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Abstract

Large Language Models (LLMs), despite their recent impressive accomplishments,
are notably cost-prohibitive to deploy, particularly for applications involving long-
content generation, such as dialogue systems and story writing. Often, a large
amount of transient state information, referred to as the KV cache, is stored in GPU
memory in addition to model parameters, scaling linearly with the sequence length
and batch size. In this paper, we introduce a novel approach for implementing the
KV cache which significantly reduces its memory footprint. Our approach is based
on the noteworthy observation that a small portion of tokens contributes most of
the value when computing attention scores. We call these tokens Heavy Hitters
(H2). Through a comprehensive investigation, we find that (i) the emergence of H2

is natural and strongly correlates with the frequent co-occurrence of tokens in the
text, and (ii) removing them results in significant performance degradation. Based
on these insights, we propose Heavy Hitter Oracle (H2O), a KV cache eviction
policy that dynamically retains a balance of recent and H2 tokens. We formulate
the KV cache eviction as a dynamic submodular problem and prove (under mild
assumptions) a theoretical guarantee for our novel eviction algorithm which could
help guide future work. We validate the accuracy of our algorithm with OPT,
LLaMA, and GPT-NeoX across a wide range of tasks. Our implementation of
H2O with 20% heavy hitters improves the throughput over three leading inference
systems DeepSpeed Zero-Inference, Hugging Face Accelerate, and FlexGen by
up to 29×, 29×, and 3× on OPT-6.7B and OPT-30B. With the same batch size,
H2O can reduce the latency by up to 1.9×. The code is available at https:
//github.com/FMInference/H2O.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable proficiency in a wide range of
natural language processing applications such as content creation, summarization, and dialogue
systems [1, 2, 3, 4]. However, their deployment is very costly. In addition to the widely-studied
bottlenecks of model size and the quadratic cost of attention layers, the problem of the size of
the KV cache, which stores the intermediate attention key and values during generation to avoid
re-computation, is becoming increasingly prominent [5]. For instance, a 30 billion-parameter model
with an input batch size of 128 and a sequence length of 1024 results in 180GB of KV cache. A
natural approach is to limit its maximum size as is done in classical software or hardware caches [6].
However, it is challenging to reduce KV cache memory footprints in LLMs without accuracy drops.
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Figure 1: Upper plots illustrate symbolic plots of an attention map deploying different KV cache policies in
LLM generation. Lower right: contrasts their accuracy-memory trade-off. Left: the overview of H2O framework.

While there exists substantial literature on sparse attention approximation in training, they have
not seen wide adoption for alleviating KV cache bottleneck. First, most existing methods, e.g.,
Reformer [7] and Flash Attention [8], are designed to overcome the quadratic memory required by
attention mechanisms when modeling long sequences but still require a large cache size. Second,
variants like sparse transformer [9], low-rank based transformers [10, 11] or multi-query attention [12,
13, 5] can reduce the cache size, but directly applying them on pre-trained LLMs for generation
results in high miss rates and degrades the accuracy as shown in Figure 1. Finally, some recent
advances such as gisting tokens [14] can learn to compress the KV cache for documents, but their
expensive eviction policies are difficult to deploy during generation.

Therefore, an ideal KV cache should have (i) a small cache size to reduce memory footprint, (ii) a
low miss rate to maintain the performance and long-content generation ability of LLMs, and (iii)
a low-cost eviction policy to reduce the wall-clock time during generation. However, there are
three technical challenges. First, it is not immediately clear whether the size of the KV cache can
be restricted—each decoding step might, in principle, require access to all previous attention keys
and values. Second, identifying an optimal eviction policy that maintains generation accuracy is a
combinatorial problem1. Finally, even if an optimal policy can be brute-forced, it is infeasible for
deployment on real-world applications.

Fortunately, our preliminary exploration has yielded intriguing observations about the empirical
properties of LLMs. These findings pave the way for the potential design of an efficient KV cache.

Sparsity for small cache size: We observe that even when trained densely, the attention matrices of
LLMs are over 95% sparse at inference time (shown in Figure 2). This holds for a wide range of
pre-trained LLMs. Therefore, only 5% of the KV cache is sufficient for decoding the same output
token at each generation step, which suggests it may be possible to have up to a 20× reduction in
KV cache size without an accuracy drop.

Heavy-Hitters for low miss rate: We discover that the accumulated attention scores of all tokens
in attention blocks adhere to a power-law distribution. It suggests that there exists a small set of
influential tokens that are critical during generation, named heavy-hitters (H2). H2 provides an
opportunity to step away from the combinatorial search problem and identify an eviction policy that
maintains accuracy.

Greedy algorithm for low-cost policy: we surprisingly find that retaining the H2 based on local
statistics at each decoding step—summing the attention scores of only the preceding tokens—is as
effective as considering the attention of future tokens (shown in Figure 2).

Based on the above, we first rigorously define the generative process of LLMs operating with a
size-constrained KV cache in Section 2.1. Then we propose Heavy-Hitter Oracle (H2O), a framework

1Belady’s Algorithm is optimal for standard cache, but not necessarily for KV cache.

2



that exploits the properties of LLMs and uses simple, low-cost eviction policies that retrain the quality
of LLMs throughout the generation process. Specifically,

• In Section 3, we explore the emergence of H2 in attention, revealing their fundamental and critical
roles: (i) H2 exhibit a strong correlation of frequently co-occurring words in textual data; and (ii)
removing H2 completely damages the model’s functionality. We demonstrate that H2 can largely
lower the cache miss rate of the existing policies mentioned above. Theoretically, assuming the
attention scheme is submodular, H2 corresponds to a greedy algorithm and is therefore near-optimal.

• In Section 4, we present a greedy but low-cost variant of H2 which is dynamically determined
by the accumulated attention score at each decoding step. We formulate the eviction policy with
greedy H2 as a variant of dynamic submodular maximization. The analysis shows that it results in
a similar generative process as the one using the H2 eviction policy.

We perform extensive experiments on OPT, LLaMA, and GPT-NeoX on a single NVIDIA A100
(80GB) GPU to evaluate H2O across a range of tasks from lm-eval-harness [15] and HELM [16].
We implement H2O on top of FlexGen that can easily adapt different cache eviction techniques to
produce a system with high-throughput inference. Performance experiments show our framework
achieves 29×, 29×, 3× higher throughputs compared to three leading inference systems, DeepSpeed
Zero-Inference [17], Hugging Face Accelerate [18], and FlexGen [19] respectively. With the same
batch size, H2O achieves up to 1.9× lower latency compare to FlexGen.

2 Related Work and Problem Setting

Efficient Inference of LLMs. The substantial parameter counts of large language models (LLMs)
present significant challenges for inference. To overcome this limitation, previous efforts have
employed model compression techniques with specific designs to achieve efficient LLM inference,
such as the method described in [20, 21, 22], which employs one-shot pruning on LLMs, resulting in
negligible performance degradation even without retraining. Additionally, alternative approaches
explore quantization methods specifically tailored to LLMs, as discussed in [23, 24, 25, 26, 27, 28].
Also, CoLT5 [29] employs a token-wise conditional computation strategy to reduce the overall
computation cost. These methods address efficient inference from orthogonal perspectives and can be
organically integrated. The techniques investigated in this study are closely associated with pruning or
sparsity but focus on a distinct inference bottleneck, namely, KV cache. One closely related work[30]
utilizes a learnable mechanism that determines necessary tokens during inference but requires an
extra fine-tuning process, which makes it less practical.

Sparse, Low-rank Attention Approx. The quadratic computational complexity of attention mod-
ules is one of the major bottlenecks of transformer inference [31]. Various efforts are devoted to
addressing this challenge [7, 9, 10]. For example, Reformer [7] reduces the computational cost
from quadratic to superlinear complexity via locality-sensitive hashing. Performer [10] employs
positive orthogonal random features to approximate attention kernels. One relevant work, Sparse
Transformer [9], introduces sparsity to reduce KV cache memory footprint and achieve an efficient
attention mechanism, considered as our baseline in this paper. Moreover, SpAtten [32] utilizes
accumulated attention scores to select important tokens for efficient attention inference while they
don’t consider the variance of token importance across attention heads and layers. Comparison with
SpAtten is detailed in Appendix C.9.

Caching. Caching, which plays a pivotal role in optimizing system performance, entails the devel-
opment of effective eviction policies to handle frequently accessed data. Conventional approaches
such as Least Recently Used and Least Frequently Used [33, 34] prioritize the recency and frequency
of data access. And the design of KV cache encounters many similar challenges as traditional caching.

LLM Inference Breakdown. The generative procedure of LLMs encompasses two distinct phases:
(i) the prompt phase, in which an input sequence is utilized to produce the KV cache (consisting
of the key and value embeddings), similar to the forward pass employed during LLM training; and
(ii) the token generation phase, which leverages and updates the KV cache to generate new tokens
incrementally. Each generation step relies on the previously generated tokens. The primary focus of
this paper is to enhance the efficiency of the KV cache in attention during the token generation phase,
thereby accelerating LLM inference.
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Figure 2: (a) Attention Sparsity in pre-trained LLMs. (b) The distribution of accumulated attention scores with
respect to the corresponding word (red scatter) and the co-occurrence times of words in the data (gray curve).
The x-axis represents the word index in the vocabulary. (c) The performance comparison between the baseline
model with full KV and the model w.o. heavy hitter. (d) Comparison between the baseline model with full KV,
H2O with the local statistic, H2O with the global statistic, and the model with only the most recent KV (Local).
Apart from the baseline model, each model is evaluated with 20% KV cache budget.

2.1 Problem Formulation

We formally define the generative process with limited KV cache size. Denote attention query matrix
as Q ∈ Rn×d and key matrix as K ∈ Rn×d. Qi,∗ represents the i-th row of Q and K≤i,∗ represents
the first i rows of K. Let k denote the budget of space and k < n. For simplicity, KSi,∗ (∈ Ri×d)
denotes a sub-matrix of K which selects Si rows from K. (For the non-selected rows [i]\Si, we put
all zeros in that row) Eviction policy is defined as:
Definition 2.1 (Eviction Policy, informal). Let Si−1 denote the source set. Let Si denote the target
set. We defined the eviction policy g : Si−1 → Si such that

• |Si| = k (KV cache size is not changing over the time)

• |Si\Si−1| ≤ 1 or equivalently |Si ∩ Si−1| ≥ k − 1 (we can evict at most 1 KV in the KV cache)

Then, we define the generative process with our eviction policy.
Definition 2.2 (The generative process with eviction policy, informal). Let k denote the size of the
KV cache. For each i ∈ [n], for the i-th token, we have

• Let Si ⊂ [n] denote the tokens in KV cache when predicting the i-th token.

• The information we have is a length-i vector oi := D−1i ·exp(Qi,∗(KSi,∗)
⊤) (normalized attention)

– scalar Di := (exp(Qi,∗(KSi,∗)
⊤)− 1[i]\Si

) · 1i (the evicted KV is set to 0, and we need to
subtract them when computing the normalization)

– Replacing Si by [i] in the above definition of oi and Di leads to standard generative process.

• The eviction policy (Definition 2.1) updates Si based on Si−1 and their corresponding information.
Remark 2.3. Our goal is to find a KV cache eviction policy such that the output of the generative
process is similar or comparable to the original one without limiting the cache size.

3 Observations
We present two key empirical insights of LLMs that inspire the design of H2O, as follows.

3.1 Sparsity for Small Cache Size

Inspired by previous literature, which reveals the existence of attention sparsity in DistillBERT [35]
and bounded-norm self-attention heads [36]. We first show an observation on the sparsity of attention
in pre-trained LLMs. Then we discuss how it can potentially unlock the possibility of reducing
KV cache size without an accuracy drop. Given the normalized attention score Softmax(QK⊤)
matrix that is calculated by the query matrix Q and the key matrix K, we set the threshold as one
percent of the maximum value in each row and calculates the corresponding sparsity.

Observation. We conduct zero-shot inference with the pre-trained OPT model on the validation
set of Wiki-Text-103. We plot the layer-wise sparsity within attention blocks and visualize the
normalized attention score matrix. The results are presented in Figure 2 (a). We observe that although
the LLMs are densely trained, the resulting attention score matrices are highly sparse, with a sparsity
over 95% in almost all layers.
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Insights. The attention blocks’ sparsity suggests that access to all previous key and value embed-
dings is unnecessary for generating the next token. This suggests it is possible to evict unessential
KV embeddings and reduce the requirement of KV cache during generation.

3.2 Heavy-Hitters for Low Miss Rate

The previous section showed the sparse nature of attention blocks in pre-trained LLMs, which
provides the opportunity for designing small KV cache size while still maintaining the performance
of LLMs. However, determining the best eviction policy that preserves generation accuracy presents
a combinatorial challenge. Although Belady’s Algorithm [37] is optimal and easy to compute for
standard cache (offline), it is not applicable for KV cache design. Because once evicting important
KVs, it could destroy the performance of LLMs due to the sequential dependency of LLM generation.

Observation. Fortunately, in the early stage of our exploration, we find that the accumulated
attention scores of all the tokens within attention blocks follow a power-law distribution, as shown
in Figure 2. This suggests the existence of a small set of tokens that are critical during generation.
We denote those tokens as heavy-hitters (H2). In order to verify the importance of these tokens, we
compare the quality of LLM generation after masking heavy hitters with that of the original model.
Not surprisingly, as shown in Figure 2, the accuracy drops drastically, confirming the importance of
those tokens. Additionally, we can see the accumulated attention score of each word (in red dots)
have a high correlation with their co-occurrences in the data (gray curve).

Analysis. First, based on H2, we see an opportunity to side-step from the combinatorial search
problem and design a KV cache eviction policy that preserves the LLM generation quality. We
conduct an empirical study implementing a KV cache eviction policy that retains only the H2 and
the recent KV embeddings in the cache. The intuition is that recent words typically exhibit stronger
correlations with current tokens. We assess the effectiveness of this eviction policy through pre-
trained OPT-30B and six downstream tasks. The outcomes of these evaluations are illustrated in
Figure 2. It is obvious that the H2 based eviction policy can largely reduce the KV cache size without
degrading the performance of OPT-30B.

Moreover, during the post analysis, inspired by [38], we find that H2 based policy is related to
the classical greedy algorithm (a polynomial-time algorithm with provable guarantees) under the
assumption that the attention schema is submodular. We present details in Appendix D.
Lemma 3.1 (informal). Assuming the attention scheme is submodular, then greedily constructing the
set Si (without cache size limitation) satisfies the near-optimal property in terms of submodular.

4 Heavy-Hitter Oracle
The goal of this section is to propose the greedy algorithm using the H2-based policy and to show
the provable guarantees. We first present the H2-based policy called H2O cache eviction policy and
formulate its deployment in LLM generation as a variant of submodular maximization problem,
named dynamic submodular. Then we present H2O in the generative process, followed by a practical
example of deploying our proposal. Finally, we provide theoretical guarantees for H2O and show our
efficient system implementation.

4.1 Greedy Algorithm for Low-Cost Policy
We have shown a simple yet effective KV cache policy based on H2. However, it is impractical to
deploy such an algorithm because we do not have access to the future-generated tokens. Fortunately,
we empirically observe that local H2, which is calculated using local statistics at every decoding step
by summing up the attention scores of the previous tokens, is equally effective as taking into account
the attention of future tokens (Figure 2). In the following, we formally define this dynamic attention
score computation (with space limitation) as a novel dynamic submodular type problem.

Definition 4.1 (Dynamic submodular framework, informal). Define function F : 2[n] × 2[n] → R,
then for any set Z ⊂ [n], we assume that F (Z, ·) : 2[n] → R is a submodular function w.r.t. to Z, i.e.,

• For all sets X,Y ⊂ [n] satisfy that Z ⊂ X ⊂ Y ,

• For all element x ∈ [n] satisfy that x ∈ [n]\Y ,

we have f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ), where f(·) := F (Z, ·).
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Remark 4.2. We provide practical insights of Definition 4.1. X denotes the existing words in the
KV cache. Y is any superset of X . x can be viewed as a “word” which is either newly added to KV
cache or existing deleted from KV cache. An example f can be attention score, i.e., see Algorithm 1.

If we load the sequence of S1, S2, · · · , Sn (we promise that |Si| ≤ k and |Si\Si−1| ≤ 1) into
Definition 4.1, i.e., for each i ∈ [n], we choose Z = Si, then it becomes a particular instance of the
dynamic submodular problem.

Next, we provide a formal description of our algorithm, followed by an example.

Definition 4.3 (H2O Eviction Policy). Let Fscore : 2
[n] → R denote certain score function. Let Si−1

denote the source set. Let Si denote the target set. We defined the eviction policy g : Si−1 → Si s.t.

• |Si| = k (KV cache size is not changing over the time)

• |Si\Si−1| ≤ 1 or equivalently |Si ∩ Si−1| ≥ k − 1 (we can evict at most 1 KV in the KV cache)

• We construct Si ← (Si−1 ∪ {i})\{u} as u← argmaxv∈(Si−1∪{i}) Fscore(Si−1 ∪ {i}\{v}}

To describe our algorithm (Algorithm 1), we choose a particular instantiation of the function Fscore,
i.e., the summation of that sets in the attention matrix.

Algorithm 1 H2 Eviction Algorithm
1: procedure H2_EVICTION(Q,K ∈ Rn×d, k ∈ N)
2: Let k denote the budget size of cache
3: S0 ← ∅
4: for i = 1→ n do
5: if i ≤ k then
6: Si ← Si−1 ∪ {i}
7: else
8: Di ← (exp(Qi,∗(KSi−1,∗)

⊤)− 1[i]\Si−1
) · 1i

9: oi ← D−1
i · (exp(Qi,∗(KSi−1,∗)

⊤)− 1[i]\Si−1
)

10: Fscore(T ) :=
∑

s∈T os

11: Gi ← Si−1 ∪ {i}
12: u← argmax

v∈Gi

Fscore(Si−1 ∪ {i}\{v}}

13: Si ← (Si−1 ∪ {i})\{u}
14: end if
15: end for
16: end procedure
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Figure 3: Illustration of Algorithm 1 during two
consecutive decoding steps.

Figure 3 presents an illustrative example of our H2 Eviction Algorithm. We assume that the budget
size of KV cache is 3. Following the completion of the fourth decoding step, the KV embeddings
associated with the third token are evicted based on the accumulated attention score. Consequently,
these evicted KV embeddings become inaccessible in the subsequent decoding steps.

4.2 Theoretical Guarantee and System Implementation

We state a theoretical result as follows. The proofs and more details are provided in Appendix D.

Theorem 4.4 (informal). Under the mild assumption, let k denote the budget of space limitation. If
for each token, we greedily compute the attention score based on top-k choice, then we can show
the set S̃i we generate each for token i satisfy that f(S̃i) ≥ (1− α)(1− 1/e)max|S|=k f(S)− β,
where α, β > 0 are parameters.
Remark 4.5. We remark the above theorem provides a theoretical explanation of why can we hope
our greedy algorithm (with cache limitation) can provide a good solution to the problem.

Implementation Details. We provide a general framework that can support any KV cache eviction
algorithm and enhance throughput and reduce the latency of LLM generation with careful implemen-
tation. For example, to ensure I/O efficiency, we do not swap memory when stored KV is evicted, but
directly fill with newly-added KV. More details are included in Appendix A.
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Figure 4: Comparsion results between the baseline model with full cache, our H2O, and the "Local" strategy
that utilizes the most recent KV embeddings.

5 Empirical Evaluation
In this section, our goal is to demonstrate that H2O, a remarkably simple KV cache eviction policy is
capable of enhancing end-to-end throughput and reducing latency in wall-clock while maintaining
generation quality across a broad spectrum of domains and tasks.

• In Section 5.1, we show that H2O can reduce the memory footprint of KV cache by up to 5×without
accuracy degradation on a wide range of model architectures (OPT, LLaMA, GPT-NeoX), sizes
(from 6.7B to 175B) and evaluation benchmarks (HELM and lm-eval-harness). More importantly,
can enhance the performance of existing KV cache sparsification techniques.

• In Section 5.2, we demonstrate that H2O can increase the inference throughput by up to 3×, 29×,
29× compared to the state-of-the-art inference engine FlexGen, DeepSpeed and the widely used
Hugging Face Accelerate without compromising model quality.

• In Section 5.3, we present extensive ablation studies to show the effectiveness of H2O under
different sequence lengths, especially the input with infinite sequence length and its compatibility
with quantization.

All details (hyperparameters, data splits, etc.), along with additional experiments, are in Appendix A.

5.1 End-to-End Results

We demonstrate that H2O can reduce KV cache memory footprint by 5-10× while achieving compa-
rable accuracy on a majority of tasks.

Setup. Our experiments are based on three representative model families of LLMs, including the
OPT [39] with model sizes, LLaMA [40], and GPT-NeoX-20B [41]. We sample eight tasks from two
popular evaluation frameworks (HELM [16] and lm-eval-harness [15]): COPA [42], MathQA [43],
OpenBookQA [44], PiQA [45], RTE [46], Winogrande [47], XSUM [48], CNN/Daily Mail [49]. Also,
we evaluate our approach on recent generation benchmarks, AlpaceEval [50] and MT-bench [51],
and the details are included in Appendix. We use NVIDIA A100 80GB GPU.

Baselines. Since H2O evenly assigns the caching budget to H2 and the most recent KV, except for
full KV cache, we consider the "Local" strategy as a baseline method. In addition, we also provide
two different variants of Sparse Transformers (strided and fixed) as strong baselines. Also, the full
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KV cache with fewer shots (0/1-shot) prompts are considered as the baseline, which has a similar
sequence length of the 5-shot tasks with 20% KV cache budget.

Table 1: Quantatively comparison between H2O with
Full methods of different number of shots.

Methods PiQA COPA OpenbookQA Winogrande

Full 80.09 81.00 44.80 71.51
0-shot Full 78.89 76.00 41.40 70.00
1-shot Full 79.11 76.00 43.60 70.24

Local 57.94 56.00 28.40 51.30
H2O 79.22 85.00 43.80 71.67

Main Results. We evaluate LLMs with KV
cache budget ranging from 4% to 100% on 5-
shot downstream tasks. Results are summarized
in Figure 4 and Table 1& 2. The following ob-
servations can be drawn: (1) With different KV
cache budgets, our H2O demonstrates consistent
and significant improvements against the "Lo-
cal" strategy across various model sizes, model
types, and downstream tasks. We can draw sim-
ilar conclusions comparing H2O with other baselines like Sparse Transformer; (2) Meanwhile, with
less than 20% KV cache budget(i.e., more than 5× memory reduction), H2O achieves comparable
performance as the model with full KV embeddings; (3) H2O with 20% KV cache budget approxi-
mately uses 1.2 samples per input and show consistent improvement over zero-shot and one-shot full
model that use 1 and 2 samples, respectively. (4) Our H2O shows consistent effectiveness in the more
challenging long sequence generation tasks, XSUM, and CNN/Daily Mail.

Table 2: Results of different sparsification methods w. or w.o. H2.
Experiments are conducted with OPT-30B with 20% KV cache budget.

Models COPA OpenBookQA PiQA Winogrande

Full 85.00 43.20 78.51 70.24

Local w.o. H2 48.00 25.20 55.82 49.17
Local w. H2 84.00 43.00 78.45 69.06

Sparse Transformer (strided) w.o. H2 50.00 24.60 56.20 47.59
Sparse Transformer (strided) w. H2 83.00 42.60 78.24 69.61

Sparse Transformer (fixed) w.o. H2 61.00 23.80 58.60 49.88
Sparse Transformer (fixed) w. H2 76.00 41.40 77.80 64.96

Analysis. Since the evicted KV
will not be seen in the future
steps, dropping certain critical
KV embeddings can cause a se-
vere functional collapse, result-
ing in significant performance
degradation, e.g., in {LLaMA-
13B, XSUM} {LLaMA-7B, CN-
N/Daily Mail}, the "Local" strat-
egy collapses at 60% budgets
while our H2O can still match
the full cache performance with
20% budgets. In some tasks, our methods even surpass the baseline models, which demonstrates
a regularization effect of our H2O. For example, in {OPT-66B, RTE}, {OPT-30B, MathQA} and
{GPT-NeoX-20B, XSUM}, our H2O achieves an extra performance improvement of 0.73%, 0.64%
and 0.18 with 20% KV cache budget, respectively. These consistent results validate the effectiveness
of our H2O framework.

Enhancing Baseline Techniques. Importantly, we observe other sparsification baselines fail under
an extremely low cache budget while combining the most recent KV embeddings with the ones of
heavy hitters successfully achieves comparable performance as using full KV embeddings. From
Table 2, we can observe that both "strided" and "fixed" sparse attention fail under 20% KV cache
budgets, encountering a significant performance drop (up to 35% compared with the full cache).
After combining with H2, both approaches reach a similar performance as using full KV embeddings.

5.2 Heavy Hitter for High-Throughput Generative Inference

Table 3: Generation throughput (token/s) on a T4 GPU with different systems. In the sequence length row, we
use “512 + 32” to denote a prompt length of 512 and a generation length of 32. “OOM” means out-of-memory.
The gray text in the bracket denotes the effective batch size and the lowest level of the memory hierarchy that
the system needs for offloading, where “C” means CPU and “G” means GPU.

Seq. length 512+32 512+512 512+1024

Model size 6.7B 30B 6.7B 30B 6.7B 30B

Accelerate 20.4 (2, G) 0.6 (8, C) 15.5 (1, G) 0.6 (8, C) 5.6 (16, C) 0.6 (8, C)
DeepSpeed 10.2 (16, C) 0.6 (4, C) 9.6 (16, C) 0.6 (4, C) 10.1 (16, C) 0.6 (4, C)
FlexGen 20.2 (2, G) 8.1 (144, C) 16.8 (1, G) 8.5 (80, C) 16.9 (1, G) 7.1 (48, C)

H2O (20%) 35.1 (4, G) 12.7 (728, C) 51.7 (4, G) 18.83 (416, C) 52.1 (4, G) 13.82 (264, C)
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Table 5: Generation throughput and latency on an A100 GPU. In the sequence length row, we use “7000 + 1024”
to denote a prompt length of 7000 and a generation length of 1024. “OOM” means out-of-memory.

Seq. length Model size Batch size Metric FlexGen H2O (20%)

7000+1024 30B 1 latency (s) 57.0 50.4
5000+5000 13B 4 latency (s) 214.2 155.4
2048+2048 6.7B 24 latency (s) 99.5 53.5

2048+2048 6.7B 24 throughput (token/s) 494.1 918.9
2048+2048 6.7B 64 throughput (token/s) OOM 1161.0

Table 4: Results of generation throughput (token/s)
on a T4 GPU with different systems on real-world
datasets, XSUM.

Model size 6.7B 30B

Accelerate 11.98 (1, G) 0.23 (2, C)
DeepSpeed 3.52 (6, C) 0.31 (2, C)
FlexGen 10.80 (1, G) 3.29 (44, C)

H2O (20%) 30.40 (1, G) 6.70 (180, C)

We implement our KV cache eviction policy in a
state-of-the-art inference engine, FlexGen [19], and
report the throughput and latency improvements.
H2O is orthogonal to existing optimizations in Flex-
Gen, such as offloading and quantization, so they can
be combined to achieve better performance.
Setup We conducted experiments on two GPUs:
an NVIDIA T4 (16GB) GPU and an NVIDIA A100
(80GB) GPU. On the T4 GPU, we evaluate the gen-
eration throughput following the settings in the Flex-
Gen paper. The evaluated models are OPT-6.7B and
OPT-30B. When the model and KV cache do not fit into a single GPU, we turn on CPU offloading.
The results of both pure GPU and GPU with CPU offloading are reported. All the speedup results are
tested in an end-to-end setting, including both the pre-filling and generation phases. And it includes
the time for constructing the H2O KV cache. We use synthetic datasets where all prompts are padded
to the same length. The system is then required to generate the same number of tokens for each
prompt. We test different combinations of prompt and generation lengths. We also test our method on
real-world datasets (XSUM) for further assessment. The evaluation metric is generation throughput,
which is the number of generated tokens / (prompt time + decoding time). We use DeepSpeed
ZeRO-Inference [17], Hugging Face Accelerate [18], and FlexGen [19] as baselines. On the A100
GPU, with more GPU memory, we evaluate the performance of the systems with sequence lengths up
to 10K. Although OPT is only trained on 2K sequence length, we benchmark the throughput and
latency performance to show the potential of H2O for better models in the future.

Results. Table 3& 4 shows the generation throughput of all systems on the T4 GPU. With our KV
cache eviction policy, the memory usage is reduced, which brings two advantages: 1) we can use a
much larger batch size; 2) we can make a setting from requiring offloading to not requiring offloading.
As shown in Table 3& 4, H2O with a 20% budget improves the generation throughput over FlexGen,
DeepSpeed, and Accelerate by up to 3×, 29×, and 29×, respectively, across both synthetic and
real-world dataset. The results on the A100 GPU with sequence lengths from 4K to 10K are listed in
Table 5. With the same batch size, H2O can reduce the latency by 1.1− 1.9× compared to FlexGen.
Additionally, H2O saves memory so it allows a larger batch size, which brings 2.3× improvement on
generation throughput for OPT-6.7B.

5.3 Ablation Results
We present extensive ablation studies of H2O on (1) infinite-length input, (2) different number of
shots, (3) compatibility with quantization methods on KV cache, and (4) dissecting the effectiveness
of different components. We find a surprising property of H2O – it not only improves the efficiency
of LLMs, but also increases the diversity of the generated text.

Q1: Can H2O empower LLMs to process infinite-length inputs? A1: Effective genera-
tion with sequence length up to four million tokens. Some recent works [52, 53] demon-
strate the possibility of handling infinite-length inputs, a notable challenge in current LLMs.
These methods employ an attention sink that retains the first few tokens and applies position
rolling in the KV cache, empowering LLMs to process infinite-length inputs. Inspired by this
progress, we further implement our H2O for infinite-length inputs. Figure 5 showcases the pos-
itive results of H2O, i.e., H2O can empower LLMs to tackle input with length up to four mil-
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lion tokens, achieving a better performance (lower perplexity) than the original StreamLLM
method [52] across various cache size. Further comparisons are reported in Appendix C.4.

Figure 5: (Upper) streaming with H2O to
handle inputs with sequence lengths of four
million tokens. (Bottom) Perplexity compari-
son between the original StreamLLM method
and our H2O, results are collected on the first
text sample of PG-19 [54].

Q2: Does the number of shots during inference effects
the effectiveness of H2O? A2: Effective across zero-shot
to ten-shots inference. We further examine H2O under
different numbers of shots during inference, and the re-
sults are reported in Table 10 and Figure 8. With different
shots inference, our H2O achieves matching performance
(difference less than 1.00%) as the full model across dif-
ferent downstream tasks. The "Local" strategy encounters
significant performance degradation (up to 37.00%. Such
results demonstrate the effectiveness of our H2O under
different inference scenarios. More details about zero-shot
and one-shot inference are reported in Appendix C.3.

Q3: Compatible with Quatization? A3: Yes. To pur-
sue further efficiency, we show the compatibility of H2O
with another orthogonal approach, i.e., quantization in Ta-
ble 6. We use OPT-30B as our base model and COPA,
OpenBookWA, and PiQA as evaluation tasks. Intuitively
sparsity and quantization are highly related so combin-
ing them might introduce larger errors. Surprisingly the
combination almost always achieves better accuracy than
H2O or quantization alone. Experiments about throughput
improvement are detailed in Appendix C.2.

Q4: When does H2O match the baseline with full KV
embeddings? A4: With both H2 and the recent tokens. We investigate the separate effects of
KV embeddings of H2 and the local tokens. We conduct experiments on 4 tasks with OPT-13B and
OPT-30B. For each task, we compare the performance of three KV cache eviction policies, including
only the KV embeddings of H2, only the ones of local tokens, and our H2O that keep both. As
shown in Table 9, only retaining the embeddings of H2 or local tokens can’t maintain a similar
performance as the model using full embeddings, with a performance degradation from 2.85% to
22.75%. Incorporating both components, our H2O successfully retains the baseline performance with
full embeddings. Besides, the model with only H2 shows a consistent improvement against the one
with only local tokens, which indicates H2 might contribute more to maintaining the performance.

Q5: Extra benefits from H2O? A5: Increased diversity of generated text. Besides all the benefits
of our H2O, we also observe an bonus introduced by H2O, i.e., the improved diversity of generated
content. The results are reported in Appendix C.1. Given the same prompts, we visualize the
generated text of the models with different KV cache budgets. Compared with the model of full KV
cache, our H2O can generate sentences with fewer repeated words and more creativity.

6 Conclusion and Discussion
In this paper, we study one of the key bottlenecks of LLM deployment, KV cache, particularly
for long-content and large-batch generation applications. We propose H2O, a simple KV cache
eviction policy for significantly reducing its memory footprint. The main insight of our approach
is the recognition of a subset of tokens, known as Heavy Hitters, which contribute the most value
when computing attention scores. We formulate the KV cache eviction as a dynamic submodular
problem and provide the theoretical guarantees for our algorithm. Through extensive evaluations,
we demonstrate that H2O can significantly improve end-to-end throughput and decrease latency in
wall-clock time, without compromising the generation quality of LLMs across a variety of tasks.
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A More Implementation Details

In this section, our goal is to provide the details of system implementation (mentioned in Section 4.2)
and experiment settings (mentioned in Section 5), as well as the pseudocode.

System Details. We implement H2O on top of FlexGen. FlexGen is a white-box implementation of
OPT models, and we have done some surgery on handling the KV cache. Specifically, for the given
parameter K, we always maintain a list of KV cache with the first K entries as heavy hitters, and the
last K entries as most recent tokens. In order to avoid data movement in memory, the memory for
KV cache is preallocated. We use a circular queue to update the last K entries efficiently.

Experiment Details. Our study involves the evaluation with varying sizes of KV cache that encom-
pass 4%, 10%, 20%, and 60% of the prompt’s length. We select two tasks (XSUM and CNN/Daily
Mail) from the HELM framework [16] and present the performance based on 1000 test samples.
Additionally, we employ the lm-eval-harness framework [15] for six other tasks (COPA, MathQA,
OpenBookQA, PiQA, RTE, and Winogrande). For the tasks derived from the HELM framework, we
report the performance for zero-shot inference, while for the tasks from lm-eval-harness, we default
to conduct five-shot inference.

Pseudocode. We show a simplified pseudocode below to demonstrate our implementation skele-
ton. The function generation_loop() is the base loop in FlexGen that controls prefetch and
overlap the I/O streams and computation. Then in function compute_layer(), the function
attention_forward() will be called for attention layers. During prefill iterations, the function
compute_attention() will return K heavy hitters and K recent tokens if the prompt has a length
greater than or equal to 2K, otherwise return all the KV cache. The function compute_attention()
will return new KV cache and the indices for evicted entries during decoding iterations, which would
be the place to implement a customized eviction strategy. (If the current number of stored KV cache is
less than 2K, the eviction will be ignored.) During each decoding iteration, the oldest one among the
last K tokens (if we have no less than K tokens’ KV cache stored) will be removed from the reserved
last K entries, one heavy hitter will be evicted for each head, and the newest token will be added to
the KV cache with a position in the last K entries. This happens in the function store_cache().

def generation_loop (...):
# Prologue
...
# Generate
for i in range(gen_len):

for j in range(num_layers):
for k in range(num_gpu_batches):

load_weight(i, j+1, k)
load_cache(i, j, k+1)
store_hidden(i, j, k-1)
load_hidden(i, j, k+1)
compute_layer(i, j, k)
store_cache(i, j, k-1)
sync()

# Epilogue
...

# h is the hidden states (activations)
def attention_forward(h, ...):

# the read/write buffer are intermediate stops for prefetching
if prefill:

h, new_k_cache , new_v_cache = compute_attention(h, ...)
# select K heavy hitters and K recent tokens
new_k_cache , new_v_cache = select(new_k_cache , new_v_cache , K)
cache_write_buffer.store(new_k_cache , new_v_cache)

else:
k_cache , v_cache = cache_read_buf.pop()
# evict_ids track the entries that will be evicted
h, new_k_cache , new_v_cache , evict_ids =

compute_attention(h, k_cache , v_cache , ...)
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cache_write_buffer.store(new_k_cache , new_v_cache , evict_ids)
return h

def store_cache (...):
if prefill:

# store cache directly
...

else:
k_new , v_new , evict_ids = cache_write_buffer.pop()
# circular queue for the last K entries
# extract the index for the oldest token at i-th iteration
oldest = ((i - 1) % K) - K
# update the KV cache (k_home and v_home)
cache_replace(k_home , evict_ids , k_new , K, oldest)
cache_replace(v_home , evict_ids , v_new , K, oldest)

B Extended Related Works, Discussions, and Limitations

The goal of this section is to first introduce more background and related works for Section 2,
then describe some previous attempts in our experiments as well as discuss the social impact and
limitations of this work.

B.1 Extended Related Works

Quantization, Pruning, Distillation for Inference. Previously, model compression algorithms
have been extensively investigated as a viable approach for mitigating the computational resource
requirements of model inference. These algorithms can be broadly categorized into three groups:
(1) quantization [55, 56, 57, 58], which involves mapping model parameters or activations from
high-precision data types to low-precision counterparts, such as using 8-bit integers instead of the
commonly employed 32-bit floating point format; (2) pruning or sparsity [59, 60, 61, 62], which aims
to eliminate unnecessary neurons or weights within the models; (3) and distillation [63, 64, 65, 66]
where predictions from larger models are utilized as supervised information to train smaller models.

Transformer in NLP. Transformers [67] as a popular option have been frequently adopted by
plenty of natural language processing (NLP) applications with prevailing successes [68, 69, 70, 71, 72,
46, 73, 13, 74, 75]. Roughly, modern transformer-based networks can be categorized into two groups:
(1) Encoder-Decoder or Encoder-only (i.e., BERT-style models [76]). This type of transformers
commonly leverages the Masked Language Modeling task which encourages models to capture
the intrinsic relationship between words and their context. Notable examples include BERT [76],
RoBBERTa [69] and T5 [77]. (2) Decoder-only (i.e., GPT-style models [78]). Usually, this group of
transformers adopts the Casual Language Modeling task, which is optimized to generate the next
word/token in a sequence based on the preceding words/tokens. Such an autoregressive manner
is highly preferred by downstream tasks like text generation and question answering. GPT-3 [79],
OPT [39], PaLM [13], and BLOOM [80] are representative architectures within this huge family.

Training of Transformer. Training a gigantic transformer-based model is not trivial. It notoriously
suffers from various issues such as overfitting, instability, etc. [81, 82, 83] analyze these bottlenecks
from the optimization perspective. To address the issues, a great amount of pioneering effort is
devoted, including data augmentations [84, 85], a better initialization [86, 83, 87, 88], customized
optimizers [89], improved normalization [90, 91], weight decay [92], and early stopping. However,
there is still a long way to go before we can fully clarify the mystery of transformer training.

B.2 Discussions and Limitations

Previous Attempts. During our experiments, we find several noteworthy observations. In H2O,
employing the accumulated attention score to evict KV embeddings can lead to a potential bias
favoring the least recent tokens. This bias arises because most previous tokens have a higher number
of attention scores, resulting in a higher accumulated attention score and, consequently, a greater
likelihood of being retained. To address this concern, we conducted an additional experiment utilizing
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the averaged attention score to determine which KV embeddings should be retained. However, this
alternative approach resulted in performance degradation. Additionally, we observed a significant
proportion of H2 occurrences at the beginning of sentences. This finding suggests that the initial
tokens play a substantial role in subsequent generation tasks.

Social Impact. Our work represents an initial effort in designing a KV Cache policy, a realm that
has been relatively unexplored and yet is a significant bottleneck in LLMs. The proposed Heavy
Hitter Oracle (H2O) provide a solution to improve the efficiency of LLM generation, which can save
energy cost and contribute to green AI. Besides, our approach also serves as a source of inspiration
for future advanced algorithm designs. We envision H2O as a foundational framework that could
facilitate further innovation in this area. Moreover, long content generation is an area of growing
importance that currently grapples with several efficiency issues. We hope our work that supports the
generation of very long sequences will support further research in this direction, particularly in terms
of enhancing consistency, devising superior evaluation methods, and establishing robust benchmarks.

Furthermore, another contribution of this study is the formulation of a dynamic submodular frame-
work. We believe that this theoretical framework possesses the potential to be applicable beyond
specific domains of interest. For instance, there may exist numerous other dynamic problems where
the task involves solving a submodular problem with slight variations at each time.

Limitations. Furthermore, despite the notable advancements in throughput of our H2O, implement-
ing LLMs for generative inference remains challenging due to the immense parameter count. As a
substantial portion of these parameters is encompassed within the MLP blocks, building upon our
observations of H2 occurrences in the MLP blocks, future research efforts can be directed towards
leveraging the characteristics of H2 to devise an offloading policy. Such a policy can potentially
enhance the efficiency of LLM inference even further.
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C Extended Experiments

In this section, our goal is to demonstrate that H2O can improve the diversity of generated text
(mentioned in Section 5.3), throughput is further improved when combined with quantization (men-
tioned in Section 5.3), and superior performance to handle extremely long length inputs (up to four
middle tokens, mentioned in Section 5.3). Moreover, additional investigations about H2 are reported,
including experiments under zero-shot/one-shot inference regime; H2O can also enhance the "Top-K"
baseline; extra results of H2 in attention blocks; the emergence of H2 in MLP blocks as well as its
properties.

C.1 Increased Diversity of Generated Text

Model Input

In the year 2087, humanity has achieved remarkable technological advancements and established colonies on
multiple planets within the Milky Way galaxy. Interstellar travel has become commonplace, with faster-than-light
spacecraft enabling people to explore distant star systems. Earth has undergone significant changes due to
sustainable development efforts, such as harnessing renewable energy sources and implementing widespread
ecological restoration projects. However, alongside these triumphs, new challenges have emerged, including the
rise of artificial intelligence, ethical dilemmas surrounding genetic engineering, and interplanetary political
tensions. Against this backdrop, a team of intrepid scientists embarks on a mission to uncover the secrets of an
ancient alien civilization, hidden deep within an uncharted exoplanet. As they navigate treacherous terrains and
encounter otherworldly phenomena, they must confront their own fears and reconcile humanity's thirst for
knowledge with the potential consequences of uncovering secrets that were better left buried. The fate of both
their mission and the future of humanity hang in the balance.

OPT-6.7B Full Cache  
Output

OPT-6.7B Local 20% Cache 
Output

OPT-6.7B             20% Cache 
Output

The game is set in the year 2087, and is a first-person exploration game. The player takes on the role of a scientist
who has been sent to a distant planet to investigate a mysterious signal. The planet is inhabited by a race of
intelligent beings known as the "Titans," who have been

........................................,,,,,,,,,,,,,,,,,,,,,,,

The game is set in 2087, a few years after the events of the first game. The player takes the role of a team of
scientists who are sent to an uncharted planet to investigate a mysterious signal. The team is composed of a pilot,
a scientist, a mechanic, and a technician.

Figure 6: Visualization of one generation example with OPT-6.7B. Results are compared between the baseline
model with full cache, our H2O, and the "Local" strategy that utilizes the most recent KV embeddings.

Given the same prompt text, we visualize the generated text with OPT-6.7B and LLaMA-7B across
different methods, including the baseline model with full cache, our H2O, and the "Local" strategy.
Results are reported in Figure 6 and 7. Even with less KV cache budget, our H2O can generate
more diverse content. Specifically, with the OPT-6.7B, the full model generates some redundant
works, like "a few years after the events of the first game" while our H2O describes "the game is
a first-person exploration game". As a comparison, when all KV cache budget is assigned to the
most recent tokens, the model fails to generate meaningful text and only repeats the word "." and
",". Similar observations can also be drawn from the results of LLaMA-7B, in which the full model
repeatedly says "so moving that", "so moved that", and "began to cry" while our H2O describes both
the people and the environment.

Moreover, We conducted a quantitative comparison via diversity metric(Self-BELU [93]). We
randomly sample 100 instances from the XSUM dataset, as prompts. Subsequently, we employed the
LLaMa-7B to generate text of equal length. The full model reaches a Self-BELU score of 0.0057
while H2O and the local method achieve 0.0051 and 0.0436, respectively. The comparatively lower
Self-BELU score of H2O indicates the slightly increased diversity of generated text.
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Model Input

LLaMA-7B Full Cache  
Output

LLaMA-7B Local 20% Cache 
Output

LLaMA-7B             20% Cache 
Output

In a small, bustling cafe nestled in the heart of a vibrant city, a serendipitous event unfolded, leaving a lasting
impression on all who witnessed it. As the patrons sat sipping their coffees and engaging in animated conversations,
a talented street musician entered the cafe, carrying a weathered guitar and radiating an aura of creativity.

He began to play, and the patrons were captivated. The musician’s performance was so moving that the patrons
began to applaud, and the musician was so moved that he began to cry. The patrons were so moved that they
began to cry, and the musician was so

He began to play, and the room was filled with the sound of his music. The patrons of the cafe were enthralled
by the music, and the atmosphere was electric. The cafe was packed with people, all of whom were enjoying
the music. The musician was a young

He ( ( ( ( ( ( ( ( ( ( ( ( ( (,  [)), 1999, 2000, 2001, 1, and, and, and, and, and, and, and, and, and, and, and,

Figure 7: Visualization of one generation example with LLaMA-7B. Results are compared between the baseline
model with full cache, our H2O, and the "Local" strategy that utilizes the most recent KV embeddings.

Table 6: Compatibility with Quantization.
Models COPA OpenBookQA PiQA

Full 85.00 43.20 78.51

H2O 84.00 43.00 78.45

Quant-4bit 84.00 43.28 78.67

H2O w. Quant-4bit 84.00 43.20 78.80

C.2 Throughput Improvement of H2O Combining with Quantization

Table 6 demonstrates H2O are capable of quantization and perverse the full model’s performance
with even 4-bit quantization. To further explore the compatibility of our H2O with quantization
with respect to throughput improvement, we conduct an additional evaluation with the quantization
method implemented in FlexGen (Note that [94] employed a different 4-bit quantization method).
The corresponding results are presented in Table 7. Notably, for OPT-6.7B, we observed extra
performance enhancements in H2O when utilizing quantization compared to the vanilla version.
This improvement results from the GPU memory freed by weight quantization, which allows for a
significant increase in batch size. However, it should be emphasized that the quantization method
employed in FlexGen is not implemented most efficiently, resulting in considerable computational
overhead. Despite the batch size being enlarged by 20 times, the actual throughput improvement is
less than 2 times. Nevertheless, it is important to acknowledge the potential benefits of combining
H2O with quantization, as exemplified by the ability to increase the batch size further. For instance,
the implementation of 4-bit quantization could be accelerated by an optimized CUDA kernel.

Table 7: Generation throughput (token/s) with different systems without offloading. We use H2O-c denotes the
H2O with 4-bit weights compression. In the sequence length row, we use “512 + 32” to denote a prompt length
of 512 and a generation length of 32. “OOM” means out-of-memory. The gray text in the bracket denotes the
batch size. We run OPT-6.7B on a single T4 GPU.

Seq. length 512+32 512+512 512+1024
Model size 6.7B 6.7B 6.7B

Accelerate 20.4 (2) 15.5 (1) OOM
DeepSpeed OOM OOM OOM
FlexGen 20.2 (2) 16.8 (1) 16.9 (1)

H2O (20%) 35.1 (4) 51.7 (4) 52.1 (4)
H2O-c (20%) 50.5 (70) 72.5 (52) 62.3 (44)
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C.3 Effectiveness on Zero-shot and One-shot Inference

When facing zero-shot and one-shot inference tasks, H2O can successfully mitigate the memory
requirements of the KV cache by up to 5× under both one/zero-shot inference across different tasks,
achieving matching performance as the model with full KV cache while the local method fails.
However, unlike 5-shot, we also found that some tasks are more difficult, and the model requires
more information to generate the correct content, resulting in a higher KV cache budget (30-40%).
This might be expected since 0/1 shots in our benchmarks have shorter sequence lengths ranging
from 100 to 300.

PiQA, LLaMA-7B COPA, LLaMA-7B OpenBookQA, LLaMA-7B

Winogrande, LLaMA-7B

1-
sh

ot
0-

sh
ot

MathQA, LLaMA-7B XSUM, LLaMA-7B

1-
sh

ot
0-

sh
ot

Figure 8: Comparsion results on zero-shot and one-shot inference.

C.4 Comparison with StreamingLLM

Recent works, such as StreamLLM [52] and LM-Infinite [53], have shown promising potential in
enabling Language Models (LLMs) to handle input of infinite length. They achieve this by only
retaining the initial tokens and a limited local context. However, this approach may pose challenges
for certain tasks where vital information lies within the middle of the input and would be lost using
this strategy. We investigate it through two specific types of tasks:
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Multi-document question answering [95]: In this task, each test sample comprises ten documents,
followed by a question. The key information to answer this question is stored in one of the documents.
We rearranged the crucial document’s position and found that the eviction strategy in StreamLLM or
LM-Infinite can not perform well when the key document has been dropped.

Text Summarization Task (XSUM and CNN-DailyMail): Text summarization tasks require models
to generate concise summaries of lengthy texts. Effective summarization demands a comprehensive
understanding of the entire document, making it challenging when crucial information is dispersed
throughout the input. In particular, summarization often relies on long-context attention, and critical
information may not be effectively captured within the limited local tokens.

The results are reported in Figure 9, illustrating a consistent decline in the performance of StreamLLM.
Since StreamLLM will always maintain the first few tokens as well as the local tokens, regardless
of various input content, such a strategy will inevitably result in the loss of crucial information and
subsequently lead to a decrease in performance. In contrast, our H2O delivers markedly superior
performance. Also, with H2O, The model can successfully stream to four million tokens.

Figure 9: Comparison results of StreamLLM [52] and our H2O on generization tasks. The number in each
method represents the KV Cache budget of the start/heavy-hitter tokens and the local tokens, respectively. For
example, H2O-256-256 means maintaining 256 Heavy-Hitters and 256 local tokens.

C.5 Enhancing the "Top-K" Baseline

We find H2 can further enhance another strong baseline with a "Top-K" strategy. The results are
reported in Table 8. After combing with H2, the "Top-K" method achieves an extra improvement with
up to 2.00% accuracy across 4 different tasks.

Table 8: Results of the "Top-K" method w. or w.o. H2. Experiments are conducted with OPT-30B with 20% KV
cache budget.

Models COPA OpenBookQA PiQA Winogrande

Full 85.00 43.20 78.51 70.24

TopK w.o. H2 80.00 41.40 76.96 65.35
TopK w. H2 82.00 42.80 77.96 66.48

C.6 Separate Effects of Heavy-Hitter and Local Tokens

Table 9 demonstrates the separate effects of Heavy-Hitters and the local tokens. And we can observe
Heavy-Hitters contribute more to maintaining the performance of models.

C.7 Performance of Inference with Different Number of Shots.

Table 10 demonstrates our H2O achieves consistent improvements across different number of shots
during inference and maintains the full model’s performance with 20% memory budget.
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Table 9: Ablation study of H2O across different tasks.
Tasks Models Full w. Local w. H2 w. Local + H2

PiQA OPT-13B 77.37 54.62 76.12 77.26
OPT-30B 78.51 55.82 67.25 78.45

OpenBookQA OPT-13B 41.40 25.60 30.40 41.20
OPT-30B 43.20 25.20 26.60 43.00

MathQA OPT-13B 26.67 22.04 23.82 26.93
OPT-30B 26.23 20.87 21.98 26.87

Winogrande OPT-13B 68.59 49.96 51.85 67.32
OPT-30B 70.24 49.17 47.36 69.06

Table 10: Results under different sequence length of OPT-30B with 20% KV cache budget.
Tasks Methods 5-shots 10-shots

OPT-30B OPT-66B OPT-30B OPT-66B

OpenBookQA
Full 43.20 44.40 43.00 44.80

Local 25.20 30.60 26.60 38.80
H2O 43.00 44.20 42.80 44.80

COPA
Full 85.00 83.00 86.00 85.00

Local 48.00 59.00 60.00 76.00
H2O 84.00 82.00 85.00 86.00

MathQA
Full 26.23 27.87 26.67 27.00

Local 20.87 25.49 21.11 23.08
H2O 26.87 27.67 26.47 27.30

C.8 Heavy-Hitter in Attention Blocks

The distribution of accumulated attention scores of all the tokens within attentions blocks is illustrated
in Figure 10. We can observe that H2 broadly exists in each layer.

C.9 Comparsion with SpAtten

Compared with SpAtten [32], the main differences of H2O are i) They accumulate attention scores
across attention heads and layers, while in our algorithm, each token can be kept or evicted indepen-
dently across heads and layers, providing more flexibility for selecting critical KV embeddings; ii)
We also use KV of the most recent tokens during generation and demonstrate that such H2 tokens
can effectively enhance other sparse attention strategies; iii) we formulate the KV cache eviction as a
dynamic submodular problem and prove a theoretical guarantee (under mild assumptions) for our
novel algorithms. Moreover, we also provide a quantitative comparison with SpAtten, and the results
are reported in Table 11.

Table 11: Comparison between SpAtten [32] and H2O across various tasks with OPT-30B.
Models COPA OpenBookQA PiQA

Full 85.00 43.20 78.51

SpAtten 82.00 41.90 77.06

H2O 84.00 43.00 78.45

C.10 Heavy-Hitter in MLP Blocks

Besides the attention blocks, the presence of Heavy-Hitters (H2) is observed within the MLP blocks
of LLMs. We utilize the Wiki-Text-103 dataset as the input and record the activated frequency of
neurons in the hidden layer of MLP blocks. As depicted in Figure 11, the activated frequency of
neurons follows a power-law distribution, wherein a small number of neurons are activated by nearly
all input tokens (with a 100% frequency) while the majority of other neurons are rarely activated.

Subsequently, a thorough examination of various characteristics pertaining to H2 in MLP blocks is
conducted, encompassing the following aspects: (1) The elimination of H2 leads to a substantial
decline in performance, although such degradation can be easily recovered even with a mere 1%
of the training data; (2) H2 exhibits a significant degree of overlap across different type of input
content; (3) The emergence of H2 occurs early in the training process, thus exhibiting an "early-bird"
characteristic, and their positions undergo gradual changes during subsequent training phases.
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Figure 10: The distribution of accumulated attention scores with respect to the corresponding word. The x-axis
represents the word index in the vocabulary, and the y-axis represents the accumulated attention score. Results
are obtained from OPT-1.3B.
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Figure 11: The emergence of H2 in MLP blocks of OPT-6.7B. The x-axis represents the index of neurons in the
hidden layers of MLP blocks, and the y-axis represents the activated frequency.
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Elimination of H2. We first train a GPT-2 using Wiki-Text-103 dataset and subsequently identify
and prune the neurons exhibiting an activation frequency exceeding 20% (i.e., H2). This pruning
operation leads to a substantial decline in performance, as evidenced by an increase in perplexity
from 19.32 to 31.78. The results emphasize the criticality of H2 in preserving the functionality of the
model. To assess the recoverability of the discarded information, we conduct a few-shot fine-tuning
experiment, and the results are summarized in Table 12. The pruned model is fine-tuned with varying
ratios of training data for 500 iterations, and it successfully regains performance levels equivalent
to those of the pre-trained model. In contrast, when training the model from scratch using only
1% of the training data, the resulting model achieves a perplexity of 554.12 only. These findings
demonstrate that the knowledge encoded in H2 can be easily restored.

Table 12: . Perplexity on the test-set of Wiki-Text-3 with GPT-2.
Settings 1% 10% 40% 100%

Pretrained Model 19.32
Remove H2 31.78

Fine-tuning 19.86 19.84 19.76 19.83

Overlap across Diverse Input Contents. Moreover, we conduct a comparative analysis of the
activation frequencies acquired from various input contents. Specifically, utilizing the pretrained
OPT-1.3B model, we evaluate three datasets, namely Wiki-Text-103, Penn Treebank, and Amazon
Review. The positioning of H2 is depicted in Figure 12, revealing significant concurrence across
multiple datasets.

Figure 13: The distribution of activated
frequency during training. Experiments
are conducted with different checkpoints
of OPT-2.7B during training.

Early-Bird Property. Furthermore, our investigation re-
veals that H2 displays an "early-bird" characteristic, as illus-
trated in Figure 13. By visualizing the distribution of activa-
tion frequencies across various checkpoints throughout the
training process, we observe the emergence of a power-law
behavior at an initial stage, specifically as early as a train-
ing budget of 4%. Subsequently, the positions of H2 exhibit
gradual and minimal changes.
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Figure 12: The distribution of activated frequency across diverse input content. The x-axis represents the index
of neurons, which is ordered by the activated frequency from Wiki-Text-103.
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D Theoretical Analysis

Recently, a number of works have studied the attention scheme in LLMs from a theoretical perspective
[96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122]. In this work, we provide a different and novel angle compared to the
previous work. We present the concept of the submodular property and propose an eviction policy,
known as greedy H2, which is a modification of dynamic submodular maximization. Furthermore,
assuming the attention scheme to be submodular, we establish that constructing the set Si without
any cache size limitation satisfies the near-optimal property in terms of submodularity. We provide
theoretical guarantees for our robust and approximate greedy eviction policy algorithm (Algorithm
2). Due to space limitation, we only give informal description of algorithm (Algorithm 2) in Section
4.1 In Section D.6, we give an algorithm (Algorithm 2) which has full and complete implementation
details for Algorithm 1. We also offer a mathematical formulation for sparsity preservation that is
observed in Section 3 and proposed an algorithm (Algorithm 4) to solve the problem.

Specifically, in Section D.1, we provide several basic definitions and notations. In Section D.2, we
briefly the definition of submodular function. In Section D.3, we define the dynamic submodular
framework, which gives the formal version of Definition 4.1. In Section D.4, we briefly review the
static attention computation problem. In Section D.5, we formulate the attention computation in
recursive fashion. In Section D.6, we briefly review our eviction policy, which gives the formal
version of Definition 4.3. In Section D.7, we discuss the diminishing return for submodular. In
Section D.8, we discuss the high-level ideas for submodular. In Section D.9, we analyze the robust
greedy algorithm error propagation. In Section D.10, we explain how to add items into sets via
approximate function. In Section D.11, we provide several definitions related to dynamic properties.
In Section D.12, we prove an induction lemma for the exact function. In Section D.13, we prove an
induction lemma for the approximation function. In Section D.14, we provide theoretical guarantees
for both the full-knowledge version (formal version of Lemma 3.1) and the limited-cache-size
version (formal version of Theorem 4.4). In Section D.15, we provide a more detailed discussion
of theoretical work about attention computation and regression-related problems. In Section D.16,
we provide a mathematical formulation for sparsity preserving. In Section D.17, we provide the
definition of loss function which can potentially generate sparse (heavy hitter type attention sore). In
Section D.18, we explain how to compute the gradient of the loss function. In Section D.19, we show
how to compute the Hessian of the loss function. In Section D.20, we show that Hessian is positive
definite. In Section D.21, we prove the Lipschitz property for the Hessian matrix. In Section D.22,
we show that using a gradient-type algorithm is sufficient to optimize that (heavy hitter type) loss
function.

D.1 Notations

For a positive integer n, let [n] := {1, 2, · · · , n}.
For a vector x ∈ Rn, let

√
x ∈ Rn denote the vector with the i-th entry being

√
xi and diag(x) ∈

Rn×n denote the diagonal matrix with the i-th digonal entry being xi. For two matrices A,W ∈
Rn×n, let ∥A∥W := (

∑n
i=1

∑n
j=1 Wi,jA

2
i,j)

1/2 and W ◦A denote the matrix where (W ◦A)i,j =

Wi,jAi,j . For matrix W ∈ Rn×n, let DWi := diag(Wi,:) with i ∈ [n].

For two vectors x ∈ Rn and w ∈ Rn
≥0, let ∥x∥w := (

∑n
i=1 wix

2
i )

1/2. For a vector x, its ℓ2 norm
is defined as ∥x∥2 := (

∑n
i=1 x

2
i )

1/2 and its ℓp norm is defined as ∥x∥p := (
∑n

i=1 |xi|p)1/p. For a
square matrix A, we denote tr[A] as the trace of matrix A.

For a matrix A ∈ Rn×k (suppose n ≥ k), we use ∥A∥ to denote its spectral norm, i.e., ∥A∥ =

supx ∥Ax∥2/∥x∥2. We use ∥A∥F to denote its Frobenius norm ∥A∥F := (
∑n

i=1

∑k
j=1 A

2
i,j)

1/2.

Suppose matrix A ∈ Rn×k has SVD decomposition UΣV ⊤ where U ∈ Rn×k (this matrix has
orthonormal columns), Σ ∈ Rk×k is a diagonal matrix, and V ∈ Rk×k. We call columns of U
singular vectors. We use A† ∈ Rk×n to denote the Moore-Penrose pseudoinverse, then A† =
V Σ−1U⊤. Suppose Σ ∈ Rk×k is sorted diagonal matrix, let σ1, · · · , σk denote the diagonal entries
of Σ. Then we call σi the i-th singular value of the matrix, and we write it as σi(A).
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For any symmetric matrix B ∈ Rk×k, we denote its eigenvalue decomposition as UΛU⊤, where Λ
is a diagonal matrix. Let λ1, · · · , λk denote the entries on diagonal of Λ ∈ Rk×k. We say λi is the
i-th eigenvalue. Usually, we write it as λi(B).

The connection between eigenvalues and singular values is

σ2
i (A) = λi(A

⊤A)

We use the notation A ⪰ 0 to denote that matrix A is positive semidefinite (psd). Mathematically,
A ⪰ 0 means for all vectors x, we have x⊤Ax ≥ 0.

Similarly, for two squarer matrices A and B, we use A ⪰ B to denote the case where for all vectors
x, x⊤Ax ≥ x⊤Bx.

Let Pr[] and E[] denote the probability and expectation. We define the maximum between a and b as
max{a, b}. We denote min{a, b} (resp. max{a, b}) as the minimum (reps. maximum) between a
and b.

Throughout, for non-negative real numbers a and b, we use the notation a = (1 ± ϵ)b if a ∈
[(1− ϵ)b, (1 + ϵ)b].

D.2 Submodular

We provide the standard definition of the submodular function.

Definition D.1 (Submodular function [123]). For a finite set Ω, a submodular function is defined as
f : 2Ω → R, where 2Ω denotes the power set of Ω. It is characterized by the fulfillment of any of the
following equivalent criteria:

• Condition 1.

– For S, T,⊆ Ω with S ⊆ T and every a ∈ Ω\T we have that f(S ∪ {a}) − f(S) ≥
f(T ∪ {a})− f(T )

• Condition 2.

– For every S, T ⊆ Ω we have that f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

• Condition 3.

– For every S ⊆ Ω and a1, a2 ∈ Ω\S such that a1 ̸= a2 we have that f(S ∪ {a1}) +
f(S ∪ {a2}) ≥ f(S ∪ {a1, a2}) + f(S).

For convenience of discussion, in this paper, we always choose Ω = [n] when we want to discuss the
submodular function.

Next, we provide some examples/types of submodular functions. One important class is called
monotone,

Definition D.2 (Monotone). A set function f is monotone if for every T ⊆ S we have f(T ) ≤ f(S).

Here are a number of monotone submodular functions

• Linear (Modular) functions

– A linear function can be represented as f(S) =
∑

i∈S wi. If all the weights wi are
nonnegative, then the function f is considered monotone.

• Budget-additive functions

– A budget-additive function has the form f(S) = minB,
∑

i∈S wi where each weight
wi and the budget B are nonnegative.

• Coverage functions

– We have a set Ω = {E1, E2, · · · , En} where each Ei is a subset of a broader set Ω′.
The coverage function can be expressed as f(S) = | ∪Ei∈S Ei| for any S ⊂ Ω. This
function can be generalized by assigning non-negative weights to the elements.
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D.3 Dynamic Submodular

The standard submodular function is mapping 2[n] to real. Here we need a more general definition
that maps 2[n] × 2[n] to real.

Definition D.3 (Strong submodular). We define function F : 2[n] × 2[n] → R, then for any set
Z ⊂ [n], we assume that F (Z, ·) : 2[n] → R is a submodular function.

In fact, the above definition is stronger than we want, what we really need can be written as follows.
We remark that in Definition 4.1 we provide an informal definition. Here we provide a more detailed
version of the definition.
Definition D.4 (Dynamic submodular framework, formal version of Definition 4.1). Define function

F : 2[n] × [n]× 2[n] → R.

Then for any index i ∈ [n], any set Z ⊆ [i− 1], we assume that

F (Z, i, ·) : 2[n] → R

is a submodular function w.r.t. to Z, i.e.,

• For all sets X,Y ⊂ [n] satisfy that Z ⊂ X ⊂ Y ,

• For all element x ∈ [n] satisfy that x ∈ [n]\Y ,

we have

fZ,i(X ∪ {x})− fZ,i(X) ≥ fZ,i(Y ∪ {x})− fZ,i(Y ),

where fZ,i(·) := F (Z, i, ·).
Remark D.5. We remark that Definition D.4 is a weaker version of Definition D.3. We also like to
mention that the informal definition (see Definition 4.1) only contains two input parameters, but in
fact we need three input parameters (see Definition D.4).

In the later, when we use fZ,i(·), we will replace Z by Si for convenient of analysis, for example see
Definition D.23, Definition D.24, Definition D.25 and Definition D.26.

D.4 Static Attention

Before we describe the recursive attention computation, we will first describe the static version of
attention computation as follows (for examples, see Definition 1.1 in [98] and others [97, 100, 101,
106, 103, 118, 108]):
Definition D.6. Given three matrices Q,K, V ∈ Rd×d, the goal is to compute

Att(Q,K, V ) := D−1A · V
where square matrix A ∈ Rn×n can be rewritten as follows

A = exp(QK⊤)

and diagonal matrix D ∈ Rn×n can be written as follows

D = diag(A1n)

Here we apply exp() to a matrix entry-wisely to a matrix. 1n is a length-n vector where all the
entries are ones. The operator diag() is turning a vector into a diagonal matrix.

D.5 Recursive Attention Definition

We first provide some definitions.
Definition D.7. Given a query matrix Q ∈ Rn×d, we use Qi,∗ to denote a length-d row vector that
represents the i-th row of Q for each i ∈ [n].

Definition D.8. Given a key matrix K ∈ Rn×d, we use K≤i,∗ to denote a i× d matrix that selects
the first i rows from K.
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Figure 14: (a) Exact version of the attention computation. Here, our example is about the language modeling task.
At this stage, the model predicts the word ’apple’ and computes the exact attention vector o4. (b) Approximate
version of the attention computation. Let the budget of the number of tokens we can track be 3. We truncate the
key matrix for the first token K1,∗ and only keep K2,∗,K3,∗ and K4,∗ in the memory. Compared with the exact
version, we don’t compute o4,1.

Next, we show the exact version of computing attention.
Definition D.9 (Exact Version). Given Q,K ∈ Rn×d

• For each i ∈ [n], we use oi ∈ Ri to denote a length-i vector.

– For each j ∈ [i], we use oi,j to denote the j-th coordinate of vector oi ∈ Ri

For the first layer, we have

• o1,1 = 1.

For the second layer, we have

• length-2 vector o2 := D−12︸︷︷︸
scalar

· exp(Q2,∗︸︷︷︸
1×d

(K≤2,∗)
⊤︸ ︷︷ ︸

d×2

)

• scalar D2 := exp(Q2,∗(K≤2,∗)
⊤)︸ ︷︷ ︸

1×2

· 12︸︷︷︸
2×1

For each i ∈ [n], for the i-th layer, we have

• length-i vector oi := D−1i︸︷︷︸
scalar

· exp(Qi,∗︸︷︷︸
1×d

(K≤i,∗)
⊤︸ ︷︷ ︸

d×i

)

• scalar Di := exp(Qi,∗(K≤i,∗)
⊤)︸ ︷︷ ︸

1×i

· 1i︸︷︷︸
i×1

Now, we show the approximate version of computing attention. Instead of computing the entire
attention oi, we only compute the attention of the tokens that are being tracked.
Definition D.10 (Approximate Version). Given Q,K ∈ Rn×d

• For each i ∈ [n], we use oi ∈ Ri to denote a length-i vector.

– For each j ∈ [i], we use oi,j to denote the j-th coordinate of vector oi ∈ Ri

• Let k ∈ [n] be the budget of the number of tokens we can track (due to the memory issue).
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For the first layer, we have

• o1,1 = 1.

For the second layer, we have

• length-2 vector o2 := D−12︸︷︷︸
scalar

· exp(Q2,∗︸︷︷︸
1×d

(K≤2,∗)
⊤︸ ︷︷ ︸

d×2

)

• scalar D2 := exp(Q2,∗(K≤2,∗)
⊤)︸ ︷︷ ︸

1×2

· 12︸︷︷︸
2×1

For each i ∈ [n], for the i-th token, we have

• Let Si ⊂ [n] denote the tokens we’re tracking when we are predicting the i-th token.

• |Si| = k

• |Si\Si−1| ≤ 1 or equivalently |Si ∩ Si−1| ≥ k − 1

• length-i vector oi := D−1i︸︷︷︸
scalar

· exp(Qi,∗︸︷︷︸
1×d

(KSi,∗)
⊤︸ ︷︷ ︸

d×i

)

• scalar Di := (exp(Qi,∗(KSi,∗)
⊤)− 1[i]\Si

)︸ ︷︷ ︸
1×i

· 1i︸︷︷︸
i×1

In a certain sense, the above definition is related to finding heavy hitters in compressive sensing (for
more background on compressive sensing, we refer readers to [124, 125, 126]).

D.6 Eviction Policy

The goal of this section is to our eviction policy under space limitation. We start by giving a process
without having space limitations. We denote the attention query matrix as Q ∈ Rn×d and the key
matrix as K ∈ Rn×d. Qi,∗ represents the i-th row of Q and K≤i,∗ represents the first i rows of K.
For simplicity, KSi,∗ denotes a sub-matrix of K which selects Si rows from K.
Definition D.11 (The generative process with Full knowledge). For each i ∈ [n], for the i-th token,
we have

• length-i vector oi := D−1i · exp(Qi,∗(K≤i,∗)⊤), which denotes the attention of the i-th
word.

• scalar Di := exp(Qi,∗(K≤i,∗)⊤) · 1i, which denotes the normalization factor.

In the above process, since we have no space limitation, then we can keep all the scores. In the
following process, we show how to handle things when there is a space limitation. In this case, we
need to dynamically maintain set Si such that |Si| ≤ k (Compared to the full knowledge case, we
can think of |Si| = i).
Definition D.12 (H2O Eviction Policy, Formal version of Definition 4.3). Let k denote the budget of
space and k < n. Let Fscore : 2

[n] → R denote certain score function. Let Si−1 denote the source
set. Let Si denote the target set. We defined the eviction policy g : Si−1 → Si s.t.

• |Si| ≤ k (KV cache size is not changing over the time)

• |Si\Si−1| ≤ 1 (we can evict at most 1 KV in the KV cache)

• We construct Si ← (Si−1∪{i})\{u} as u← argmaxv∈(Si−1∪{i}) Fscore(Si−1∪{i}\{v}}
Remark D.13. We remake that, in Definition 4.3, we introduce a simplified notation where we state
that |Si| = k in the first bullet point, but in general, we consider the case where |Si| ≤ k for the first
k tokens. To accommodate this more general scenario, we present Definition D.12, which provides a
broader definition that handles the situation where |Si| ≤ k.

37



Algorithm 2 H2 Eviction Algorithm, Query matrix Q ∈ Rn×d, key matrix K ∈ Rn×d, budget size
of KV cache k ∈ N. Formal and detailed version of Algorithm 1.

1: procedure H2_EVICTION(Q ∈ Rn×d,K ∈ Rn×d, k ∈ N)
2: S0 ← ∅, õ0 ← 0 ▷ Initialization the algorithm
3: for i = 1→ n do ▷ Linear scan each token
4: if i ≤ k then ▷ If the KV cache is not full
5: Si ← Si−1 ∪ {i} ▷ Expand the set directly
6: else ▷ If the KV cache is full
7: Di ← (exp(Qi,∗(KSi−1,∗)

⊤)− 1[i]\Si−1
) · 1i ▷ Compute the normalization factor

8: oi ← D−1i · exp(Qi,∗(KSi−1,∗)
⊤) ▷ Compute score vector

9: õi ← õi−1 + oi ▷ Accumulate the scores (Remark D.15)
10: Let score function be Fscore(T ) := h(

∑
s∈T õi,s) ▷ Score function (Remark D.14)

11: u← argmaxv∈(Si−1∪{i}) Fscore(Si−1 ∪ {i}\{v}} ▷ Find an entry to swap
12: Si ← (Si−1 ∪ {i})\{u} ▷ Construct Si

13: end if
14: end for
15: end procedure

Remark D.14. We remark the above function Fscore can have multiple choices. In the later analysis,
we provide two choices. If we use the exact function, then Fscore is fSi,i (see Definition D.23 and
Definition D.25). If we use the approximate function, then Fscore if f̃Si,i (see Definition D.24 and
Definition D.26). Let h : R → R (the h being used Line 10 in Algorithm 2) denote function. We
hope to choose h such that it gives the submodular property for the function Fscore in the sense of
our dynamic framework. For example, h(z) is usually chosen to be some non-decreasing concave
function such as

√
z + 1 and log(z + 1). For simplicity, in Algorithm 1 (which is the informal

version of Algorithm 2), we choose h(z) = z for the purpose of providing readers with an intuitive
understanding and due to space limitation.

Remark D.15. We remark that, in Line 10 in Algorithm 2, the õi,s is the accumulation of attention
score for the token s in set T . In our Algorithm 1, we only use os in Line 10 (see Algorithm 1) to
represent that accumulation of the attention score for simplicity.

In Algorithm 2, for simplicity of the presentation, we can create multiple vectors õ0, · · · õn (see Line 2,
Line 9, Line 10). However, every time at i-th, we only need to use the information for õi which has at
most length n size. Thus, a straightforward and better implementation for only using one length-n to
store accumulative score can reduce n2 usage to n.

D.7 Explaining Submodular Diminishing Return Property in Attention Scheme

In the standard submodular problem [123], we are given a ground set [n] and a function f : 2[n] → R.
The goal is to find a set of elements S such that f(S) is maximized.

We say function f is submodular (Recall the formal definition in Definition D.1), if for every
X,Y ⊂ [n] with X ⊆ Y and every x ∈ [n]\Y we have

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y )

Submodular functions can represent the cost of items, due to their diminishing returns property
[127, 128]. It suggests that the increase in information obtained from selecting a candidate object,
such as a word or sentence, becomes smaller as more objects have already been chosen for the
summary.

For instance, we introduce a new token, denoted as “w”, into two sets, S and S0, where the concepts
covered by S0 are a subset of those covered by S. By intuition, the information added to S0 by “w”
should be larger compared to adding it to S, as the new concepts carried by “w” might have already
been covered by the concepts present in S but not in S0. This property is known as the diminishing
return property. Hence, we propose that the neural coverage function [129] should exhibit a desirable
characteristic called submodularity.
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D.8 Submodular: High Level Ideas

We formalize the submodular function maximization problem with cardinality constraint in this
section. Informally, a set function is submodular if it has decreasing marginal increment.

Definition D.16 (Submodular function). We denote f : 2[n] → R as a set function. The discrete
derivative ∆f is defined as follows:

∆f (i | S) := f(S ∪ {i})− f(S).

A function f is submodular if, for any S ⊆ T and i ∈ [n]\T , the following inequality holds:

∆f (i | T ) ≤ ∆f (i | S).

For simplicity, we present the problem of maximizing a submodular function with a cardinality
constraint (1). Our goal is to solve the optimization problem efficiently.

max
S⊆[n]

f(S)

s.t. |S| ≤ k
(1)

Representation of f(S) One challenge in designing the algorithm is determining the representation
of input instances. Since the constraint in optimization problem (1) is straightforward, we need to
decide how to represent f(S). Suppose S = i1, i2, · · · , im ⊆ [n], we can decompose f(S) into a
sum of increments as follows:

f(S) = f(S0) +

m∑
j=1

(f(Sj)− f(Sj−1)), (2)

where S0 = ∅ and Sj = Sj−1+ij . Without loss of generality, we assume f(∅) = 0. By the definition
of ∆f (i|S), we have f(Sj) − f(Sj−1) = ∆f (ij |Sj−1). Therefore, the decomposition (2) can be
simplified as follows:

f(S) =

m∑
j=1

∆f (ij |Sj−1) (3)

To introduce our advanced data structure later, we further represent ∆f (i|S) in the form of

∆f (i|S) = u⊤i h(S)ui (4)

where ui ∈ Rd is a d-dimensional vector and h(S) ∈ Rd×d is a d-by-d matrix.

In practice, a significant subclass of submodular functions is the monotone submodular functions, i.e.
functions f satisfying f(A) ≤ f(B) for all A ⊆ B ⊆ [n]. When f is monotone, we could restrict
all h(S) to be positive semidefinite (PSD) matrixes. When the matrix h(S) is positive semidefinite
(PSD), it makes us achieve a faster acceleration.

D.9 Robust Greedy with Error Propagation

The procedure for the greedy selection algorithm initiates with empty set S0 = ∅. For each iteration
in the main loop, the algorithm chooses the element that maximizes the marginal increment to add to
the set. When the size of the set eventually reaches k, the algorithm return that set S. Specifically, for
iteration t ∈ {1, 2, · · · , k}, we let

St ← St−1 ∪ {jt}
where the element in the singleton is jt = argmaxj∈St−1

f(St−1 ∪ {j}). The greedy strategy is
effective in the sense that the approximation error of it is 1− 1/e.
Theorem D.17 ([130]). For a monotone submodular function f , the greedy algorithm (Algorithm 3)
guarantees to output a set S satisfying

f(S) ≥ (1− 1/e) max
|T |=k

{f(T )}.

Corollary D.18 ([131]). Given
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Algorithm 3 Greedy algorithm benchmark

1: procedure GREEDYALGORITHM(submodular function f )
2: S0 ← ∅ ▷ Initialize an empty set S0

3: for t = 0→ k − 1 do
4: j ← argmaxi{f(St ∪ {i})} ▷ Find the element i ∈ [n] that maximize f(St ∪ {i})
5: St+1 ← St ∪ {j} ▷ Append element i to set St to get St+1

6: end for
7: return Sk

8: end procedure

• accuracy parameter ϵ > 0.

• integer k ≥ 1

• Let O denote an oracle that takes an arbitrary set S ⊆ [n] and i ∈ [n]\S, returns a value
O(S, i) with guarantee that ∆(i|S)− ϵ ≤ O(S, i) ≤ ∆(i|S) + ϵ.

• Let A denote an algorithm that each time step t = 1, 2, · · · , k, it selects jt =
argmaxj{O(St−1, j)} and lets St ← St−1 ∪ {jt}.

Then this algorithm A

• returns a set Sk

• the Sk satisfy that

f(Sk) ≥ (1− 1/e) max
|T |=k

{f(T )} − k(2− 1/e)ϵ.

D.10 Robust Submodular and Adding Items

We first propose a lemma that shows the robustness of the submodular.

Lemma D.19. Suppose that for each i ∈ [n], we have

• for all Si ⊂ [n] with |Si| ≤ k

• for all X ⊂ [n], X ⊆ Si ∪ {i} and |X ∩ Si| ≤ |Si|,

|(f̃Si,i(X))− f̃Si,i(Si)− (fSi,i(X)− fSi,i(Si))| ≤ ϵ/(2n)

Let opti denote the optimal cost that can be achieved by using f in i-th iteration. If the greedy
algorithm use f to find the solution has performance at least (1− 1/e) · opti, then using f̃ , we can
obtain a solution that has performance at least (1− 1/e) · opti − ϵ

Proof. The proof follows from Lemma D.18.

Next, we explain how to add items into sets based on exact values.

Definition D.20 (Expanding items based on exact value). If the following conditions hold

• Let Si ⊆ [i− 1].

• Let fSi,i : 2
[i] → R.

Then, we can define Si+1 as follows

• If |Si| = k then Si+1 = Si ∪ {i}\u where u = argmaxv∈Si∪{i} fSi,i(Si ∪ {i}\v) −
fSi,i(Si)

• If |Si| < k, then Si+1 = Si ∪ {i}.
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Remark D.21. We remark that u = argmaxv∈Si∪{i} fSi,i(Si ∪ {i}\v)− fSi,i(Si) is the same as
u = argmaxv∈Si∪{i} fSi,i(Si ∪ {i}\v). For the convenience of discussion and analysis, we will
switch to using both cases in different places.

Here, we explain how to add items into sets via approximate values.
Definition D.22 (Expanding items based on approximate value). If the following conditions hold

• Let Si ⊆ [i− 1].

• Let f̃Si,i : 2
[i] → R.

Then, we can define Si+1 as follows

• If |Si| = k then Si+1 = Si ∪ {i}\u where u = argmaxv∈Si∪{i} f̃Si,i(Si ∪ {i}\v) −
f̃Si,i(Si)

• If |Si| < k, then Si+1 = Si ∪ {i}.

D.11 Universal Conditions

We state several definitions for both the exact function and approximation function.
Definition D.23 (Universal Monotone Condition (for exact function)). We say f has universal
monotone condition, if for all i ∈ [n] for all Si ⊆ [i− 1], we have

fSi,i(X) ≥ fSi,i(Y ), ∀Y ⊂ X

Definition D.24 (Universal Monotone Condition (for approximate function)). We say f̃ has universal
monotone condition, if for all i ∈ [n] for all Si ⊆ [i− 1], we have

f̃Si,i(X) ≥ f̃Si,i(Y ), ∀Y ⊂ X

Definition D.25 (Universal Dynamic Condition 1(for exact function)). We say f has universal
dynamic condition 1(for exact function), if for all i ∈ [n] for all Si ⊆ [i − 1], Si−1 ⊆ [i − 2],
|Si\Si−1| ≤ 1, we have

fSi,i(Si) ≥ (1− θ) · fSi−1,i−1(Si)

Definition D.26 (Universal Dynamic Condition 1 (for approximate function)). We say f̃ has universal
dynamic condition 1(for approximate function), if for all i ∈ [n] for all Si ⊆ [i− 1], Si−1 ⊆ [i− 2],
|Si\Si−1| ≤ 1, we have

f̃Si,i(Si) ≥ (1− θ) · f̃Si−1,i−1(Si)

We define opti as follows:
Definition D.27. Let k denote the budget length. For each i ∈ [n], we define opti as

max{fX,i(Y ) | X ⊆ [i− 1], Y ⊆ [i], |X| ≤ k, |Y | ≤ k, |Y \X| ≤ 1}.
Definition D.28 (Universal Dynamic Condition 2). For i ∈ [n], we define opti as Definition D.27.
We say it has universal dynamic condition if for each i ∈ [n], we have

opti ≥ (1− γ) · opti−1.

D.12 Induction Lemma for Exact Function

The goal of this section is to prove Lemma D.29
Lemma D.29 (Induction Lemma). For a fixed i, suppose the following conditions hold

• Set Condition. Si ⊆ [i− 1]

• Budget Condition. |Si| ≤ k
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• Value Condition. fSi−1,i−1(Si) ≥ (1− 1/e) · (1− θ)i(1− γ)iopti

• Universal Dynamic Condition 1 (for exact function). (See Definition D.25) fSi,i(Si) ≥
(1− θ) · fSi−1,i−1(Si)

• Universal Dynamic Condition 2. (See Definition D.28) opti ≥ (1− γ) · opti+1

• Universal Monotone Condition (for exact function). (See Definition D.23) fSi,i(X) ≥
fSi,i(Y ) for all Y ⊂ X

Then if we construct Si+1 as Definition D.20, then we have

• Set Condition. Si+1 ⊆ [i]

• Budget Condition. |Si+1| ≤ k

• Value Condition. fSi,i(Si+1) ≥ (1− 1/e) · (1− θ)i+1(1− γ)i+1opti+1

Proof. Proof of Set Condition.

Note that Si ⊆ [i− 1], by using the way we construct Si+1, then it is obvious that Si+1 ⊆ [i].

Proof of Budget Condition.

Note that |Si| ≤ k, by using the way we construct Si+1, then it is straightforward that |Si+1| ≤ k.

Proof of Value Condition.

We can show that

fSi,i(Si+1) ≥ fSi,i(Si)

≥ (1− θ) · fSi−1,i−1(Si)

≥ (1− θ) · ((1− 1/e)(1− θ)i(1− γ)iopti − i · ϵ0)
≥ (1− θ) · ((1− 1/e)(1− θ)i(1− γ)i+1opti+1)

≥ (1− 1/e) · (1− θ)i+1(1− γ)i+1opti+1.

where the first step follows from Universal Monotone Condition, the second step follows from
Universal Dynamic Condition 1, the third step follows from Value Condition, the forth step follows
from Universal Dynamic Condition 2, and the last step follows from simple algebra.

Thus, we complete the proof.

D.13 Induction Lemma for Approximate Function

The goal of this section is to prove Lemma D.30
Lemma D.30 (Induction Lemma). For a fixed i, suppose the following conditions hold

• Set Condition. Si ⊆ [i− 1]

• Budget Condition. |Si| ≤ k

• Value Condition. fSi−1,i−1(Si) ≥ (1− 1/e) · (1− θ)i(1− γ)iopti − i · ϵ0
• Universal Dynamic Condition 1 (for approximate function). (see Definition D.26)
f̃Si,i(Si) ≥ (1− θ) · f̃Si−1,i−1(Si)

• Universal Dynamic Condition 2. opti ≥ (1− γ) · opti+1

• Universal Approximate Condition. (See Definition D.28) fSi,i(X) ≥ f̃Si,i(X)− ϵ0 for
all X

• Universal Monotone Condition (for approximate function). (see Definition D.24)
f̃Si,i(X) ≥ f̃Si,i(Y ) for all Y ⊂ X

Then if we construct Si+1 as Definition D.22, then we have
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• Set Condition. Si+1 ⊆ [i]

• Budget Condition. |Si+1| ≤ k

• Value Condition. fSi,i(Si+1) ≥ (1− 1/e) · (1− θ)i+1(1− γ)i+1opti+1 − (i+ 1) · ϵ0

Proof. Proof of Set Condition.

Note that Si ⊆ [i− 1], by using the way we construct Si+1, then it is obvious that Si+1 ⊆ [i].

Proof of Budget Condition.

Note that |Si| ≤ k, by using the way we construct Si+1, then it is straightforward that |Si+1| ≤ k.

Proof of Value Condition.

We can show that

fSi,i(Si+1) ≥ f̃Si,i(Si+1)− ϵ0

≥ f̃Si,i(Si)− ϵ0

≥ (1− θ) · f̃Si−1,i−1(Si)− ϵ0

≥ (1− θ) · ((1− 1/e)(1− θ)i(1− γ)iopti − i · ϵ0)− ϵ0

≥ (1− θ) · ((1− 1/e)(1− θ)i(1− γ)i+1opti+1 − i · ϵ0)− ϵ0

≥ (1− 1/e) · (1− θ)i+1(1− γ)i+1opti+1 − (i+ 1) · ϵ0.

where the first step follows from Universal Approximate Condition, the second step follows from
Universal Monotone Condition, the third step follows from Universal Dynamic Condition 1, the
forth step follows from Value Condition, the fifth step follows from Universal Dynamic Condition
2, and the last step follows from simple algebra.

Thus, we complete the proof.

D.14 Theoretical Result

We first give the guarantee of our full-knowledge version (without cache size limitation).

Lemma D.31 (Formal version of Lemma 3.1). Under the mild assumption, let k denote any target
size. If we greedily compute the attention score based on full information, then we can find the set Si

such that

f(Si) ≥ (1− 1/e) · (1− α)opti,

where α ∈ (0, 1) are parameters.

Proof. The proof follows from using Theorem D.17, Corollary D.18, Lemma D.29 with choosing
θ = γ = α/(10n).

Next, we show the guarantee for our robust and approximate greedy eviction policy algorithm
(Algorithm 2).

Theorem D.32 (Formal version of Theorem 4.4). Under the mild assumption, let k denote the budget
of space limitation. If for each token, we greedily compute the attention score based on top-k choice,
then we can show the set S̃i we generate each for token i ∈ [n] satisfy that

f(S̃i) ≥ (1− 1/e) · (1− α)opti − β,

where α ∈ (0, 1), β > 0 are parameters.

Proof. The proof follows from using Theorem D.17, Corollary D.18, Lemma D.30 with choosing
ϵ0 = β/(10n) and θ = γ = α/(10n).
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D.15 Extended Related Work for Theoretical Attention Problems

The static attention computation is asking the following question that given Q,K, V ∈ Rn×d, the
goal is to D−1 exp(QK⊤)V where D = diag(exp(QK⊤)1n). [98] studied the static attention
computation from both algorithm and hardness. On the positive, they provide an almost linear time
algorithm to approximately compute the attention matrix. On the negative side, assuming a strong
exponential time hypothesis (SETH), they prove a hardness result. Their hardness result is, unless
SETH fails, there is no algorithm that runs in truly subquadratic time to approximately compute
the attention matrix. Further, [100] considers the dynamic of attention computation problem. They
also provide both algorithmic results and hardness results. In the work of [103], they consider
the sparsification of attention matrix construction. In particular, they assume that situation that
d ≫ n, and show how to sparsify the columns of matrix Q. [103] provides two algorithms, one
is a randomized algorithm, and the other is a deterministic algorithm. Differential privacy is a
famous and textbook topic in graduate school, recently the work of [101] shows how to give a
differentially private algorithm for computing the attention matrix. For a given A ∈ Rn×d and
vector b ∈ Rn, [104] formulates and studies exponential regression minx ∥ exp(Ax) − b∥2. Then
[105] considers the normalization factor in exponential regression and defines the softmax regression
problem minx ∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥2. [107] moves the scaling factor from exp(Ax) to
b and defines a rescaled softmax regression problem minx ∥ exp(Ax)− ⟨exp(Ax),1n⟩ · b∥2.

D.16 Sparsity Preserving

Recall that in Figure 2, we observe that even when trained densely, the attention matrices of LLMs
are over 95% sparse at inference time. Only 5% of the KV cache is sufficient for decoding the same
output token at each generation step. Here, we provide some formal formulations for sparsity.
Definition D.33. Suppose the following conditions

• Let S0 ⊂ [m].

• Let k = |S0|.
• Let τ ∈ (0, 1) denote a threshold for truncating the value.

• Let α ∈ (0, 1) denote a fraction of mass (larger than τ ) outside S0.

• Let mapping D : Rd → Rm
≥0.

• For each x ∈ Rd, D(x) ∈ Rm is a vector that has length m.

We say the distribution D is (α, τ, k)-good if the following conditions hold

• For all x ∈ Rd, S0 ⊂ suppτ (D(x))
• For all x ∈ Rd, | suppτ (D(x))\S0| ≤ α · k

Claim D.34. Suppose we sample n points {x1, x2, · · · , xn} ⊂ Rd from (α, τ, k)-good distribution
uniformly at random, then we have

• S0 ⊆ ∩i∈[n] suppτ (xi)

• |(∪i∈[n] suppτ (D(x)))\S0| ≤ αkn

Proof. Since for all i ∈ [n], we have S0 ⊆ suppτ (D(xi)), thus

S0 ⊆ ∩i∈[n] suppτ (xi).

Therefore we proved the first property.

We know that for all i ∈ [n], we have | suppτ (D(x))\S0| ≤ αkn. Thus

|(∪i∈[n] suppτ (D(xi)))\S0| ≤
n∑

i=1

| suppτ (D(xi)))\S0| ≤ n · αk

Therefore, we finish the proof for the second property.
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D.17 Definition of Loss Function

In this section, we follow the theoretical softmax regression literature [105] and define a number
of functions to make the calculations of gradient and Hessian convenient. We also proposed a new
penalty term (ℓ1 type sparsity penalty, see Definition D.41) into the final loss function, which is not
studied in previous work [104, 105, 107, 110, 132, 133]. We first provide some function definitions.
Definition D.35 (Function u, [105]). Given matrix A ∈ Rn×d, let function u : Rd → Rn be defined
as follows

u(x) := exp(Ax)

Definition D.36 (Function α, see Definition 5.4 in [105] as an example). We define u(x) as Defini-
tion D.35. Then we define α : Rd → R as follows

α(x) := ⟨u(x),1n⟩
Definition D.37 (Function f , see Definition 5.1 in [105] as an example). Provided that the following
conditions are true

• We define u(x) as Definition D.35.

• We define α(x) as Definition D.36

Let function f : Rd → Rn be defined as follows

f(x) := α(x)−1u(x).

Definition D.38 (Function c, see Definition 5.5 in [105] as an example). Provided that the following
conditions are true

• Given a vector b ∈ Rn.

• Let f(x) be defined as Definition D.38.

Then, let function c : Rd → Rn defined as follows

• c(x) := f(x)− b.
Definition D.39 (Loss function Lexp, see Definition 5.3 in [105] as an example). We define Lexp :
Rd → R

Lexp(x) := 0.5 · ∥c(x)∥22.

Definition D.40 (Loss function Lreg). Given A ∈ Rn×d.

Let function Lreg : Rd → R be defined as follows

Lreg(x) := 0.5 · ∥ diag(w)Ax∥22

We define a novel penalty function
Definition D.41 (Implicitly controlling the sparsity). Given A ∈ Rn×d.

We define

Lsparse(x) := ∥ exp(Ax)∥1.

Then it is obvious that we have
Claim D.42. Given A ∈ Rn×d. Let u be defined as Definition D.35. Let α be defined as Defini-
tion D.36.

We have

• Lsparse(x) = ⟨exp(Ax),1n⟩
• Lsparse(x) = ⟨u(x),1n⟩
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• Lsparse(x) = α(x)

Proof. The proof is trivially following from the definition of u(x) (see Definition D.35) and α(x)
(see Definition D.36).

The final loss function can be defined as follows. Intuitively, we can write attention D−1 exp(QK⊤)
into n subproblems where each subproblem can be viewed as one softmax problem.
Definition D.43. If the following conditions hold

• We define Lexp as Definition D.39.

• We define Lreg as Definition D.40.

• We define Lsparse as Definition D.41.

Then we define L function

L(x) := Lexp(x) + Lsparse(x) + Lreg(x).

D.18 Gradient

Next, we show the gradient of Lexp.
Lemma D.44 (Gradient, Lemma 5.6 in [105]). Provided that the following conditions are true

• Given matrix A ∈ Rn×d and a vector b ∈ Rn.

• Let A∗,i ∈ Rn denote the i-th column of matrix A, for every i ∈ [d].

• We define α(x) as Definition D.36.

• We define f(x) as Definition D.37.

• We define c(x) as Definition D.38.

• We define Lexp(x) as Definition D.39.

• Let ◦ denote hadamard product.

For every i ∈ [d], we have

• Part 1.

d exp(Ax)

dxi
= exp(Ax) ◦A∗,i

• Part 2.

d⟨exp(Ax),1n⟩
dxi

= ⟨exp(Ax), A∗,i⟩

• Part 3.

dα(x)−1

dxi
= −α(x)−1 · ⟨f(x), A∗,i⟩

• Part 4.

df(x)

dxi
=

dc(x)

dxi
= − ⟨f(x), A∗,i⟩ · f(x) + f(x) ◦A∗,i

• Part 5.

dLexp(x)

dxi
= A⊤∗,i · (f(x)(f(x)− b)⊤f(x) + diag(f(x))(f(x)− b))
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D.19 Hessian

Here, we compute the Hessian for several functions.
Lemma D.45 (Hessian of u(x), Lemma 5.9 in [105]). Provided that the following conditions are
true

• Given a matrix A ∈ Rn×d.

• For every i ∈ [d], let A∗,i ∈ Rn denote the i-th column of matrix A.

• Let ◦ denote hadamard product.

Then, we have, for each i ∈ [d]

• Part 1.

d2 exp(Ax)

dx2
i

= A∗,i ◦ u(x) ◦A∗,i

• Part 2.

d2 exp(Ax)

dxidxj
= A∗,j ◦ u(x) ◦A∗,i

Lemma D.46 (Lemma 5.10 in [105]). Provided that the following conditions are true

• We define α(x) as Definition D.36.

• For every i ∈ [d], let A∗,i ∈ Rn denote the i-th column of matrix A.

• Let ◦ denote hadamard product.

Then, we have

• Part 1.

d2α(x)

dx2
i

= ⟨u(x), A∗,i ◦A∗,i⟩

• Part 2.

d2α(x)

dxidxj
= ⟨u(x), A∗,i ◦A∗,j⟩

• Part 3.

d2α(x)

dx2
= A⊤ diag(u(x))A

D.20 Hessian is Positive Definite

It is well known that in literature [104, 105, 107], the Hessian H of loss function can be written as
A⊤(B(x) +W 2)A for some matrix function B(x) ∈ Rn×n (for example see explanation in Section
5.10 in [105]). In this section, we show that Hessian is positive definite.
Lemma D.47. If the following conditions hold

• Given matrix A ∈ Rn×d.

• We define Lsparse(x) as Definition D.41.

• We define Lsparse(x) Definition D.40.

• We define Lsparse(x) Definition D.39.

• Let L(x) = Lexp(x) + Lsparse(x) + Lreg(x).
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• Let A⊤(B(x) +W 2)A be the Hessian of L(x)

• Let W = diag(w) ∈ Rn×n. Let W 2 ∈ Rn×n denote the matrix that i-th diagonal entry is
w2

i,i.

• Let σmin(A) denote the minimum singular value of A.

• Let l > 0 denote a scalar.

Then, we have

• Part 1. If all i ∈ [n], w2
i ≥ 20 + l/σmin(A)2, then

d2L

dx2
⪰ l · Id

• Part 2 If all i ∈ [n], w2
i ≥ 200 · exp(R2) + l/σmin(A)2, then

(1− 1/10) · (B(x) +W 2) ⪯W 2 ⪯ (1 + 1/10) · (B(x) +W 2)

Proof. The entire proof framework follows from [104, 105, 107], in the next few paragraphs, we
mainly explain the difference.

The B(x) based on Lsparse is diag(u(x)). Note that it is obvious that

diag(u(x)) ⪰ 0.

From the upper bound size, we know that

diag(u(x)) ⪯ ∥u(x)∥∞ · In
⪯ exp(R2)

where the last step follows from Proof of Part 0 in Lemma 7.2 in [105].

To prove Part 1, following from [104, 105], we only use the lower bound of diag(u(x)). By putting
things together, we get our results.

To prove Part 2, we follow from [107] and use both the upper bound and lower bound of diag(u(x)).

D.21 Hessian is Lipschitz

In this section, we show Hessian is Lipschitz.
Lemma D.48. If the following conditions hold

• Let H(x) = A⊤(B(x) +W 2)A denote the Hessian of L.

Then, we have

• ∥H(x)−H(y)∥ ≤ n2 exp(40R2)∥x− y∥2

Proof. The entire proof framework follows from [104, 105, 107], in the next few paragraphs, we
mainly explain the difference.

Note that the B(x) based on Lexp + Lreg have been proved by [105]

We only need to prove B(x) based on Lsparse and add them together.

Note that B(x) based on Lsparse is in fact diag(u(x)).

Using Lemma 7.2 in [105], we know that

∥ diag(u(x))− diag(u(y))∥ ≤ ∥u(x)− u(y)∥2
≤ 2
√
nR exp(R2)∥x− y∥2

where the last step follows from Part 1 in Lemma 7.2 in [105].

Thus, putting things together, we complete the proof.
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D.22 Greedy Type Algorithm

In this section, we propose a greedy-type algorithm (based on the approximate Newton method) to
solve the optimization problem.

Algorithm 4 A greedy type algorithm.

1: procedure OURITERATIVEMETHOD(A ∈ Rn×d, b ∈ Rn, w ∈ Rn, ϵ, δ)
2: Initialize x0

3: T ← log(∥x0 − x∗∥2/ϵ) ▷ Let T denote the number of iterations.
4: for t = 0→ T do
5: D ← Bdiag(xt) + diag(w ◦ w)
6: D̃ ← SUBSAMPLE(D,A, ϵ1 = Θ(1), δ1 = δ/T )
7: Compute gradient g exactly
8: Get the approximate Hessian H̃ by computing A⊤D̃A

9: Update xt+1 by using the Newton step xt + H̃−1g
10: end for
11: x̃← xT+1

12: return x̃
13: end procedure

Theorem D.49. Given matrix A ∈ Rn×d, b ∈ Rn, and w ∈ Rn.

• We use x∗ to denote the optimal solution of

min
x∈Rd

Lexp + Lsparse + Lreg

that

– g(x∗) = 0d, where g denotes the gradient function.
– ∥x∗∥2 ≤ R.

• Suppose that R ≥ 10, M = exp(Θ(R2 + log n)), and l > 0.

• Assume that ∥A∥ ≤ R. Here ∥A∥ denotes the spectral norm of matrix A.

• Suppose that b ≥ 0n and ∥b∥1 ≤ 1. Here 0n denotes a length-n vector where all the entries
are zeros. (Here b ≥ 0n denotes bi ≥ 0 for all i ∈ [n])

• Assume that w2
i ≥ 200 · exp(R2) + l/σmin(A)2 for all i ∈ [n]. Here σmin(A) denotes the

smallest singular value of matrix A.

• Let x0 denote an starting/initial point such that M∥x0 − x∗∥2 ≤ 0.1l.

• We use to ϵ ∈ (0, 0.1) represent our accuracy parameter.

• We use δ ∈ (0, 0.1) to represent failure probability.

There is a randomized algorithm that

• runs log(∥x0 − x∗∥2/ϵ) iterations

• spend

O((nnz(A) + dω) · poly(log(n/δ))

time per iteration,

• and finally outputs a vector x̃ ∈ Rd such that

Pr[∥x̃− x∗∥2 ≤ ϵ] ≥ 1− δ.
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Proof. The proof framework follows from approximate Newton (second order method) literature
[134, 135, 136, 137, 138, 139, 140, 141, 104, 105, 107, 110, 111, 142, 143, 144, 145].

Following from Lemma D.47, we know the Hessian of the loss function is positive definite.

Following from Lemma D.48, we know the Hessian of L is Lipschitz.

Following Section 9 in [105], by running Algorithm 4, we complete the proof.

We remark that ω denotes the exponent of matrix multiplication (i.e., nω is the time of multiplying
an n× n matrix with another n× n matrix). The most naive algorithm gives ω = 3. Currently, the
state-of-the-art algorithm gives ω = 2.373.
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