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A Omitted detail from Section 3]

In this section, we prove the main theoretical result of the paper. In order that this section is self-
contained, we repeat some of the steps included in the main paper. We first show that the lengths
of the random vectors x; generated in Algorithm 2] are close to their expected value. Notice that

E[||zi|l,] = v/n and E [|Px;|,] = v/k. We use Chebyshev’s inequality to show the following.
Lemma A.1. Let x € R" be drawn from the n-dimensional Gaussian distribution N(0,I). Let

f1,- -, fx € R™ be orthogonal vectors and let P = Zle fif be the projection onto the space
spanned by f1, ..., fi. With probability at least 1 — (1/10k),

* |Px||, <6k, and
* =l < von.

Proof of LemmalA.1} Since x is drawn from a symmetric n-dimensional Gaussian distribution, || ||§
is distributed according to a y? distribution with n degrees of freedom. Similarly, since P is a

projection matrix, ||P:c||§ is distributed according to a x? distribution with k degrees of freedom. By
the Chebyshev inequality, we have that

Pr [|[Pa;; > 6k] < (52)2 - 25%
and
Pr a3 > 6n] < g = o2
(5n)2  25n
The lemma follows by the union bound and since k < n. |

‘We now show that the output of the POWERMETHOD algorithm is close to a random vector in the
space spanned by f1,..., fx.

Lemma Let M € R™ "™ be a matrix with eigenvalues 1 > ~v; > ... > v, > 0 and
corresponding eigenvectors f1,... fn. Let xy € R™ be drawn from the n-dimensional Gaus-
sian distribution N(0,I). Let ©; = POWERMETHOD(M, o, ) for t = O(log(n/e?k)). If
Y > 1—0(e-log(n/e*k)™") and yy41 < 1 — Q(1), then with probability at least 1 — (1/10k),

lze — Paoll, < eV,

where P = Zle fif[ is the projection onto the space spanned by the first k eigenvectors of M.
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Proof of Lemma[3.1] By the assumptions of the Lemma, we can assume that

* Y1 S < 1,
* Y, > 1— coelog(24n/e?k) 1, and
s t = c3log(24n/€%k),

for constants ¢y, co, and cs. Fixing ¢; < 1, we will set

1
3= ——F—
2log (a)
and
1
Cp = ——Fr.
? c3 - 2v/6
Furthermore, by Lemma|[A.1] with probability at least 1 — (1/10k) it holds that
[Paxoll, < VOE
and
[zolly < V6n,

and we assume that this holds in the remainder of the proof.

Now, we write x in terms of its expansion in the basis given by the eigenvectors fy, . ..

n
Ty = E a; f;,
=1

where a; = (zo, f;). Similarly, we have

k
PiL’o = Zajfj
7j=1
and
n
Ly = Zajﬁfj.
7j=1

Then,

n

(a7f —a;) £+ Y aivif;

j=k+1

e

lyi — Poll, =

<
Il
—_

2

n

(a7h —ai) 5|+ D i

j=k+1

M)~

<.
Il
—_

2

k n
(=) Zajfj + Vst Z a; f;
Jj=1 2

j=k+1

2

IN

L—75) Pzolly + vigr [(T=P) o],
1= ) [Pzolly + it 2ol
where we used the factthat 1 > ~; > ... > ~,. Now, we have

c3 log(24n/e%k)

Vi > (1 — caelog(24n/e’k)™")
> 1 —coc3e
€
=1-—.
26
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Furthermore,

t c3 log(24n/e%k)
Vi1 = €1

1) ¢ log(e2k/24n)
()

2k log(1/c1)
- (on)

Kk
24n’

Combining everything together, we have

€ k
lyi — Pz, < % IPzoll, +€y/ 5 lIzoll,
6kn
< ——V6
- f 24n
< eV,
which completes the proof. |

It remains to prove that the k-means cost is preserved in the embedding produced by the power method.

Recall that fy, ..., fi are the eigenvectors of M corresponding to the eigenvalues 1, . . .,y and
Y1, ...,y are the vectors computed in Algorithm[2] We will also consider the vectors z1, . . ., 2; given
by z; = Px;, where {z;}¥_, are the random vectors sampled in Algorithm and P = Zle FifT
is the projection onto the space spanned by f1, ..., fi. We also define

| | | | | |

F=|fi ... fk] Ylyl yl] and Z[zl zl].
| | | | | |

We will use the following result shown by Makarychev et al. [22].

Lemma [3.2] ([22]], Theorem 1.3). Given data X € R"*¥, let TI € R**! be a random matrix with

each column sampled from the k-dimensional Gaussian distribution N(0, 1) and

. O(log(k) + log(l/e)> .

2
Then, with probability at least 1 — €, it holds for all partitions { A;}¥_, of [n] that
COSTx(Al, ey Ak) S (1 + E)COSTXH(Al, Ceey Ak)

Applying this lemma with X = D~ =F and IT = FTZ shows that the k-means cost is approximately
equal in the embeddings given by D~ =F and D~ 2Z, since FFTZ = Z and each of the entries of
FTZ is distributed according to the Gaussian distribution N(0, 1). By Lemma we can also show
that the k-means objective in D~2Y is within an additive error of D=2 Z. This allows us to prove
the following lemma.

Lemma With probability at least 0.9 — e, for any partitioning { A;}Y¥_, of the vertex set V, we
have

COSTDfl/zy(Al, N 7Ak) Z (1 - E)COSTD—I/QF(Al, ey Ak) — ek
and

COSTD—l/zy(Al, RN Ak) < (1 + E)COSTD_1/2F(A1, .. ,Ak) + €k.

In order to prove this, we will use the fact shown by Boutsidis and Magdon-Ismail [S] that we can
write the k-means cost as

COSTg(A;, ..., Ax) = |B — XXTB|>% 1)
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where X € R™** is the indicator matrix of the partition, defined by

0 otherwise

L ifue A;
X(u,i) = { VAl
and | B £ (3, ; B?;)'/? is the Frobenius norm.

Proof of Lemma[3.3] Notice that FTZ € RE*! is a random matrix with columns drawn from the
standard k-dimensional Gaussian distribution. Then, by Lemma|[3.2] with probability at least 1 — e,
we have for any partition { A; }¥_, that

COSTD—l/QF(Al, ey Ak) S (1 + E) COST‘D_UQ_)Z(A/‘M7 - ,Ak) 2)

since D™Y/2FFTZ = D~1/2Z, where we use the fact that the columns of Z are in the span of

fi.., fr.

Furthermore, by the union bound, we can assume with probability at least 0.9 that the conclusion of
Lemma [3.1]holds for every vector y; computed by Algorithm 2]

Now, we will establish that COSTp-1,2v(+) is close to COSTp-1/25(+) which will complete the
proof. For some arbitrary partition { A;}*_,, let X be the indicator matrix of the partition. Then, we
have

HD*”QY - XXTD*l/ZYH - HD*WZ - XXTD*V?ZH
F F
(I - XXT) D—1/2YH - H(I ~XXT) D—l/QzH
F F

|
(T-XXT) D2 (Y - 2)|

< NIX-XXT)(Y - Z)||p
<Y -Z|p

> i - =il

i=1

< VIe2k

< €k,

Where we use Lemma|[3.1} and the fact that [ < k. Combining this with (Z)) completes the proof. W

Now we come to the proof of the main theorem.
Theorem Let G be a graph with ;41 = Q(1) and p(k) = O (e -log(n/€) ™). Additionally, let
{S:}k_| be the k-way partition corresponding to p(k) and suppose that {S; }¥_, are almost balanced.
Let {Ai}le be the output of Algorithm With probability at least 0.9 — €, there exists a permutation
o : [k] — [k] such that
k

> vol(AiAS,y) = O(e - vol(Va)) .

i=1
Moreover, the running time of Algorithm[2)is

O(m- € 2) + Tiem(n, k, 1),

where m is the number of edges in G and T\ (n, k, 1) is the running time of the k-means approxi-
mation algorithm on n points in | dimensions.

To complete the proof, we will make use of the following results proved by Macgregor and Sun [21]],
which hold under the same assumptions as Theorem [3.1]

Lemma ([21], Lemma 4.1). There exists a partition { A; }¥_, of the vertex set V such that
COSTD—l/QF(Al, R Ak) <e€-k.
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Lemma ([210], Theorem 2). Given some partition of the vertices, {Ai}le, such that
COSTD—1/2F(A1, e Ak) S Ck,
then there exists a permutation o : [k] — [k| such that

k
Zvol(AiASa(i)) = O(c-vol(V)).

i=1

Proof of Theorem 3.1} By Lemma[3.4/and Lemma 3.3] with probability at least 0.9 — e, there exists
some partition { 4; }¥_, of the vertex set V¢ such that COSTpy-1/2y (A1, . .., Ag) < (14€)ek+ek <

3ke. Since we use a constant-factor approximation algorithm for k-means, the partition {A;}*_,
returned by Algorithm [2[satisfies COSTp-1/2vy (A1, ..., Ar) = O(ek) . Then, by Lemma 3.5} for
some permutation o : [k] — [k], we have

k

ZVOl(AiASU(i)) = O(e-vol(Vg)) .

i=1
To bound the running time, notice that the number of non-zero entries in M is 2m, and the time
complexity of matrix multiplication is proportional to the number of non-zero entries. Therefore,
the running time of POWERMETHOD (M, xg, t) is O(m). Since the loop in Algorithmis executed
O (log(k) - €72) times, the total running time of Algorithmis O(m-e?) + Txm(n, k, ). [ |
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