
Optimistic Exploration in Reinforcement
Learning Using Symbolic Model Estimates – Main

Supplementary file

Anonymous Author(s)
Affiliation
Address
email

Abstract
In this appendix, Section 1 will cover the formal statements and proof sketches1

for various theoretical results, Section 2 will cover the implementation details2

including hyperparameters, Section 4 will provide a list of files included in the3

supplementary package and finally Section 5 will cover the various assumptions4

made in the work.5

1 Theoretical Results6

First result we are interested in establishing is the fact that for any given MDP of the form described7

in Section 3.1 in the main paper, there exists a corresponding symbolic model that meets the criteria8

discussed in Section 3.2 in the paper.9

Proposition 1 For an MDP of the form M = ⟨S, T,A, I,R⟩, there exists a grounded symbolic10

model M↓ = ⟨F↓, A↓, I, G⟩, such that there exists11

1. a mapping C from the state S of M to the states of M↓,12

2. a mapping C−1 from the actions A↓ of M↓ to the actions A of M, and13

3. a mapping from valid traces in M to valid plans in M↓ and vice-versa.14

Proof Sketch: We can build such a model by adding one grounded predicate (each corresponding15

to a unique lifted predicate of arity 0) for each state other than ⊥ into F↓. Now a state in S maps16

(defined by C) exactly to the symbolic state where the corresponding predicate is true and none of17

the other fluents are true. Now for the action, we will start with an action definition that includes18

conditional effect, and then convert it to a form assumed by the work. A conditional effect captures19

cases where an effect of an action only fires if the state meets certain criteria. Now we create one20

symbolic action for each MDP action. For each possible transition between states (other than ⊥), we21

will add a corresponding conditional effect that takes the predicate corresponding to source state as22

condition and as effect the predicate corresponding to the target state. We will keep as precondition23

of the actions a disjunctive list of all possible states where it will not fail. For the goal action, we24

will have corresponding symbolic goal action whose precondition corresponds to potential states in25

SG and the effect is a goal predicate. The initial state consists of only the predicate corresponding26

to the state I and the goal corresponds to the goal predicate. Now we can convert the actions with27

conditional effects to ones with no conditional effect (cf. [3]). Now the action mapping C−1, will28

map each of these new actions to the original MDP action from which it was defined. Now a plan29

is only valid in this model, if there exists a sequence of transitions from initial state to goal with30

non-zero probability. Similarly, for every valid trace there must exist a valid plan where each MDP31

action could be replaced by one of the potential symbolic actions that maps to it.32

Next we will talk about the optimism of the initial model estimate33

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Proposition 2 MC
0 = ⟨F C

↓ , A
C
↓ , I

C , GC⟩. More formally, every action a ∈ AC
↓ will be defined as34

follows: a = ⟨prea0 , add
a
0 , del

a
0⟩, where prea0 = dela0 = ∅ and adda

0 = F C
↓ is optimistic for any35

MDP model such that there exists a mapping C from MDP state to symbolic states and a function C−136

mapping symbolic actions to MDP actions.37

This can be easily shown by the fact that every possible action sequence is a possible plan here.38

Moving onto the update rule.39

Proposition 3 Update rule as presented in Section ??, will only result in an optimistic representation.40

Proof Sketch: The important point to note is that at any point, the update rule is only applied to41

an optimistic representation. So, in order for it to result in a non-optimistic model, it must have42

removed a plan corresponding to a valid trace. Given our initial construction of MC
0 , we always43

ensure that in MC
0 the execution of an action a at a state C(s) will result in a symbolic state that is a44

superset of C(s′), where T (s, a, s′) = 1. Note that an application of an update rule will only extend45

the precondition if the corresponding MDP action fails and the preconditions are extended to exclude46

only the current state (though the list of excluded state, action pairs grows as the number of failed47

samples grows). Additionally, the effect is changed only to disallow impossible transitions. Since48

the transitions are deterministic, only one sample is needed to determine that no other transitions are49

possible from that state and action. This means that the above property (the fact that the resultant50

symbolic state will be superset) will be preserved through updates. Which in turn means that any51

plan that previously corresponded to a valid trace can become invalid.52

Now coming to the theorem53

54

Theorem 1 Algorithm 1 (as referenced in the main paper) will (a) terminate in a finite number of55

steps and (b) identify a path to a goal (provided one exists); as long as the diverse planner used is56

complete (i.e., it will return a non-empty plan set as long as there exists a valid plan).57

58

Proof Sketch The validity of this theorem follows from the fact that the update rule will59

remove any plan that doesn’t correspond to a valid trace from consideration again. If the planner60

is complete then it will effectively iterate over all possible plans. Eventually finding one that61

corresponds to a path that goes to the goal. This is guaranteed to exit in finite steps, as the set of62

non-redundant plans is guaranteed to be finite when the state space is finite.63

Now revisiting Proposition 164

65

Proposition 1 Let Ā = ⟨a1, ..., am⟩ be a set of actions marked as being instances of a sin-66

gle lifted action a↑. Then min_add must be a superset of add effects of a↑ and max_del a superset67

of deletes of a↑, where min_add and max_del are calculated for Ā68

69

Proof Sketch The validity is trivial. The update rule makes sure that every effect estimate70

will be an optimistic estimate of the true ground action effects. In the case of add effects this estimate71

will be a superset and for delete effects it will be a subset. Thus, the lifted representation of each set72

must correspond to optimistic estimates of the true lifted representation of the effects.73

2 Implementation Details74

All experiments were on a laptop running Mac OS v 11.06, with 2 GHz Quad-Core Intel Core75

i5 and 16 GB 3733 MHz LPDDR4X. We did not use CUDA in any of the experiments. For the76

planner, we used the FI-diverse-agl planner provided as part of the forbid iterative planner. As77

discussed we generated 10 plans in every planing query. The search was given a maximum threshold78

of 1000 iterations, but we never reached that limit given our time limit. We stop an action from being79

considered if it fails 10 times in a row. We will update this upperbound on number of failures if the80

planner returns empty plan at any point. Since we found out that the planner was slowed down by81

the introduction of disjunctive preconditions, we replaced the disjunctions with a set of actions (this82

is an equivalent compilation popular within planning). To control the growth of the precondition,83

we introduce an upper bound on its size, set to 10 in our experiment. Note that the true size of the84

preconditions in all instances we consider here is significantly smaller than our bound. We could85

make the bound adaptive to a domain, but we do not expect it to make any significant difference. For86

2



all the RL baselines we used a discount factor of γ. For Q learning and R max, we used a maximum87

of 1000000 episodes with 200 steps per episode. For exploration, the ϵ and decay rates were set88

as the same as the one used by SimpleRL experiment scripts. For PPO, we used the same default89

values used by [2]. The environment names for the two problems we tested in minigrid where where,90

MazeRooms-8by8-DoorKey-v0 and MazeRooms-2by2-TwoKeys-v0. While creating the PDDL91

model for minigrid we combined the turn actions with the other actions (move, pickup, drop, etc.), to92

avoid potential conditional effects.93

3 Additional Experiments94

3.1 Comparison with a Symbolic Baseline95

To see how our method compares against other methods for symbolic model acquisition, we look at96

how many samples are required by a popular model learning method (cf. [1]) to generate a model97

that can produce a goal reaching plan. Since we don’t have access to a plan library, we will generate98

one through random walks on our simulator. We focused on the Blocksworld domain, and for each99

of the five problems, we look at the number of samples required to generate a model that allows a100

potential plan to the goal. Since the method generates a pessimistic approximation of the model, any101

plan generated by the model is guaranteed to be valid and thus the method no longer requires the use102

of diverse planners to generate potential plans. We placed an upper bound of 600000 on the number103

of samples originally collected from the simulator (this is nearly six times larger than the number104

of samples required by our method). Out of the five problems, we found that only the method was105

only able to learn a model capable of generating a valid plan in the case of the first problem instance.106

Even for that problem, we found that the method took on average 548287.8 samples.107

3.2 Kitchen Domain108

As an additional experiment, we tested our method on the symbolic part of the Kitchen Domain [5].109

We tested our method on the domain by creating a symbolic simulator that uses the descriptions110

provided in the appendix of the paper (specifically the inter-dependencies listed in Figure 5). The111

purely symbolic domain consisted of one action for each high-level goal possible and the preconditions112

were built based on the relationships described in the paper. The exact domain consisted of 15113

predictions and 13 actions. The goal was the same as the one described in the paper (i.e., both banana114

and cabbage is cooked, they are placed on plates and the plates are served). The lifted version of our115

method was able to identify a valid plan in 61.46 sec using 24727.2 time steps (averaged across five116

runs) and the non lifted version took 393.57 secs and used 140681 samples (again averaged across117

five runs). Now executing the plans in the true simulator would require an additional component an118

additional step to drive the simulated robot to achieve each of these subgoal. However, as discussed119

in the paper, we can do that by using a motion level planner (like an RRT based planner).120

4 Overview of Supplementary Files121

The structure of the supplementary files are as follows122

1. Baselines - This directory includes all the baselines we used to compare with our system123

2. model-learning-simulators - includes the code to run our system and the test files used, so124

within this directory you would see125

(a) Domains - The test problems we used126

(b) src - the code base127

(c) experiment_scripts - the files to run to get the results reported in Table 1, 2 and Figure128

1. The script files are named in a way that they are self-explanatory.129

3. Minigrid - The code for the updated minigrid environment we made use of in our experi-130

ments.131

4. Simple_rl_updated - Includes a modified version of Q learning that can be initialized with a132

plan found through our method.133

5 Assumptions Made134

Here we explicitly mention all the theoretical assumptions we have made in the paper and how to135

relax them136

3



Model dynamics:137

Deterministic model – our primary formulation and evaluation focus on deterministic domains.138

However, as discussed in the future works section, we can directly apply our method to stochastic139

environments by creating symbolic models that correspond to so-called all outcome determinizations140

of the model [6].141

Observability:142

We assume that the environment is fully observable. However, previous work have looked at how143

partial observability can be compiled into classical planning model. For optimistic estimates, we can144

make further simplification to assume that all unobservable facts are true, thus allowing us to directly145

apply our methods in such settings.146

Finite state and action space:147

We assume that the underlying state and action space is finite and thus can be represented exactly148

using a finite symbolic models. For cases where this is not true, we can still employ our symbolic149

model to capture an abstraction of the true state and action space.150

Symbolic observations:151

We assume that noise-free classifiers for each symbolic fluent are given. Previous work [4] have152

looked at the problem of learning such classifiers, which we can directly use in our scenario. If the153

classifiers are noisy, this corresponds to a special case of partial observability. As discussed above,154

we therefore can extend our model to handle noisy classifiers.155

References156

[1] Brendan Juba and Roni Stern. Learning probably approximately complete and safe action models157

for stochastic worlds. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pages158

9795–9804. AAAI Press, 2022.159

[2] Junkyu Lee, Michael Katz, Don Joven Agravante, Miao Liu, Tim Klinger, Murray Campbell,160

Shirin Sohrabi, and Gerald Tesauro. AI planning annotation for sample efficient reinforcement161

learning. CoRR, abs/2203.00669, 2022.162

[3] Bernhard Nebel. On the compilability and expressive power of propositional planning formalisms.163

J. Artif. Intell. Res., 12:271–315, 2000.164

[4] Sarath Sreedharan, Anagha Kulkarni, and Subbarao Kambhampati. Explainable human–ai165

interaction: A planning perspective. Synthesis Lectures on Artificial Intelligence and Machine166

Learning, 16(1):1–184, 2022.167

[5] Danfei Xu, Roberto Martín-Martín, De-An Huang, Yuke Zhu, Silvio Savarese, and Li Fei-Fei.168

Regression planning networks. In Advances in Neural Information Processing Systems 32:169

Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December170

8-14, 2019, Vancouver, BC, Canada, pages 1317–1327, 2019.171

[6] Sung Wook Yoon, Alan Fern, and Robert Givan. Ff-replan: A baseline for probabilistic plan-172

ning. In Proceedings of the Seventeenth International Conference on Automated Planning and173

Scheduling, ICAPS, page 352. AAAI, 2007.174

4


	Theoretical Results
	Implementation Details
	Additional Experiments
	Comparison with a Symbolic Baseline
	Kitchen Domain

	Overview of Supplementary Files
	Assumptions Made

