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Abstract

Recent advances in egocentric video understanding models are promising, but
their heavy computational expense is a barrier for many real-world applications.
To address this challenge, we propose EgoDistill, a distillation-based approach
that learns to reconstruct heavy egocentric video clip features by combining the
semantics from a sparse set of video frames with the head motion from lightweight
IMU readings. We further devise a novel self-supervised training strategy for
IMU feature learning. Our method leads to significant improvements in efficiency,
requiring 200× fewer GFLOPs than equivalent video models. We demonstrate
its effectiveness on the Ego4D and EPIC-Kitchens datasets, where our method
outperforms state-of-the-art efficient video understanding methods. Project page:
https://vision.cs.utexas.edu/projects/egodistill/

1 Introduction

Recent advances in augmented and virtual reality (AR/VR) technology have the potential to change
the way people interact with the digital world, much like the smartphone did in the previous decade. A
fundamental requirement for AR/VR systems is the ability to recognize user behavior from egocentric
video captured from a head-mounted camera. Towards this goal, several egocentric video datasets have
been proposed in recent years, spurring increasing attention of the research community [26, 56, 11].

Current egocentric video understanding models use powerful clip-based video backbones that operate
on video clips of a few seconds at a time [18, 54, 25, 16, 12, 55, 43, 44]. Despite encouraging
performance, these models typically process densely sampled frames with temporally-aware opera-
tions, making them computationally heavy. This makes them impractical for AR/VR devices with
constrained resources, or for real-time video applications that require low latency. How to efficiently
perform egocentric video understanding is therefore an important, yet unsolved problem.

To address this issue, we take inspiration from how animals perceive the world with ego-motion.
Neuroscience research has found that during active movement, the animal visual cortex receives and
encodes head motion signals from the motor cortex for visual processing [27, 52, 53], highlighting
its role in the efficient understanding of the animal’s visual stream. Inspired by this phenomenon, we
explore the relationship between human head motion and ego-video for efficient video understanding.

In practice, we consider head motion signals captured by the inertial measurement unit (IMU) of a
head-mounted camera. IMU measures motion from an accelerometer and gyroscope and is widely
available on popular wearable devices. Prior work leverages IMU as an extra modality for human
action recognition [68, 69, 13] (e.g., jumping, walking), or as geometric cues for visual-inertial
odometry [7, 20, 71]. In contrast, we propose to drive efficient video understanding by drawing on
IMU as a substitute for dense video frame observations. The intuition is as follows. A video clip
contains two things: semantic content (appearance of objects, places, people) and dynamics (how the
scene and the camera move). While densely sampled frames are sure to capture both of the above—as
done by current clip models [54, 16, 17]—we hypothesize they are sometimes overkill. For a short
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Figure 1: Illustration of EgoDistill. Given a single video frame and camera motion from IMU,
EgoDistill learns to reconstruct the more expensive dense video clip feature. With its lightweight
input, EgoDistill significantly improves efficiency.

video clip, much of the semantic content is intelligible from even a single frame; meanwhile, the
head motion provides a good portion of the dynamics, implicitly revealing how the visual appearance
changes across neighboring frames.

Building on this insight, we introduce EgoDistill, an approach that learns to reconstruct dense
egocentric video clip features using temporally sparse visual observations (as few as one RGB frame)
together with the head motion from IMU. Specifically, EgoDistill employs a new form of knowledge
distillation from video models. During training, we train a lightweight model that takes sparsely
sampled image(s) and IMU to approximate video features extracted by a powerful but expensive
video model. We further improve the model with a novel IMU-guided self-supervised training stage.
During inference, we directly utilize the lightweight model for egocentric video recognition, leading
to much higher efficiency. Our model is flexible to the target heavy video feature, as we demonstrate
with multiple current leading egocentric video models [54, 16, 18, 17]. See Figure 1.

Importantly, EgoDistill offers a major upgrade in efficiency. Low-dimensional IMU and a few frames
are much more efficient to process than a dense stack of frames. In practice, EgoDistill uses 200×
fewer GFLOPs than the original video model. Furthermore, our approach is economical — the
GoPro IMU sensor in our experiments (BOSCH BMI260) costs only $3 — and it is practical — most
AR/VR devices and phones have in-built IMU sensors, making our method widely adoptable.

We experiment on the two largest egocentric action recognition datasets: Ego4D [26] and EPIC-
Kitchens-100 [11]. We show that IMU coupled with an image offers better cross-modality knowledge
distillation performance than images alone or images with audio. For a typical 50-minute egocentric
video, EgoDistill reduces model inference time from 25 minutes to 36 seconds. Moreover, with
only 1-4 frames, our lightweight distillation model achieves a better accuracy-efficiency trade-off
than state-of-the-art models for adaptively sampling video content [50, 65]. Notably, we surpass the
accuracy of even these fast approaches by a large margin while requiring 4-8× less computation.

2 Related Work

IMU for activity recognition. Recent work explores using the IMU sensor on mobile devices for
human activity recognition of actions like walking, jumping, or sitting [47, 59, 60, 3, 61]. Normally,
these models use IMU sensors mounted on human body joints [60, 9, 42], waist-mounted [41] or
in-pocket smartphones [33]. See [64] for a survey. Abundant work in video recognition explores
ways to learn from RGB coupled with other modalities—audio [1, 22, 38], optical flow [57, 58, 19]
or both [51, 36, 32]—but much fewer use IMU [48], and unlike our work, they focus on third-person
video [68, 69, 13] and do not target model efficiency. Our idea is for IMU to help reconstruct
expensive video features, rather than simply fuse IMU with RGB for multi-modal recognition.

IMU for odometry. Inertial odometry aims to estimate the position and orientation of the camera-
wearer with readings from the IMU sensor. Traditionally, methods rely on IMU double integration [4]
or enhancements thereof [40, 5, 35]. Recent data-driven methods automatically learn to perform
inertial odometry with supervised [30, 70] or self-supervised learning [7], or combine IMU and
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visual input for more robust estimates with visual-inertial odometry [20, 71]. While IMU can convey
geometric ego-motion to our learned model, our goal is to produce efficient egocentric video features
rather than to output odometry.

Visual feature learning with IMU. IMU is also used to learn better vision features [34, 14, 15, 63],
e.g., to encourage image features that are equivariant with ego-motion [34], to predict an IMU-
captured body part (leg, hand) [14, 15], or to predict video-IMU correspondence [63], for applications
like action recognition [15, 63] and scene understanding [14, 34]. While these results reinforce that
IMU can inject embodied motion into visual features, our idea to use head motion to infer pretrained
video features for speedy video understanding is distinct.

Efficient video recognition. Being crucial for mobile applications, efficient video recognition
has received increasing attention in recent years. Several studies focus on designing lightweight
architectures [30, 17, 37, 72, 62] by reducing 3D CNN operations across densely-sampled frames. In
contrast, our model focuses on inputs with sparsely-sampled frames. As we show in experiments,
our method is compatible with different video architectures.

Another line of research achieves efficiency by adaptively selecting video content to process. Some
reduce temporal redundancy by adaptively selecting which video clip [39], frames [49, 24], and/or
feature channel [50] to process and which to skip, while others reduce spatial redundancy, selecting
for each frame a smaller but important region to process [66, 67]. Other work dynamically selects
tokens in video transformers among both the spatial and temporal dimensions [65]. Our idea is
complementary: rather than dynamically subsample the available video content, we show how to
infer “full" video features for every clip using static image(s) and motion data. Our results outperform
state-of-the-art sampling models (cf. Sec. 4). In addition, we focus on egocentric video, where head
motion is particularly meaningful for inferring unobserved visual content. To our knowledge, ours is
the first technique specifically aimed at accelerating egocentric video processing.

Multimodal distillation. Knowledge distillation aims to transfer knowledge learned by an expensive
model to a lightweight model [31]. Recent work explores multimodal distillation, e.g., transferring
from a RGB model to a flow or depth model [23, 28], from a 3D model to a 2D model [45], or from
a visual model to audio model [2, 21]. More related to our work, the ListenToLook model [22]
incorporates both clip subsampling and video-to-audio distillation for fast activity recognition in
third-person video. While we share a similar motivation, our contribution is distinct: we explore the
relationship between the camera-wearer’s head motion and RGB signals for egocentric video, and we
introduce a novel IMU-based pretraining strategy. Our experiments show EgoDistill’s advantage
over ListenToLook in terms of the speed-accuracy tradeoff on egocentric video datasets. Furthermore,
whereas [22] attempts only a single video model (R(2+1)D), we show our idea generalizes well to
multiple video models, meaning it can be dropped in to benefit multiple popular frameworks.

3 Approach
We introduce EgoDistill, which uses sparsely-sampled frames and head motion from IMU to ap-
proximate the features of heavy video models for efficient egocentric video understanding. We first
introduce the egocentric action recognition task (Sec. 3.1). Then, we introduce our pipeline (Sec. 3.2),
our distillation model and training objective (Sec. 3.3), and our self-supervised IMU feature learning
(Sec. 3.4). Figure 2 overviews our approach.

3.1 Egocentric action recognition

Given a fixed-length video clip V ∈ RT×H×W×3 consisting of T RGB frames of size H ×W and
a set of C action classes, the task of action recognition is to output a score for each action class,
representing its likelihood. Typically, this is done with a powerful but expensive video model Ω, that
directly operates on all the available frames to output the C class logits Ω(V) ∈ RC . Ω is trained
with standard classification loss:

LACT =
∑
Vi

LCE(ci, σ(Ω(Vi))), (1)

where Vi is the i-th video clip in the dataset, ci is the corresponding ground-truth action label, σ is
the softmax function, and LCE is cross-entropy loss. Popular video recognition models use clips that
are typically ~2 seconds long [54, 16, 18]. For longer videos, scores are averaged across all clips it
contains to infer the video action label.
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Figure 2: EgoDistill architecture. Left: Self-supervised IMU feature learning. Given start and
end frames of a clip, we train the IMU encoder to anticipate visual changes. Right: Video feature
distillation with IMU. Given image frame(s) and IMU, along with our pre-trained IMU encoder,
our method trains a lightweight model with knowledge distillation to reconstruct the features from
a heavier video model. When the input includes more than one image frame, the image encoder
aggregates frame features temporally with a GRU.

3.2 Efficient video inference with head motion

Processing the video clip V for action recognition is computationally intensive; however, the com-
putation cost can be modulated depending on how frames from the clip are used. On the one hand,
clip-based models [18, 54, 16, 17] process most (or all) frames in a video clip V to achieve strong
recognition performance, but come at a high computational cost. On the other hand, frame-level
models [49, 24, 51, 67] only process one (or a small number) of frames from V and are more efficient,
but suffer a drop in performance as a result. Our goal is to train a frame-based model that can
approximate heavy clip-based model performance while maintaining high efficiency.

For this, we turn to head motion captured by IMU. Along with RGB frames, each video clip is paired
with IMU measurements M that record the camera (head) motion during the video. Specifically,
the IMU readings are composed of 6-dimensional accelerometer and gyroscope measurements in
the xyz axes, which encode strong temporal motion information about camera pose changes (both
translation and rotation) across frames.

For short video clips, a set of sparsely sampled frames I often already captures most appearance
information. Complementary to this, the IMU readings capture camera motion information (see
below for discussion on scene motion). Moreover, IMU is very efficient to process due to its low
dimensionality. By processing inputs from these two sources with a lightweight frame-based model,
we can infer the semantic and dynamic features of a heavier clip-based video model.

Given I and M, we train an efficient lightweight model Φ to approximate the output of video model
Ω. Specifically, we train our EgoDistill model Φ that achieves

Φ(I,M) ≈ Ω(V). (2)

Such a lightweight model will be able to approximate the result of the heavy video model, while
being much more efficient. Our approach is agnostic to the specific video model Ω; in experiments,
we demonstrate its versatility for MotionFormer [54], MViT [16], SlowFast [18] and X3D [17].

In practice, we uniformly sample N frames1 from V to obtain I . We can achieve a trade-off between
efficiency and performance by changing the number of frames N . In our experiments we use very
low values of N (1 to 4 frames). In the next section, we discuss how we train Φ.

3.3 Video feature distillation with IMU

We address Equation 2 via knowledge distillation [31], where we transfer knowledge learned by the
expensive teacher model Ω to a lightweight student model Φ. Next we present the design of Φ and
the training objectives, followed by our self-supervised IMU feature pretraining stage in Sec. 3.4.

1Other frame sampling heuristics (e.g., selecting from the start or center of the video) performed equivalently
or worse than uniform sampling.
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We design Φ to be a two-stream model. For a video clip and associated IMU signal (I,M), we
extract image features zI = fI(I) and IMU features zM = fM(M) using lightweight feature
encoders fI , fM respectively. Then, we fuse zI and zM with a fusion network Π to obtain the
fused VisIMU feature zϕ = Π(zI , zM). Finally, a fully-connected layer uses the fused feature to
predict class logits Φ(I,M) ∈ RC . The fused feature zϕ contains semantic information from the
image frame coupled with complementary motion information from IMU, allowing us to accurately
reconstruct the video clip feature. See Figure 2.

We train Φ with a combination of three losses, as follows. First, we train Φ to approximate the
original video feature zV from the video model Ω:

L1 =
∑

(zVi
,zϕi

)

∥zVi − zϕi∥1 . (3)

This cross-modal loss encourages the fused feature zϕ to match the video feature, i.e., the combined
features from the different modalities should match in the feature space.

Training with L1 alone does not fully capture the classification output of Ω. Therefore, we also train
Φ with a knowledge distillation loss:

LKD =
∑

(Vi,Ii,Mi)

DKL(σ(Ω(Vi)/τ), σ(Φ(Ii,Mi)/τ)), (4)

where (Vi, Ii,Mi) represents the i-th clip in the dataset, DKL measures KL-divergence between
the class logits from the teacher model Ω and student model Φ, and τ is a temperature parameter.
Intuitively, LKD casts the output of the video teacher model as a soft target for training the student
model. In this way, the student model learns to better generalize by mimicking the output distribution
of the heavy video model.

Finally, to further encourage the features to preserve elements useful for activity understanding, we
also compute an action classification loss:

LGT =
∑

(Ii,Mi)

LCE(ci, σ(Φ(Ii,Mi))), (5)

where ci is the ground-truth action label, following Equation 1. The final training loss is a combination
of these three loss functions:

L = αLKD + (1− α)LGT + βL1, (6)

where α controls the balance between knowledge distillation and activity training [31], and β controls
the weight for feature space matching.

Critically, processing a few image frame(s) and the low-dimensional IMU readings is substantially
faster than processing the entire video. Once trained, our model approximates the behavior of the
source video model for recognition tasks, with the key benefit of efficient egocentric recognition.

What kind of motion does our model preserve? Video motion decomposes into scene motion (e.g.,
how the objects and the camera wearer’s hands are moving on their own), and camera motion (i.e.,
how the camera wearer is moving their head). By itself, IMU would directly account only for camera
motion, not scene motion. However, by learning to map from the RGB frame and IMU to the full
video feature, we are able to encode predictable scene motions tied to scene content, e.g., how does
hand and object movement in subsequent frames relate to the camera wearer’s head motion. Moreover,
our model is applied to relatively short clips (1-2 seconds) in sequence, which means the appearance
content is regularly refreshed as we slide down to process the longer video.

3.4 Self-supervised IMU feature learning

The success of EgoDistill depends on how well the IMU feature encoder fM extracts useful camera
motion information and associates it with the visual appearance change in the video clip. In this way
EgoDistill can learn to anticipate unseen visual changes in the video with I and M. We design a
self-supervised pretraining task to initialize the weights of fM to achieve this.

Specifically, for each clip V , we obtain its first and last frames (I0, IT ) as well as the IMU M.
We first extract visual features z0I , z

T
I and IMU feature zM with feature extractors fI and fM
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mentioned above. Then, we train a feature predictor h to predict the IMU feature ẑM = h(z0I , z
T
I ).

By connecting ẑM—a function of image features only—with zM, we encourage fM to extract useful
camera motion features specifically associated with the visual appearance changes. Note that those
appearance changes may include scene motion. Therefore, we include an L1 loss to train fM, which
encourages fM to extract motion features accounting for scene motion in the full video.

We train fM, h, and the fusion network Π using L1 and NCE loss [29]: Lpretrain = LNCE +L1, where

LNCE =
∑
i

− log
sim(ẑMi

, zMi
)∑

j sim(ẑMi
, zMj

)
. (7)

We sample negative examples zMj
from other instances in the same mini-batch for j ̸= i, and

sim(q, k) = exp( q·k
|q||k|

1
τ ′ ) with temperature τ ′ = 0.12.

To summarize, prior to the main training stage of Equation 6, we pretrain the IMU feature extractor
fM and fusion network Π. As we will show below, both pretraining losses result in IMU features
that are consistent with visual changes and lead to better finetuning performance.

4 Experiments

We evaluate our approach for resource-efficient action recognition.

4.1 Experimental setup

Datasets. We experiment on two large-scale egocentric action recognition datasets. (1) Ego4D [26]
contains 3,670 hours of egocentric videos of people performing diverse tasks (from cooking to
farming) across the globe. As action recognition is not part of the original Ego4D benchmark, we
construct this task with annotations from the Hands+Objects temporal localization benchmark [26]
(see Supp. for details). We include clips with paired IMU and audio3, and consider classes with
at least 2 labeled instances. This results in a 94-class action recognition dataset with 8.5k training
videos and 3.6k evaluation videos. (2) EPIC-Kitchens [11] contains 100 hours of egocentric videos
capturing daily activities in kitchen environments. We use annotations from the action recognition
benchmark. Similar to Ego4D, we select videos that have paired IMU and audio data, and split the
resulting data by camera-wearer. This results in a 62-class action dataset with 29k training videos and
6.2k evaluation videos. For both datasets, we use “verb” labels as the target for action recognition as
they are well aligned to activity motions.

Evaluation metrics. To measure action recognition performance, we report the per-video top-1
accuracy on the validation set. We densely sample clips from each video and average their predictions
to compute accuracy. To benchmark efficiency, we measure computational cost with FLOPs (floating-
point operations) during inference.

Implementation details. In our main experiments, we use MotionFormer [54] as the video teacher
model Ω due to its strong performance for egocentric video. For EPIC-Kitchens, we use the authors’
provided checkpoint. For Ego4D, we finetune the above model for 50 epochs with 1e−4 learning
rate and 64 batch size on the training set. We use 16-frame input with sample rate 4. For the student
model Φ, we use a ResNet-18 as the image backbone fI and a 1D Dilated CNN [6] for the IMU
backbone fM. The feature fusion module Π uses a concatenation operation following a two-layer
fully-connected layer with hidden dimension 1024. For each video clip, the input image(s) is resized
to 224×224, and the IMU is a 422×6 matrix (around 2 seconds with 198Hz frequency), representing
the accelerometer and gyroscope readings along the xyz axes. For the image input, we uniformly
sample N frames from the video clip. If N > 1, we use fI to sequentially generate features for each
frame and aggregate them with a GRU module [10]. For both datasets, we first pretrain the model
with the self-supervised objective (Sec. 3.4) for 50 epochs with AdamW [46] using batch size 64
and learning rate 1e−4. Then, we finetune all the models with the same setting (Equation 6). We set
α = 0.95 and β = 1.0 based on validation data. For Ego4D, we set τ = 10.0 and train the model for
150 epochs. For EPIC-Kitchens, we set τ = 1.0 and train for 50 epochs.

2We keep the ImageNet-pretrained fI model frozen, as finetuning it leads to mode collapse.
3We require audio to compare with the audio-based baseline [22].
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Figure 3: Accuracy vs. efficiency for action recognition on Ego4D (left) and EPIC-
Kitchens (right). EgoDistill outperforms state-of-the-art efficient video recognition methods that
adaptively sample video content, while using 4× to 8× fewer GFLOPs.

4.2 Baselines

We compare with the following methods: (1) AdaFuse [50] trains a lightweight policy network
to adaptively compute (or skip) feature map channels for each frame during inference. We use
the AdaFuseTSN

R50 model with the provided hyper-parameters. (2) STTS [65] trains a module to rank
spatio-temporal tokens from videos in a transformer-based model, and selects only the top-K tokens to
speed up inference. We use a MViT-B16 backbone [17]. (3) ListenToLook [22] uses the audio-based
distillation module from [22] following the same audio processing and model architecture.

These methods represent recent advances in efficient video recognition models. AdaFuse represents
state-of-the-art approaches that achieve efficiency by reducing temporal redundancy in CNN models.
STTS is one of the most recent approaches that efficiently reduces both spatial and temporal redun-
dancy in ViT models, which achieves the state-of-the-art on Kinectics-400 [8]. ListenToLook also
relies on distillation, but using audio rather than head motion. For each model we generate multiple
versions with different computation budgets to plot accuracy vs. GFLOPs. We train all AdaFuse
and STTS models with 4 input frames to align with the maximum frames used by our model. For
AdaFuse, we use the only provided hyper-parameter in the paper.4 For STTS, we use three provided
variants: T0

0.5-S4
0.7, T0

0.8-S4
0.9 and the full model without token selection. For ListenToLook we adopt

the same efficiency-accuracy trade-off as our method, i.e., varying the number of input frames.

We also test variants of our method: (1) VisOnly-Distill is our model without the IMU branch and
fusion layer, but trained with the same loss function. This model reveals the importance of IMU for
distillation. (2) VisIMU is our model trained with only LGT in Equation 5. It shows the effectiveness
of distillation from the video model compared with directly training the features with action labels.
(3) VisOnly is an image-only model trained with LGT, which serves as the baseline.

4.3 Main Results

Importance of IMU-guided distillation. Figure 3 shows the accuracy vs. efficiency curves. Methods
towards the top-left of the plot represent those with both high accuracy and efficiency. Our method
achieves good accuracy with low computational cost. Specifically, on EPIC-Kitchens, when N = 1,
EgoDistill improves over VisOnly-Distill by 8.4% with only a small increase in computation. This
shows the effectiveness of IMU for reconstructing egocentric video features. Compared to VisIMU,
EgoDistill improves by 9.9%, showing the effectiveness of knowledge distillation from the video
model. Importantly, this reveals that EgoDistill does not simply benefit from the extra IMU context;
our idea to approximate video features is necessary for best results. We see similar results on Ego4D.

Comparison with the state of the art. Figure 3 also shows that EgoDistill achieves better accuracy
with less computation than existing efficient video recognition models AdaFuse [50], STTS [65],
and ListenToLook [22]. With N = 4 frames, EgoDistill surpasses STTS by 7.4% and AdaFuse by
4.2% on EPIC-Kitchens, with 2× fewer GFLOPs, and surpasses both methods by 2.1% on Ego4D.
When we use fewer frames, EgoDistill can still outperform STTS and AdaFuse using 4× to 8× fewer

4Modifying hyper-parameters to control the accuracy-efficiency trade-off results in unstable training and
unreliable performance.
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LKD L1 LGT L1-pretrain LNCE-pretrain Ego4D EPIC-Kitchens

✓ 34.15 35.04

✓ ✓ ✓ ✓ 35.51 39.33
✓ ✓ ✓ ✓ 37.71 42.20
✓ ✓ ✓ ✓ 37.46 43.17

✓ ✓ ✓ 36.99 41.21
✓ ✓ ✓ ✓ 37.26 42.30
✓ ✓ ✓ ✓ 37.49 43.51

✓ ✓ ✓ ✓ ✓ 37.95 44.95

Table 1: Ablation study of EgoDistill’s model components. Accuracy with N = 1.

Source Model Ego4D EPIC-Kitchens
Video EgoDistill VisOnly-D Video EgoDistill VisOnly-D

MFormer [54] 46.38 37.95 34.32 77.28 44.95 37.20
MViT [16] 40.32 36.46 33.40 53.38 36.90 31.22
SlowFast [18] 40.52 33.29 33.04 58.34 39.42 33.47
X3D [17] 37.56 33.57 32.90 52.28 36.34 31.71

Table 2: Versatility to model architectures. EgoDistill outperforms the baselines for multiple
common architectures, showing the generality of our idea. “Video" refers to the more expensive
source model, essentially the upper bound for accuracy. We show the model accuracy under N = 1.

GFLOPs. In addition, EgoDistill surpasses ListenToLook by 7.4% and 2.9% on EPIC-Kitchens and
Ego4D respectively, which suggests that head motion is more informative than audio for feature
reconstruction in egocentric video.

4.4 Analysis

Model component ablations. Table 1 ablates different design choices in our model, setting N = 1
for all experiments. We observe that training EgoDistill without L1, LKD or LGT deteriorates
performance. Specifically, training without LKD leads to the largest performance drop, which
indicates that knowledge distillation is an essential component in our approach. Training without
L1 also degrades performance, which shows the importance of our idea to align features from the
different modalities. Further, our self-supervised pretraining stage is very effective at training the
IMU extractor to encode useful motion information that is consistent with visual feature change. We
find an alternative IMU extractor pretraining strategy of supervised action recognition task is inferior;
we outperform pretaining with action recognition by 3.74% on EPIC-Kitchens and 0.96% on Ego4D.
Finally, we compare with a model that simply does multi-modal recognition with IMU (top row). The
strong contrast here indicates the importance of our idea to use IMU to predict video model features,
as opposed to simply adding IMU as an additional input modality.

Impact of teacher video model architecture. In our main experiments we use MotionFormer [54]
as the teacher video model due to its strong performance on egocentric video tasks. To emphasize the
generality of our idea, we show the performance of EgoDistill with other video teacher architectures
in Table 2. Similar to the MotionFormer model, we train these models on each of the labeled datasets,
and then train our model using the resulting video models as the teacher. As expected, better video
teacher models lead to better student model performance. More importantly, we observe consistent
improvement by EgoDistill over the VisOnly-Distill baseline on both datasets and with different
video teacher models, highlighting our idea’s generality and versatility.

Efficiency analysis. To compare the efficiency of different models, aside from GFLOPs, we also
compare their inference run-time and number of parameters. For run-time, we record the time
spent to infer a single video clip’s label with a single A40 GPU, and take the average time over
the full validation datasets of Ego4D and EPIC-Kitchens with batch-size of 32. Table 3 shows the
results. EgoDistill runs much faster than the other methods. Notably, it reduces the GFLOPs of
MotionFormer by nearly 200×. Furthermore, it runs 6.5× faster than STTS [65] while achieving
4.4% higher accuracy on EPIC-Kitchens.

Effect of fusing IMU data. EgoDistill achieves superior performance by combing IMU information
when distilling features from video models. Here we explore how helpful it is to combine IMU
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GFLOPs Runtime (ms) Parameters (M)

Video [54] 369.51 10.70 108.91
AdaFuse [50] 15.20 2.04 38.85
STTS [65] 7.19 1.63 36.63
ListenToLook [22] 3.10 0.43 25.53
EgoDistill 1.91 0.25 20.56

Table 3: Efficiency analysis. Our approach
is the most efficient. “Video" refers to the
original (full-clip) feature. Lower is better.

Method Ego4D EPIC-Kitchens
w/ IMU w/o IMU w/ IMU w/o IMU

STTS [65] 34.93 34.54 38.38 32.24
EgoDistill 37.95 34.32 44.95 37.20

Table 4: Effect of combining IMU with vi-
sion as input. In both EgoDistill and STTS,
our method is able to combine vision and
IMU information more effectively.

close: 0.88

open: 0.01

close: 0.18

open: 0.34

GT: close

EgoDistill VisOnly-D

put: 0.40

take: 0.10

put: 0.14

take: 0.44

GT: put

EgoDistill VisOnly-D

Figure 4: Anticipating scene motion with EgoDistill. For each clip, we show the head motion and
video frames. Note, only the center frame (red border) is observed by the model. Action classification
scores are shown on the right. EgoDistill can successfully anticipate scene motion and disambiguate
the action semantics in the input frame. For example, in the top center frame, the image alone cannot
reveal if the door is being opened or closed, whereas our feature, learned with head motion, recovers
correlations with the scene motion (i.e., hand motion and door motion) to disambiguate “close" from
“open". A similar effect for “put" vs. “take" is seen in the second example.

information with the most recent efficient video understanding method, i.e., STTS [65].5 To this end,
for STTS, we add an IMU encoding branch identical to the one used in EgoDistill, and concatenate
the IMU feature with video features before the last FC layer. We train both the video and IMU
branches simultaneously for the action recognition task. Results in Table 4 show that combining IMU
features indeed helps STTS, yet EgoDistill’s performance is significantly better than STTS’s. These
results again indicate that our advantage is not simply access to IMU; rather it is the proposed way
we leverage vision and IMU. The reason that EgoDistill is able to outperform STTS+IMU is mainly
that EgoDistill learns to jointly distill information from a video feature with image and IMU inputs.
This distillation process will encourage the model to extract the interplay between static semantic
information in the image and the dynamic information in IMU, as it is trained to reconstruct the video
model feature. On the other hand, simple concatenation of the IMU feature to the image feature
for action classification will not exploit the relationship between the image and IMU—it lacks the
training signal to target the dynamic video clip feature—leading to inferior performance.

Effect of using partial IMU. Is the net displacement of the camera what matters, or does the motion
in between give cues? To answer this, we experiment with feeding EgoDistill with partial IMU
readings of the full video clip. Specifically, we train and evaluate our model with only the first K% of
IMU readings of the full clip and pad the rest with 0. We show the results in Table 5. This ablation
study shows that more complete IMU readings yield the best results, while using 25% and 50% IMU
data achieves the majority of the gain over the VisOnly-D (no IMU) baseline.

Effect of number of input frames. To investigate the effect of using different numbers of input
frames, we conduct an ablation study with N . Specifically, we use three settings: N = 1 (use the
center frame), N = 2 (use the start frame and end frame), N = 4 (uniformly sample 4 frames).
We compare EgoDistill and VisOnly-D under different settings in Table 6. We observe that only
using the overall displacement between the end frame and the starting frame (N = 2) leads to better

5We tried to augment AdaFuse [50] the same way, but adding IMU to its codebase gave unreliable results.
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EgoDistill

EgoDistill

VisOnly-D

EgoDistill

EgoDistill

EgoDistill

VisOnly-D

EgoDistill

Figure 5: Retrieving video clips with EgoDistill. Given a query frame (bottom left) and a paired
IMU segment (red camera frustums) , we retrieve the nearest clip in the video dataset according to
EgoDistill and visualize its (unobserved) frames (strip to the right). Compared to VisOnly-Distill,
which outputs a single feature for a given input frame (bottom row), EgoDistill outputs a distinct
feature by conditioning on IMU, showing its ability to preserve both semantic and motion during
reconstruction. For instance, in the top-right example, EgoDistill retains the cabinet interaction
semantics in the frame as well as the upward camera-motion in the IMU. Zoom in to view best.

Input IMU Ego4D EPIC-Kitchens

100% (EgoDistill) 37.95 44.95
75% 37.88 43.43
50% 37.65 43.69
25% 37.21 42.68
10% 36.60 41.45
0% (VisOnly-D) 34.32 37.20

Table 5: Effect of partial IMU. We
observe using partial IMU input al-
ready achieves significant gain.

Input Frame Ego4D EPIC-Kitchens
EgoDistill VisOnly-D EgoDistill VisOnly-D

N=1 (center) 37.95 34.32 44.95 37.2
N=2 (first and last) 38.29 34.48 50.07 46.71
N=4 (uniform) 38.46 34.84 52.43 48.96

Table 6: Effect of number of input frames. Using more
input frames leads to larger improvement of EgoDistill over
VisOnly-D baseline.

performance by VisOnly-D than using only one frame (N = 1). However, the motion trajectory
still helps EgoDistill obtain significantly better performance in either case. This result indicates the
information in the motion trajectory captured by IMU. Note that while N = 2, 4 leads to better
performance, it requires higher computational cost.

What do EgoDistill features capture? To explore this, we pair a single input frame with different
IMU clips as inputs to EgoDistill, then retrieve the nearest video clip for each resulting anticipated
video feature. We also compare with the VisOnly-Distill result. Figure 5 illustrates this. We see that
EgoDistill outputs video features that all involve interaction with the cabinet (right panel), and is
able to use different IMU inputs to retrieve different video clips that show consistent camera motion.
In contrast, different input IMUs lead to corresponding camera motion in the frames. The result
shows that EgoDistill approximates video features that capture both semantic and motion information,
whereas VisOnly-Distill only retains the semantic context to retrieve a single clip.

Is there evidence EgoDistill captures scene motion? Figure 4 shows how our features learned with
head motion can nonetheless expose certain scene motion cues. EgoDistill improves the accuracy
over VisOnly-Distill on ambiguous categories (like close and put) by a large margin (20.3% and
10.4% on EPIC-Kitchens, 8.5% and 3.9% on Ego4D). See caption and Supp. video for more details.

Limitations of EgoDistill. Although EgoDistill is useful for many action categories in egocentric
videos, for some other classes it is less effective. We observe that video clips that EgoDistill does not
perform well tend to contain little head motion —in which case IMU is redundant to the RGB frame—
or drastic head motion that is weakly correlated with the camera wearer’s activity and introduces blur
to the frame. Additionally, EgoDistill might not be useful when we want to focus on the “noun” part
of the action (e.g., differentiating watching TV and using the cell phone), as IMU information does
not contain information about the object semantics in the scene.

5 Conclusion
We present EgoDistill, the first model to explore egocentric video feature approximation for fast
recognition. Experiments on action recognition on Ego4D and EPIC-Kitchens demonstrate that
our model achieves a good balance between accuracy and efficiency, outperforming state-of-the-
art efficient video understanding methods. Our approach has great potential to accelerate video
understanding for egocentric videos using a data stream that is already ubiquitous in egocentric
cameras. In the future, we plan to investigate how to use head motion for long-term human activity
understanding with room context and visual correspondence learning for multi-view videos.
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