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Abstract

Continual learning (CL) aims to train deep neural networks efficiently on streaming
data while limiting the forgetting caused by new tasks. However, learning trans-
ferable knowledge with less interference between tasks is difficult, and real-world
deployment of CL models is limited by their inability to measure predictive un-
certainties. To address these issues, we propose handling CL tasks with neural
processes (NPs), a class of meta-learners that encode different tasks into probabilis-
tic distributions over functions all while providing reliable uncertainty estimates.
Specifically, we propose an NP-based CL approach (NPCL) with task-specific
modules arranged in a hierarchical latent variable model. We tailor regularizers on
the learned latent distributions to alleviate forgetting. The uncertainty estimation
capabilities of the NPCL can also be used to handle the task head/module inference
challenge in CL. Our experiments show that the NPCL outperforms previous CL
approaches. We validate the effectiveness of uncertainty estimation in the NPCL
for identifying novel data and evaluating instance-level model confidence. Code is
available at https://github.com/srvCodes/NPCL.

1 Introduction

Continual learning (CL) aims to help deep neural networks (DNNs) learn from a stream of non-
stationary tasks by retaining the previously acquired knowledge [54, 35]. To achieve this, CL agents
target alleviating the catastrophic forgetting issue with restricted computational and memory costs
[42]. This requires balancing the plasticity for new knowledge with the stability for old [37].

To handle forgetting in CL, experience replay (ER) methods [30, 6] are one effective way to train
DNNs on a memory buffer with a subset of the past tasks’ experiences. Other than the ER methods,
many regularization-based approaches have been proposed to penalize the forgetting on the DNNs’
parametric [30] or representation spaces [5, 4]. However, these may still suffer from interference due
to the regularization on the entire parameter space [7]. To address this, parameter isolation methods
[53, 33] define task-specific training components but are usually confined to task incremental CL
setups requiring task ID during testing [47]. It is thus challenging for CL agents to maintain
transferable and shareable knowledge. Lastly, a hurdle to the real-world deployment of CL agents
is their inability to measure predictive uncertainties, which impacts the potential utilization of CL
across various practical applications, particularly those with critical safety considerations [31].
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To tackle the above issues, we propose to explore CL models using neural processes (NPs) [13, 14], a
class of meta-learners that model tasks as data-generating functions from a stochastic process. NPs
learn a prior over functions by marginalizing over a set of data points, or context, thus enabling rapid
adaptation to new observations through inference on functions. Additionally, their probabilistic nature
endows them with reliable uncertainty quantification capabilities [14, 27, 24, 25]. Our motivations to
explore NPs for CL are thus two-fold. First, NPs exploit Bayes’ theorem, which naturally enables CL
through sequential posterior construction. Namely, NPs perform inference over the function space by
learning context-based priors, which are updated to posteriors upon observing (additional) targets.
Second, NPs meta-learn input correlations through a set of latent variables, which could be a key to
meta-learn knowledge transfer across multiple correlated tasks. However, NPs face challenges in
directly addressing CL tasks, given that (a) the reliance on a single global latent leads to suboptimal
modeling of complex CL tasks where multiple correlated tasks could occur simultaneously, (b) NPs
cannot directly handle the forgetting of past task correlations arising from the non-static data stream.

Figure 1: Neural Processes for Continual
Learning (NPCL): each training step involves
minimizing the distance D between the context-
based prior and the target-based posterior, along-
side regularizing the task-specific and global dis-
tributions towards their old forms.

To address the above desiderata, we propose Neu-
ral Processes for Continual Learning (NPCL), a
hierarchical latent variable model with a global
latent variable to capture inter-task correlation
and task-specific latent variables for finer knowl-
edge. Fig. 1 shows the NPCL exploiting func-
tional correlation among current and past task
training samples of ER. The drift of global and
past task-specific distributions away from their
original forms is the major cause of forgetting
in the NPCL. We thus propose to regularize the
latent variables to be similar to their old forms
and show the merits of regularization over typical
parameter-based regularization. We then lever-
age the uncertainty encoded by the NPCL for the
aforesaid CL challenge of task head inference. To
this end, we propose using entropy as an uncer-
tainty quantification metric (UQM). The NPCL
outperforms previous probabilistic CL models
and delivers better or comparable results than state-of-the-art deterministic CL methods, which usu-
ally have an edge over their probabilistic counterparts in terms of accuracy. Moreover, our ablations
show the enhanced efficacy offered by the NPCL on continual learning settings requiring model
calibration and few-shot replay. To study the further usages of the NPCL’s uncertainty estimation, we
show its out-of-the-box readiness for novel data detection and instance-level confidence evaluation
[17]. Lastly, we list the key limitations of the NPCL as an attempt to lay further solid directions for
uncertainty-aware continual learning.

2 Related Work

Continual Learning (CL). Existing CL methods address catastrophic forgetting through three major
approaches: (a) Regularization-based methods penalize changes in a model’s important weights for
previous tasks, such as Elastic Weight Consolidation (EWC) [30], Synaptic Intelligence (SI) [54], etc.
(b) Parameter Isolation-based methods partition the network’s parameters to specialize on individual
tasks, e.g., Douillard et al. [9] learning task-specific tokens for Transformers. (c) Replay-based
methods use an episodic memory to preserve a fraction of the past tasks’ experience for preventing
forgetting while learning on new tasks; e.g., experience replay (ER) [6] storing past inputs, dark
experience replay (DER) [4] storing past logits, and Yan et al. [52] using a loss-aware memory for
ER. Our method uses (a) via regularization of distributions, (b) via task-specific latent heads, and (c)
via replay of past task inputs and distributions.

Neural Processes (NPs). NPs were introduced to meta-learn a distribution of a family of functions
modeling the data-generating process through their deterministic [13] and/or latent summaries [14].
Attentive NPs (ANPs) [27] replaced the averaging operation in NPs with a dot-product attention
[48] to enhance their expressivity. NPs/ANPs rely on a global latent that limits their ability to
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model observations from multiple functions. Some works address this through local latent variables
that model fine-grained correlation among a subset of the observations [50]. Recently, multi-task
processes (MTPs) [26] have been studied to model multiple tasks with NPs, owing to the hierarchy of
task-specific latent variables conditioned on a global latent. However, existing MTPs cannot directly
handle CL problem because (a) MTPs are not designed to learn on sequential tasks and thus do not
handle forgetting; (b) MTPs target the multi-task learning problem where the label for an input spans
the exhaustive output space of available tasks unlike the CL setup where each input may belong to
one specific and unknown task, out of multiple seen tasks.

Besides, the added complexity of variational inference has limited NP applications to mostly proof-
of-concept focused regression tasks [23]. The potential of NPs for large-scale classification tasks thus
remains largely under-explored except in some recent works. Wang et al. [49], for instance, leverage
the predictive uncertainties of NPs to decide on pseudo labels for unlabeled data in semi-supervised
classification. In our work, we use NPs to handle CL with classification tasks, reflecting the benefits
of principled Bayesian learning, uncertainty estimation, and easily integrated existing ER.

3 Preliminaries: Neural Processes

Given the data {(xt, yt)} = (Xt, Y t) ∼ Dt of a task t, the goal is to learn the mapping F t∗ : Xt →
Y t reflecting the data-generating process. NPs [13, 14] meta-learn the distribution over the mapping
functions from the given tasks. This is equivalent to meta-learning the distribution over the predictions
p(yti |xti, Ct) for the target output yti belonging to a target data set T t, given the corresponding target
input xti and a context set Ct [14, 23]. To reflect the meta-learning behavior of NPs [14], the training
samples are split into the context set |Ct| = m and a target set |T t| = m + n containing context
set C and additional samples. NPs learn the Gaussian priors and posteriors using a neural network
F t[ϕ;θ] ≈ F t∗ for the predictive distribution, where ϕ and θ parameterize an encoder q and a decoder p,
respectively. This involves deriving a global variable zG to estimate the prior p(zG|Ct;ϕ), and then
maximizing the marginal likelihood p(Y tT |Ct, Xt

T ; θ):

p(Y tT |Xt
T , Ct) =

∫
p(Y tT |Xt

T , z
G)p(zG|Ct)dzG, (1)

where p(Y tT |Xt
T , z

G) =
∏m+n
i=1 p(yti |xti, zG) is the generative likelihood. In CL with streaming tasks,

maintaining the memorization of the task prior p(zG|Ct;ϕ) can help NPs avoid forgetting the t-th
task. Our aim behind enabling NP for CL is to seek a trade-off to preserve such task priors while
sharing the parameters among tasks.

4 Continual Learning with Neural Processes

CL considers learning from a series of different tasks arriving sequentially, i.e., Dt | 0 ≤ t ≤ T − 1.
Here, Dt can belong to classification tasks with different classes in class incremental CL [8]. Let l be
the cross-entropy (CE) loss for classification, the CL objective for the task t involves minimizing:

LtCE = E(x,y)∼Dt l(F[ϕ;θ](x), y) (2)

on all [0, t] tasks seen sequentially. Achieving Eq. (2) is challenging in real-world CL scenarios,
where the previous datasets can be unavailable due to constraints on privacy, storage, etc. Learning
on the sequential data with varying distributions causes catastrophic forgetting. To alleviate the
issue, experience replay (ER) is used in CL to store and periodically revisit some past experiences,
e.g., samples (xt, yt) of task t, in a small episodic memory M for replay in the future [8, 6]. In
this work, we develop our method with the classical reservoir sampling-based ER [6] for a task
boundary-agnostic updating of M.

CL methods with ER solely still suffer from severe forgetting issues [6, 52, 8]; and jointly optimizing
parameters on Dt and M has several drawbacks [35, 4]. Considering that a deterministic mapping F t
limits capturing the randomness behind the real-world data in a stream, to utilize the meta-learning
ability of NPs, we next propose extending models with Eq. (2) and Eq. (1) to arrive at our NPCL
model. It allocates small subsets of parameters to learn robust per-task and global priors and uses
stochastic factors to meet data-driven challenges such as deducing the right parameters for inference.
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Figure 2: Overview of the NPCL architecture: the decoding mechanism differs during training and
inference. Red, Cyan, and Orange denote three different tasks.

4.1 Neural Processes for Continual Learning

Given the task in a stream, we model the CL task based on NPs formulated in Eq. (1). In ER
framework with a small memory buffer, where the context and target could be from tasks indexed by
t, Eq. (1) can be extended to derive the joint posterior for NPs [14] as:

p(Y 0:t
T |C0:t, X0:t

T ) =

∫
p(Y 0:t

T |X0:t
T , zG)p(zG|C0:t)dzG, (3)

where zG models the joint distribution F 0:t
∗ of CL tasks and is an enabler of the knowledge transfer

[35] between these (see App. A.3 for ELBO). Eq. (3) poses two challenges. First, a labeled context
C is needed for inferring predictions as all NPs, which is unprepared in CL setups by default. To
overcome this, we use the memory M offered by the ER-based setups as context during inference.
Second, jointly modeling F 0:t

∗ ignores the dynamics of per-task stochasticities and is still prone to
the bottlenecks of Eq. (2). We address the issue by introducing hierarchical modeling and redefining
Eq. (3) in the following.

4.2 NPs with Hierarchical Task-specific Priors for CL

To learn informative task priors while tackling the forgetting issue in CL, we propose a hierarchical
modeling of the NP model. We preserve the global latent zG to induce the direct knowledge transfer
and add the task-specific upon the global variable to enhance the capturing of task-specific knowledge
in CL. We thus extend Eq. (3) with task-specific latent variables zt = (z0, .., zt). As a result, our
posterior is a two-step hierarchical latent variable model (Fig. 2) where the global and the per-task
latent variables model the inter and intra-task correlations, respectively:

p(Y 0:t
T |X0:t

T , C0:t) =

∫ ∫ [ T−1∏
t=0

p(Y tT |Xt
T , z

t)p(zt|zG, Ct)
]
p(zG|C0:t)dz0:tdzG, (4)

where the entire context C0:t is first encoded into zG and then conditioned on zG, the task-specific
context Ct := (C0, .., Ct) are encoded into their respective latent variables. We refer to Eq. (4) as
NP for CL (NPCL). The hierarchical modeling enables NPCL to learn the shareable knowledge via
zG and the task-specific knowledge via zt in the meta-learning fashion of NPs. Task identity is used
in training to specify the task-specific latent variables. Unlike MTP [26] making predictions of all
tasks for all inputs, NPCL needs to specify the corresponding output space for each test sample. We
further discuss the relationship between NPCL and NP-based meta-learning in App. B.

4.3 The NPCL Architecture

As standard NPs [14, 27], the training samples are split into a context C and a target set T containing
C and additional samples. Given the inputs xi from C or T , we first pass these to a feature extractor
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f . With a slight abuse of notation, we denote the features as xi : xi ∈ R|f | and let |f | denote the
dimension. xi concatenated with the one-hot encoded labels, i.e., [xi; yi], is fed to the NPCL encoder
with a deterministic and a latent path, and then to the decoder (Fig. 2). All the NPCL layers use
multi-layer perceptrons (MLPs) projections, i.e., MLP(x) : R|f | → R|o|, where |o| is the output
feature dimension as a hyperparameter. We denote a normal distribution with a mean µ and a variance
σ2 by N (µ, σ2); the global and the task-specific distributions are N (µG, σ

2
G) and N (µt, σ

2
t ).

Latent Encoder. The latent path comprises of the projection Φlat
i = MLP([xi; yi]) followed by two

attention operations [48]. First, per-task projections form the keys, values and queries to taskwise
self-attention layers SAtlat that produce order-invariant encodings sti over the samples of task t.
Second, all encodings {s0:ti }n+mi=1 serve as the keys, values and queries to cross-attention layers CA0:t

lat
that enrich their order-invariance from intra-task st to inter-task sG. st and sG are used to derive the
N and M Monte Carlo samples of the global zG and the task-specific latent variables zt, respectively
(see App. C for more details) using the reparameterization trick [29]. We set M = 1 to enhance the
inter-task stochasticity in posterior while retaining superior computational efficiency (see App. E).
For each input, we thus get N × (t+ 1) latent outputs.

Deterministic Encoder. The deterministic path is similar to that of the ANP [27] and outputs an
order-invariant representation r∗ for target x∗ (see App. C).

Decoder. Based on the task information, the decoder adopts separate mechanisms during training and
inference. At train time, we use the available task labels to filter the N true latent variables {zti}Ni=1,
combine them with r∗ and x∗, and decode the logits h∗. We discuss the decoding operation in the
testing phase without task ID in Sec. 4.5.

4.4 Learning Objectives for the NPCL

The learning of the NPCL involves variational inference alongside additional regularizations.

Evidence Lower Bound (ELBO). The intractability of Eq. (4) leads us to the following ELBO:

log pθ(Y
0:t
T |X0:t

T , C) ≥ Eqϕ(z|T )

[ T−1∑
t=0

Eqϕ(zt|zG,Ct)[log pθ(Y
t
T |Xt

T , z
t)]

−Dt
(
qϕ(z

t|zG, T t)∥qϕ(zt|zG, Ct)
)]

−DG
(
qϕ(z

G|T )∥qϕ(zG|C)
)
,

(5)

where pθ(Y tT |Xt
T , z

t) is approximated by the CE loss. Dt and DG denote the KL divergence (KLD)
between the approximate posterior and prior for the task-specific and global distributions, respectively.
We derive the ELBO in App. A.1. We next propose two techniques to counter forgetting in the NPCL.
Henceforth, we use D to denote the Jenshen-Shannon (JS) divergence [11] between two distributions.

Global Regularization (GR). The training data of a CL task t is dominated by the t-th task samples.
For the NPCL, this drifts the global distribution N (µtG, σ

t
G) of past tasks towards the new task (Fig.

1). We thus regularize their global distribution using the one learned at step t− 1:
LGR = D

(
N (µG, σ

2
G)t,N (µG, σ

2
G)t−1

)
(6)

Task-specific Regularization (TR). While GR helps preserve the joint distribution of the past tasks,
the hierarchy in the NPCL leaves their task-specific distributions to be still prone to forgetting (Fig.
3(a)). This can further amplify the posterior collapse [46] for past task-specific latent variables during
CL training (Fig. 3(b)). To alleviate these, we regularize the learning of previous task distributions as:

LtTR = D
(
N (µt, σ

2
t )t,N (µt, σ

2
t )j

)
, (7)

where j is the step at which the task t arrived. Given the reliance of Eq. (6) and Eq. (7) on past
distributions, we maintain a separate buffer, which we refer to as the distribution memory MN , to
store the global N (µG, σ

2
G) and the task-specific distributions N (µ0:t−1, σ

2
0:t−1). MN is updated

after each incremental training step, where we run an additional pass over the training data of task t
alongside replaying M to record the batchwise averaged global and task-specific means and variances.

Integrated objective. Using α, β, γ, and δ to denote the loss weights, our total loss can be written as:

L =
1

|Dt|+ |M|
∑

(xt,yt)∈Dt∪M

(LCE + αDt + βDG) +
1

|M|
∑

(xt,yt)∈M

γLGR + δLtTR, (8)

5



(a) Drift of past task distributions

(b) logKL(q|p) w/o TR (c) logKL(q|p) w/ TR

Figure 3: Analyses on the need for distribution regularization: (a) shows the increasing distances
between current distributions of past tasks and their original distributions (learned while the tasks
were introduced). (b) and (c) show the effect of global (GR) and task regularization (TR) on the
activation of the global and task-specific latent units. Low KLD corresponds to an inactive unit.

where CE, Dt, and DG act on the current task data Dt and on the buffer M while GR and TR act
only on M. By setting 0 < {α, β, γ, δ} < 1, we resort to using the (respective) cold posteriors [55].

4.5 Inference with Uncertainty Awareness

NPCL’s inference uses f to obtain the features x∗ for the target test images. Although the task
identification information is used to train the task-specific module, task identification of test samples
is usually unavailable in general real CL tasks (except the restricted task-incremental setting [8]).
Given x∗ from the encoder, this leaves us with {z0:ti }Ni=1 possible modules and the corresponding
latent variables to use and infer for obtaining the prediction. A naive solution is to average over
N ∗ (t + 1) logits. But as the number of tasks grows, the noise from incorrect task priors would
dominate the posterior. We thus propose using entropy as an uncertainty quantification metric (UQM)
to filter the logits of the true task head ψt:

h∗ = arg min
j∈[1,t]

U(hψj ), U(hψ) = −
∑
i∈N

δ(i) log(δ(i)), (9)

where δ is the softmax function and U is the total Shannon entropy [45] over the N logits per head.
As we use true head ψtϕ during training, ϕ ∈ ψt produces low entropy for within distribution data. In
light of Eq. (9), the NPCL can be seen as a special case of the mixture-of-expert (MoE) modeling
[36, 51], where we leverage uncertainty to select the top-1 expert during inference.

5 Experiments

Datasets. We evaluate the NPCL on class and domain incremental learning (IL) settings. For
class-IL, we use three public datasets: sequential CIFAR10 (S-CIFAR-10) [35], sequential CIFAR100
(S-CIFAR-100) [54], and sequential Tiny ImageNet (S-Tiny-ImageNet) [6]. For domain-IL, we use
Permuted MNIST (P-MNIST) [30] and Rotated MNIST (R-MNIST) [35]. S-CIFAR-10, S-CIFAR-
100, and S-Tiny-ImageNet host 10, 100, and 200 classes each with 5000, 500, and 500 training
images and 1000, 100, and 50 test images per class, respectively. The number of sequential tasks
for S-CIFAR-10 is 5 (2 classes per task); for S-CIFAR-100 and S-Tiny-ImageNet is 10 (10 and 20
classes per task, respectively); for P/R-MNIST is 20. P-MNIST creates tasks out of MNIST [32] by
randomly permuting the pixels, and R-MNIST does it by rotating images randomly in [0, π).

Architectures. For a fair comparison against other methods, we rely on the Mammoth CL benchmark
[3]. Our backbone for class-IL experiments is a ResNet-18 [20] without pretraining, while for
domain-IL, we rely on a fully connected (FC) network with two hidden layers [35]. The NPCL relies
on Xavier initialized [15] FC layers with two 256-d hidden layers for class-IL and one 32-d layer for
domain-IL setups. For class-IL, each FC layer is followed by layer normalization [1] and ReLU.

Configuration and hyperparameters. We train all models using SGD optimizer. The number
of training epochs per task for S-Tiny-ImageNet is 100, for S-CIFAR-(10/100) is 50, and that for
(P/R)-MNIST is 1. We detail further the configurations, hyperparameters, and their tuning in App. D.
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Method S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet P-MNIST R-MNIST
Class-IL Class-IL Class-IL Domain-IL Domain-IL

Joint ResNet 92.2 ±0.15 70.44 59.99±0.19 94.33±0.17 95.76±0.04
Joint NP 91.66±0.11 70.58±0.24 59.83±0.17 95.02±0.21 95.37±0.07

Joint ANP 91.26±0.16 70.77±0.21 60.14±0.17 95.39±0.18 95.85±0.05

Joint NPCL 92.74±0.12 71.46±0.20 60.18±0.22 95.97±0.14 96.11±0.03

Multitask NPCL 69.15±0.09 53.6±0.21 35.53±0.13 87.40±0.10 89.21±0.02

oEWC [44] 19.49±0.12 - 7.58±0.10 75.79±2.25 77.35±5.77
SI [54] 19.48 ±0.17 - 6.58 ±0.31 65.86±1.57 71.91 ±5.83
LwF [34] 19.61±0.05 - 8.46 ±0.22 - -

Msize 200 500 500 2000 200 500 200 500 200 500

ER [43] 44.79±1.86 57.74±0.27 22.10 38.58 8.49±0.16 9.99±0.29 72.37±0.87 80.6±0.86 85.01±1.90 88.91±1.44

iCaRL [42] 49.02±3.20 47.55±3.95 46.52 49.82 7.53±0.79 9.38±1.53 - - - -
FDR [2] 30.91±2.74 28.71±3.23 - - 8.70±0.19 10.54±0.21 74.77±0.83 83.18 ±0.53 85.22±3.35 89.67±1.63
RPC [41] - - 22.34 38.33 - - - - - -
DER [4] 61.93±1.79 70.51±1.67 36.6 51.89 11.87 ±0.78 17.75±1.14 81.74±1.07 87.29±0.46 90.04±2.61 92.24±1.12

NP [14] 46.1±3.44 59.3±2.76 22.92 38.70 8.32±0.62 10.2±0.34 70.02±1.44 79.44±0.81 85.03±2.7 88.16±1.66
ANP [27] 46.67±1.23 58.77±0.65 23.2 39.06 8.81±0.93 9.75±0.90 73.55±0.66 80.98±0.57 85.70±1.39 89.21±0.93

ST-NPCL (w/ only per-task latent) 54.6±2.14 65.22±1.89 28.45 42.1 10.92±1.03 13.7±1.35 76.4±1.62 82.06±0.92 86.99±3.07 89.64±2.11
Naive NPCL (w/o task head inf.) 19.54±3.44 20.71±3.09 18.27 18.90 7.19±1.02 8.48±0.90 68.37±1.58 73.3±0.81 81.13±2.91 83.69±2.24
NPCL (ours) 63.78±1.70 71.34±1.48 37.43 46.71 12.44±0.59 15.29±1.02 83.11±0.90 86.52±0.77 91.48±1.79 92.07±1.39

Table 1: Classification accuracy for standard CL benchmarks across 10 runs. The best results are
in red. The second best results are in blue. All runs of NP variants in the CL settings rely on ER.
S-CIFAR-100 results are from Boschini et al. [3] while the rest are taken from Buzzega et al. [4].

Baselines. We employ several CL methods to compare the NPCL with. Regularization-based methods
include oEWC [44] and SI [54]; knowledge distillation-based methods include iCaRL [42] and LwF
[34]; rehearsal-based methods are ER [43], RPC [41], FDR [2], DER [4]. Among neural processes,
we use the NP [14], the ANP [27], and the Single Task (ST) NPCL (see App. A.2) with only per-task
latent variables. We use five non-CL benchmarks as upper bounds on the performances: Joint ResNet
/ NP / ANP / NPCL perform joint training of all tasks using a single task head while the multitask
NPCL infers task heads in joint training using Eq. (9). Finally, the naive NPCL inference averages
the logits of all task heads.

5.1 Results

Table 1 reports the average accuracy after training on all tasks. Across all settings, the NPCL boosts
the performance of the ER and achieves either comparable or better results against the state-of-the-
art (SOTA), e.g., DER. Compared to the regularization-based oEWC and SI, the NPCL obtains a
significant gain in performance. This is because the former methods calculate weight importance,
which is liable to changes with new tasks. Regularizing explicitly towards the global and per-task
distributions of past tasks helps the NPCL overcome this. Further, on both class and domain-IL, the
NPCL stands out in the most challenging setting where the episodic memory size is the smallest.
On domain-IL where the shift occurs within the domain instead of the classes, the performance of a
number of methods degrade as they forget the relations among a task’s classes. Preserving the tasks’
distributions helps the NPCL maintain valuable information in this case. Analyzing the backward
transfer (BWT) scores [39] shows that the NPCL’s forgetting is competitive or lesser than the SOTA
(see Table 10). Lastly, we note that the ST-NPCL with no hierarchy lags in BWT and accuracy due to
limited knowledge transfer between tasks.

5.2 Ablation Studies

Method S-CIFAR-10 S-CIFAR-100

Metric ECE ACE ECE ACE

ER [43] 0.4553 0.8532 0.6459 0.9499
DER [4] 0.2991 0.8391 0.2484 0.9447
ANP [27] 0.34 0.8495 0.5441 0.9477
NPCL (ours) 0.2103 0.8155 0.1995 0.9421

Table 2: Model calibration errors averaged
across 10 runs.

Why uncertainty-aware inference works? For our
uncertainty-aware task head inference mechanism to
be effective, a CL model must produce probabilities
that align well with the ground truth labels of the test
samples. We thus ablate the calibration errors for differ-
ent CL baselines using the well-established Expected
Calibration Error (ECE) [16] and Adaptive Calibra-
tion Error (ACE) [38] metrics. Table 2 shows that the
NPCL has the least calibration error across S-CIFAR-
10 (Msize = 200) and S-CIFAR-100 (Msize = 500).
In general, the probabilistic nature of the ANP [27] and
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(a) Accuracy (b) Uncertainty

Figure 4: Heatmaps depicting the taskwise aver-
aged accuracy and uncertainty of test samples per
task head on S-CIFAR-10.

(a) Accuracy (b) Uncertainty

Figure 5: Effect of context set size (Msize ∈
{5, 50, 100, 200}) on the accuracy and uncer-
tainty of the NPCL on S-CIFAR-10.

the NPCL benefits them in confidence calibration over the deterministic methods with comparable
accuracies, i.e., ER [43] and DER [4].

Uncertainty-Accuracy trade-off. Fig. 4 ablates the average accuracies and uncertainties of each
task head predictions over the test set of each task on S-CIFAR-10 (see App. G.2 for S-CIFAR-100).
First, we observe that the accuracy of predictions made by true task heads are, in general, a magnitude
higher than the rest. For uncertainty, this trend is reversed. This verifies our assumption that restricting
latent heads to learn only their true label distribution makes them more confident in modeling the
within-task samples. Second, for recently trained tasks, the uncertainty differences between the true
task heads and the rest are greater than the earlier tasks. This, in general, suggests that the extent
of forgetting goes beyond a CL model’s accuracy and to other aspects of its learning such as its
predictive confidence. To support the latter claim, we probe the BWT of uncertainty and see a strong
correlation with the BWT of accuracy (see Fig. 7).

Method
S-

CIFAR-10
S-Tiny-

ImageNet

ER [43] 44.79 8.49

Baseline (w/o GR or TR) 32.24 7.15
NPCL (w/ only GR) 50.68 8.61
NPCL (w/ only TR) 57.28 11.36

NPCL (w/ GR and TR) 63.78 12.44

Table 3: Accuracy w/ learning objectives

Learning objectives. Table 3 shows the impact of distri-
bution regularization, with the baseline being the NPCL
trained with no regularization. We observe that the base-
line performs worse than the ER as the NPCL layers
forget more. Including TR in our objectives leads to
the single-most gain over the baseline. We further study
how these objectives guide the learning of the global
and task-specific distributions with training (see App.
G.1). We observe that the NPCL w/ TR leads to better
learning of the current task as well as preserving the
past task distributions but at the cost of drifting the global distribution. The NPCL w/ GR restricts the
drift of the global distribution but not for the per-task distributions. The NPCL w/ GR and TR strikes
a balance in between.

Effect of Monte Carlo (MC) samples. We spot two combinations of the number of global N and
task-specific M MC samples in favor of performance. Out of these, we choose the one with the
superior computational efficiency (see App. E for details).

Context size. We study the average accuracy (Fig. 5(a)) and uncertainty (Fig. 5(b)) after training
on S-CIFAR-10 with |M| = 200, and then varying the context sizes during inference. Similar to
other NPs [49, 12], we find a positive correlation between context size and performance, indicating
that the NPCL utilizes useful information from diverse contexts, thereby reducing its task inference
ambiguity.

Few-shot replay settings. A key strength of NPs remains their few-shot learning capability. To study
how well the NPCL retains this trait against other CL baselines, we ablate their accuracy and ECE
[16] on rehearsal memory sizes of 5 and 10 (see Table 4). We find that on both memory sizes, the
NPCL outperforms ER [43] and DER [4]. For Msize = 5 on S-CIFAR-100, we observe that the ER
outperforms the DER in terms of accuracy. However, the latter still offers more confident predictions
(characterized by a lower ECE). This implies that on few-shot CL replay settings while regularizing
the predicted logits towards their old forms – as done by the DER – helps improve the predictive
confidence over the ER, regularizing the task distributions towards their old forms – as done by the
NPCL – remains the superior way to enhance the model’s predictive confidence.
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Method S-CIFAR-10 S-CIFAR-100

Msize 5 10 5 10

Metric Acc. ECE Acc. ECE Acc. ECE Acc. ECE

ER [43] 22.11 0.7281 25.39 0.696 9.44 0.8003 9.69 0.8014
DER [4] 21.05 0.5931 25.2 0.5107 8.96 0.4593 10.97 0.542
NPCL (ours) 22.98 0.4709 26.15 0.441 10.22 0.39 12.64 0.4717

Table 4: Few-shot replay results: Accuracy (Acc.) and ECE [16] of different methods with very small
buffer sizes of 5 and 10 for S-CIFAR-10 and S-CIFAR-100 averaged across 3 runs.

Storage efficiency. For each task, the NPCL stores two new vectors – task-specific mean and variance,
and replaces the global mean and variance with the current global ones. The NPCL storage thus
scales constantly in the size |M| of the memory. This offers a strong edge on storage efficiency when
compared to DER [4] scaling quadratically, i.e., |M| ×NC where NC is the total number of classes.
For instance, on S-Tiny-ImageNet with |M| = 500, NC = 200, the NPCL’s cumulative storage
amounts to a (flattened) vector of size 6132 (256× 10× 2 for 256-d means and variances of 10 tasks
plus 256 × 2 for 256-d global mean and variance plus 500 for 1-d task labels) while that of DER
amounts to 100,000 (200× 500 for logits of 500 memory samples), i.e., a 93.868% relative storage
efficiency. We report the storage efficiency of the NPCL over DER across all settings in App. G.3.

5.3 Applications of Uncertainty Quantification

The probabilistic nature of the NPCL offers it an edge in leveraging data-driven UQMs. To further
study the usage of predictive uncertainties, we conduct two experiments with a trained NPCL model.

Incremental
step

DID = CIFAR-10, DOOD = CIFAR-100

DID (δ) DOOD (δ) DID (H) DOOD (H)

1 1e−6 1e−5 9.3e−6 8.4e−5

2 2.6e−6 1.4e−5 6.3e−5 2.2e−4

3 2.3e−6 6.2e−6 6.7e−5 2.1e−4

4 8.1e−7 4.8e−6 4.6e−5 2.2e−4

5 7.1e−7 1.7e−6 4.6e−5 1.1e−4

Table 5: Average variances over softmax (δ)
and entropy (H) scores on in-domain and out-of-
domain test sets using N = 50 ancestral samples.

Novel data identification. Novel data identi-
fication seeks to distinguish out-of-distribution
data (DOOD) from in-domain data (DID). For-
getting makes CL models struggle further on
the task [19]. The probabilistic sampling in the
NPCL opens the door for leveraging its predic-
tive variances – which are more reliable esti-
mates of aleatoric uncertainty than pointwise
predictions [22]. For the N predicted logits, we
thus compute the variances over their softmax
scores, σ2(δ(h∗)), and over their uncertainty
scores, σ2(U(h∗)). Table 5 evaluates these met-
rics for ID (S-CIFAR-10) and OOD (first 10 classes of S-CIFAR-100) data after each task. We
observe that the variance scores of either metrics on DID are up to a magnitude lower than those
on DOOD. We further observe an overall decrease in the variances with the arrival of further incre-
mental tasks. This could be attributed to the generalization of more low-level features in the novel
data as in-domain [18, 16]. We detail further novel data identification experiments in App. G.5.

Class Accuracy PIW Accuracy by t-test status

Correct Incorrect Rejected
Not

Rejected

1 82.30 74.17 102.21 83.37 50.00
2 94.00 62.90 79.86 94.07 80.00
3 74.00 54.92 68.48 74.14 64.29
4 71.50 65.42 74.32 72.06 25.00
5 84.80 92.93 106.90 85.37 22.22
6 76.50 75.22 103.58 76.58 60.00
7 94.20 104.9 129.56 94.39 3.00
8 90.50 81.10 127.06 91.12 22.22
9 96.90 72.81 110.86 97.00 66.67

10 96.30 80.60 109.56 96.48 60.00

Table 6: PIW (multiplied by 100) and t−test
results for the first three classes of S-CIFAR-10
inferred from their respective task heads.

Instance-level model confidence evaluation. The
confidence evaluation framework of Han et al. [17]
provides finer granularity for assessing the predic-
tive confidence of classification models (see App.
G.6 for more details and normality test). Table
6 shows the results of one run of the framework
after training on S-CIFAR-10. Here, we use the
task identity to select the latent head per class. We
observe the mean prediction interval width (PIW)
of the true class label among the correct predic-
tions to be narrower than that of the incorrect pre-
dictions, implying that the NPCL’s variations of
predicted class labels are smaller when the predic-
tions are correct. We also notice a higher accuracy
among the test instances rejected by the t-test than
those not rejected.
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6 Limitations

We list the key limitations of the NPCL to facilitate future research directions.

Incompetence of dot-product attention. Similar to the ANP [27], the NPCL employs the
permutation-invariant scaled-dot product attention [48] to weigh the relevant context and target
embeddings. Visualizing the attention weights computed by the cross-attention layers of the determin-
istic path shows us that the top attended context for the target queries often contain points belonging
to other CL tasks (Fig. 11(a)). This limits the performance sensitivity of the NPCL with respect to the
increase in context thus resulting in a lag of accuracy behind SOTA on CL setups with larger episodic
memory sizes (see Table 1). To further verify the relevance of the attended context, we visualize the
self-attention weights of all context points. Fig. 11(b) shows that the lowest or the maximum values
in the context dataset have larger weights. Such an observation is in line with existing works pointing
that the scaled-dot product attention can derive irrelevant set encodings of the context points and can
thus lag at exploiting the context embeddings properly [28].

Computational overhead. Table 7 compares the number of parameters of the NPCL with ER / DER
[3] where the latter rely solely on the ResNet-18 backbone as they do not exploit parameter isolation
for task heads. Overall, the percentage increase in parameter number is 57.6% for S-CIFAR-10,
46.57% for S-CIFAR-100 and S-Tiny-ImageNet, and 55.25% for P/R-MNIST.

Method / Dataset S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet P/R-MNIST
ER / DER [3] 11,173,962 11,220,132 11,220,132 89,610

NPCL 19,397,706 24,091,556 24,091,556 162,166
Table 7: Comparison of the total number of parameters for ER / DER against the NPCL.

Method S-CIFAR-10
ER / DER 3.72s

NPCL,|M| = 200 19.58s
NPCL, |M| = 500 31.25s

NPCL, |M| = 1000 47.99s
NPCL, |M| = 2000 84.86s

Table 8: Inference time with vary-
ing context sizes

Inference time complexity. The reliance on self-attention
means that the inference time complexity of the NPCL is
O(n ∗ m), where n is the number of context points (sampled
from the episodic memory) and m is the number of target points
(the number of test samples). Due to this, the runtime for in-
ference scales polynomially with the number of context points
(sampled from the buffer). Table 6 reports the runtime of the
NPCL on S-CIFAR-10 and S-CIFAR-100 settings by varying the
context sizes. For reference, the first row reports the runtime of
ER / DER whose inference complexity is O(1) in the memory buffer size.

Incompatibility with logits-based replay. The NPCL is incompatible with logits-based replay
because of the stochasticity in the posterior induced by Monte Carlo sampling. Overcoming this
could help boost the performance of the NPCL further over SOTA like DER [4] and DER++ [3].

7 Conclusion

In this paper, we propose Neural Processes for Continual Learning (NPCL), a hierarchical latent
variable setup designed to jointly model the task-agnostic and task-specific data-generating functions
in continual learning. We study the potential forgetting aspects in the NPCL and propose to regularize
the previously learned distributions at a global and a per-task granularity. We demonstrate that
using entropy as an uncertainty quantification metric helps the NPCL infer correct task heads and
boost the performance of baseline experience replay to even surpass state-of-the-art deterministic
models on several CL settings. Our robust ablations show the efficacy of the NPCL for model
calibration measurement and few-shot replay in CL. We further study out-of-the-box applications of
the uncertainty estimation capabilities of the NPCL for novel data identification and instance-level
confidence evaluation. We conclude our ablations by listing the key limitations of the NPCL, which
we hope could lay solid directions for further research on uncertainty-aware continual learning.
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Appendix

A Theory

A.1 ELBO derivation for the NPCL

Borrowing the conventions from Sec. 3, for an incremental task 0 ≤ t ≤ T , we assume the context
C and targets T to comprise of samples from all t seen classes. Accordingly, we define these as
C = (X0:t

C , Y 0:t
C ) and T = (X0:t

T , Y 0:t
T ), respectively. To enforce the prior that both C and T follow

the same distribution, we assume Ct ⊂ T t, and therefore, C ⊂ T . In order to derive predictions Y 0:t
T

on X0:t
T , the NPCL relies on the context C to build conditional priors pθ(zG|C) and pθ(zt|zG, Ct),

where pθ is the decoder. The decoder’s objective thus boils down to maximizing the log-likelihood
of the observations, i.e., the evidence log pθ(Y

0:t
T |X0:t

T , C). In the following, we derive the evidence
lower bound (ELBO):

log pθ(Y
0:t
T |X0:t

T , C) (Log-likelihood of evidence) (10a)

= log pθ(Y
0:t
T |X0:t

T , C)
∫
pθ(z

G|X0:t
T , Y

0:t
T , C)dzG

(
∵

∫
pθ(z

G|T , C)dzG = 1
)

(10b)

=

∫
pθ(z

G|X0:t
T , Y

0:t
T , C)(log pθ(Y 0:t

T |X0:t
T , C))dzG (Integrate over the log-likelihood) (10c)

= Eqϕ(zG|T )[log pθ(Y
0:t
T |X0:t

T , C)] (By definition) (10d)

= Eqϕ(zG|T )

[
log

pθ(Y
0:t
T , zG|X0:t

T , C)
pθ(zG|X0:t

T , Y 0:t
T , C)

]
(Re-introduce zG by Chain rule) (10e)

= Eqϕ(zG|T )

[
log

pθ(Y
0:t
T |X0:t

T , C, zG)pθ(z
G|X0:t

T , C)
pθ(zG|T )

]
(Chain rule of probability; C ⊂ T ) (10f)

= Eqϕ(zG|T )

[
log

pθ(Y
0:t
T |X0:t

T , C, zG)pθ(z
G|X0:t

T , C)qϕ(zG|T )

pθ(zG|T )qϕ(zG|T )

]
(Equivalent fraction) (10g)

= Eqϕ(zG|T )

[
log pθ(Y

0:t
T |X0:t

T , C, zG)
]

+ Eqϕ(zG|T )

[
log

pθ(z
G|C)

qϕ(zG|T )

]
+ Eqϕ(zG|T )

[
log

qϕ(z
G|T )

pθ(zG|T )

]
(Split the expectation) (10h)

= Eqϕ(zG|T )

[
log pθ(Y

0:t
T |X0:t

T , C, zG)
]

−DKL
(
qϕ(z

G|T )∥pθ(zG|C)
)
+DKL

(
qϕ(z

G|T )∥pθ(zG|T )
)

(By definition of KL divergence) (10i)

≥ Eqϕ(zG|T )

[
log pθ(Y

0:t
T |X0:t

T , C, zG)
]
−DKL

(
qϕ(z

G|T )∥pθ(zG|C)
)
, (∵ KL divergence ≥ 0) (10j)

where the evidence is equal to the sum of the reconstruction likelihood
Eqϕ(zG|T )

[
log pθ(Y

0:t
T |X0:t

T , C, zG)
]

of the decoder and the KL divergence between the true
posterior pθ(zG|T ) and the approximate posterior qϕ(zG|T ) learned using the variational distribu-
tion, minus the prior matching term DKL

(
qϕ(z

G|T )∥pθ(zG|C)
)
. In particular, the NPCL learns two

approximate distributions qϕ(zG|T ) and qϕ(zt|zG, T t), that seek to estimate the global posterior
pθ(z

G|T ) and the task-specific posterior pθ(zt|zG, T t). To realize the latter posterior, we introduce
the hierarchy of task-specific latent variables z0:t. This allows us to expand and derive a lower bound
to the reconstruction likelihood as:
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log pθ(Y
0:t
T |X0:t

T , C, zG) (Reconstruction term)

(11a)

= E∏t
0 qϕ(zt|zG,T t)

[
log

pθ(Y
0:t
T , z0:t|X0:t, C, zG)

pθ(z0:t|X0:t
T , Y 0:t

T , C, zG)

]
(Introduce one-level latent hierarchy)

(11b)

= E∏t
0 qϕ(zt|zG,T t)

[
log

∫ t

0

pθ(Y
t
T , z

t|Xt, Ct, zG)

pθ(zt|Xt
T , Y

t
T , Ct, zG)

]
(Integrate over individual tasks)

(11c)

=
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t, zG, zt)pθ(z

t|Xt
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]
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(11d)
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t
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(11e)
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log pθ(Y
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t
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]
−DKL

(
qϕ(z
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)
)

(∵ KL divergence ≥ 0),

(11g)

Plugging Eq. (11g) into Eq. (10j), we get the final ELBO:

log pθ(Y
0:t
T |X0:t

T , C) (12a)

≥ Eqϕ(zG|T )

[ ∫ t

0

Eqϕ(zt|zG,T t)

[
log pθ(Y

t
T |Xt

T , z
t
)
]
−DKL

(
qϕ(z

t|zG, T t
)∥pθ(zt|zG, Ct

)
)]

−DKL
(
qϕ(z

G|T )∥pθ(zG|C)
)

(By substitution)
(12b)

= Eqϕ(zG|T )

[ ∫ t

0

Eqϕ(zt|zG,T t)

[
log pθ(Y

t
T |Xt

T , z
t
)
]
−DKL

(
qϕ(z

t|zG, T t
)∥qϕ(zt|zG, Ct

)
)]

−DKL
(
qϕ(z

G|T )∥qϕ(zG|C)
)
, (Final ELBO)

(12c)

where the decoder pθ serves as the conditional prior network and is replaced by the encoder qϕ serving
as the surrogate posterior network. qϕ can be seen to be producing two intermediate bottleneck
distributions: (a) qϕ(zG|T ) transforms inputs into a distribution over global latent variables, (b)
conditioned on the global latent variables, qϕ(zt|zG, T t) gathers the t-th task inputs and learns
another distribution over the task-specific latent variables. The task-specific latent variables and their
corresponding input covariates Xt are then used by the deterministic decoder pθ to decode their
corresponding logit h∗. It is indeed this dependency of pθ on the task identifier t that makes inference
a challenging task in real-world CL settings.

A.2 Single Task NPCL and its ELBO

Single-Task (ST) NPCL preserves all but the inter-task cross attention CA0:t
lat and the global distri-

bution encoder ψG layers from the architecture of the NPCL (Sec. 4.3). The task-specific latent
variables zt are thus derived as:

{zti}Mi=1 ∼ N (ψtµ(s
t
i), ψ

t
σ(s

t
i)) = N (µt, σ

2
t ),∀t ∈ T, (13)

where sti and ψt carry the same meaning as in Eq. (16). For a fair comparison in Table 1, we fix M
to be the same as the total number of global ancestral samples N in the NPCL. The corresponding
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ELBO amounts to:

log pθ(Y
0:t
T |X0:t

T , C) (14a)

≥
∫ t

0

Eqϕ(zt|T t)

[
log pθ(Y

t
T |Xt

T , z
t)
]
−DKL

(
qϕ(z

t|T t)∥pθ(zt|Ct)
)

(Dropping zG from Eq. (12c))

(14b)

A.3 ELBO for the NP [14] and the ANP [27]

The NP [14] and the ANP [27] employ a single latent variable zG to model the global correlation
of all tasks. In particular, compared to Sec. 4.3, the task-specific self-attention layer SAtlat and the
task-specific distribution encoder ψt is no longer required. While this enables knowledge sharing
among tasks, NPs and ANPs are limited in modeling finer intra-task stochastic factors. The ELBO
can be given as:

log pθ(Y
0:t
T |XT , C) (15a)

≥ Eqϕ(zG|T )

[
log pθ(Y

0:t
T |XT , z

G)
]
−DKL

(
qϕ(z

G|T )∥pθ(zG|C)
)

(Dropping z0:t from Eq. (12c))

(15b)

where zG is derived in a way similar to Eq. (16), and the inputs XT and C belong to [0, t] tasks
without relying on the task labels for being encoded.

B NPs for Meta-Learning (ML) vs Continual Learning (CL)

Resemblance. For both ML and CL settings, we have multiple tasks and would like to learn an NP
with flexible conditioning that generates task-specific functions. Specifically, for each task t, we have
Y t = F t[ϕ;θ](X

t; zt) where the latent variable zt is conditioned on the task-specific context Ct. As zt

is task-specific, this, in turn, makes F t task-specific.

Differences. There are two major differences between the conventional NP for ML and our proposed
NP for CL (NPCL):

1. Architectural difference. In standard NPs, zt is conditioned only on the task-specific
context Ct while in the NPCL, zt is conditioned on [Ct; zG] where zG is the global latent
derived from the global context. The added conditioning of global latent reflects the need for
cross-task knowledge transfer in CL and thus endows a two-level hierarchy into our model.

2. Functional difference. The functional difference between the ML and CL (inference)
settings call for another adaptation in the NPCL. Namely, ML aims to learn NPs that learn
F[ϕ;θ] that can generalize to new tasks. That is why NPs are tested on a new task t∗ given its
context C∗. On the other hand, in CL, we wish to learn an F that can perform well on all the
seen tasks as there is no new task during inference. Given the absence of a labeled context
during inference, our test-time context samples are thus a subset of the training data from
the tasks seen so far.

In a nutshell, CL calls for learning a general function that is task-specific but also performs well on
all the seen tasks subject to a limited rehearsal memory. To achieve this, we leverage an NP’s ability
of generating task-specific functions with flexible conditioning. But instead of using the conventional
NPs for ML, we propose a hierarchical model to introduce more inter-task knowledge sharing, thus
tailored for the CL problem.

C Further on the NPCL Architecture

In the following, we denote multi-head dot product self-attention [48] by SA(K,V,Q) where K, V,
and Q are the keys, values and queries, respectively. The equivalent notation for cross-attention is
CA(K,V,Q).

Latent Encoder. The latent path learns the functional prior and posterior from the context and the
target sets, respectively. Each label-concatenated input is projected as Φlat

i = MLP([xi; yi]); then
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subjected to two attention operations. First, per-task projections form the keys, values, and queries to
taskwise self-attention layers SAtlat(Φ

lat
i ,Φ

lat
i ,Φ

lat
i ) : Φ

lat
i → sti that produce order-invariant encodings

sti over the task t. Second, all encodings {s0:ti }n+mi=1 serve as the keys, values, and queries to the
cross-attention layers CA0:t

lat (s
t
i, s

t
i, s

t
i) : s

t
i → sGi that enrich their order-invariance from intra-task st

to inter-task sG. st and sG are then used to derive the global zG and the task-specific latent variables
zt.

Such globally attended inputs are passed in parallel to two MLP layers constituting the global
distribution encoder ψG whose outputs together parameterize the global distribution N (µG, σ

2
G) over

the input set, i.e., ψG(sG) : {sGi }
n+m
i=1 → (µG, σ

2
G). Samples {zGi }Ni=1 drawn from this distribution

are proxies for the variables capturing the global correlation over all tasks in the input set. It is indeed
this sampling step that induces the stochasticity into the learned posteriors of the NPCL.

To model finer task-specific distribution for task t conditioned on the global distribution, we retain the
task-specific self-attended representations sti and concatenate these with the global latent variables
{zGi }Ni=1 to produce N distinct encodings per input point. These encodings are then passed through
the t-th task distribution encoder ψt that again constitutes a mean and a variance MLP head and
produces outputs that parameterize the t-th task distribution N (µt, σ

2
t ), i.e., ψt(st) : {sti}

n+m
i=1 →

(µt, σ
2
t ). Samples {zTj }Mi=j drawn from each such distribution thus capture the per-task stochastic

factors. To limit the randomness in the learned prior/posterior, we use M = 1. The latent encoder
thus outputs a subtotal of N × (t+ 1) encodings per input point.

Put together, the global and task-specific latent variables can be derived as:

{zGi }Ni=1 ∼ N (ψGµ (s
G), ψGσ (s

G)) = N (µG, σ
2
G),

{zti}Mi=1 ∼ N (ψtµ(s
t
i, z

G
i ), ψ

t
σ(s

t
i, z

G
i )) = N (µt, σ

2
t ),∀t ∈ T,

(16)

where ψG and ψt are the global and per-task distribution encoders, respectively.

Deterministic Encoder. The deterministic path is similar to that of an ANP [27] where the context
projections Φdet

i = MLP([xi; yi]) form the keys, queries and values for a self-attention operation,
SAdet(Φ

det
i ,Φ

det
i ,Φ

det
i ) : Φdet

i → ri. The resulting order-invariant context representations {ri}mi=1 are
fed as values to a subsequent target-to-context cross-attention operation CAdet. The keys xi and
queries x∗ for CAdet come from the context xi ∈ XC and target x∗ ∈ XT covariates, respectively,
i.e., CAdet(xi, sC , x∗) : x∗ → r∗ where r∗ is invariant to the order of context.

Decoder. Different from other NP variants, the NPCL decoder adopts separate decoding mechanisms
during training and inference. At train time, we use the available task identity to filter the true N out
of N ∗ (t+1) latent path outputs to be processed by the decoder. After this, the decoder concatenates
a target input xt∗ ∈ Xt

T with its N true task-specific latent variables {zti}Ni=1 obtained from the
latent path and its order-invariant feature r∗ obtained from the deterministic path thus resulting in
N distinct inputs. For N > 1 samples of zt, we first make N copies of x∗ and r∗ each, and then
concatenate these with each zt. pθ thus performs the projection pθ([x∗; r∗; {zti}Ni=1]) : x → h∗
where x ∈ Rf+2∗o and h∗ are the logits of an MLP classifier for the target label y∗. We detail the
inference-time decoding in Sec. 4.5.

D Experiments and Reproducibility

Configuration. For a fair comparison with the benchmarks of Buzzega et al. [4], we fix the batch
sizes for new task’s samples and for replay samples to 32 each for the class-IL datasets and to 128 each
for the domain-IL datasets. Both the context and target datasets use the same set of augmentations.
For S-CIFAR-10, S-CIFAR-100, and S-Tiny-ImageNet, we apply random crops and horizontal flips
to both stream and buffer examples following Buzzega et al. [4] and Boschini et al. [3]. For each
setting of memory size on each dataset, the NPCL adopts the same learning rate (LR) as reported in
Buzzega et al. [4] and Boschini et al. [3]. However, the NPCL training additionally relies on linearly
increasing the learning rate (LR) over a period of 4000 iterations for class-IL and 40 iterations for
domain-IL settings. We further apply gradient clipping [40] on L2-norm of the NPCL parameters
with a cap of 10000.

18



Hyperparameter tuning. We arrive at the best hyperparameter settings for each of our datasets
through grid search over a validation set made of 10% of the training set on each dataset. The search
range for number of samples N from the global distribution N (µG, σ

2
G) is [2, 5, 10, 20, 50, 100]. Out

of these, we foundN = 50 during training andN = 10 during evaluation to perform better in general
across all settings.

Similarly, we conducted a grid search over the batch size of the context set C over the range
[1/16, 1/8, 1/4, 1/2, 1, 1.25] of the original (target) batch sizes for each of the dataset. In general,
we found that fixing the context batch size to 1/8 of the target batch size performed better across all
datasets. Such context batches are sampled from a context dataset Dt

C for each task t. Dt
C is itself

created by randomly selecting a subset of the training samples for each class at the beginning of each
incremental training task. To decide on the size of the subset for each class, we ran a grid search over
the range [50, 100, 150, 200] samples per class and found that incorporating 100 random samples per
class into Dt

C performed well across all datasets.

Finally, to decide on the loss weights α, β, γ and δ for Dt, DG, LGR, and LtTR, we ran gridsearch for
each over possible values [0.0, 0.01, 0.05, 0.08, 0.1, 0.15, 0.2, 0.4]. We report the best settings across
datasets in Table 9:

S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet P-MNIST R-MNIST
α 0.05 0.05 0.01 0.1 0.1
β 0.01 0.01 0.01 0.05 0.05
γ 0.2 0.08 0.05 0.1 0.1
δ 0.1 0.1 0.1 0.15 0.15

Table 9: Hyperparameters for loss contributions that were tuned on validation sets for each dataset.

E On the number of Monte Carlo samples

Figure 6 shows the effect of the number of Monte Carlo (MC) samples for global N and task-specific
M latent variables on accuracy during inference. In particular, we observe two favorable spots in
terms of accuracy, one centered around (M = 1, N = 50) and the other around (M = 10, N = 20).
It is worth noting that the total number of inference time MC samples grow quadratically with the
number of tasks t, i.e., O(NMt), and that a higher number of samples leads to a larger computational
overhead. For instance, based on Eq. (9) in the main paper, the inference on the 10-th task of
S-CIFAR-100, i.e., t = 10, given the two favorable spots amounts to selecting the set of task-specific
module predictions with the least uncertainty from a total of (a) 1 × 50 × 10 = 500 predictions
using (M = 1, N = 50), and (b) 10× 20× 10 = 2000 predictions using (M = 10, N = 20). We,
therefore, opt for the more efficient setting of (M = 1, N = 50) throughout our experiments in the
paper.

Figure 6: The effect of the number of Monte Carlo (MC) samples of global (N) and task-specific (M)
latent variables on S-CIFAR-100 (Msize = 500) accuracy.
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Method S-CIFAR-10 P-MNIST R-MNIST
Class-IL Domain-IL Domain-IL

oEWC -91.64 -36.69 -24.59
SI -95.78 -27.91 -22.91
LwF -96.69 - -

Msize 200 500 200 500 200 500

ER -61.24 -45.35 -22.54 -14.90 -8.24 -7.52
GEM -82.61 -74.31 -29.38 -18.76 -11.51 -7.19
A-GEM -95.73 -94.01 -31.69 -28.53 -19.32 -19.36
iCaRL -28.72 -25.71 - - - -
FDR -86.40 -85.62 -20.62 -12.80 -13.31 -6.70
GSS -75.25 -62.88 -47.85 -23.68 -20.19 -17.45
HAL -69.11 -62.21 -15.24 -11.58 -11.71 -6.78
DER -40.76 -26.74 -13.79 -8.04 -5.99 -3.41

ANP -62.80 -49.18 -28.79 -16.44 -12.08 -10.63
ST-NPCL -46.91 -32.50 -17.03 -12.40 -7.9 -8.11
NPCL (ours) -39.11 -27.62 -12.81 -8.60 -5.70 -4.10

Table 10: Backward transfer scores for the experiments in Table 1. Best results are in red. Second
best results are in blue. All runs of the ANP, the ST-NPCL and the NPCL in the CL settings rely on
experience replay (ER).

F Results: Backward Transfer

Table 10 reports the backward transfer for the accuracy scores mentioned in table 1. We further
compute the backward transfer based on uncertainty scores to study the effect of forgetting on
uncertainty. Fig. 7 shows the correlation between backward transfer of accuracy and uncertainty for
the domain-IL datasets P-MNIST and R-MNIST.

Figure 7: Backward transfer scores of tasks based on accuracy and uncertainty on domain-IL
datasets with |M| = 500: a higher negative backward transfer on accuracy correlates with a higher
positive backward transfer on uncertainty and vice-versa. For better visibility, the uncertainty-based
backward transfer scores have been scaled by a factor of 100.

G Ablations

G.1 On the effect of regularization on the learned distributions

We record the per epoch L1-norms of global and task-specific means and variances on the last
incremental task (task 4) of S-CIFAR-10. As shown in Fig. 8(a) and Fig. 8(b), regularizing the global
distribution (GR) alleviates forgetting by limiting the learning of the global and the current task’s
(task 4) means and variances. This is evident through larger L1-norm of means and smaller L1-norm
of variances when GR = 0, i.e., +TR setting. On the other hand, excluding all the objectives, i.e.,
the Baseline NPCL as well as excluding TR from the learning objectives, i.e., +GR setting lead to
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relatively unstable evolution of the past task means and variances, hence characterizing an increased
forgetting. Including both GR and TR in the objective, i.e., the NPCL helps find a balance between
preserving the global and the past-task distributions while facilitating the learning of the current task
distribution.

(a) Effect on the global and task-specific means.

(b) Effect on the global and task-specific variances.

Figure 8: Effect of the proposed global (GR) and task-specific (TR) regularizations on the learning
of global and task-specific means and variances during the last incremental training task (task 4) of
S-CIFAR-10. The NPCL uses both GR and TR while the baseline NPCL uses neither of them.

G.2 How does forgetting effect uncertainty?

Fig. 9 ablates the average accuracies and uncertainties of each task head predictions over the test
set of each task at the end of incremental training on S-CIFAR-100. Similar to S-CIFAR-10 (Fig.
4), we observe that the accuracy of predictions made by true task heads are higher than the rest.
For predictive uncertainties, the trend is the opposite. Also, more recently trained tasks show lesser
forgetting both in terms of accuracy (higher values) and uncertainty (lower values). This generalizes
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our conclusion on S-CIFAR-10 regarding the outreach of forgetting in CL going beyond accuracy
and to other aspects of learning such as the model’s predictive confidence.

(a) Accuracy heatmap (b) Uncertainty heatmap

Figure 9: Heatmaps depicting the average accuracy and uncertainty of individual task test sets per
task head on S-CIFAR-100 with |M| = 500 over an individual run.

G.3 On the storage gain of the NPCL over DER

Table 11 compares the total episodic memory sizes of the NPCL (ours) and DER [4]. We report
storage sizes as the dimension of a single 1-d vector constructed by flattening all the vectors that
need to be stored by each method in the episodic memory. Namely, the NPCL stores 2 ∗ t+ 2 vectors
of fixed dimension R|o| where t is the total number of tasks in a dataset and o is the output size of
the mean and variance heads. On the other hand, DER stores |M| number of logits of dimension
R|NC | where NC denotes the total number of classes in a CL dataset. As a result, the NPCL has
significant storage gains on settings with either large number of classes or a larger memory size. It is
worth noting that both the NPCL and DER rely on storing original input images and therefore, our
comparison does not take the inputs into account.

Method S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet P-MNIST R-MNIST

Msize 200 500 500 2000 200 500 200 500 200 500

DER [4] 2000 5000 50000 200000 40000 100000 2000 5000 2000 5000
NPCL (ours) 3272 3572 6132 7632 5832 6132 1544 1844 1544 1844

Storage gain (%) -63.6 28.56 87.746 96.184 85.42 93.868 22.8 63.12 22.8 63.12

Table 11: Storage size comparison of the NPCL with DER across different experimental settings of
Table 1. Gains are marked in bold.

G.4 On the importance of correct context

To study the significance of correct task-specific context Ct for the NPCL, we design a simple
experiment. While training on an incremental task t > 0 onwards, after having derived the global
latent samples {zG}Ni=1, we tinker with the flow of the task-specific context points Ct to the different
task-specific encoders of the NPCL. In specific, instead of directing Ct to the t-th encoder, we
misdirect it to the task encoder j ∋ j ̸= t where, j is chosen at random from the pool of all seen
task ids. Note that the presence of such randomly allocated context points during training implies
that we now have a noisy task-specific prior qϕ(zt|zG, Cj) to match in the ELBO, i.e., a corrupted
second term on the right-hand side of eq. (5). We keep all our other training settings (including the
loss coefficient values) unchanged.

Table G.4 compares the performance of the NPCL with the noisy task-specific priors on the two
different memory sizes of S-CIFAR-10. While the performance gain of the NPCL over its noisy
prior counterpart remains significant, we observe that in comparison with the ST-NPCL (which
lacks hierarchy), the presence of noisy priors degrade the performance of the NPCL (which has
hierarchy) further as the replay memory size increases from 200 to 500. This is because, with a larger
memory size, more context points from past tasks are diverted to the random task components during
training. This leads to a noisier task-specific prior matching. Such noisy priors further lead to higher

22



fluctuations in the accuracy, as marked by the larger standard deviations in their accuracy over the
ST-NPCL and the NPCL. This validates the fact that the conditioning on the correct task-specific
context remains crucial to the performance of the NPCL.

Method Average accuracy over 10 runs (%)

S-CIFAR-10 (Msize = 200) S-CIFAR-10 (Msize = 500)

ST-NPCL (w/ only per-task latent) 54.6± 2.14 65.22± 1.89
NPCL w/ noisy task-specific priors 59.41± 3.0 65.1± 2.31
NPCL 63.78± 1.7 71.34± 1.48

Table 12: The importance of correct context: Comparison of S-CIFAR-10 accuracy (over 10
runs) of Single Task NPCL (ST-NPCL), the NPCL with noisy/corrupted task-specific priors and the
standard the NPCL. The presence of noisy priors degrades the performance of the NPCL up to the
extent of falling behind the ST-NPCL (without a hierarchical structure) on the setting with larger
memory size.

G.5 On out-of-the box novel data identification

Our novel data identification experiments use the S-CIFAR-10 and S-CIFAR-100 datasets interchange-
ably as DID and DOOD given the high degree of similarity between a number of their classes [21].2
Namely, while evaluating the NPCL trained on S-CIFAR-100, we consider the entire CIFAR-10 test
set as DOOD whereas the evaluation of the S-CIFAR-10 model treats the test set of first 10 class labels
of CIFAR100 to be DOOD. Further, for an incremental task t, the test sets for [0, t] tasks make up for
the ID data DID.

As shown in Table 13, the variances computed using either of our proposed metrics on DID are up
to a magnitude lower than those on DOOD. This trend is evident across the incremental evaluation
steps even if the differences in the variances between DID and DOOD slump with the further arriving
tasks. Moreover, for the model trained on the more challenging S-CIFAR-100 setting, we observe
that the differences between the DID and DOOD variances even grow during the course of incremental
training. This implies the potential perks of enabling the inter-task knowledge sharing among the
NPCL parameters in a CL setup.

Incremental step CIFAR-100 on S-CIFAR-10 model CIFAR-10 on S-CIFAR-100 model

DID (δ) DOOD (δ) DID (H) DOOD (H) DID (δ) DOOD (δ) DID (H) DOOD (H)

1 1e−6 1e−5 9.3e−6 8.4e−5 1.5e−6 8.9e−6 1.5e−4 1e−3

2 2.6e−6 1.4e−5 6.3e−5 2.2e−4 1.9e−6 5.8e−6 5.3e−4 1.7e−3

3 2.3e−6 6.2e−6 6.7e−5 2.1e−4 1.2e−6 3.6e−6 4.4e−4 1.5e−3

4 8.1e−7 4.8e−6 4.6e−5 2.2e−4 1.1e−6 2.5e−6 3.5e−4 1.2e−3

5 7.1e−7 1.7e−6 4.6e−5 1.1e−4 8e−7 2e−6 4.4e−4 1.2e−3

6 - - - - 6.8e−7 1.3e−6 4.1e−4 8.5e−4

7 - - - - 4.e−7 1.3e−6 3.2e−4 8.3e−4

8 - - - - 4.9e−7 1e−6 3.2e−4 6.7e−4

9 - - - - 3e−7 6.9e−7 2.5e−4 4.7e−4

10 - - - - 3.3e−7 5.1e−7 2.5e−4 3.5e−4

Table 13: Average variances over softmax (δ) and entropy (H) scores of incremental models on
in-distribution (ID) and out-of-distribution (OOD) test sets using N = 50 samples

G.6 On instance-level model confidence evaluation

For each target instance x∗, the instance-level model confidence evaluation framework [17] uses the
N predictions obtained from stochastic sampling to compute: (a) the prediction interval width (PIW)
between the [2.5, 97.5] percentile range of the N predicted classes, (b) the paired two-sample t-test
[10] to evaluate the significance of difference between the mean predicted probabilities for the top-2

2The labels for first ten CIFAR-100 classes are the same as https://huggingface.co/datasets/
cifar100 and that for CIFAR-10 classes are the same as https://huggingface.co/datasets/cifar10.
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most predicted classes. As a prerequisite to the latter test, we first verify the normality assumption of
the probability differences for the NPCL (Fig. 10).

Similar to Fan et al. [10], after computing the PIW per test instance, we split the instances into
two groups by the correctness of the majority-vote predictions, obtain the PIW of the true class per
instance, and compute the mean PIW of the true class within each group. For t-test evaluation, we
compute the mean accuracy per group of the test instances split by their t-test rejection status.

Figure 10: Q-Q plots for the differences in probability between the most and the second most
predicted class.

Class Accuracy PIW Accuracy by t-test status

Correct Incorrect Rejected
Not

Rejected

1 82.30 74.17 102.21 83.37 50.00
2 94.00 62.90 79.86 94.07 80.00
3 74.00 54.92 68.48 74.14 64.29
4 71.50 65.42 74.32 72.06 25.00
5 84.80 92.93 106.90 85.37 22.22
6 76.50 75.22 103.58 76.58 60.00
7 94.20 104.9 129.56 94.39 3.00
8 90.50 81.10 127.06 91.12 22.22
9 96.90 72.81 110.86 97.00 66.67

10 96.30 80.60 109.56 96.48 60.00

Table 14: PIW (multiplied by 100) and t−test results for classes inferred from their respective task
heads after S-CIFAR-10 training.
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H Incompetence of Dot-product attention

(a) Cross-attention visualization

(b) Self-attention visualization

Figure 11: Scaled dot-product attention visualization: (a) top-15 context (buffer) points attended
for 4 randomly chosen queries (test set samples). The queries are made after training on S-CIFAR-10.
The sizes of the points correspond to the attention values while the colors denote the tasks they belong
to. (b) self-attention weights of context points when all feature values are arranged in ascending order
(along x and y-axis) shows that the ANP [27] mostly attends to the lowest or the maximum values in
the context dataset.
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