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A Omitted detail from Section 31

In this section, we prove the main theoretical result of the paper. In order that this section is self-2

contained, we repeat some of the steps included in the main paper. We first show that the lengths3

of the random vectors xi generated in Algorithm 2 are close to their expected value. Notice that4

E [∥xi∥2] =
√
n and E [∥Pxi∥2] =

√
k. We use Chebyshev’s inequality to show the following.5

Lemma A.1. Let x ∈ Rn be drawn from the n-dimensional Gaussian distribution N(0, I). Let6

f1, . . . ,fk ∈ Rn be orthogonal vectors and let P =
∑k

i=1 fif
⊺
i be the projection onto the space7

spanned by f1, . . . ,fk. With probability at least 1− (1/10k),8

• ∥Px∥2 ≤
√
6k, and9

• ∥x∥2 ≤
√
6n.10

Proof of Lemma A.1. Since x is drawn from a symmetric n-dimensional Gaussian distribution, ∥x∥2211

is distributed according to a χ2 distribution with n degrees of freedom. Similarly, since P is a12

projection matrix, ∥Px∥22 is distributed according to a χ2 distribution with k degrees of freedom. By13

the Chebyshev inequality, we have that14

Pr
[
∥Pxi∥22 ≥ 6k

]
≤ k

(5k)2
=

1

25k
,

and15

Pr
[
∥xi∥22 ≥ 6n

]
≤ n

(5n)2
=

1

25n
.

The lemma follows by the union bound and since k ≤ n. ■16

We now show that the output of the POWERMETHOD algorithm is close to a random vector in the17

space spanned by f1, . . . ,fk.18

Lemma 3.1. Let M ∈ Rn×n be a matrix with eigenvalues 1 ≥ γ1 ≥ . . . ≥ γn ≥ 0 and19

corresponding eigenvectors f1, . . .fn. Let x0 ∈ Rn be drawn from the n-dimensional Gaus-20

sian distribution N(0, I). Let xt = POWERMETHOD(M,x0, t) for t = Θ
(
log(n/ϵ2k)

)
. If21

γk ≥ 1−O
(
ϵ · log(n/ϵ2k)−1

)
and γk+1 ≤ 1− Ω(1), then with probability at least 1− (1/10k),22

∥xt −Px0∥2 ≤ ϵ
√
k,

where P =
∑k

i=1 fif
⊺
i is the projection onto the space spanned by the first k eigenvectors of M.23
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Proof of Lemma 3.1. By the assumptions of the Lemma, we can assume that24

• γk+1 ≤ c1 < 1,25

• γk ≥ 1− c2ϵ log(24n/ϵ
2k)−1, and26

• t = c3 log(24n/ϵ
2k),27

for constants c1, c2, and c3. Fixing c1 < 1, we will set28

c3 =
1

2 log
(

1
c1

)
and29

c2 =
1

c3 · 2
√
6
.

Furthermore, by Lemma A.1, with probability at least 1− (1/10k) it holds that30

∥Px0∥2 ≤
√
6k

and31

∥x0∥2 ≤
√
6n,

and we assume that this holds in the remainder of the proof.32

Now, we write x0 in terms of its expansion in the basis given by the eigenvectors f1, . . . ,fn:33

x0 =

n∑
j=1

ajfj ,

where aj = ⟨x0,fj⟩. Similarly, we have34

Px0 =

k∑
j=1

ajfj

and35

xt =

n∑
j=1

ajγ
t
jfj .

Then,36

∥yi −Px0∥2 =

∥∥∥∥∥∥
k∑

j=1

(
ajγ

t
j − aj

)
fj +

n∑
j=k+1

ajγ
t
jfj

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
k∑

j=1

(
ajγ

t
j − aj

)
fj

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
n∑

j=k+1

ajγ
t
jfj

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥(1− γt
k

) k∑
j=1

ajfj

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥γt
k+1

n∑
j=k+1

ajfj

∥∥∥∥∥∥
2

=
(
1− γt

k

)
∥Px0∥2 + γt

k+1 ∥(I−P)x0∥2
≤

(
1− γt

k

)
∥Px0∥2 + γt

k+1 ∥x0∥2
where we used the fact that 1 ≥ γ1 ≥ . . . ≥ γn. Now, we have37

γt
k ≥

(
1− c2ϵ log(24n/ϵ

2k)−1
)c3 log(24n/ϵ2k)

≥ 1− c2c3ϵ

= 1− ϵ

2
√
6
.
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Furthermore,38

γt
k+1 ≤ c

c3 log(24n/ϵ2k)
1

=

(
1

c1

)c3 log(ϵ2k/24n)

=

(
ϵ2k

24n

)c3 log(1/c1)

= ϵ

√
k

24n
.

Combining everything together, we have39

∥yi −Px0∥2 ≤ ϵ

2
√
6
∥Px0∥2 + ϵ

√
k

24n
∥x0∥2

≤ ϵ

2
√
6

√
6k + ϵ

√
6kn

24n

≤ ϵ
√
k,

which completes the proof. ■40

It remains to prove that the k-means cost is preserved in the embedding produced by the power method.41

Recall that f1, . . . ,fk are the eigenvectors of M corresponding to the eigenvalues γ1, . . . , γk and42

y1, . . . ,yl are the vectors computed in Algorithm 2. We will also consider the vectors z1, . . . ,zl given43

by zi = Pxi, where {xi}ki=1 are the random vectors sampled in Algorithm 2, and P =
∑k

i=1 fif
⊺
i44

is the projection onto the space spanned by f1, . . . ,fk. We also define45

F =

[ | |
f1 . . . fk

| |

]
, Y =

[ | |
y1 . . . yl

| |

]
and Z =

[ | |
z1 . . . zl
| |

]
.

We will use the following result shown by Makarychev et al. [22].46

Lemma 3.2 ([22], Theorem 1.3). Given data X ∈ Rn×k, let Π ∈ Rk×l be a random matrix with47

each column sampled from the k-dimensional Gaussian distribution N(0, Ik) and48

l = O

(
log(k) + log(1/ϵ)

ϵ2

)
.

Then, with probability at least 1− ϵ, it holds for all partitions {Ai}ki=1 of [n] that49

COSTX(A1, . . . , Ak) ∈ (1± ϵ)COSTXΠ(A1, . . . , Ak).

Applying this lemma with X = D− 1
2F and Π = F⊺Z shows that the k-means cost is approximately50

equal in the embeddings given by D− 1
2F and D− 1

2Z, since FF⊺Z = Z and each of the entries of51

F⊺Z is distributed according to the Gaussian distribution N(0, 1). By Lemma 3.1, we can also show52

that the k-means objective in D− 1
2Y is within an additive error of D− 1

2Z. This allows us to prove53

the following lemma.54

Lemma 3.3. With probability at least 0.9− ϵ, for any partitioning {Ai}ki=1 of the vertex set V , we55

have56

COSTD−1/2Y(A1, . . . , Ak) ≥ (1− ϵ)COSTD−1/2F(A1, . . . , Ak)− ϵk

and57

COSTD−1/2Y(A1, . . . , Ak) ≤ (1 + ϵ)COSTD−1/2F(A1, . . . , Ak) + ϵk.

In order to prove this, we will use the fact shown by Boutsidis and Magdon-Ismail [5] that we can58

write the k-means cost as59

COSTB(Ai, . . . , Ak) = ∥B−XX⊺B∥2F (1)
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where X ∈ Rn×k is the indicator matrix of the partition, defined by60

X(u, i) =

{
1√
|Ai|

if u ∈ Ai

0 otherwise
,

and ∥B∥F ≜ (
∑

i,j B
2
i,j)

1/2 is the Frobenius norm.61

Proof of Lemma 3.3. Notice that F⊺Z ∈ Rk×l is a random matrix with columns drawn from the62

standard k-dimensional Gaussian distribution. Then, by Lemma 3.2, with probability at least 1− ϵ,63

we have for any partition {Ai}ki=1 that64

COSTD−1/2F(A1, . . . , Ak) ∈ (1± ϵ) COSTD−1/2Z(A1, . . . , Ak) (2)

since D−1/2FF⊺Z = D−1/2Z, where we use the fact that the columns of Z are in the span of65

f1, . . . ,fk.66

Furthermore, by the union bound, we can assume with probability at least 0.9 that the conclusion of67

Lemma 3.1 holds for every vector yi computed by Algorithm 2.68

Now, we will establish that COSTD−1/2Y(·) is close to COSTD−1/2Z(·) which will complete the69

proof. For some arbitrary partition {Ai}ki=1, let X be the indicator matrix of the partition. Then, we70

have71 ∥∥∥D−1/2Y −XX⊺D−1/2Y
∥∥∥
F
−

∥∥∥D−1/2Z−XX⊺D−1/2Z
∥∥∥
F

=
∥∥∥(I−XX⊺)D−1/2Y

∥∥∥
F
−
∥∥∥(I−XX⊺)D−1/2Z

∥∥∥
F

≤
∥∥∥(I−XX⊺)D−1/2 (Y − Z)

∥∥∥
F

≤ ∥(I−XX⊺) (Y − Z)∥F
≤ ∥Y − Z∥F

=

√√√√ l∑
i=1

∥yi − zi∥22

≤
√
lϵ2k

≤ ϵk,

Where we use Lemma 3.1, and the fact that l ≤ k. Combining this with (2) completes the proof. ■72

Now we come to the proof of the main theorem.73

Theorem 3.1. Let G be a graph with λk+1 = Ω(1) and ρ(k) = O
(
ϵ · log(n/ϵ)−1

)
. Additionally, let74

{Si}ki=1 be the k-way partition corresponding to ρ(k) and suppose that {Si}ki=1 are almost balanced.75

Let {Ai}ki=1 be the output of Algorithm 2. With probability at least 0.9− ϵ, there exists a permutation76

σ : [k] −→ [k] such that77

k∑
i=1

vol(Ai△Sσ(i)) = O(ϵ · vol(VG)) .

Moreover, the running time of Algorithm 2 is78

Õ
(
m · ϵ−2

)
+ TKM(n, k, l),

where m is the number of edges in G and TKM(n, k, l) is the running time of the k-means approxi-79

mation algorithm on n points in l dimensions.80

To complete the proof, we will make use of the following results proved by Macgregor and Sun [21],81

which hold under the same assumptions as Theorem 3.1.82

Lemma 3.4 ([21], Lemma 4.1). There exists a partition {Ai}ki=1 of the vertex set V such that83

COSTD−1/2F(A1, . . . Ak) < ϵ · k.
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Lemma 3.5 ([21], Theorem 2). Given some partition of the vertices, {Ai}ki=1, such that84

COSTD−1/2F(A1, . . . Ak) ≤ ck,

then there exists a permutation σ : [k] −→ [k] such that85

k∑
i=1

vol(Ai△Sσ(i)) = O(c · vol(V )) .

Proof of Theorem 3.1. By Lemma 3.4 and Lemma 3.3, with probability at least 0.9− ϵ, there exists86

some partition {Âi}ki=1 of the vertex set VG such that COSTD−1/2Y(Â1, . . . , Âk) ≤ (1+ϵ)ϵk+ϵk ≤87

3kϵ. Since we use a constant-factor approximation algorithm for k-means, the partition {Ai}ki=188

returned by Algorithm 2 satisfies COSTD−1/2Y(A1, . . . , Ak) = O(ϵk) . Then, by Lemma 3.5, for89

some permutation σ : [k] −→ [k], we have90

k∑
i=1

vol(Ai△Sσ(i)) = O(ϵ · vol(VG)) .

To bound the running time, notice that the number of non-zero entries in M is 2m, and the time91

complexity of matrix multiplication is proportional to the number of non-zero entries. Therefore,92

the running time of POWERMETHOD(M,x0, t) is Õ(m). Since the loop in Algorithm 2 is executed93

Θ
(
log(k) · ϵ−2

)
times, the total running time of Algorithm 2 is Õ

(
m · ϵ−2

)
+ TKM(n, k, l). ■94
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