bound on KL-divergence for Bandits with ϵ-DP [20]). If π is a mechanism
satisfying ϵ-DP, then for two instances ν1 = (ra : a ∈ [K]) and ν2 = (r′a : a ∈ [K]) we have

KL
(
PT
π,ν1

∥PT
π,ν2

)
≤ 6ϵEπ,ν1

[
T∑

t=1

TV(rat
∥r′at

)

]
where TV(ra∥r′a) is the total-variation distance between ra and r′a.
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Lemma C.2 (Theorem 5.1 in [54]). Let R1 and R2 be two distributions on X . If for some α ∈
[0, 1/2), we have that TV (R1, R1) =

α
1−α , then there exists two distributions on the same probability

space G1 and G2 such that

(1− α)R1 + αG1 = (1− α)R2 + αG2.

Proof of Theorem 4.1. Let Π be the set of all policies and Πϵ be the set of all ϵ-DP policies. We
denote the environment corresponding to the set of K-Gaussian reward distributions with means
µ ∈ RK the same variance σ2

k where the value of σk is determined by k to make the k-th raw moments

of the distributions are bounded by 1 as EK
N (σk) ≜

{(
N
(
µi, σ

2
k

))K
i=1

: µ = (µ1, . . . , µK) ∈ RK
}

.
Since Πϵ ⊂ Π, we can have that

Rminimax
T (π, ν) ≥ inf

π∈Π
sup

ν∈EK
N (σk)

RegT (π, ν) ≥ Ω(
√
KT )

where the last inequality is due to Theorem 15.2 in [55].

Case 1: Uncontaminated case. By the definition of minimax regret, we know that Rminimax
ϵ,α ≥

Rminimax
ϵ,0 . Therefore, we first derive the lower bound of private bandits without contamination.

We consider two environments. In the first environment ν1, the optimal arm (denote by a1) follows

ra1 =

{
1/γ with probability of 1

2γ
k

0 with probability of 1− 1
2γ

k

where γ ∈ (0, 1]. We can verify E[ra1
] = 1

2γ
k−1 and E[rka1

] = 1
2 ≤ 1. Any other sub-optimal arm

a ̸= a1 in ν1 follows the same reward distribution

ra =

{
1/γ with probability of 3

10γ
k

0 with probability of 1− 3
10γ

k

We can verify E[ra] = 3
10γ

k−1 and E[rka1
] = 3

10 ≤ 1. Then the gap of means between the optimal
arm and sub-optimal arm is ∆ = 1

5γ
k−1.

For algorithm π and instance ν1, we denote i = argmina∈{2,··· ,K}Eπ,ν1 [Na(T )]. Thus,
Eπ,ν1 [Ni(T )] ≤ T

K−1 .

Now, consider another instance ν2 where ra1 , · · · , rak
are the same as those in ν1 except the i-th arm

such that

r′i =

{
1/γ with probability of 7

10γ
k

0 with probability of 1− 7
10γ

k

We can verify E[r′i] = 7
10γ

k−1 and E[(r′i)k] = 7
10 ≤ 1. Then in ν2, the arm i is optimal.

Now by the classic regret decomposition, we obtain

RT (π, ν1) = (T − Eπ,ν1 [N1(T )])∆ ≥ PT
π,ν1

[
N1(T ) ≤

T

2

]
T∆

2
.

RT (π, ν2) = ∆Eπ,ν2
[N1(T )] +

∑
a/∈{1,i}

2∆Eπ,ν2
[Na(T )] ≥ PT

π,ν2

[
N1(T ) ≥

T

2

]
T∆

2
.

By applying the Bretagnolle–Huber inequality ([55], Theorem 14.2), we have

RT (π, ν1) +RT (π, ν2) ≥
T∆

2

(
PT
π,ν1

[
N1(T ) ≤

T

2

]
+ PT

π,ν2

[
N1(T ) ≥

T

2

])
.

≥ T∆

4
exp

(
−KL

(
PT
π,ν1

∥PT
π,ν2

))
Based on Lemma C.1, we can get the upper bound of the KL-Divergence between the marginals.

KL
(
PT
π,ν1

∥PT
π,ν2

)
≤ 6ϵEπ,ν1

[
T∑

t=1

TV(rat
∥r′at

)

]
≤ 6ϵEπ,ν1 [Ni(T )]TV(ri∥r′i)
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since ν1 and νi only differ in the arm i.

Thus,

RT (π, ν1) +RT (π, ν2) ≥
T∆

4
exp (−6ϵEπ,ν1

[Ni(T )] ·
2

5
γk)

≥ Tγk−1

20
exp

(
−12 · ϵTγk

5(K − 1)

)
.

Taking γ =
(
K−1
Tϵ

) 1
k , we get the result

RT (π, ν1) ≥ Ω

((
K

ϵ

) k−1
k

T
1
k

)
.

Case 2: Contaminated case. For α ̸= 0 and α ∈ (0, 1/2), we still consider the true distributions of
arms are the same in above ν1 and ν2. In the first environment ν1, the optimal arm (denote by a1)
follows

ra1
=

{
1/γ with probability of 1

2γ
k

0 with probability of 1− 1
2γ

k

where γ ∈ (0, 1]. We can verify E[ra1 ] =
1
2γ

k−1 and E[rka1
] = 1

2 ≤ 1. Any other sub-optimal arm
a ̸= a1 in ν1 follows the same reward distribution

ra =

{
1/γ with probability of 3

10γ
k

0 with probability of 1− 3
10γ

k

We can verify E[ra] = 3
10γ

k−1 and E[rka1
] = 3

10 ≤ 1. Then the gap of means between the optimal
arm and sub-optimal arm is ∆ = 1

5γ
k−1.

And we denote the contaminated version of ν1 as ν̃1. For algorithm π and instance ν̃1, we denote
i = argmina∈{2,··· ,K}Eπ,ν̃1

[Na(T )]. Thus, Eπ,ν̃1
[Ni(T )] ≤ T

K−1 .

Now, consider another instance ν2 where ra1
, · · · , rak

are the same as those in ν1 except the i-th arm
such that

r′i =

{
1/γ with probability of 7

10γ
k

0 with probability of 1− 7
10γ

k

We can verify E[r′i] = 7
10γ

k−1 and E[(r′i)k] = 7
10 ≤ 1. Then in ν2, the arm i is optimal.

Also, we denote the contaminated version of ν2 as ν̃2. Take γ = α
1
k ∈ (0, 1], since for any a ∈ [K],

TV(ra∥r′a) ≤ 2
5γ

k = 2
5α ≤ α

1−α , from Lemma C.2, we have for any arm a ∈ [K], there exists
distribution Ga and G′

a such that

(1− α)ra + αGa = (1− α)r′a + αG′
a.

We consider ν̃1 = {xa = (1−α)ra+αGa : a ∈ [K]} and ν̃2 = {x′
a = (1−α)r′a+αG′

a : a ∈ [K]}.

Now by the classic regret decomposition, we obtain

RT (π, ν̃1) = (T − Eπ,ν̃1 [N1(T )])∆ ≥ PT
π,ν̃1

[
N1(T ) ≤

T

2

]
T∆

2
.

RT (π, ν̃2) = ∆Eπ,ν̃2 [N1(T )] +
∑

a/∈{1,i}

2∆Eπ,ν̃2 [Na(T )] ≥ PT
π,ν̃2

[
N1(T ) ≥

T

2

]
T∆

2
.

By applying the Bretagnolle–Huber inequality ([55], Theorem 14.2), we have

RT (π, ν̃1) +RT (π, ν̃2) ≥
T∆

2

(
PT
π,ν̃1

[
N1(T ) ≤

T

2

]
+ PT

π,ν̃2

[
N1(T ) ≥

T

2

])
.

≥ T∆

4
exp

(
−KL

(
PT
π,ν̃1

∥PT
π,ν̃2

))
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Based on Lemma C.1, we can get the upper bound of the KL-Divergence between the marginals.

KL
(
PT
π,ν̃1

∥PT
π,ν̃2

)
≤ 6ϵEπ,ν̃1

[
T∑

t=1

TV(xat∥x′
at
)

]

Since, TV(xa∥x′
a) = 0 for ∀a ∈ [K], ∆ = 1

5γ
k−1 and γ = α

1
k . We obtain

RT (π, ν̃1) ≥ Ω(Tα1− 1
k ).

Combine Gaussian case, case 1 and case 2, we have

RT = Ω

(
max

{
√
KT,

(
K

ϵ

)1− 1
k

T
1
k , Tα1− 1

k

})
.

D Proofs of Section 6.1

Proof of Theorem 6.1. We denote the finite raw moments distribution for rewards by Pk, and denote
Pk under α-Huber contamination by Pα,k. Let µ̂ = 1

n

∑
i∈[n]

Xi∼Pα,k

Xi1(|Xi|≤M) and µ = EXi∼Pk
[Xi].

|µ̃− µ|

≤
∣∣∣∣Lap

(
2M

nϵ

)∣∣∣∣+ |µ̂− µ|

≤
∣∣∣∣Lap

(
2M

nϵ

)∣∣∣∣+
∣∣∣∣∣∣∣∣
1

n

∑
i∈[n]

Xi∼Pα,k

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣∣∣+ |EXi∼Pk
[Xi1(|Xi|≤M)]− µ|

=

∣∣∣∣Lap
(
2M

nϵ

)∣∣∣∣+
∣∣∣∣∣∣∣∣
1

n

∑
i∈[n]

Xi∼Pα,k

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣∣∣+ |EXi∼Pk
[Xi1(|Xi|>M)]|

(a)

≤ 2M log(2/δ)

nϵ
+

∣∣∣∣∣∣∣∣
1

n

∑
i∈[n]

Xi∼Pα,k

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣∣∣+ EXi∼Pk
[|Xi|1(|Xi|>M)] w.p. 1− δ

2

(b)

≤ 2M log(2/δ)

nϵ
+

∣∣∣∣∣∣∣∣
1

n

∑
i∈[n]

Xi∼Pα,k

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣∣∣+ (EXi∼Pk
[|Xi|k])

1
k (PXi∼Pk

(|Xi| > M))
k−1
k

(c)

≤ 2M log(2/δ)

nϵ
+

∣∣∣∣∣∣∣∣
1

n

∑
i∈[n]

Xi∼Pα,k

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣∣∣+
1

Mk−1

where the inequality (a) follows from Lemma B.5, (b) is from Hölder’s Inequality in Lemma B.7 and
(c) follows from Markov’s inequality in Lemma B.3.

Now we focus on the upper bound of

∣∣∣∣∣∣∣ 1n
∑

i∈[n]
Xi∼Pα,k

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣∣. Let NG

be the set of indices in n samples distributed according to G, and NPk
be the set of indices in n

samples distributed according to Pk. Then
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Case 1: uncontaminated case (α = 0) Now, the only thing left is to upper bound∣∣∣∣∣∣∣∣
1

n

∑
i∈[n]

Xi∼Pk

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣∣∣ .
For Xi ∼ Pk, let Yi = Xi1(|Xi|≤M), then |Yi| ≤ M and Var(Yi) = E[Y 2

i ]− (E[Yi])
2 ≤ E[Y 2

i ] ≤
EXi∼Pk

[X2
i ] ≤ 1. Then, from Bernstein’s inequality in Lemma B.8, we have with probability 1−δ/2∣∣∣∣∣∣∣∣

1

n

∑
i∈[n]

Xi∼Pk

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣∣∣ ≤
√

2 log(4/δ)

n
+

4M log(4/δ)

3n
. (3)

Then we get with probability at least 1− δ,

|µ̃− µ| ≤
√

2 log(4/δ)

n
+

4M log(4/δ)

3n
+

2M log(2/δ)

nϵ
+

1

Mk−1
.

For ϵ > 0 and δ ∈ (0, 1), we have with probability at least 1− δ,

|µ̃− µ| ≤
√

2 log(4/δ)

n
+

4M log(4/δ)

nϵ
+

1

Mk−1
.

Taking the truncation threshold M =
(

nϵ
4 log(4/δ)

) 1
k

, we have

|µ̃− µ| ≤
√

2 log(4/δ)

n
+ 2

(
4 log(4/δ)

nϵ

)1− 1
k

.

Case 2: contaminated case (α ∈ (0, 1
2 ) )∣∣∣∣∣∣∣∣

1

n

∑
i∈[n]

Xi∼Pα,k

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
∑
i∈NG

Xi1(|Xi|≤M) +
1

n

∑
i∈NPk

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣
≤

∣∣∣∣∣ 1n ∑
i∈NG

Xi1(|Xi|≤M)

∣∣∣∣∣︸ ︷︷ ︸
T1

+

∣∣∣∣∣∣ 1n
∑

i∈NPk

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣︸ ︷︷ ︸
T2

.

To control T1, we can write it as

T1 =

∣∣∣∣∣ 1n ∑
i∈NG

Xi1(|Xi|≤M)

∣∣∣∣∣
≤ 1

n

∑
i∈NG

|Xi|1(|Xi|≤M)

≤ |NG|
n

M.

Then |NG|
n can be treat as a mean estimation of Bernoulli distribution Ber(α). Then based on

Bernstein’s inequality in Lemma B.8, we get with probability 1− δ/4,∣∣∣∣ |NG|
n

− α

∣∣∣∣ ≤
√

2α(1− α) log(8/δ)

n
+

2 log(8/δ)

3n
≤
√

2α1(1− α1) log(8/δ)

n
+

2 log(8/δ)

3n
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for α ≤ α1 ∈ (0, 1/2).

Thus,

T1 ≤

(
α1 +

√
2α1 log(8/δ)

n
+

2 log(8/δ)

3n

)
M. with probability1− δ/4

When n ≥ log(8/δ)
α1

, we have
T1 ≤ 4α1M.

To bound T2, we have∣∣∣∣∣∣ 1n
∑

i∈NPk

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

n

∑
i∈NG∪NPk

Xi∼Pk

Xi1(|Xi|≤M) −
1

n

∑
i∈NG
Xi∼Pk

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
1

n

∑
i∈NG
Xi∼Pk

Xi1(|Xi|≤M)

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
1

n

∑
i∈[n]

Xi∼Pk

Xi1(|Xi|≤M) − EXi∼Pk
[Xi1(|Xi|≤M)]

∣∣∣∣∣∣∣∣
≤4α1M +

√
2 log(16/δ)

n
+

4M log(16/δ)

3n
w.p. 1− δ/4

where the last inequality is based on the similar analysis of T1 and the inequality of (3).

Put everything together, we have with probability at least 1− δ,

|µ̃− µ| ≤
√

2 log(16/δ)

n
+

4M log(16/δ)

3n
+ 8α1M +

2M log(2/δ)

nϵ
+

1

Mk−1
.

Thus, for ϵ > 0, we have

|µ̃− µ| ≤
√

2 log(16/δ)

n
+

4M log(16/δ)

nϵ
+

1

Mk−1
+ 8α1M.

Taking M = min

{(
nϵ

4 log(16/δ)

) 1
k

, (8α1)
− 1

k

}
, we have

|µ̃− µ| ≤
√

2 log(16/δ)

n
+ 2

(
4 log(16/δ)

nϵ

)1− 1
k

+ 2(8α1)
1− 1

k .

Proof of Theorem 6.2. Let τ0 be the maximal epoch such that Bτ < log(16|S|τ2/δ)
α1

.

For all epoch τ ≤ τ0, the batch size is less than 2τ0 . Since batch size doubles, until epoch τ0, we
have the number of pulls for each arm a ∈ [K] is less than 2 · 2τ0 ≤ 2

log(16|S|τ2
0 /δ)

α1
. Then the regret

has to suffer 2 log(16|S|τ2
0 /δ)

α1
∆a for each a ∈ [K].

For τ > τ0, Bτ ≥ log(16|S|τ2/δ)
α1

. For each a ∈ S, from Theorem 6.1, we have with probability at
least 1− δ

2|S|τ2 ,
|µ̃a − µa| ≤ βτ .

Given an epoch τ > τ0, we denote by Eτ the event where for all a ∈ S it holds that |µ̃a − µa| ≤ βτ .
and denote E = ∪τ>τ0Eτ .By taking union bound, we have

P(Eτ ) ≥ 1− δ

2τ2
,
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and

P(E) ≥ 1− δ

2

(∑
τ>τ0

τ−2

)
≥ 1− δ.

In the following, we condition on the good event E . We first show that the optimal arm a∗ is never
eliminated. For any epoch τ > τ0, let aτ = argmaxa∈S µ̃a. Since

(µ̃aτ − µ̃a∗) + ∆aτ = |(µ̃aτ − µ̃a∗) + ∆aτ | ≤ |µ̃aτ − µaτ |+ |µ̃a∗ − µa∗ | ≤ 2βτ ,

it is easy to see that the algorithm doesn’t eliminate a∗.

Then, we show that at the end of epoch τ > τ0, all arms such that ∆a ≥ 4βτ will be eliminated. To
show this, we have that under good event E ,

µ̃a + βτ ≤ µa + 2βτ < µa∗ − 4βτ + 2βτ ≤ µ̃a∗ − βτ ≤ µ̃aτ − βτ

which implies that arm a will be eliminated by the rule. Thus, for each sub-optimal arm a, let τ(a)
be the last epoch that arm a is not eliminated. By the above result, we have

∆a ≤ 4βτ(a) = 4

√
2 log(16|S|τ(a)2/δ)

Bτ(a)
+ 8

(
4 log(16|S|τ(a)2/δ)

Bτ(a)ϵ

)1− 1
k

+ 8(8α1)
1− 1

k .

We divide the arms a ∈ [K] into two groups: G1 = {a ∈ [K] : 16(8α1)
1− 1

k ≤ ∆a} and G2 = {a ∈
[K] : 16(8α1)

1− 1
k ≥ ∆a}.

Group 1: Now, for all arm a ∈ G1, we have

∆a ≤ 8

√
2 log(16|S|τ(a)2/δ)

Bτ(a)
+ 16

(
4 log(16|S|τ(a)2/δ)

Bτ(a)ϵ

)1− 1
k

.

Hence, we have

Bτ(a) ≤ max

{
128 log(16|S|τ(a)2/δ)

∆2
a

,
4 log(16|S|τ(a)2/δ)

ϵ

(
16

∆a

) k
k−1

,
log(16|S|τ20 /δ)

α1

}
.

Since |S| ≤ K and 2τ ≤ T for any τ . Thus,

Bτ(a) ≤ max

{
128 log(16K log2 T/δ)

∆2
a

,
4 log(16K log2 T/δ)

ϵ

(
16

∆a

) k
k−1

,
log(16K log2 T/δ)

α1

}
,

Since the batch size doubles, we have Na(T ) ≤ 2Bτ(a) for each sub-optimal arm a. Therefore, for
all arm a ∈ G1,

RT =
∑
a∈G1

Na(T )∆a ≤ 2Bτ(a)∆a.

Let η be a number in (0, 1). For all arms a ∈ G1 with ∆a ≤ η, the regret incurred by pulling these
arms is upper bounded by Tη. For any arm a ∈ G1 with ∆a > η, choose δ = 1

T and assume T ≥ K,
then the expected regret incurred by pulling arm a is upper bounded by

E

 ∑
a∈G1,∆a>η

∆aNa(T )

 ≤ P(Ē) · T +O

 ∑
a∈G1,∆a>η

{
log T

∆a
+

log T

ϵ

(
1

∆a

) 1
k−1

+
log T

α1
∆a

}
≤ O

(
K log T

η
+

K log T

ϵη
1

k−1

+
K log T

α1

)
where the last term in the last inequality is based on following result: from the heavy-tailed assumption
for rewards distributions in (1), we have for any a ∈ [K], |µa| ≤ Era∼Pk

|ra| ≤ Era∼Pk
|ra|k ≤ 1,

so ∆a = µ∗ − µa ≤ 2.
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Thus the regret from group 1 is at most

Tη +O

(
K log T

η
+

K log T

ϵη
1

k−1

+
K log T

α1

)
.

Taking η = max

{√
K log T

T ,
(

K log T
Tϵ

) k−1
k

}
, the regret from group 1 is at most

O

(√
KT log T +

(
K log T

ϵ

) k−1
k

T
1
k +

K log T

α1

)

Group 2: For all other arms a ∈ G2, we have the total regret is at most O(T∆a) = O(Tα
1− 1

k
1 ).

Combine the two groups, choose δ = 1
T and assume T ≥ K, we have the that the expected regret

satisfies,

RT ≤ O

(√
KT log T +

(
K log T

ϵ

) k−1
k

T
1
k +

K log T

α1
+ Tα

1− 1
k

1

)

We also give privacy guarantee for the algorithm. Based on Laplacian mechanism in Definition 3.5
and Post-processing in Lemma B.1, we can get that Algorithm 1 is ϵ-DP.

E Proofs of Section 6.2

Proof of Theorem 6.5. Step 1: we will show that with high probability 1− δ/2, |J − µ| ≤ 2r.

To this end, we first study the private histogram. Note E[1(Xi ∈ Bj)] = Pα,k(Bj), then

P (|p̃j − Pα,k(Bj)| > t) = P
(∣∣∣∣∑n

i=1 1(Xi ∈ Bj)

n
+ Lap

(
2

nϵ

)
− Pα,k(Bj)

∣∣∣∣ > t

)
≤ P

(∣∣∣∣∑n
i=1 1(Xi ∈ Bj)

n
− Pα,k(Bj)

∣∣∣∣ > t/2

)
+ P

(∣∣∣∣Lap( 2

nϵ

)∣∣∣∣ > t/2

)
≤ 2 exp

(
−nt2

2

)
+ exp

(
−nϵt

4

)
,

where the last inequality is from Lemma B.6 and Lemma B.5. By a union bound over j, we further
have

P
(
max
j∈J

|p̃j − Pα,k(Bj)| > t

)
≤ 2D

r

(
2 exp

(
−nt2

2

)
+ exp

(
−nϵt

4

))
≤ 2D

(
2 exp

(
−nt2

2

)
+ exp

(
−nϵt

4

))
Thus, we have with probability 1− δ/2,

max
j∈J

|p̃j − Pα,k(Bj)| ≤ max


√

2 ln 16D
δ

n
,
4 ln 16D

δ

nϵ

 := C1.

In the following, we condition on the above event. Next, by Chebyshev’s inequality in Lemma B.4
and the assumption of Pk that k-th central moment is less than 1, we have

PX∼Pα,k
(|X − µ| ≥ r) ≤ αPX∼G(|X − µ| ≥ r) + (1− α)PX∼Pk

(|X − µ| ≥ r)

≤ α+ (1− α)(1/r)k := C2 (4)
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Let j∗ is the index of the bin containing the true mean µ and we consider three consecutive intervals
Aj∗ = Bj∗−1 ∪Bj∗ ∪Bj∗+1

Pα,k(Aj∗) = Pα,k(Bj∗−1) + Pα,k(Bj∗) + Pα,k(Bj∗+1)

≥ Pα,k ((µ− r, µ+ r))

≥ 1− C2.

where the first inequality is from inequality (4). Now, for any j /∈ {j∗ − 1, j∗, j∗ +1}, we have when
D ≥ 2r

p̃j ≤ Pα,k(Bj) + C1 ≤ 1− Pα,k(Aj∗) + C1 ≤ C2 + C1.

On the other hand, since Pα,k(Aj∗) ≥ 1− C2, there must exist some j ∈ {j∗ − 1, j∗, j∗ + 1} such
that Pα,k(Bj) ≥ 1−C2

3 . Therefore, for this j, we have

p̃j ≥ Pα,k(Bj)− C1 ≥ 1− C2

3
− C1.

Therefore, if n (depending on α, ϵ, r) such that 1−C2

3 − C1 > C2 + C1, the true mean µ is in the bin
chosen by line 3 in Algorithm 3 or it’s neighboring bin, which implies that with probability at least
1− δ/2, |J − µ| ≤ 2r.

Step 2: Utilizing the above result, we aim to show that truncation can handle heavy-tail, privacy and
robustness in the concentration.

|µ̃− µ| = |J +
1

n

2n∑
i=n+1

(Xi − J)1(|Xi − J | ≤ M) + Lap

(
2M

nϵ

)
− µ|

=

∣∣∣∣∣ 1n
2n∑

i=n+1

(Xi − J)1(|Xi − J | ≤ M) + Lap

(
2M

nϵ

)

+
1

n

2n∑
i=n+1

(J − µ) {1(|Xi − J | ≤ M) + 1(|Xi − J | > M)}

∣∣∣∣∣
=

∣∣∣∣∣ 1n
2n∑

i=n+1

(Xi − J + J − µ)1(|Xi − J | ≤ M) + Lap

(
2M

nϵ

)
+

1

n

2n∑
i=n+1

(J − µ)1(|Xi − J | > M)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
2n∑

i=n+1

(Xi − µ)1(|Xi − J | ≤ M)

∣∣∣∣∣+
∣∣∣∣Lap(2M

nϵ

)∣∣∣∣+
∣∣∣∣∣ 1n

2n∑
i=n+1

(J − µ)1(|Xi − J | > M)

∣∣∣∣∣

We first focus on the first term in the right hand of the last inequality. Let NG be the set of indices in
n samples distributed according to G ∈ G, and NPk

be the set of indices in n samples distributed
according to Pk ∈ Pc

k. Then, we have∣∣∣∣∣ 1n
2n∑

i=n+1

(Xi − µ)1(|Xi − J | ≤ M)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n ∑
i∈NG

(Xi − µ)1(|Xi − J | ≤ M)

∣∣∣∣∣︸ ︷︷ ︸
T1

+

∣∣∣∣∣∣ 1n
∑

i∈NPk

(Xi − µ)1(|Xi − J | ≤ M)

∣∣∣∣∣∣︸ ︷︷ ︸
T2

.
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To control T1, we can write it as

T1 =

∣∣∣∣∣ 1n ∑
i∈NG

(Xi − µ)1(|Xi − J | ≤ M)

∣∣∣∣∣
≤ 1

n

∑
i∈NG

|(Xi − µ)|1(|Xi − J | ≤ M)

≤ 1

n

∑
i∈NG

|(Xi − µ)|1(|Xi − µ| ≤ M + 2r)

≤ |NG|
n

(M + 2r).

Then |NG|
n can be treated as a mean estimation of Bernoulli distribution Ber(α). Then based on

Bernstein’s inequality in Lemma B.8, we get with probability 1− δ/8,

∣∣∣∣ |NG|
n

− α

∣∣∣∣ ≤
√

2α(1− α) log(16/δ)

n
+

2 log(16/δ)

3n
≤
√

2α1(1− α1) log(16/δ)

n
+

2 log(16/δ)

3n

for α ≤ α1 ∈ (0, 1/2).

Thus,

T1 ≤

(
α1 +

√
2α1 log(16/δ)

n
+

2 log(16/δ)

3n

)
(M + 2r), with probability 1− δ/8.

Thus, if n satisfies
√

2α1 log(16/δ)
n + 2 log(16/δ)

3n = O(α1), then we have T1 = O(α1(M + 2r)) Now,
we bound T2,

T2 =

∣∣∣∣∣∣∣∣
1

n

∑
i∈NG∪NPk

Xi∼Pk

(Xi − µ)1(|Xi − J | ≤ M)− 1

n

∑
i∈NG
Xi∼Pk

(Xi − µ)1(|Xi − J | ≤ M)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
1

n

∑
i∈NG∪NPk

Xi∼Pk

(Xi − µ)1(|Xi − J | ≤ M)

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
1

n

∑
i∈NG
Xi∼Pk

(Xi − µ)1(|Xi − J | ≤ M)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
1

n

∑
i∈[n]

Xi∼Pk

(Xi − µ)1(|Xi − J | ≤ M)

∣∣∣∣∣∣∣∣+ T1.
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Now we focus on the upper bound of
∣∣∣∣ 1n ∑ i∈[n]

Xi∼Pk

(Xi − µ)1(|Xi − J | ≤ M)

∣∣∣∣. With probability

1− δ/8,∣∣∣∣∣∣∣∣
1

n

∑
i∈[n]

Xi∼Pk

(Xi − µ)1(|Xi − J | ≤ M)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
1

n

∑
i∈[n]

Xi∼Pk

(Xi − µ)1(|Xi − J | ≤ M)− E[(X1 − µ)1(|X1 − J | ≤ M)]

∣∣∣∣∣∣∣∣
+ |E[(X1 − µ)1(|X1 − J | ≤ M)]− E[(X1 − µ)]|

≤
√

2 log(16/δ)

n
+

4(M + 2r) log(16/δ)

3n
+ |E[(Xi − µ)1(|Xi − J | ≥ M)]|

≤
√

2 log(16/δ)

n
+

4(M + 2r) log(16/δ)

3n
+
(
E[|Xi − µ|k]

) 1
k (P(|Xi − µ| ≥ M − 2r))

k−1
k ]

≤
√

2 log(16/δ)

n
+

4(M + 2r) log(16/δ)

3n
+

1

(M − 2r)k−1

≤
√

2 log(16/δ)

n
+

4(M + 2r) log(16/δ)

3n
+

(
2

M

)k−1

where the last inequality follows from M ≥ 4r ,the third inequality follows from Hölder’s Inequality
in Lemma B.7 and the second inequality follows from Bernstein inequality in Lemma B.8. That is, let

Yi = (Xi − µ)1(|Xi − J | ≤ M),

then
|Yi − E[Yi]| ≤ |Yi|+ |E[Yi]|

≤ |Xi − µ|1(|Xi − µ| ≤ M + 2r) + E[|Xi − µ|1(|Xi − µ| ≤ M + 2r)]

≤ 2(M + 2r)

and
Var(Yi − E[Yi]) = E(Yi − E[Yi])

2 ≤ E[Y 2
i ]

≤ EXi∼Pk
[(Xi − µ)21(|Xi − µ| ≤ M + 2r)]

≤ EXi∼Pk
[(Xi − µ)2] ≤ 1.

Therefore, with probability 1− 3δ/8,

T2 ≤
√

2 log(16/δ)

n
+

4(M + 2r) log(16/δ)

3n
+

(
2

M

)k−1

+ T1.

Now, we focus on the upper bound of T3 :=
∣∣∣ 1n ∑2n

i=n+1(J − µ)1(|Xi − J | > M)
∣∣∣.∣∣∣∣∣ 1n

2n∑
i=n+1

(J − µ)1(|Xi − J | > M)

∣∣∣∣∣
≤ 1

n

2n∑
i=n+1

|J − µ|1(|Xi − J | > M)

≤2r

∑2n
i=n+1 1(|Xi − J | > M)

n

≤2r

∑2n
i=n+1 1(|Xi − µ| > M − 2r)

n
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where

EXi∼Pk,α
[1(|Xi − µ| > M − 2r)] = PXi∼Pk,α

(|Xi − µ| > M − 2r)

≤ α+ (1− α)PXi∼Pk
(|Xi − µ| > M − 2r)

≤ α+
1

(M − 2r)k
≤ α1 +

(
2

M

)k

By Hoeffding’s inequality, we have with probability 1− δ/8,∑2n
i=n+1 1(|Xi − µ| > M − 2r)

n
≤ PXi∼Pk,α

(|Xi − µ| > M − 2r) +

√
log(16/δ)

2n
.

Thus, we have

T3 =

∣∣∣∣∣ 1n
2n∑

i=n+1

(J − µ)1(|Xi − J | > M)

∣∣∣∣∣ ≤ 2r

(
α1 +

(
2

M

)k

+

√
log(16/δ)

2n

)
.

Putting everything together, we have

|µ̃− µ| =O

((
α1 +

√
2α1 log(16/δ)

n
+

2 log(16/δ)

3n

)
(M + 2r)

)

+O

(√
2 log(16/δ)

n
+

4(M + 2r) log(16/δ)

3n
+

(
2

M

)k−1
)

+O

(
2r

(
α1 +

(
2

M

)k

+

√
log(16/δ)

2n

))

+O

(
M log(1/δ)

nϵ

)
Case I: α = 0, Uncontaminated concentration. We want to show that our concentration is better
than medians-of-mean in [38] (Theorem 3.5). That is, we are additive for their third term therein (i.e.,
log(D) + log(1/δ)), while they are multiplicative.

In this case, our C2 = (1/r)k, and by our first condition on n, it need to satisfy 6C1 + 4C2 < 1.
This implies that C2 < 1/4. Thus, setting r = 101/k is sufficient. Hence, we have C1 < 0.1,
which requires n to satisfy n ≥ 200 log(16D/δ) and n ≥ 20 log(16D/δ)/ϵ. We can safely set
n ≥ 200 log(16D/δ)/ϵ.

In the case of α = 0, T1 is not a problem, which only introduces another O(M log(1/δ)/n). T3 is
also not a problem which is dominated by O((2/M)k−1 +

√
log(1/δ)/

√
n)

Let’s summarize all the values: when α = 0, r = 101/k and n ≥ 200 log(16D/δ)/ϵ, we have

|µ̃− µ| =O

(√
2 log(16/δ)

n
+

M log(16/δ)

3n
+

(
2

M

)k−1
)

+O

(
M log(1/δ)

nϵ

)
=O

(√
2 log(16/δ)

n
+

M log(16/δ)

ϵn
+

(
2

M

)k−1
)

Now, we need to choose M to minimize the above while satisfying M ≥ 4r. By standard choice, we

set M = 4
(

nϵ
log(1/δ)

)1/k
, which satisfies M ≥ 4r when n ≥ 10 log(1/δ)

ϵ .

Case II: α > 0 and α ∈ (0, 1/2). Contaminated concentration. We want to minimize the term
T (α, ϵ) while maximizing the possible range of α.
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In this case, C2 = α+ (1− α)(1/r)k and again we need to satisfy that 6C1 + 4C2 < 1, which first
implies that α needs to be α < 1/4. Setting r = ι1/k, we have C2 = α+ 1

ι (1− α), which needs to
be less than 1/4. Let’s set ι = 1−α

0.249−α (hence α < 0.249), we have there exists an absolute constant
c1 such that when n ≥ c1 log(16D/δ)/ϵ, we guarantee 6C1 + 4C2 < 1.

Now, we turn to T1. If n ≥ log(16/δ)
α1

and M ≥ 4r, we have T1 = O(α1M).

For T3, we have

T3 = 2r

(
α1 +

(
2

M

)k

+

√
log(16/δ)

2n

)

One simple way is to set n ≥ log(16/δ)/α2
1. Then, we have T3 = O(α1M + (1/M)k−1).

Let’s summarize it. For any α ∈ (0, 0.249), setting r =
(

1−α
0.249−α

)1/k
. Then, for all n ≥

max{c1 log(16D/δ)/ϵ, log(16/δ)/α2
1}, we have

|µ̃− µ| = O

(√
2 log(16/δ)

n
+

M log(16/δ)

ϵn
+

(
2

M

)k−1

+ α1M

)
Now, we need to choose M to minimize the above while satisfying M ≥ 4r. By standard choice, we

set M = min{4
(

nϵ
log(1/δ)

)1/k
, 4α

−1/k
1 }, which satisfies M ≥ 4r when n and α satisfy

n ≥ ι log(1/δ)

ϵ
and

1

α
≥ ι,

where recall that ι = 1−α
0.249−α . Hence, we only have a valid concentration for α ∈ (0, 0.133).

Proof of Theorem 6.10. Let τ0 be the maximal epoch such that Bτ < 200 log(16D|S|τ2/δ)
ϵ .

For all epoch τ ≤ τ0, the batch size is less than 2τ0 . Since batch size doubles, until epoch τ0, we
have the number of pulls for each arm a ∈ [K] is less than 2 · 2τ0 ≤ 2

200 log(16D|S|τ2
0 /δ)

ϵ . Then the

regret has to suffer 400 log(16D|S|τ2
0 /δ)

ϵ ∆a for each a ∈ [K].

For τ > τ0, Bτ ≥ 200 log(16D|S|τ2/δ)
ϵ . For each a ∈ S , from Corollary 6.6, we have with probability

at least 1− δ
2|S|τ2 ,

|µ̃a − µa| ≤ βτ .

Given an epoch τ > τ0, we denote by Eτ the event where for all a ∈ S it holds that |µ̃a − µa| ≤ βτ .
and denote E = ∪τ>τ0Eτ .By taking union bound, we have

P(Eτ ) ≥ 1− δ

2τ2
,

and

P(E) ≥ 1− δ

2

(∑
τ>τ0

τ−2

)
≥ 1− δ.

In the following, we condition on the good event E . We first show that the optimal arm a∗ is never
eliminated. For any epoch τ > τ0, let aτ = argmaxa∈S µ̃a. Since

(µ̃aτ − µ̃a∗) + ∆aτ = |(µ̃aτ − µ̃a∗) + ∆aτ | ≤ |µ̃aτ − µaτ |+ |µ̃a∗ − µa∗ | ≤ 2βτ ,

it is easy to see that the algorithm doesn’t eliminate a∗.

Then, we show that at the end of epoch τ > τ0, all arms such that ∆a ≥ 4βτ will be eliminated. To
show this, we have that under good event E ,

µ̃a + βτ ≤ µa + 2βτ < µa∗ − 4βτ + 2βτ ≤ µ̃a∗ − βτ ≤ µ̃aτ
− βτ
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which implies that arm a will be eliminated by the rule. Thus, for each sub-optimal arm a, let τ(a)
be the last epoch that arm a is not eliminated. By the above result, we have

∆a ≤ 4βτ(a) = O

(√
log(|S|τ(a)2/δ)

Bτ(a)
+

(
log(|S|τ(a)2/δ)

Bτ(a)ϵ

)1− 1
k

)
.

Hence, we have

Bτ(a) ≤ O

(
log(|S|τ(a)2/δ)

∆2
a

+
log(|S|τ(a)2/δ)

ϵ

(
1

∆a

) k
k−1

+
log(D|S|τ20 /δ)

ϵ

)
.

Since |S| ≤ K and 2τ ≤ T for any τ . Thus,

Bτ(a) ≤ O

(
log(K log2 T/δ)

∆2
a

,
log(K log2 T/δ)

ϵ

(
1

∆a

) k
k−1

,
log(DK log2 T/δ)

ϵ

)
,

Since the batch size doubles, we have Na(T ) ≤ 2Bτ(a) for each sub-optimal arm a. Therefore, for
all arm a ∈ [K],

RT =
∑

a∈[K]

Na(T )∆a ≤ 2Bτ(a)∆a.

Let η be a number in (0, 1). For all arms a ∈ [K] with ∆a ≤ η, the regret incurred by pulling these
arms is upper bounded by Tη. For any arm a ∈ [K] with ∆a > η, choose δ = 1

T and assume T ≥ K,
then the expected regret incurred by pulling arm a is upper bounded by

E

 ∑
a∈[K],∆a>η

∆aNa(T )

 ≤ P(Ē) · T +O

 ∑
a∈[K],∆a>η

{
log T

∆a
+

log T

ϵ

(
1

∆a

) 1
k−1

+
logDT

ϵ
∆a

}
≤ O

(
K log T

η
+

K log T

ϵη
1

k−1

+
KD log(DT )

ϵ

)
where the last term in the last inequality is based on following result: from the heavy-tailed assumption
for rewards distributions in Definition 3.2, we have for any a ∈ [K], µa ∈ [−D,D], so ∆a =
µ∗ − µa ≤ 2D.

Thus the regret is at most

Tη +O

(
K log T

η
+

K log T

ϵη
1

k−1

+
KD log(DT )

ϵ

)
.

Taking η = max

{√
K log T

T ,
(

K log T
Tϵ

) k−1
k

}
, the regret is at most

O

(√
KT log T +

(
K log T

ϵ

) k−1
k

T
1
k +

DK log(DT )

ϵ

)
.

For privacy guarantee, based on Laplacian mechanism in Definition 3.5, privacy guarantee for
histogram learner in [49, Lemma 2.3], parallel composition theorem in Lemma B.2 and Post-
processing in Lemma B.1, we can get the result.

Proof of Theorem 6.12. The proof of the theorem is similar to the proof of Theorem 6.2, now the re-
quirement for batch size to start to arm elimination becomes max{ ι log(16/δ)

ϵ , c1 log(16D/δ)
ϵ , log(16/δ)

α2
1

}
and the upper bound of ∆a for each a ∈ [K] is 2D. Then we can get the result of upper bound for
regret.
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For privacy guarantee, based on Laplacian mechanism in Definition 3.5, privacy guarantee for
histogram learner in [49, Lemma 2.3], parallel composition theorem in Lemma B.2 and Post-
processing in Lemma B.1, we can get the result.
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