
A Implementation Details1

Our base model Fθ and the expert adaptor Eθ are constructed as 8-layer and 4-layer Multilayer2

Perceptrons (MLPs) with 256 channels, respectively, featuring ReLU activations at each layer. For3

every image, 1024 rays are sampled, with the network generating 64 coarse and 128 fine points per4

ray. During the conflict-aware self-distillation process, an additional 1024 rays are sampled to derive5

supervision signals from the teacher model. Our implementation utilizes the PyTorch framework [2],6

leveraging the Adam optimizer [1] with an initial learning rate set to 5e-4, decaying exponentially7

down to 5e-5. The initial network Fθ is trained for 200k iterations on the original scenes from each8

dataset. Subsequently, the expert adaptor Eθ undergoes fine-tuning for 10k iterations on each newly9

introduced scene, utilizing an initial learning rate of 5e-4. All experimental procedures are carried10

out on a single NVIDIA GeForce RTX 3090 GPU.11

B More Experiments12

B.1 Synthetic Dataset Kitchen13

Dataset We conduct a comprehensive evaluation of our algorithm using the Dataset Kitchen,14

simulating a room-level kitchen environment as depicted in Figure B.1. For the initial training phase,15

200-300 multi-view images are captured from six strategically planned camera trajectories to ensure16

complete scene coverage and robust training. The dataset is divided into an 80% training subset and a17

20% validation subset for performance evaluation. Modifications to the original scene are managed18

by capturing approximately 30 multi-view images per change, centered around the area of alteration.19

Among them, 10 images are uniformly sampled for training, while the remaining serve for evaluation20

purposes. The resolution of all captured images is 960×640.21

Results We compare two baseline algorithms and the quantitative results are presented in Table22

1, Table 2 and Table 3. From the tables, it can be concluded that direct fine-tuning causes drastic23

catastrophic forgetting, leading to a significant degradation in the rendering quality of the old scene.24

Although the naive memory replay mechanism mitigates this (e.g., with the lowest BTM value), it25

underperforms in the new scene and overall scene (e.g., FM value is not satisfied). Contrastingly, our26

proposed approach exhibits outstanding performance in the new scene, concurrently preserving the27

old scenes. The qualitative results, as depicted in Figure B.1, further demonstrate the ability of our28

method.29

Table 1: Rendering results of atomic/composite/sequential operation in Dataset Kitchen. It showcases
the PSNR on both new and old scenes following the corresponding operations. The best results are
highlighted in bold.

Operations
ADD DELETE MOVE REPLACE SEQ

Old New Old New Old New Old New Old New

FT 25.48 26.83 23.71 31.06 23.33 23.02 25.13 28.97 23.06 28.58

MR 29.00 25.94 28.11 26.88 28.59 19.97 28.95 29.17 27.63 29.41

Ours 29.32 27.43 29.05 31.09 28.61 23.09 29.33 30.16 28.06 30.07

Table 2: Rendering result of the sequential operation in Dataset Kitchen. Tasks 1-4 are defined to
evaluate the model based on camera poses corresponding to four operations: add, delete, move, and
replace, respectively. Models are evaluated after being tuned for previously completed tasks. The
best results are highlighted in bold.

Testing on
FT MR Ours

Task1 Task2 Task3 Task4 Task1 Task2 Task3 Task4 Task1 Task2 Task3 Task4

Tr
ai

ni
ng

on

Task1 26.83 - - - 25.94 - - - 27.43 - - -

Task2 23.18 31.06 - - 23.69 26.88 - - 26.77 31.09 - -

Task3 19.54 25.32 23.02 - 23.71 26.98 19.97 - 26.25 28.13 23.09 -

Task4 18.36 24.33 18.83 28.97 23.60 26.92 18.83 29.17 25.97 27.92 22.29 30.16
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Table 3: Forgetting metrics in sequential operations.

Metrics FM ↑ BTM ↓

FT 22.623 6.463

MR 24.630 1.147

Ours 26.585 1.810

Ground truth     Pre-trained Ground truth      Pre-trained
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Figure 1: Visualization results after single-step operations in Dataset Kitchen. We evaluate 4 single-
step operations: add, delete, move, and replace. The ground truth images and inference images from
the pre-trained model are used to highlight the rendering quality on new tasks and quality degradation
caused by forgetting severity.

B.2 City-level Dataset Rome30

In many cases in the real world, we may only be able to capture a small number of images focused on31

the localized area that has been modified. This limitation often results from various factors such as32

time constraints, limited access to equipment and resources. For instance, acquiring data at the city33

level, whether through aerial or street-level photography, is a demanding and costly task. As a result,34

the costs of recapturing data of the whole scene after each scene change are substantial.35

To illustrate the effectiveness of our model, we also construct a synthetic dataset Dataset Rome at the36

city level. We collect 200-300 aerial images around the Colosseum in Rome to reconstruct the initial37

scene, followed by two ATOMIC operations - ADD and DELETE. The ADD operation adds a black38

sports car at the center of the Colosseum, while the DELETE operation removes a tower outside.39

The original dataset is partitioned into training and validation sets, with the former accounting for40

80% of the data and the latter 20%, to evaluate the algorithm’s efficacy. After scene alterations,41

approximately 10 additional images are captured to fine-tune the models, all of which are resized to42

640×360. Visualization results are shown in Figure 3. Our study has demonstrated that in scenarios43

where the cost of recapturing data is prohibitively high, our model can proficiently reconstruct new44

localized regions with limited amounts of new data and minimal time investment, while significantly45

preventing catastrophic forgetting phenomenon.46

B.3 Real-scene Dataset Laboratory47

To demonstrate the adaptability of our methods in diverse datasets, we also conduct data collection in a48

room-level dataset named Dataset Laboratory to establish the practical application of our algorithm in49

real-scene settings. We employ an iPhone 13 Pro to capture approximately 120 frames of a laboratory50

scene. The resulting images are resized to 640×360 and then divided into training/validation sets51

with a ratio of 50%/50% to assess our algorithm’s effectiveness. Following this, we conduct ADD52

and DELETE operations on objects within the scene and captured around 10 additional images after53

each manipulation to emphasize the modified regions. We compute intrinsic and extrinsic camera54

parameters for each frame using an off-the-shelf open-source software COLMAP [3]. The qualitative55
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Figure 2: Visualization results after sequential operations in Dataset Kitchen. The images in the
upper row are rendered after the model has been fine-tuned on four operations, while the images in
the lower row test and demonstrate the forgetting issue on the old task..
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Figure 3: Visualization results after two ATOMIC operations in Dataset Rome.

results depicted in Figure 4 affirm that our model successfully adapts to scene alterations, such56

as introducing a yellow teapot or eliminating a doll, with minimal novel data while maintaining57

performance in unmodified regions.58

B.4 More analysis about DyNeRF59

It should be noted that in the main paper, training DyNeRF incorporates old images from previous60

stages while our method only trains on new images. To ensure a fair comparison, we also conduct61

an experiment to train DyNeRF solely with new images in an additional experiment. From Table 4,62

not using old images in DyNeRF’s training results in a significant decline in the previous task and63

problems of forgetting.64
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Figure 4: Visualization results in Dataset Laboratory.

Table 4: Comparison with DyNeRF without old data in Dataset Whiteroom and Dataset Kitchen. It
showcases the PSNR on both new and old scenes following the corresponding operations. The best
results are highlighted in bold.

Datasets Methods
ADD DELETE MOVE REPLACE SEQ

Old New Old New Old New Old New Old New

Whiteroom
DyNeRF w/o old 27.40 23.54 27.65 34.68 21.72 30.21 26.31 29.76 22.21 29.06

Ours 32.33 25.29 32.43 34.77 33.30 29.97 33.33 29.82 33.38 29.74

Kitchen
DyNeRF w/o old 27.33 27.19 27.62 31.28 25.48 22.13 27.69 30.10 26.50 30.00

Ours 29.32 27.43 29.05 31.09 28.61 23.09 29.33 30.16 28.06 30.07

C Limitations65

We have incorporated an additional expert network into our system. However, the dynamic nature66

of the world without constraints may give rise to scalability issues such as storage problems for the67

expert network over time. Despite this, we have trained an expert network for each scenario, which68

allows us to facilitate the model’s rollback at any given moment, thereby enhancing its practicality.69

Additionally, the experts are equipped with the ability to adapt to changes from the original scenarios.70

As a result, during model inference, each scenario is still matched with only one expert network,71

effectively eliminating scalability concerns during inference.72

D Boarder Impact73

This research work exhibits potential for widespread impact across numerous domains, leveraging the74

inherent temporal dynamism in real-world scenes. By pioneering an efficient method to adapt NeRFs75

to changes in the environment with minimal new data and retaining the memory of unaltered areas,76

we increase the accessibility and applicability of NeRFs in various scenarios. CL-NeRF’s ability to77

offer high-quality novel views of both changed and unchanged regions could prove instrumental in78

fields as diverse as augmented reality, robotics, surveillance, and architecture, where understanding79

and adapting to scene changes is paramount. Moreover, by introducing a new benchmark and making80

our code available, we invite and facilitate further research and collaboration, driving innovation in81

this field. We anticipate that our work, by reducing the retraining burden, will pave the way for more82

applications of NeRFs, thus enriching the interaction between artificial intelligence and the physical83

world.84

E More Visualization Results85

For additional visualization results, please refer to the supplementary video (supplementary86

video.mp4) that we provide.87
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