
Appendix for “Statistical Analysis of Quantum State Learning Process in496

Quantum Neural Networks”497

A Preliminaries498

A.1 Subspace Haar integration499

The central technique used in our work is the subspace Haar integration, i.e., a series of formulas500

on calculating Haar integrals over a certain subspace of the given Hilbert space. In this section, we501

give a brief introduction to the common Haar integrals and then the basic formulas on subspace Haar502

integrals used in our work together with the proofs.503

Haar integrals refer to the matrix integrals over the d-degree unitary group U(d) with the Haar504

measure dµ, which is the unique uniform measure on U(d) such that505 ∫
U(d)

dµ(V )f(V ) =

∫
U(d)

dµ(V )f(V U) =

∫
U(d)

dµ(V )f(UV ), (S1)

for any integrand f and group element U ∈ U(d). If an ensemble V of unitaries V matches the Haar506

measure up to the t-degree moment, i.e.,507

EV ∈V[pt,t(V )] =

∫
U(d)

dµ(V )pt,t(V ), (S2)

then V is called a unitary t-design [67]. pt,t(V ) denotes an arbitrary polynomial of degree at most t508

in the entries of V and at most t in those of V †. EV ∈V[·] denotes the expectation over the ensemble509

V. The Haar integrals over polynomials can be analytically solved and expressed into closed forms510

according to the following lemma.511

Lemma S1 Let φ : U(d) → GL(Cd′
) be an arbitrary representation of unitary group U(d). Suppose512

that the direct sum decomposition of φ to irreducible representations is φ =
⊕

j,k ϕ
(j)
k , where ϕ(j)k513

denotes the kth copy of the irreducible representation ϕ(j). A set of orthonormal basis in the514

representation space of ϕ(j)k is denoted as {|vj,k,l⟩}. For an arbitrary linear operator A : Cd′ → Cd′
,515

the following equality holds [68]516 ∫
U(d)

φ(U)Aφ(U)†dµ(U) =
∑
j,k,k′

tr(Q†
j,k,k′A)

tr(Q†
j,k,k′Qj,k,k′)

Qj,k,k′ , (S3)

whereQj,k,k′ =
∑

l |vj,k,l⟩⟨vj,k′,l| is the transfer operator from the representation subspace of ϕ(j)k′ to517

that of ϕ(j)k . The denominator on the right hand side of (S3) can be simplified as tr(Q†
j,k,k′Qj,k,k′) =518

tr(Pj,k′) = dj , where Pj,k =
∑

l |vj,k,l⟩⟨vj,k,l| = Qj,k,k is the projector to the representation519

subspace of ϕ(j)k and dj is the dimension of the representation space of ϕ(j).520

By choosing different representations of the unitary group U(d), some commonly used equalities can521

be derived, such as522 ∫
U(d)

V AV †dµ(V ) =
tr(A)

d
I, (S4)

523 ∫
U(d)

V †AV BV †CV dµ(V ) =
tr(AC) trB

d2
I +

d trA trC − tr(AC)

d(d2 − 1)

(
B − trB

d
I

)
, (S5)

where I is the identity operator on the d-dimensional Hilbert space H. A,B and C are arbitrary524

linear operators on H. According to the linearity of the integrals, the following equalities can be525

further derived526 ∫
U(d)

tr(V A) tr(V †B)dµ(V ) =
tr(AB)

d
, (S6)
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527 ∫
U(d)

tr(V †AV B) tr(V †CV D)dµ(V ) =
trA trB trC trD + tr(AC) tr(BD)

d2 − 1

− tr(AC) trB trD + trA trC tr(BD)

d(d2 − 1)
,

(S7)

where A,B,C and D are arbitrary linear operators on H.528

The subspace Haar integration can be regarded as a simple generalization of the formulas above.529

Suppose that Hsub is a subspace with dimension dsub of the Hilbert space H. U is an ensemble530

whose elements are unitaries in H with a block-diagonal structure U = P̄ +PUP . P is the projector531

from H to Hsub and PUP is a random unitary with the Haar measure on Hsub. P̄ = I − P is the532

projector from H to the orthogonal complement of Hsub. Integrals with respect to such an ensemble533

U are dubbed as “subspace Haar integrals”, which can be reduced back to the common Haar integrals534

by taking Hsub = H. The corresponding formulas of subspace Haar integrals are developed in the535

following lemmas, where EU∈U[·] = EU[·] denotes the expectation with respect to the ensemble U.536

Lemma S2 The expectation of a single element U ∈ U with respect to the ensemble U equals to the537

projector to the orthogonal complement, i.e.,538

EU [U ] = I − P. (S8)

Proof The fact that Haar integrals of inhomogenous polynomials pt,t′ with t ̸= t′ over the whole539

space equals to zero leads to the vanishment of the block in Hsub, i.e.,540

EU [U ] = EU
[
P̄ + PUP

]
= P̄ , (S9)

which is just the projector to the orthogonal complement Hsub. ■541

Similarly, we know all the subspace Haar integrals involving only U or U† will leave a projector after542

integration. For example, it holds that EU [UAU ] = P̄AP̄ for an arbitrary linear operator A.543

Lemma S3 For an arbitrary linear operator A on H, the expectation of U†AU with respect to the544

random variable U ∈ U is545

EU
[
U†AU

]
=

tr(PA)

dsub
P + (I − P )A(I − P ). (S10)

Proof Eq. (S10) can be seen as a special case of Lemma S1 since U can be seen as the complete546

reducible representation of U(dsub) composed of (d − dsub) trivial representations ϕ(1)k with k =547

1, ..., (d− dsub) and one natural representation ϕ(2). This gives rise to548 ∑
k,k′

tr(Q†
1,k,k′A)

tr(Q†
1,k,k′Q1,k,k′)

Q1,k,k′ = P̄AP̄ ,

tr(Q†
2A)

tr(Q†
2Q2)

Q2 =
tr(PA)

dsub
P.

(S11)

Alternatively, Eq. (S10) can just be seen as a result of the block matrix multiplication, i.e.,549

EU[U
†AU ] = EU[(P̄ + PU†P )A(P̄ + PUP )]

= EU[P̄AP̄ + P̄APUP + PU†PAP̄ + PU†PAPUP ]

= P̄AP̄ +
tr(PAP )

dsub
P,

(S12)

where tr(PAP ) = tr(P 2A) = tr(PA). ■550

Corollary S4 Suppose |φ⟩ is a Haar-random pure state in Hsub. For arbitrary linear operators A551

on H, the following equality holds552

Eφ [⟨φ|A|φ⟩] = tr(PA)

dsub
, (S13)

where Eφ[·] is the expectation with respect to the random state |φ⟩.553
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Proof Suppose |φ0⟩ is an arbitrary fixed state in Hsub. The random state |φ⟩ can be written in terms554

of U ∈ U as |φ⟩ = U |φ0⟩ such that555

Eφ [⟨φ|A|φ⟩] = EU∈U
[
⟨φ0|U†AU |φ0⟩

]
. (S14)

Eq. (S13) is naturally obtained from Lemma S3 by taking the expectation over |φ0⟩ which satisfies556

P |φ0⟩ = |φ0⟩ and P̄ |φ0⟩ = 0. ■557

Lemma S5 For arbitrary linear operators A,B,C on H and U ∈ U, the following equality holds558

EU
[
U†AUBU†CU

]
= P̄AP̄BP̄CP̄ +

tr (PB)

dsub
P̄APCP̄ +

tr (PC)

dsub
P̄AP̄BP +

tr (PA)

dsub
PBP̄CP̄

+
tr
(
PAP̄BP̄C

)
dsub

P +
tr(PAPC) tr(PB)

d2sub
P

+
dsub tr(PA) tr(PC)− tr(PAPC)

dsub(d2sub − 1)

(
PBP − tr(PB)

dsub
P

)
.

(S15)

Proof Here we simply employ the block matrix multiplication to prove this equality. We denote559

the 2× 2 blocks with indices
(
11 12
21 22

)
respectively where the index 2 corresponds to Hsub. Thus560

the random unitary U can be written as U =

(
I11 0
0 U22

)
where I11 is the identity matrix on the561

orthogonal complement of Hsub and U22 is a Haar-random unitary on Hsub. The integrand becomes562

U†AUBU†CU =

(
A11 A12U22

U†
22A21 U†

22A22U22

)(
B11 B12

B21 B22

)(
C11 C12U22

U†
22C21 U†

22C22U22

)
. (S16)

The four matrix elements of the multiplication results are563

11 : A11B11C11 +A12U22B21C11 +A11B12U
†
22C11 +A12U22B22U

†
22C21,

12 : A11B11C12U22 +A12U22B21C12U22 +A11B12U
†
22C22U22 +A12U22B22U

†
22C22U22,

21 : U†
22A21B11C11 + U†

22A22U22B21C11 + U†
22A21B12U

†
22C21 + U†

22A22U22B22U
†
22C21,

22 : U†
22A21B11C12U22 + U†

22A22U22B21C12U22 + U†
22A21B12U

†
22C22U22

+ U†
22A22U22B22U

†
22C22U22.

(S17)
Since inhomogeneous Haar integrals always vanish on Hsub, the elements above can be reduced to564

11 : A11B11C11 +A12U22B22U
†
22C21,

12 : A11B12U
†
22C22U22, 21 : U†

22A22U22B21C11,

22 : U†
22A21B11C12U22 + U†

22A22U22B22U
†
22C22U22.

(S18)

Let d2 = dsub = dimHsub and I22 be the identity matrix in Hsub. Utilizing Eqs. (S4) and (S5), the565

expectation of each block becomes566

11 : A11B11C11 +
trB22

d2
A12C21,

12 :
trC22

d2
A11B12, 21 :

trA22

d2
B21C11,

22 :
tr (A21B11C12)

d2
I22 +

tr(A22C22) tr(B22)

d22
I22

+
d2 tr(A22) tr(C22)− tr(A22C22)

d2(d22 − 1)

(
B22 −

tr(B22)

d2
I22

)
.

(S19)

Written in terms of subspace projectors P and P̄ , the results become exactly as Eq. (S15). ■567

16



Corollary S6 Suppose |φ⟩ is a Haar-random pure state in Hsub. For arbitrary linear operators A568

on H, the following equality holds569

Eφ

[
⟨φ|A|φ⟩2

]
=

tr((PA)2) + (tr(PA))2

dsub(dsub + 1)
, (S20)

where Eφ[·] is the expectation with respect to the random state |φ⟩.570

Proof Suppose |φ0⟩ is an arbitrary fixed state in Hsub. The random state |φ⟩ can be written in terms571

of U ∈ U as |φ⟩ = U |φ0⟩ such that572

Eφ

[
(⟨φ|A|φ⟩)2

]
= EU∈U

[
⟨φ0|U†AU |φ0⟩⟨φ0|U†AU |φ0⟩

]
. (S21)

Eq. (S20) is naturally obtained from Lemma S5 by taking C = A and B = |φ0⟩⟨φ0| which satisfies573

P̄B = BP̄ = 0, PBP = B and trB = 1. ■574

Lemma S7 For arbitrary linear operatorsA,B,C,D on H and U ∈ U, the following equality holds575

EU
[
tr(U†AUB) tr(U†CUD)

]
= tr(P̄AP̄B) tr(P̄CP̄D)

+
tr(P̄AP̄B) tr(PC) tr(PD)

dsub
+

tr(P̄CP̄D) tr(PA) tr(PB)

dsub

+
tr(PBP̄APCP̄D)

dsub
+

tr(PAP̄BPDP̄C)

dsub

+
tr(PA) tr(PB) tr(PC) tr(PD) + tr(PAPC) tr(PBPD)

d2sub − 1

− tr(PAPC) tr(PB) tr(PD) + tr(PA) tr(PC) tr(PBPD)

dsub(d2sub − 1)
.

(S22)

Proof Similarly with the proof of Lemma S5, the block matrix multiplication gives576

tr(U†AUB) = tr

[(
A11 A12U22

U†
22A21 U†

22A22U22

)(
B11 B12

B21 B22

)]
= tr(A11B11) + tr(A12U22B21) + tr(U†

22A21B12) + tr(U†
22A22U22B22).

(S23)

Hence we have577

EU
[
tr(U†AUB) tr(U†CUD)

]
= EU

[
tr(A11B11) tr(C11D11)

+ tr(A11B11) tr(U
†
22C22U22D22) + tr(C11D11) tr(U

†
22A22U22B22)

+ tr(A12U22B21) tr(U
†
22C21D12) + tr(U†

22A21B12) tr(C12U22D21)

+ tr(U†
22A22U22B22) tr(U

†
22C22U22D22)

]
.

(S24)

where all inhomogeneous terms have been ignored. Utilizing Eqs. (S4), (S6) and (S7), the expectation578

becomes579

EU
[
tr(U†AUB) tr(U†CUD)

]
= tr(A11B11) tr(C11D11)

+
tr(A11B11) tr(C22) tr(D22)

d2
+

tr(C11D11) tr(A22) tr(B22)

d2

+
tr(B21A12C21D12)

d2
+

tr(A21B12D21C12)

d2

+
1

d22 − 1
(tr(A22) tr(B22) tr(C22) tr(D22) + tr(A22C22) tr(B22D22))

− 1

d2(d22 − 1)
(tr(A22C22) tr(B22) tr(D22) + tr(A22) tr(C22) tr(B22D22))

(S25)

Written in terms of subspace projectors P and P̄ , the results become exactly as Eq. (S22). ■580

Finally, similar to the unitary t-design, we introduce the concept of “subspace t-design”. If an581

ensemble W of unitaries V matches the ensemble U rotating the subspace Hsub up to the t-degree582
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moment, then W is called a subspace unitary t-design with respect to Hsub. In the main text, the583

ensemble comes from the unknown target state. Alternatively, if a random QNN U(θ) with some584

constraints such as keeping the loss function constant L(θ) = L0, i.e.,585

W = U(Θ), Θ = {θ | L(θ) = L0}, (S26)
forms a approximate subspace 2-design, then similar results as in the main text can be established586

yet with a different interpretation: there is an exponentially large proportion of local minima on a587

constant-loss-section of the training landscape.588

A.2 Perturbation on positive definite matrices589

To identify whether a parameter point is a local minimum, we need to check whether the Hessian590

matrix is positive definite, where the following sufficient condition is used in the proof of our main591

theorem in the next section.592

Lemma S8 Suppose X is a positive definite matrix and Y is a Hermitian matrix. If the distance593

between Y and X is smaller than the minimal eigenvalue of X , i.e., ∥Y −X∥∞ < ∥X−1∥−1
∞ , then594

Y is positive definite. Here ∥ · ∥∞ denotes the Schatten-∞ norm.595

Proof For an arbitrary vector |v⟩, we have596

⟨v|Y |v⟩ = ⟨v|X|v⟩+ ⟨v|Y −X|v⟩ ≥ ∥X−1∥−1
∞ − ∥Y −X∥∞ > 0. (S27)

Note that ∥X−1∥−1
∞ just represents the minimal eigenvalue of the positive matrix X . Thus, Y is597

positive definite. ■598

A.3 Tail inequalities599

In order to bound the probability of avoiding local minima, we need to use some “tail inequalities”600

in probability theory, especially the generalized Chebyshev’s inequality for matrices, which we601

summarize below for clarity.602

Lemma S9 (Markov’s inequality) For a non-negative random variable X and a > 0, the probability603

that X is at least a is upper bounded by the expectation of X divided by a, i.e.,604

Pr[X ≥ a] ≤ E[X]

a
. (S28)

Proof The expectation can be rewritten and bounded as605

E[X] = Pr[X < a] · E[X | X < a] + Pr[X ≥ a] · E[X | X ≥ a]

≥ Pr[X ≥ a] · E[X | X ≥ a] ≥ Pr[X ≥ a] · a. (S29)

Thus we have Pr[X ≥ a] ≤ E[X]/a. ■606

Lemma S10 (Chebyshev’s inequality) For a real random variable X and ε > 0, the probability that607

X deviates from the expectation E[X] by ε is upper bounded by the variance of X divided by ε2, i.e.,608

Pr[|X − E[X]| ≥ ε] ≤ Var[X]

ε2
. (S30)

Proof Applying Markov’s inequality in Lemma S9 to the random variable (X − E[X])2 gives609

Pr[|X − E[X]| ≥ ε] = Pr[(X − E[X])2 ≥ ε2] ≤ E[(X − E[X])2]

ε2
=

Var[X]

ε2
. (S31)

Alternatively, the proof can be carried out similarly as in Eq. (S29) with respect to (X − E[X])2. ■610

Lemma S11 (Chebyshev’s inequality for matrices) For a random matrix X and ε > 0, the probabil-611

ity that X deviates from the expectation E[X] by ε in terms of the norm ∥ · ∥α satisfies612

Pr [∥X − E[X]∥α ≥ ε] ≤ σ2
α

ε2
(S32)

where σ2
α = E[∥X − E[X]∥2α] denotes the variance of X in terms of the norm ∥ · ∥α.613
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Proof Applying Markov’s inequality in Lemma S9 to the random variable ∥X − E[X]∥2α gives614

Pr[∥X − E[X]∥α ≥ ε] = Pr[∥X − E[X]∥2α ≥ ε2] ≤ E[∥X − E[X]∥2α]
ε2

=
σ2
α

ε2
. (S33)

Note that here the expectation E[X] is still a matrix while the “variance” σ2
α is a real number. ■615

A.4 Quantum Fisher information matrix616

Given a parameterized pure quantum state |ψ(θ)⟩, the quantum Fisher information (QFI) matrix617

Fµν [56] is defined as the Riemannian metric induced from the Bures fidelity distance df(θ,θ′) =618

1− |⟨ψ(θ)|ψ(θ′)⟩|2 (up to a factor 2 depending on convention), i.e.,619

Fµν(θ) =
∂2

∂δµ∂δν
df(θ,θ + δ)

∣∣∣∣
δ=0

= −2Re [⟨∂µ∂νψ|ψ⟩+ ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩] . (S34)

Note that |∂µψ⟩ actually refers to ∂
∂θµ

|ψ(θ)⟩. Using the normalization condition620

⟨ψ|ψ⟩ = 1,

∂µ(⟨ψ|ψ⟩) = ⟨∂µψ|ψ⟩+ ⟨ψ|∂µψ⟩ = 2Re [⟨∂µψ|ψ⟩] = 0,

∂µ∂ν(⟨ψ|ψ⟩) = 2Re [⟨∂µ∂νψ|ψ⟩+ ⟨∂µψ|∂νψ⟩] = 0,

(S35)

the QFI can be rewritten as621

Fµν = 2Re [⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩] . (S36)

The QFI characterizes the sensibility of a parameterized quantum state to a small change of parameters,622

and can be viewed as the real part of the quantum geometric tensor.623

B Detailed proofs624

In this section, we provide the detailed proofs of Lemma 1, Theorem 2 and Proposition 3 in the main625

text. Here we use d to denote the dimension of the Hilbert space. For a qubit system with N qubits,626

we have d = 2N . As in the main text, we represent the value of a certain function at θ = θ∗ by627

appending the superscript “∗” for simplicity of notation, e.g., ∇L|θ=θ∗ as ∇L∗ and HL|θ=θ∗ as628

H∗
L. In addition, for a parameterized quantum circuit U(θ) =

∏M
µ=1 Uµ(θµ)Wµ, we introduce the629

notation Vα→β =
∏β

µ=α UµWµ if α ≤ β and Vα→β = I if α > β. Note that the product
∏

µ is by630

default in the increasing order from the right to the left. The derivative with respect to the parameter631

θµ is simply denoted as ∂µ = ∂
∂θµ

. We remark that our results hold for all kinds of input states into632

QNNs in spite that we use |0⟩⊗N in the definition of |ψ(θ)⟩ for simplicity.633

Lemma 1 The expectation and variance of the gradient ∇L and Hessian matrix HL of the fidelity634

loss function L(θ) = 1− |⟨ϕ|ψ(θ)⟩|2 at θ = θ∗ with respect to the target state ensemble T satisfy635

ET [∇L∗] = 0, VarT[∂µL∗] = f1(p, d)F∗
µµ. (S37)

ET [H
∗
L] =

dp2 − 1

d− 1
F∗, VarT[∂µ∂νL∗] ≤ f2(p, d)∥Ωµ∥2∞∥Ων∥2∞. (S38)

where F denote the QFI matrix. f1 and f2 are functions of the overlap p and the Hilbert space636

dimension d, i.e.,637

f1(p, d) =
p2(1− p2)

d− 1
, f2(p, d) =

32(1− p2)

d− 1

[
p2 +

2(1− p2)

d

]
. (S39)

Proof Using the decomposition in Eq. (4), the loss function can be expressed by638

L = 1−⟨ϕ|ϱ|ϕ⟩ = 1−p2⟨ψ∗|ϱ|ψ∗⟩− (1−p2)⟨ψ⊥|ϱ|ψ⊥⟩−2p
√
1− p2 Re

(
⟨ψ⊥|ϱ|ψ∗⟩

)
, (S40)
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where ϱ(θ) = |ψ(θ)⟩⟨ψ(θ)| denotes the density matrix of the output state from the QNN. According639

to Lemma S2 and Corollary S4, the expectation of the loss function with respect to the ensemble T640

can be calculated as641

ET [L(θ)] = 1− p2⟨ψ∗|ϱ|ψ∗⟩ − (1− p2)
tr[(I − |ψ∗⟩⟨ψ∗|)ϱ]

d− 1

= 1− p2 +
dp2 − 1

d− 1
g(θ),

(S41)

where g(θ) = 1− ⟨ψ∗|ϱ(θ)|ψ∗⟩ denotes the fidelity distance between the output states at θ and θ∗.642

By definition, g(θ) takes the global minimum at θ = θ∗, i.e., at ϱ = |ψ∗⟩⟨ψ∗|. Thus the commutation643

between the expectation and differentiation gives644

ET [∇L∗] = ∇ (ET [C])|θ=θ∗ =
dp2 − 1

d− 1
∇g(θ)|θ=θ∗ = 0,

ET [H
∗
L] =

dp2 − 1

d− 1
Hg(θ)|θ=θ∗ =

dp2 − 1

d− 1
Hg(θ)|θ=θ∗ =

dp2 − 1

d− 1
F∗.

(S42)

Note that Hg(θ)|θ=θ∗ is actually the QFI matrix F of |ψ(θ)⟩ at θ = θ∗ (see Appendix A.4), which645

is always positive semidefinite. To estimate the variance, we need to calculate the expression of646

derivatives first due to the non-linearity of the variance, unlike the case of Eq. (S42) where the647

operations of taking the expectation and derivative is exchanged. The first order derivative can be648

expressed by649

∂µL = −⟨ϕ|Dµ|ϕ⟩ = −p2⟨ψ∗|Dµ|ψ∗⟩ − q2⟨ψ⊥|Dµ|ψ⊥⟩ − 2pqRe
(
⟨ψ⊥|Dµ|ψ∗⟩

)
. (S43)

where q =
√
1− p2 and Dµ = ∂µϱ is a traceless Hermitian operator since trDµ = ∂µ(tr ϱ) = 0.650

At θ = θ∗, the operator Dµ is reduced to D∗
µ which satisfies several useful properties651

D∗
µ = [∂µ(|ψ⟩⟨ψ|)]∗ = |∂µψ∗⟩⟨ψ∗|+ |ψ∗⟩⟨∂µψ∗|,

⟨ψ∗|D∗
µ|ψ∗⟩ = ⟨ψ∗|∂µψ∗⟩+ ⟨∂µψ∗|ψ∗⟩ = ∂µ(⟨ψ|ψ⟩)∗ = 0,

⟨ψ⊥|D∗
µ|ψ⊥⟩ = ⟨ψ⊥|∂µψ∗⟩⟨ψ∗|ψ⊥⟩+ ⟨ψ⊥|ψ∗⟩⟨∂µψ∗|ψ⊥⟩ = 0,

⟨ψ⊥|D∗
µ|ψ∗⟩ = ⟨ψ⊥|∂µψ∗⟩⟨ψ∗|ψ∗⟩+ ⟨ψ⊥|ψ∗⟩⟨∂µψ∗|ψ∗⟩ = ⟨ψ⊥|∂µψ∗⟩,

(S44)

where we have used the facts of ⟨ψ|ψ⟩ = 1 and ⟨ψ∗|ψ⊥⟩ = 0. Note that |∂µψ∗⟩ actually refers to652

(∂µ|ψ⟩)∗. Thus the variance of the first order derivative at θ = θ∗ becomes653

VarT[∂µL∗] = ET

[
(∂µL∗ − ET[∂µL∗])

2
]
= ET

[
(∂µL∗)

2
]

= 4p2q2 ET

[(
Re⟨ψ⊥|∂µψ∗⟩

)2]
.

(S45)

According to Lemma S2 and Corollary S4, it holds that654

ET

[(
Re⟨ψ⊥|∂µψ∗⟩

)2]
=

1

2
ET
[
⟨ψ⊥|∂µψ∗⟩⟨∂µψ∗|ψ⊥⟩

]
=

⟨∂µψ∗|∂µψ∗⟩ − ⟨ψ∗|∂µψ∗⟩⟨∂µψ∗|ψ∗⟩
2(d− 1)

=
F∗

µµ

4(d− 1)
,

(S46)

where Fµµ is the QFI diagonal element. Using the generators in the PQC, Fµµ could be expressed as655

Fµµ = 2
(
⟨ψ|Ω̃2

µ|ψ⟩ − ⟨ψ|Ω̃µ|ψ⟩2
)
, (S47)

where Ω̃µ = Vµ→MΩµV
†
µ→M . Finally, the variance of ∂µL at θ = θ∗ equals to656

VarT[∂µL∗] = 4p2q2 · F∗
µµ

4(d− 1)
=
p2(1− p2)

d− 1
F∗

µµ. (S48)

The second order derivative can be expressed by657

(HL)µν =
∂2L

∂θµ∂θν
= ∂µ∂νL = −⟨ϕ|Dµν |ϕ⟩

= −p2⟨ψ∗|Dµν |ψ∗⟩ − q2⟨ψ⊥|Dµν |ψ⊥⟩ − 2pqRe
(
⟨ψ⊥|Dµν |ψ∗⟩

)
,

(S49)
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where Dµν = ∂µ∂νϱ is a traceless Hermitian operator since trDµν = ∂µ∂ν(tr ϱ) = 0. Please do not658

confuse Dµν with Dµ above. At θ = θ∗, the Dµν is reduced to D∗
µν which satisfies the following659

properties660

D∗
µν = ∂µ∂ν(|ψ⟩⟨ψ|)∗ = 2Re [|∂µ∂νψ∗⟩⟨ψ∗|+ |∂µψ∗⟩⟨∂νψ∗|] , (S50)

⟨ψ∗|D∗
µν |ψ∗⟩ = 2Re [⟨ψ∗|∂µ∂νψ∗⟩+ ⟨ψ∗|∂µψ∗⟩⟨∂νψ∗|ψ∗⟩] = −Fµν , (S51)

⟨ψ⊥|D∗
µν |ψ⊥⟩ = 2Re

[
⟨ψ⊥|∂νψ∗⟩⟨∂µψ∗|ψ⊥⟩

]
. (S52)

Here the notation 2Re[·] of square matrix A actually means the sum of the matrix and its Hermitian661

conjugate, i.e., 2Re[A] = A + A†. From Eq. (S50) we know that the rank of Dµν is at most 4.662

Substituting the expectation in Eq. (S42), the variance of the second order derivative at θ = θ∗663

becomes664

VarT[∂µ∂νL∗] = ET

[
(∂µ∂νL∗ − ET [∂µ∂νL∗])

2
]

=

(
q2

d− 1
F∗

µν

)2

+ q4ET
[
⟨ψ⊥|D∗

µν |ψ⊥⟩2
]

− 2q4

d− 1
F∗

µνET
[
⟨ψ⊥|D∗

µν |ψ⊥⟩
]
+ 4p2q2ET

[
(Re⟨ψ⊥|D∗

µν |ψ∗⟩)2
]
.

(S53)

where the inhomogeneous cross terms vanish after taking the expectation according to Lemma S2 and665

have been omitted. Using Corollaries S4 and S6, the expectations in Eq. (S53) can be calculated as666

ET
[
⟨ψ⊥|D∗

µν |ψ⊥⟩2
]
=

tr((D∗
µν)

2)− 2
(
⟨ψ∗|(D∗

µν)
2|ψ∗⟩ − ⟨ψ∗|D∗

µν |ψ∗⟩2
)

d(d− 1)
,

ET
[
⟨ψ⊥|D∗

µν |ψ⊥⟩
]
= −⟨ψ∗|D∗

µν |ψ∗⟩
d− 1

=
F∗

µν

d− 1
,

ET
[
(Re⟨ψ⊥|D∗

µν |ψ∗⟩)2
]
=

1

2
ET
[
⟨ψ⊥|D∗

µν |ψ∗⟩⟨ψ∗|D∗
µν |ψ⊥⟩

]
=

⟨ψ∗|(D∗
µν)

2|ψ∗⟩ − ⟨ψ∗|D∗
µν |ψ∗⟩2

2(d− 1)
.

(S54)

Thus the variance of the second order derivative at θ = θ∗ can be written as667

VarT[∂µ∂νL∗] =q4
∥D∗

µν∥22 − 2
(
⟨ψ∗|(D∗

µν)
2|ψ∗⟩ − ⟨ψ∗|D∗

µν |ψ∗⟩2
)

d(d− 1)

+ 2p2q2
⟨ψ∗|(D∗

µν)
2|ψ∗⟩ − ⟨ψ∗|D∗

µν |ψ∗⟩2
d− 1

−
(

q2

d− 1
F∗

µν

)2

.

(S55)

Note that the factor668

⟨ψ∗|(D∗
µν)

2|ψ∗⟩ − ⟨ψ∗|D∗
µν |ψ∗⟩2 = ⟨ψ∗|D∗

µν(I − |ψ∗⟩⟨ψ∗|)D∗
µν |ψ∗⟩, (S56)

is non-negative because the operator (I − |ψ∗⟩⟨ψ∗|) is positive semidefinite. Hence the variance can669

be upper bounded by670

VarT[∂µ∂νL∗] ≤ q4

d(d− 1)
∥D∗

µν∥22 +
2p2q2

d− 1
⟨ψ∗|(D∗

µν)
2|ψ∗⟩

≤ q4

d(d− 1)
∥D∗

µν∥22 +
2p2q2

d− 1
∥(D∗

µν)
2∥∞ −

(
q2

d− 1
F∗

µν

)2

≤ 2q2

d− 1

(
p2 +

2q2

d

)
∥D∗

µν∥2∞,

(S57)

where we have used the properties671

∥D∗
µν∥2 ≤

√
rank(D∗

µν)∥D∗
µν∥∞ ≤ 2∥D∗

µν∥∞, ∥(D∗
µν)

2∥∞ = ∥D∗
µν∥2∞. (S58)

Utilizing the quantum gates in the QNN, the operator Dµν can be written as672

Dµν = Vν+1→M [Vµ+1→ν [V1→µ|0⟩⟨0|V †
1→µ, iΩµ]V

†
µ+1→ν , iΩν ]V

†
ν+1→M , (S59)
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where we assume µ ≤ ν without loss of generality. Thus ∥Dµν∥∞ can be upper bounded by673

∥Dµν∥∞ ≤ 4∥ΩµΩν∥∞ ≤ 4∥Ωµ∥∞∥Ων∥∞. (S60)

Finally, the variance of the second order derivative at θ = θ∗ can be bounded as674

VarT[∂µ∂νL∗] ≤ f2(p, d)∥Ωµ∥2∞∥Ων∥2∞. (S61)

The factor f2(p, d) reads675

f2(p, d) =
32(1− p2)

d− 1

[
p2 +

2(1− p2)

d

]
, (S62)

which vanishes at least of order 1/d. ■676

Note that when p ∈ {0, 1}, f1, f2 and hence the variances of the first and second order derivatives677

become exactly zero, indicating L∗ takes the optimum in all cases. This is nothing but the fact that678

the range of the loss function is [0, 1], which reflects that the bound of VarT[∂µ∂νL∗] is tight in p.679

We remark that the vanishing gradient here is both conceptually and technically distinct from barren680

plateaus [30]. Firstly, here we focus on a fixed parameter point θ∗ instead of a randomly chosen point681

on the training landscape. Other points apart from θ∗ is allowed to have a non-vanishing gradient682

expectation, which leads to prominent local minima instead of plateaus. Moreover, the ensemble T683

used here originates from the unknown target state instead of the random initialization. The latter684

typically demands a polynomially deep circuit to form a 2-design. Technically, a constant overlap p685

is assumed to construct the ensemble T instead of completely random over the entire Hilbert space.686

Thus our results apply to adaptive methods, while barren plateaus from the random initialization are687

not.688

Theorem 2 If the fidelity loss function satisfies L(θ∗) < 1 − 1/d, the probability that θ∗ is not a689

local minimum of L up to a fixed precision ϵ = (ϵ1, ϵ2) with respect to the target state ensemble T is690

upper bounded by691

PrT [¬LocalMin(θ∗, ϵ)] ≤ 2f1(p, d)∥ω∥22
ϵ21

+
f2(p, d)∥ω∥42(
dp2−1
d−1 e∗ + ϵ2

)2 , (S63)

where e∗ denotes the minimal eigenvalue of the QFI matrix at θ = θ∗. f1 and f2 are defined in692

Lemma 1 which vanish at least of order 1/d.693

Proof By definition in Eq. (5) in the main text, the probability PrT [¬LocalMin(θ∗, ϵ)] can be upper694

bounded by the sum of two terms: the probability that one of the gradient component is larger than695

ϵ1, and the probability that the Hessian matrix is not positive definite up to the error ϵ2, i.e.,696

PrT [¬LocalMin(θ∗, ϵ)] = PrT

[
M⋃
µ=1

{|∂µL∗| > ϵ1} ∪ {H∗
L ⊁ −ϵ2I}

]

≤ PrT

[
M⋃
µ=1

{|∂µL∗| > ϵ1}
]
+ PrT [H

∗
L ⊁ −ϵ2I] .

(S64)

The first term can be easily upper bounded by combining Lemma 1 and Chebyshev’s inequality, i.e.,697

PrT

[
M⋃
µ=1

{|∂µL∗| > ϵ1}
]
≤

M∑
µ=1

PrT [|∂µL∗| > ϵ1] ≤
M∑
µ=1

VarT[∂µL∗]

ϵ21
=
f1(p, d)

ϵ21
trF∗, (S65)

where the diagonal element of the QFI matrix is upper bounded as Fµµ ≤ 2∥Ωµ∥2∞ by definition and698

thus trF∗ ≤ 2∥ω∥22. Here the generator norm vector ω is defined as699

ω = (∥Ω1∥∞, ∥Ω2∥∞, . . . , ∥ΩM∥∞), (S66)

so that the squared vector 2-norm of ω equals to ∥ω∥22 =
∑M

µ=1 ∥Ωµ∥2∞. Thus we obtain the upper700

bound of the first term, i.e.,701

PrT

[
M⋃
µ=1

{|∂µL∗| > ϵ1}
]
≤ 2f1(p, d)∥ω∥22

ϵ21
, (S67)
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It takes extra efforts to bound the second term. After assuming p2 > 1/d to ensure that ET[H
∗
L] is702

positive semidefinite, a sufficient condition of the positive definiteness can be obtained by perturbing703

ET[H
∗
L] using Lemma S8, i.e.,704

∥H∗
L − ET[H

∗
L]∥∞ < ∥ET[H

∗
L + ϵ2I]

−1∥−1
∞ ⇒ H∗

L + ϵ2I ≻ 0, (S68)

Note that ∥ET[H
∗
L + ϵ2I]

−1∥−1
∞ = dp2−1

d−1 e∗ + ϵ2, where e∗ denotes the minimal eigenvalue of the705

QFI F∗. A necessary condition for H∗
L + ϵ2I ⊁ 0 is hence obtained by the contrapositive, i.e.,706

H∗
L ⊁ −ϵ2I ⇒ ∥H∗

L − ET[H
∗
L]∥∞ ≥ dp2 − 1

d− 1
e∗ + ϵ2. (S69)

Thus the probability that H∗
L is not positive definite can be upper bounded by707

PrT [H
∗
L ⊁ −ϵ2I] ≤ PrT

[
∥H∗

L − ET[H
∗
L]∥∞ ≥ dp2 − 1

d− 1
e∗ + ϵ2

]
. (S70)

The generalized Chebyshev’s inequality in Lemma S11 regarding H∗
L and the Schatten-∞ norm gives708

PrT [∥H∗
L − ET[H

∗
L]∥∞ ≥ ε] ≤ σ2

∞
ε2
, (S71)

where the “norm variance” is defined as σ2
∞ = ET[∥H∗

L −ET[H
∗
L]∥2∞]. By taking ε = dp2−1

d−1 e∗ + ϵ2,709

we obtain710

PrT [H
∗
L ⪰̸ −ϵ2I] ≤

σ2
∞(

dp2−1
d−1 e∗ + ϵ2

)2 . (S72)

Utilizing Lemma 1, σ2
∞ can be further bounded by711

σ2
∞ ≤ σ2

2 = ET[∥H∗
L − ET[H

∗
L]∥22] =

∑
µν

ET

[
((H∗

L)µν − (ET[H
∗
L])µν)

2
]

=

M∑
µ,ν=1

VarT [∂µ∂νL∗] ≤ f2(p, d)

M∑
µ,ν=1

∥Ωµ∥2∞∥Ων∥2∞

= f2(p, d)

(
M∑
µ=1

∥Ωµ∥2∞

)2

= f2(p, d)∥ω∥42.

(S73)

Combining Eqs. (S72) and (S73), we obtain the upper bound of the second term, i.e.,712

PrT [H
∗
L ⊁ −ϵ2I] ≤

f2(p, d)∥ω∥42(
dp2−1
d−1 e∗ + ϵ2

)2 . (S74)

Substituting the bounds for the first and second terms into Eq. (S64), one finally arrives at the desired713

upper bound for the probability that θ∗ is not a local minimum up to a fixed precision ϵ = (ϵ1, ϵ2). ■714

Proposition 3 The expectation and variance of the fidelity loss function L with respect to the target715

state ensemble T can be exactly calculated as716

ET [L(θ)] = 1− p2 +
dp2 − 1

d− 1
g(θ),

VarT [L(θ)] =
1− p2

d− 1
g(θ)

[
4p2 −

(
2p2 − (d− 2)(1− p2)

d(d− 1)

)
g(θ)

]
,

(S75)

where g(θ) = 1− |⟨ψ∗|ψ(θ)⟩|2.717
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Proof The expression of the expectation ET [L] has already been calculated in Eq. (S41). Considering718

Lemma S2, the variance of the loss function is719

VarT[L] = ET

[
(L − ET[L])2

]
= ET

[(
1− p2

d− 1
(⟨ψ∗|ϱ|ψ∗⟩ − 1) + q2⟨ψ⊥|ϱ|ψ⊥⟩+ 2pqRe

(
⟨ψ⊥|ϱ|ψ∗⟩

))2
]

=
q4

(d− 1)2
(⟨ψ∗|ϱ|ψ∗⟩ − 1)2 +

2q4

d− 1
(⟨ψ∗|ϱ|ψ∗⟩ − 1) ET

[
⟨ψ⊥|ϱ|ψ⊥⟩

]
+ q4 ET

[
⟨ψ⊥|ϱ|ψ⊥⟩2

]
+ 4p2q2 ET

[
Re
(
⟨ψ⊥|ϱ|ψ∗⟩

)2]
,

(S76)

where q =
√
1− p2 and ϱ(θ) = |ψ(θ)⟩⟨ψ(θ)|. According to Corollaries S4 and S6, the terms above720

can be calculated as721

ET
[
⟨ψ⊥|ϱ|ψ⊥⟩

]
=

1− ⟨ψ∗|ϱ|ψ∗⟩
d− 1

,

ET
[
⟨ψ⊥|ϱ|ψ⊥⟩2

]
=

(
tr(ϱ2)− 2⟨ψ∗|ϱ2|ψ∗⟩+ ⟨ψ∗|ϱ|ψ∗⟩2

)
+ (1− ⟨ψ∗|ϱ|ψ∗⟩)2

d(d− 1)

=
2(1− ⟨ψ∗|ϱ|ψ∗⟩)2

d(d− 1)
,

ET

[
Re
(
⟨ψ⊥|ϱ|ψ∗⟩

)2]
=

1

2
ET
[
⟨ψ⊥|ϱ|ψ∗⟩⟨ψ∗|ϱ|ψ⊥⟩

]
=

1− ⟨ψ∗|ϱ|ψ∗⟩2
2(d− 1)

.

(S77)

Thus the variance of the loss function becomes722

VarT[L] = −q
4(1− ⟨ψ∗|ϱ|ψ∗⟩)2

(d− 1)2
+

2q4(1− ⟨ψ∗|ϱ|ψ∗⟩)2
d(d− 1)

+
2p2q2(1− ⟨ψ∗|ϱ|ψ∗⟩2)

d− 1

=
q2 (1− ⟨ψ∗|ϱ|ψ∗⟩)

d− 1

[
q2(d− 2)(1− ⟨ψ∗|ϱ|ψ∗⟩)

d(d− 1)
+ 2p2(1 + ⟨ψ∗|ϱ|ψ∗⟩)

]
.

(S78)

Substituting the relation ⟨ψ∗|ϱ|ψ∗⟩ = 1− g(θ), the desired expression is obtained. ■723

If the quantum gate Uµ in the QNN satisfies the parameter-shift rule, the explicit form of the factor724

g(θ) could be known along the axis of θµ passing through θ∗, which is summarized in Corollary S12.725

We use θµ̄ to represent the other components except for θµ, namely θµ̄ = {θν}ν ̸=µ.726

Corollary S12 For QNNs satisfying the parameter-shift rule by Ω2
µ = I , the expectation and727

variance of the fidelity loss function L restricted by only varying the parameter θµ from θ∗ with728

respect to the target state ensemble T can be exactly calculated as729

ET

[
L|θµ̄=θ∗

µ̄

]
= 1− p2 +

dp2 − 1

d− 1
g(θµ),

VarT

[
L|θµ̄=θ∗

µ̄

]
=

1− p2

d− 1
g(θµ)

[
4p2 −

(
2p2 − (d− 2)(1− p2)

d(d− 1)

)
g(θµ)

]
,

(S79)

where g(θµ) = 1
2F∗

µµ sin
2
(
θµ − θ∗µ

)
.730

Proof According to Proposition 3, we only need to calculate the factor g(θ)|θµ̄=θ∗
µ̄

. We simply731

denote this factor as g(θµ), the explicit expression of which could be calculated by just substituting732

the parameter-shift rule. Alternatively, the expression of g(θµ) can be directly written down by733

considering the following facts. The parameter-shift rule ensures that g(θµ) must take the form of734

linear combinations of 1, cos(2θµ) and sin(2θµ) since Uµ(θµ) = e−iΩµθµ = cos θµI − i sin θµΩµ735

and g(θµ) takes the form of Uµ(·)U†
µ. Furthermore, g(θµ) takes its minimum at θ∗µ so that it is an736

even function relative to θµ = θ∗µ. Combined with the fact that g(θµ) also takes zero at θ∗µ, we know737

g(θµ) ∝ [1− cos(2(θµ − θ∗µ))]. The coefficient can be determined by considering that the second738

order derivative of g(θµ) equals to the QFI matrix element F∗
µµ by definition, so that739

g(θµ) = g(θ)|θµ̄=θ∗
µ̄
=

1

4
F∗

µµ[1− cos(2(θµ − θ∗µ))] =
1

2
F∗

µµ sin
2(θµ − θ∗µ). (S80)
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The expressions of the expectation and variance of the loss function can be obtained by directly740

substituting Eq. (S80) into Proposition 3. ■741

C Generalization to the local loss function742

In the main text, we focus on the fidelity loss function, also known as the “global” loss function [31],743

where the ensemble construction and calculation are preformed in a clear and meaningful manner.744

However, there is another type of loss function called “local” loss function [31], such as the energy745

expectation in the variational quantum eigensolver (VQE) which aims to prepare the ground state of746

a physical system. The local loss function takes the form of747

L(θ) = ⟨ψ(θ)|H|ψ(θ)⟩, (S81)

where H is the Hamiltonian of the physical system as a summation of Pauli strings. Eq. (S81) can748

formally reduce to the fidelity loss function by taking H = I − |ϕ⟩⟨ϕ|. In this section, we generalize749

the results of the fidelity loss function to the local loss function and show that the conclusion keeps750

the same, though the ensemble construction and calculation are more complicated.751

The ensemble we used in the main text decomposes the unknown target state into the learnt component752

|ψ∗⟩ and the unknown component |ψ⊥⟩, and regards |ψ⊥⟩ as a Haar random state in the orthogonal753

complement of |ψ∗⟩. This way of thinking seems to be more subtle in the case of the local loss754

function since the Hamiltonian is usually already known in the form of Pauli strings and hence it755

is unnatural to assume an unknown Hamiltonian. However, a known Hamiltonian does not imply756

a known target state, i.e., the ground state of the physical system. One needs to diagonalize the757

Hamiltonian to find the ground state, which requires an exponential cost in classical computers. That758

is to say, what one really does not know is the unitary used in the diagonalization, i.e., the relation759

between the learnt state |ψ∗⟩ and the eigen-basis of the Hamiltonian. We represent this kind of760

uncertainty by a unitary V from the ensemble V, where V comes from the ensemble U mentioned761

in Appendix A.1 by specifying P̄ = |ψ∗⟩⟨ψ∗|. Such an ensemble V induces an ensemble of loss762

functions via763

L(θ) = ⟨ψ(θ)|V †HV |ψ(θ)⟩, (S82)

similar with the loss function ensemble induced by the unknown target state in the main text. V can764

be interpreted as all of the possible diagonalizing unitaries that keeps the loss value L(θ∗) constant,765

denoted as L∗. In the following, similar with those for the global loss function, we calculate the766

expectation and variance of the derivatives of the local loss function in Lemma S13 and bound the767

probability of avoiding local minima in Theorem S14. Hence, the results and relative discussions in768

the main text could generalize to the case of local loss functions.769

Lemma S13 The expectation and variance of the gradient ∇L and Hessian matrix HL of the local770

loss function L(θ) = ⟨ψ(θ)|H|ψ(θ)⟩ at θ = θ∗ with respect to the ensemble V satisfy771

EV [∇L∗] = 0, VarV[∂µL∗] = f1(H, d)F∗
µµ,

EV [H∗
L] =

trH − dL∗

d− 1
F∗, VarV [∂µ∂νL∗] ≤ f2(H, d)∥Ωµ∥2∞∥Ων∥2∞,

(S83)

where F denotes the QFI matrix. f1 and f2 are functions of the Hamiltonian H and the Hilbert772

space dimension d, i.e.,773

f1(H, d) =
⟨H2⟩∗ − ⟨H⟩2∗

d− 1
, f2(H, d) = 32

( ⟨H2⟩∗ − ⟨H⟩2∗
d− 1

+
2∥H∥22
d(d− 2)

)
, (S84)

where we introduce the notation ⟨·⟩∗ = ⟨ψ∗| · |ψ∗⟩.774

Proof Using Lemma S3, the expectation of the local loss function can be directly calculated as775

EV [L(θ)] = L∗ +
trH − dL∗

d− 1
g(θ). (S85)

where g(θ) = 1 − ⟨ψ∗|ϱ(θ)|ψ∗⟩ denotes the fidelity distance between the output states at θ and776

θ∗. By definition, g(θ) takes the global minimum at θ = θ∗. Thus the commutation between the777
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expectation and differentiation gives778

EV [∇L∗] = ∇ (EV [L])|θ=θ∗ =
trH − dL∗

d− 1
∇g(θ)|θ=θ∗ = 0,

EV [H∗
L] =

trH − dL∗

d− 1
Hg(θ)|θ=θ∗ =

trH − dL∗

d− 1
F∗.

(S86)

By definition, Hg(θ)|θ=θ∗ is actually the QFI matrix F∗ of |ψ(θ)⟩ at θ = θ∗ (see Appendix A.4),779

which is always positive semidefinite. To estimate the variance, we need to calculate the expression780

of derivatives first due to the non-linearity of the variance. The first order derivative of the local loss781

function can be expressed by782

∂µL = tr[V †HVDµ] = 2Re⟨ψ|V †HV |∂µψ⟩, (S87)

where Dµ = ∂µϱ is a traceless Hermitian operator since trDµ = ∂µ(tr ϱ) = 0. By definition, we783

know that |ψ⟩∗ is not changed by V , i.e., V |ψ∗⟩ = |ψ∗⟩, which leads to the reduction ∂µL∗ =784

2Re(⟨ψ∗|HV |∂µψ∗⟩). Hence, the variance of the first order derivative at θ = θ∗ is785

VarV[∂µL∗] = EV
[
(∂µL∗ − EV[∂µL∗])2

]
= EV

[
(∂µL∗)2

]
= EV

[
(2Re⟨ψ∗|HV |∂µψ∗⟩)2

]
= EV

[
⟨ψ∗|HV |∂µψ∗⟩2

]
+ EV

[
⟨∂µψ∗|V †H|ψ∗⟩2

]
+ 2EV

[
⟨ψ∗|HV |∂µψ∗⟩⟨∂µψ∗|V †H|ψ∗⟩

]
.

(S88)

Utilizing Lemmas S2 and S3, we obtain786

EV
[
⟨ψ∗|HV |∂µψ∗⟩2

]
= ⟨H⟩2∗⟨ψ∗|∂µψ∗⟩2,

EV
[
⟨∂µψ∗|V †H|ψ∗⟩2

]
= ⟨H⟩2∗⟨∂µψ∗|ψ∗⟩2,

EV
[
⟨ψ∗|HV |∂µψ∗⟩⟨∂µψ∗|V †H|ψ∗⟩

]
=

⟨H2⟩∗ − ⟨H⟩2∗
2(d− 1)

F∗
µµ + ⟨H⟩2∗⟨ψ∗|∂µψ∗⟩⟨∂µψ∗|ψ∗⟩,

(S89)

where we introduce the notation ⟨·⟩∗ = ⟨ψ∗| · |ψ∗⟩ and hence L∗ = ⟨H⟩∗. The 1/2 factor in the third787

line arises from the definition of the QFI matrix. Note that there are three terms above canceling each788

other due to the fact789

2Re [⟨∂µψ|ψ⟩] = ⟨∂µψ|ψ⟩+ ⟨ψ|∂µψ⟩ = ∂µ(⟨ψ|ψ⟩) = 0,

⟨ψ|∂µψ⟩2 + ⟨∂µψ|ψ⟩2 + 2⟨ψ|∂µψ⟩⟨∂µψ|ψ⟩ = (2Re [⟨∂µψ|ψ⟩])2 = 0.
(S90)

Therefore, the variance of the first order derivative at θ = θ∗ equals to790

VarV [∂µL∗] = EV

[
(2Re⟨ψ∗|HV |∂µψ∗⟩)2

]
=

⟨H2⟩∗ − ⟨H⟩2∗
d− 1

F∗
µµ. (S91)

The second-order derivative can be expressed by791

∂µ∂νL = (HL)µν = tr
[
V †HVDµν

]
, (S92)

where Dµν = ∂µ∂νϱ is a traceless Hermitian operator since trDµν = ∂µ∂ν(tr ϱ) = 0. By direct792

expansion, the variance of the second order derivative at θ = θ∗ can be expressed as793

VarV[∂µ∂νL∗] = EV
[
(∂µ∂νL∗)2

]
− (EV [∂µ∂νL∗])2, (S93)
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where the second term is already obtained in Eq. (S86). Lemma S7 directly implies794

EV
[
(∂µ∂νL)2

]
= EV

[
tr(V †HVDµν) tr(V

†HVDµν)
]

= ⟨H⟩2∗⟨Dµν⟩2∗ +
2⟨H⟩∗⟨Dµν⟩∗

d− 1
(trH − ⟨H⟩∗)(trDµν − ⟨Dµν⟩∗)

+
2

d− 1
(⟨H2⟩∗ − ⟨H⟩2∗)(⟨D2

µν⟩∗ − ⟨Dµν⟩2∗)

+
1

d(d− 2)
(trH − ⟨H⟩∗)2(trDµν − ⟨Dµν⟩∗)2

+
1

d(d− 2)
(tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗)(tr(D2

µν)− 2⟨D2
µν⟩∗ + ⟨Dµν⟩2∗)

− 1

d(d− 1)(d− 2)

[
(tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗)(trDµν − ⟨Dµν⟩∗)2

]
− 1

d(d− 1)(d− 2)

[
(trH − ⟨H⟩∗)2(tr(D2

µν)− 2⟨D2
µν⟩∗ + ⟨Dµν⟩2∗)

]
.

(S94)

According to Eq. (S86), ⟨D∗
µν⟩∗ = −F∗

µν in Eq. (S51) and L∗ = ⟨H⟩∗, we have795

(EV[∂µ∂νL∗])
2
=

(
trH − dL∗

d− 1
F∗

µν

)2

=

(
trH − ⟨H⟩∗

d− 1
− ⟨H⟩∗

)2

⟨D∗
µν⟩2∗. (S95)

Combining Eqs. (S94) and (S95) together with the condition trDµν = 0, we obtain796

VarV[∂µ∂νL∗] =
2

d− 1
(⟨H2⟩∗ − ⟨H⟩2∗)(⟨D2∗

µν⟩∗ − ⟨D∗
µν⟩2∗)

+
1

d(d− 2)
(tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗)(tr(D2∗

µν)− 2⟨D2∗
µν⟩∗ + ⟨D∗

µν⟩2∗)

− 1

d(d− 1)(d− 2)

[
(tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗)⟨D∗

µν⟩2∗
]

− 1

d(d− 1)(d− 2)

[
(trH − ⟨H⟩∗)2(tr(D2∗

µν)− 2⟨D2∗
µν⟩∗ +

d− 2

d− 1
⟨Dµν⟩2∗))

]
.

(S96)

Note that we always have d ≥ 2 in qubit systems. If rankH ≥ 2, then it holds that797

tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗ ≥ ∥H∥22 − 2∥H∥2∞ ≥ (rankH)∥H∥2∞ − 2∥H∥2∞ ≥ 0. (S97)

Otherwise if rankH = 1 (the case of rankH = 0 is trivial), then we assume H = λ|ϕ⟩⟨ϕ| and it798

holds that799

tr(H2)−2⟨H2⟩∗+ ⟨H⟩2∗ = λ2−2λ2|⟨ψ∗|ϕ⟩|2+λ2|⟨ψ∗|ϕ⟩|4 = λ2
(
1− |⟨ψ∗|ϕ⟩|2

)2 ≥ 0. (S98)

Hence we conclude that it always holds that800

tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗ ≥ 0. (S99)

Similarly, because trDµν = 0, we know rankDµν ≥ 2 and thus801

tr(D2
µν)− 2⟨D2

µν⟩∗ ≥ (rankDµν)∥Dµν∥2∞ − 2∥Dµν∥2∞ ≥ 0. (S100)

Therefore, we can upper bound the variance by just discarding the last two terms in Eq. (S96)802

VarV[∂µ∂νL∗] ≤ 2

d− 1
(⟨H2⟩∗ − ⟨H⟩2∗)(⟨D2∗

µν⟩∗ − ⟨D∗
µν⟩2∗)

+
1

d(d− 2)
(tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗)(tr(D2∗

µν)− 2⟨D2∗
µν⟩∗ + ⟨D∗

µν⟩2∗).
(S101)

On the other hand, we have803

tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗ = tr(H2)− ⟨H2⟩∗ − (⟨H2⟩∗ − ⟨H⟩2∗) ≤ tr(H2), (S102)

since ⟨H2⟩∗ − ⟨H⟩2∗ = ⟨H(I − |ψ∗⟩⟨ψ∗|)H⟩∗ ≥ 0. A similar inequality also holds for Dµν . Thus804

the variance can be further bounded by805

VarV[∂µ∂νL∗] ≤ 2

d− 1
(⟨H2⟩∗ − ⟨H⟩2∗)∥D∗

µν∥2∞ +
4∥H∥22∥D∗

µν∥2∞
d(d− 2)

, (S103)
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where we have used the properties in Eq. (S58). Using the inequality in Eq. (S60) associated with806

the gate generators, the variance of the second order derivative at θ = θ∗ can be ultimately upper807

bounded by808

VarV[∂µ∂νL∗] ≤ f2(H, d)∥Ωµ∥2∞∥Ων∥2∞, (S104)

The factor f2(H, d) reads809

f2(H, d) = 32

( ⟨H2⟩∗ − ⟨H⟩2∗
d− 1

+
2∥H∥22
d(d− 2)

)
, (S105)

which vanishes at least of order O(poly(N)2−N ) with the qubit count N = log2 d if ∥H∥∞ ∈810

O(poly(N)). ■811

Theorem S14 If L∗ < trH
d , the probability that θ∗ is not a local minimum of the local cost function812

L up to a fixed precision ϵ = (ϵ1, ϵ2) with respect to the ensemble V is upper bounded by813

PrV [¬LocalMin(θ∗, ϵ)] ≤ 2f1(H, d)∥ω∥22
ϵ21

+
f2(H, d)∥ω∥42(

trH−dL∗

d−1 e∗ + ϵ2

)2 , (S106)

where e∗ denotes the minimal eigenvalue of the QFI matrix at θ = θ∗. f1 and f2 are defined814

in Eq. (S84) which vanish at least of order O(poly(N)2−N ) with the qubit count N = log2 d if815

∥H∥∞ ∈ O(poly(N)).816

Proof Utilizing Lemma S13, the proof is exactly the same as that of Theorem 2 up to the different817

hessian expectation EV[H
∗
L] and coefficient functions f1 and f2. ■818
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