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Abstract

Pre-trained multi-modal vision-language models (VLMs) are becoming increas-
ingly popular due to their exceptional performance on downstream vision appli-
cations, particularly in the few- and zero-shot settings. However, selecting the
best-performing VLM for some downstream applications is non-trivial, as it is
dataset and task-dependent. Meanwhile, the exhaustive evaluation of all available
VLMs on a novel application is not only time and computationally demanding but
also necessitates the collection of a labeled dataset for evaluation. As the number of
open-source VLM variants increases, there is a need for an efficient model selection
strategy that does not require access to a curated evaluation dataset. This paper pro-
poses a novel task and benchmark for efficiently evaluating VLMs’ zero-shot perfor-
mance on downstream applications without access to the downstream task dataset.
Specifically, we introduce a new task LOVM: Language- Only Vision Model Selec-
tion, where methods are expected to perform both model selection and performance
prediction based solely on a text description of the desired downstream application.
We then introduced an extensive LOVM benchmark consisting of ground-truth
evaluations of 35 pre-trained VLMs and 23 datasets, where methods are expected
to rank the pre-trained VLMs and predict their zero-shot performance. Our code
and dataset are available at https://github.com/orrzohar/LOVM

1 Introduction

Advancements in artificial intelligence (AI) have permeated diverse sectors, but applications in areas
such as medicine or those with long-tail distributions often struggle to collect the sizable training
datasets required for the standard supervised learning framework. Pre-trained vision-language models
(VLMs) offer a promising solution, demonstrating robust performance on diverse downstream vision
tasks without the necessity of large-scale labeled datasets [Radford et al., 2021, Jia et al., 2021].
However, the performance of VLMs can vary substantially across different tasks and domains, which
undermines the reliance solely on benchmark dataset performance for effective VLM selection.
Consequently, users aiming to select a VLM for custom downstream applications frequently face a
predicament: the lack of established performance rankings for these specific, non-conventional tasks.

As the number of pre-trained VLMs increases (see Fig. 1 [Ilharco et al., 2021] ), the challenge
of model selection escalates. Exhaustive evaluation of all available VLMs on a novel application
requires first the collection of a labeled dataset for evaluation, and is also time and computationally
demanding. However, many users lack the resources or technical proficiency to collect and label an
evaluation dataset and subsequently evaluate all available VLMs. Consequently, the development of
methods that efficiently select the most suitable model for a given task without relying on access to
the downstream task dataset has become critically important.
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Figure 1: LOVM Motivation. Number of pre-
trained VLMs released on open-clip over time.

Recent studies have demonstrated that text embed-
dings from VLMs can be used as a proxy for their
corresponding image embeddings in various down-
stream tasks, including classification and error slice
discovery [Zhang et al., 2023, Eyuboglu et al., 2022,
Jain et al., 2022]. Specifically, although Liang
et al. [2022] has shown that there exists a modality
gap between text and image embeddings generated
from VLMs, the geometry of this modality gap
permits cross-modality transferability. This phe-
nomenon allows text to serve as a proxy to corre-
sponding images and vice versa. Therefore we aim
to explore the utilization of cross-modality trans-
ferability to estimate VLM performance on a novel
vision task using text alone.

Figure 2: An overview of an application for
LOVM methods. A user can type into a search
bar the details of the desired task, and LOVM
methods evaluate and rank the available models.

Herein, we propose a novel problem setting -
Language-Only VLM selection (LOVM) as a novel
model selection task. In the LOVM task, meth-
ods are expected to select the optimal VLM and
predict its expected performance given only a text
description of a downstream vision task/application,
(see Fig. 2). Importantly, LOVM eliminate the
need to gather, organize, and annotate custom
datasets, thereby greatly simplifying the model se-
lection process for downstream users. Under the
LOVM paradigm, machine learning practitioners
could select the optimal VLM and deploy it in a
novel application without ever collecting and an-
notating a custom dataset. To facilitate the devel-
opment of LOVM methods in the future, we col-
lected a large dataset of ground-truth evaluations
of 35 pre-trained VLMs on 23 datasets. We then
introduce the appropriate evaluation protocol and
method quality metrics to allow the evaluation and
comparison of future LOVM methods.

To show that such a challenging task is possible, we provide simple baselines that utilize readily
available large language models to generate ‘text datasets’ for a given vision task. By utilizing the
cross-modality transferability phenomenon, we show how simple baselines can be derived by utilizing
the cross-modality transferability phenomenon. Our results show that text prompting may be an
effective means of estimating zero-shot performance, showing that such a challenging task is possible
while providing a baseline for future research.

The contributions of this study can be summarized as follows:

• We propose a novel problem setting, LOVM: Language-Only VLM selection and per-
formance prediction. LOVM methods are expected to perform both model selection and
performance prediction using only a text description of the desired zero-shot application.

• We provide a benchmark consisting of 35 pre-trained VLMs and 23 datasets. We evaluated
all dataset-VLM combinations and reported their corresponding performance, which is used
as the ground truth when training and evaluating LOVM methods. We also introduce the
corresponding evaluation metrics and protocols.

• In developing the LOVM baselines, we introduce several novel methodological contributions,
such as using LLM models to generate text proxies for images. Our text-based methods
outperform simple baselines - such as ImageNet benchmarking, showing the promise of the
direction of LOVM.

• By analyzing text-based score trends, we draw insights into VLM behavior and shed light
on why ResNet-based models perform better on datasets with low visual diversity.
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Figure 3: Language-Only Vision Model Selection Overview. (i) Task. a LOVM method is given a
set of pre-trained VLMs, a text description of the desired task, and the list of the classes of interest.
Given these, LOVM methods are expected to rank and predict the performance of all the available
models on the downstream task. (ii) Evaluation. Given the predicted (green) and ground-truth
(blue) VLM ranking and performance, we evaluate the LOVM method’s performance by accepted
list ranking and accuracy metrics. (iii) Data Collection. We exhaustively evaluated the selected 35
VLMs on the selected 23 datasets to produce the ground-truth (image-based) evaluations.

2 Language-Only Vision Model Selection

In order to train and evaluate LOVM methods, we need the ground-truth (GT) zero-shot performance,
i.e., image-based evaluation of many VLMs (differing by architecture and pre-training) on many tasks
and datasets. Once collected, we can develop and evaluate LOVM methods. An ideal LOVM method
should be able to select the best performing VLM for a downstream vision task and estimate the
performance directly from text embeddings, eliminating the cost of image-based model selection. The
VLM, dataset selection criterion, and dataset collection procedure are detailed in Sec. 2.1. Finally,
the evaluation protocol of LOVM methods is described in Sec. 2.2. For a discussion on why we only
evaluate zero-shot performace, see App. Sec. D.

Background. We first recap how VLMs are used as in zero-shot vision tasks. Given a pre-trained
VLM v, along with an image X ∈ X or text Y ∈ Y input, we can obtain their L2-normalized
embeddings x or y from the image encoder fx : X 7→ Rn or the text encoder fy : Y 7→ Rn, where
n is the dimension of the shared multi-modal embedding space. To use a model v on a particular task,
one encodes the class prompts, Y c for class c using the model’s text encoder, producing the class
embeddings yc = fy(Y

c). To produce the final class prediction, one calculates the cosine similarity
of an image embedding with all the corresponding text embeddings to predict the class logits.

Task Definition In the LOVM task, for any downstream application/dataset d, methods are given a
set of pre-trained VLMs, V = {v0, v1, ..} ∈ V , a text description of the downstream task Yd (e.g.,
classification) and a list of the desired class names Y c

d ,∀c ∈ Cd where Cd is the number of classes
in task d. Given this, LOVM methods are expected to rank and predict the accuracy of the set of
models (see Fig. 3, i):

pv,d = fLOVM(v, {Y c
d }

Cd
c=1, Yd), ∀ v ∈ V , (1)

where pv,d ∈ R is the relative/absolute performance of model v on dataset d.

2.1 Data Collection and Benchmark Construction

To train and evaluate LOVM methods, we need the zero-shot ground-truth performance of many
VLM models on many downstream datasets. We, therefore, selected 35 VLMs and 23 Datasets and
then performed image-based evaluations of each model on all the datasets - a total of 805 evaluations
using the same prompting strategies discussed by Radford et al. [2021], See Fig. 3, iii. These
ground truth zero-shot image-based model rankings and accuracies constitute the bulk of our
benchmark. The proposed LOVM benchmark consists of the aforementioned evaluation tables as
well as the per-dataset prompting templates, class names, and domain descriptions.
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Table 1: Details on the different datasets used, includ-
ing the number of classes, tasks, and domain.

Dataset Classes Task Domain

Imagenet 1000 classification natural image
Stanford Cars 196 classification natural image
Flowers102 102 classification natural image
CIFAR100 100 classification natural image

GTSRB 43 classification natural image
VOC2007 20 classification natural image

Oxford Pets 37 classification natural image
STL10 10 classification natural image
DTD 46 classification textural image

RESISC4 45 classification satellite images
EuroSAT 10 classification satellite images
MNIST 10 classification hand-writing

Retinopathy 5 classification retina scan
PCam 2 classification histopathology

SUN397 397 scene und. natural image
Country211 211 geolocation natural image

SVHN 10 OCR natural image
CLEVR-C 8 object counting natural image
CLEVR-D 8 distance est. natural image

DMLab 6 distance est. synthetic
FER2013 7 fac. exp. rec. natural image

KITTI 4 distance est. natural image
Rendered SST2 2 OCR text image

Selected Datasets. The proposed LOVM
benchmark utilizes a heterogeneous assort-
ment of 23 datasets. These datasets exhibit
variability in the number of classes, their tar-
get tasks, and corresponding domains. The
benchmark encompasses a comprehensive
range of tasks such as classification, scene
understanding, geolocalization, and object
counting, rendering it extensively applica-
ble across many applications. Further, the
datasets span diverse domains, including
natural, satellite, text, and medical images
(See Tab. 1). To ensure maximal compat-
ibility, we have opted for tasks that permit
the utilization of the same VLM architecture,
precluding any requisite alterations or addi-
tional training. This approach necessitated
the exclusion of tasks such as segmentation
and object detection, which mandate addi-
tional training modules, introducing extra-
neous noise during the evaluation of VLM
performance.

VLM Candidates. We utilize the open-clip library [Ilharco et al., 2021], a diverse collection
of pre-trained VLMs spanning various architectures, including but not limited to CLIP and CoCa
models, and utilizing encoders such as ResNet, ConvNext, and ViT. These models have undergone
pre-training on various datasets, such as WIT [Radford et al., 2021], LAION 400m, and LAION
2b [Schuhmann et al., 2022], with different hyperparameters. From the 87 models currently available,
we have carefully selected 35 for our study. A comprehensive list of all models used in this benchmark
can be found in the App. Tab. 4. We avoided incorporating additional multi-modal models, such as
BEIT[Wang et al., 2023] and VLMO [Bao et al., 2022], as these models utilize a shared text-image
encoder and, therefore, cannot be evaluated on the same datasets as CoCa and CLIP. Utilizing models
from the open-clip library ensures maximum compatibility and reproducibility in our work. Currently,
CLIP models comprise a significant portion of VLMs employed in practice.

2.2 LOVM Evaluation Protocol

On our benchmark, methods are expected to rank 35 pre-trained multi-modal models that differ
in architecture and pre-training datasets on 23 target datasets, and compare these rankings to the
ground-truth rankings (see Fig. 3 (ii)) and report the performance for each of the 23 datasets as well
as their averaged values.

Model Ranking. When evaluating model ranking on a particular dataset, one has access to the
performance of all the models on all the datasets besides the one being evaluated. We use the
following metrics:

• Top-5 Recall (R5) – We used R5 to evaluate a LOVM method’s model ranking capability. It
is defined as the ratio of correctly identified models.

• Kendall’s Rank Correlation (τ ) – We used τ to evaluate a LOVM method’s model selection
capability and give s fine-grained picture of how well the method ranked the high-performing
models and is defined as Kendall’s rank over the top-5 selected models.

Performance Prediction. When evaluating a model’s prediction on a dataset, the GT performance
of that model on all datasets and the performance of all models on that dataset are held out.

• Mean Absolute Error (L1) – We used L1 to evaluate a LOVM method’s performance
prediction capability. Specifically, we compute the L1 loss of all models’ predicted vs.
actual mean per-class recall/top-1 accuracy.
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3 LOVM Baselines

The assessment of model performance in traditional supervised methods often relies on benchmark
dataset performance. Given that most pre-trained vision-language models (VLMs) are evaluated
on ImageNet, it is convenient to utilize it as a baseline for comparison (This is our ImageNet
Benchmark baseline). Alternatively, a large language model could generate many probable image
captions, which could be encoded using the different VLMs text encoder, producing the corresponding
text embeddings. Treating these embeddings as image-proxies, one can calculate different widely-
accepted scores (see Sec. 3.2) and fit a linear regression model to predict performance or rank VLMs.
Specifically, from every VLM-dataset combination, one extracts these scores and then fits the model:

pv,d = w · sv,d + b, (2)

siv,d = f i
feat(v,TextGen({Y c

d }
Cd
c=1, Yd)), (3)

where pv,d ∈ R is the relative/absolute performance of model v on dataset d, w, b are the weights and
bias of the linear model. siv, d is the i-th element in the score vector, sv,t = [s1v, d, s

2
v, d, ...]

T , produced
by the corresponding feature/score function f i

feat. The function TextGen is a function that generates
text given the class names, {Y c

d }
Cd
c=1 and task description Yd of the desired task/dataset d.

We discuss the different scores, siv, d, in Sec. 3.2 and the TextGen function in Sec. 3.1. To evaluate
model rankings on a dataset, we hold out the data for that particular dataset and fit a linear model
on all the other datasets. Meanwhile, to evaluate the performance prediction of some model on
a particular dataset, we hold out the data for that dataset and model and fit a linear model on the
remaining combinations. We refer to the baselines by the combination of scores used in the model.

3.1 Text Data Generation

The impressive progress in large language models (LLMs) [OpenAI, 2023, Touvron et al., 2023]
has rendered the generation of potential - and realistic - ‘image captions’ practically limitless, thus
rendering text data generation remarkably attainable. In our study, we employ GPT-3.5, tasked to
produce two distinct text-based datasets, each corresponding to a given vision task. These generated
datasets serve as the foundation for extracting essential features for our task.

Captions Dataset. To generate the captions dataset, Dcap, we prompt an LLM to generate realistic -
but confusing - captions for images containing the user-provided classes in the user-provided domain.
We extracted the dataset description and class names from each dataset and prompted the LLM:

Generate long and confusing image captions for the {domain} domain, which will
be used to evaluate a Vision-Language Model’s {task} performance.
Generate 50 long, domain-specific captions for {classname}:

Where we assume the user supplies the target domain and task description. For examples of different
dataset’s domain and task, see Tab. 1.

Synonyms Dataset. Prior studies have already leveraged synonyms to evaluate LLMs [van der Lee
et al., 2023]. For example, if an VLM has seen many instances of the class ‘chair’ referenced as a
‘chair’, ‘seat’, etc., we expect these embeddings to be closely located in the shared embedding space.
To evaluate this aspect of the VLM using text, we prompt an LLM to generate a list of semantically
similar/synonyms for every object class:

Please list the superclasses/synonyms for {classname}. For example:
chair: [furniture, seat, bench, armchair, sofa]
{classname}:

We collect the results from this prompt to form the synonyms dataset, Dsyn.

3.2 Text-Derived Scores

There are many widely reported metrics for model transferability, dataset difficulty, and dataset gran-
ularity scores developed on image embeddings. We extract different commonly used features/metrics
from the text dataset embeddings and calculate their text-only counterparts.

5



Table 2: LOVM Benchmark. We evaluate our method’s performance over 23 datasets and 35
pre-trained models, and when predicting the top-1 accuracy and mean per-class recall (averaged over
all datasets, for the per-dataset breakdown, see App. Tab. 5 and 6 ). INB - ImageNet Baseline, C -
Text Classification scores, G - Granularity scores. As can be seen, mixed approaches achieve the best
VLM ranking and performance prediction.

used mean per-class recall top-1 accuracy
scores R5(↑) τ(↑) L1(↓) R5(↑) τ(↑) L1(↓)
INB 0.504 0.186 0.228 0.452 0.177 0.220

C 0.252 0.058 0.182 0.226 0.058 0.176
G 0.270 -0.014 0.141 0.252 -0.014 0.144

G+C 0.270 -0.014 0.141 0.252 -0.014 0.144
INB+C 0.513 0.200 0.182 0.452 0.223 0.176
INB+G 0.548 0.197 0.141 0.461 0.096 0.140

INB+G+C 0.548 0.197 0.141 0.461 0.096 0.140

Text Classification Scores (C). We use the generated captions dataset as image proxies and
evaluate the resulting model performance. Specifically, we replace the images with the generated
image captions and evaluate each model’s text top-1 accuracy (text-acc1) and f1-score (text-f1).

Dataset Granularity Scores (G). Cui et al. [2019] introduced the use of two widely used dataset
granularity measures for image classification, Fisher criterion [Fisher, 1936], ϕfisher and Silhouette
score [Rousseeuw, 1987], φsil, and their normalization constant, Class Dispersion score, ρdisp. The
Fisher criterion measures the degree of similarity of the classes or the extent of their separation. The
Silhouette score is a well-established metric used to quantify the tightness of the same-class samples
to the separation of different-class samples. The Class Dispersion score quantifies the degree of
same-class tightness or data cone radius.

Recently, van der Lee et al. [2023] has shown that synonym consistency can be used in large
language models to correlate the degree of familiarity of the model with a particular concept. Using
the Synonym dataset, we compare the cosine similarity between the text embedding of each class
and its corresponding synonyms. A high Synonym Consistency score, γsyn, between the class and its
corresponding synonyms indicates that the model is aware of the semantic meaning of the class.

ImageNet Benchmark (INB). We use the Imagenet performance of a VLM as the simplest baseline
for our LOVM methods. Here we assume that the performance of each model on all the downstream
tasks is exactly equal to the ImageNet performance. Methods often report ImageNet zero-shot
classification performance and it is therefore reasonable to believe we have this.

For detailed definitions of these metrics, see App. Sec. B.

4 Experiments and Results

In Sec. 4.1, we evaluate the model selection capabilities of the proposed baselines on the LOVM
benchmark. In Sec. 4.2, we evaluate the proposed baselines’ performance prediction capabilities. We
then analyze score trends and draw insights in Sec. 4.3.

4.1 Model Selection

A core aspect of this benchmark is model selection, as it allows the user to quickly and easily
select the optimal model for the desired downstream task. From Tab. 2, we can see that, when
predicting/ranking by the models mean per-class recall, the (C+G)-baseline can achieve a top-5 recall
of 0.270, indicating that, on average, more than one model is correctly ranked as a top-5 performing
model. Meanwhile, the INB-baseline had a R5 of 0.504. Combining the text and ImageNet scores, the
(INB+G)-baseline achieves the highest recall of 0.548, a ∼ 15% improvement over the INB-baseline.
To observe more fine-grained ranking capability, studying Kendall’s rank correlation, the (G+C)-,
INB-, and (INB+C)-baselines achieve a τ of −0.014, 0.186, and 0.200, respectively.
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Similar results can be seen when predicting the top-1 accuracy. The consistent improvement of
the baselines over the INB-baseline indicates the utility of both text-based and benchmark features.
Interestingly, C-score (or the text-acc1) appears to be more influential in predicting/ranking model’s
the top-1 accuracy than the mean per-class recall. To show that changing the LLM does not affect
these results, we re-ran our experiments with a different LLM and report the results in Sup. Sec. C.3

4.2 Performance Prediction
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Figure 4: Predicted vs. Ground-Truth Accuracy.
Predicted vs. actual top-1 accuracy on the proposed
LOVM benchmark.

Based on Tab. 2, it is clear that the gran-
ularity scores (G) are instrumental to pre-
dicting a model’s top-1 accuracy and mean
per-class recall. The G-baseline approach
can achieve an average L1 error of 0.145
and 0.141 for predicting the mean-per-
class recall and top-1 accuracy, respectively.
Adding any other scores does not lead to
an improvement in performance prediction.
The INB-baseline, which uses Imagenet
performance as prediction, leads to a much
higher L1 error of 0.228 and 0.220 com-
pared to the text-base baselines (text-based
performance estimation outperformed INB-
baselines by ∼ 36%). Finally, adding the
ImageNet benchmark score to the text features in the Unified baseline did not improve the L1 com-
pared to the text-only baseline. This is expected as the imagenet performance cannot be used to
predict the performance on a different dataset. Fig. 4 shows the predicted vs. ground-truth accuracy.
Our approach had a R2 score (or coefficient of determination) of 0.55, showing significant room for
improvement in accuracy prediction. To show that changing the LLM does not affect these results,
we re-ran our experiments with a different LLM and report the results in Sup. Sec. C.3

4.3 Insights into VLM Behavior

In this section, we visualize the dependence of the text-derived features on the pre-training datasets
and model architectures while averaging them across the different datasets (see Fig. 5).

Model Size. From studying Fig. 5, we can we can identify a clear trend of Fisher criterion and
Silhouette score improving with model size, while Class Dispersion score and Synonym Consistency
score degrade with model size. Silhouette score quantifies the degree of inter-class overlap or the
degree of overlap between different classes in the embedding space. As the model size of the
visual encoder increases, the embeddings from different classes become more and more orthogonal,
decreasing the inter-class overlap. Fisher criterion quantifies the degree of granularity a model
perceives the target datasets to be. As model size decreases, Fisher criterion decreases, or the
degree of perceived granularity increases. Class Dispersion score quantifies the degree of intra-class
dispersion, or how similar embeddings of the same class are. Specifically, as we increase model size,
Class Dispersion score decreases, and therefore the class embeddings become more varied, effectively
expanding the class cone radius. Synonym Consistency score quantified the closeness of a class to its
synonyms and behaved similarly to Fisher criterion.

Pre-training Dataset. When studying the effect of pre-training dataset size, it is clear that there is a
positive correlation between pre-training dataset size and all of the metrics when comparing models of
the same size. As the pre-training dataset increases, the intra-class simularity increases more rapidly
than the inter-class simularity, hence effectively different classes are more seperated. Specifically,
Fisher criterion and Silhouette score increase, or the degree of perceived granularity decreases, and
embeddings from different classes become less orthogonal, increasing the inter-class overlap. As the
pre-training dataset size increases, Class Dispersion score increases and the intra-class dispersion is
more condensed, leading to a smaller effective radius of a class dataset cone. Interestingly, larger
models are more affected by the increase in dataset size (as seen by the large slope of ViT-L compared
to ViT-B) - which could explain previous works’ observation that larger models benefit more when
trained on larger datasets [Fang et al., 2022].
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Figure 5: Analyzing Score Trends. Average text scores dependence on pre-training datasets and
model architecture on our text-derived scores. (left) scores quantifying inter-class similarity (right)
scores quantifying intra-class similarity. ResNet ( ) and ConvNext (× ) based models are grouped
separately to evaluate their effect on the score trends.

Model Architecture. Pre-training datasets and model architectures significantly influence each
other. ResNets and ViTs, for instance, consistently demonstrated differing behaviors and appeared
to reside at distinct points on the class separation-dispersion trade-off curve. In particular, ResNets
displayed lower Class Dispersion score and Silhouette score, indicating challenges in encoding
instances of the same class within the feature space compared to ViTs. This may account for ResNets’
superior performance on datasets with low visual variation, like MNIST; as the visual variation is
relatively low, we would not expect the Class Dispersion score to be the limiting factor in model
performance, making them less affected by this aspect of the dataset. Intriguingly, ConvNEXT
models exhibited characteristics more in line with ViT-base models than ResNet-based ones. What
leads to variation between WIT and L400m remains unclear, necessitating further investigation.

5 Related Work

Vision-Language Models. The field of vision-language models (VLMs) has witnessed significant
progress in recent years, particularly with the introduction of contrastive pre-trained VLMs such as
CLIP [Radford et al., 2021]. These models leverage large-scale datasets of aligned image-caption pairs
to obtain shared embedding spaces that capture rich visual and textual features. The learned image
and text encoders from these VLMs have demonstrated impressive feature extraction capabilities
and even set state-of-the-art zero-shot performances. However, the performance of VLMs can vary
significantly across different datasets, especially when there exists a domain, content, or distribution
shift [Fang et al., 2022]. As the number of model architectures & pre-training datasets [Ilharco
et al., 2021, Schuhmann et al., 2022] increase, it is challenging to select a pre-trained VLM, as good
performance on existing benchmarks does not always translate to the downstream task. Therefore,
there is a need to develop strategies that can estimate VLM performance on a new task without
requiring an exhaustive evaluation of these models using the target dataset.

The Cross-Modality Transferability Phenomenon: Text as a Proxy For Images. While these
VLMs aim to project representations from different modalities into a shared embedding space, Liang
et al. [2022] found that corresponding image and text pairs don’t completely overlap in the embedding
space. Instead, a “modality gap” exists between the image embeddings and text embeddings sub-
space. Subsequently, Zhang et al. [2023] has found that this gap can be approximated as an orthogonal
constant between true pairs of image and text and is, therefore, parallel to the decision boundaries
for a given modality. This suggests that cross-modality transferability - using one modality as
input to the other’s classifier - is possible for these contrastively pre-trained VLMs. Several studies
have demonstrated the utility of the cross-modality transferability phenomenon in different tasks.
For instance, Domino leveraged the cross-modal embeddings to identify error slices and generate
natural language descriptions of the error slices [Eyuboglu et al., 2022]. Similarly, Jain et al. [2022]
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used these embeddings to discover model failure directions in the multi-modal embedding space.
Meanwhile, Zhang et al. [2023] proposed the DrML, which diagnoses and rectifies vision classifiers
using natural language inputs. In this study, we also use text as a proxy for images, but for the novel
task of ranking and estimating VLM performance.

Unsupervised Model Selection. Unsupervised model selection was recently introduced by Sun
et al. [2021], to select the best model for a new target domain without utilizing labeled data. Their
work only considered domain (and not content) shifts and proposed constructing a proxy dataset that
captures/closely approximates this shift. This proxy dataset is constructed by minimizing different
dataset statistics using several labeled datasets. Evaluating models on this proxy set performs well for
model selection/ranking. However, such a strategy is limiting in the setting of evaluating VLMs - the
size of these models and their pre-training datasets makes it too computationally expensive to achieve
the desired goal of evaluating model performance on any downstream task.

Unsupervised Accuracy Estimation. Unsupervised or label-free accuracy estimation aims to
estimate classifier model performance with only access to the unlabeled test set of a new task.
Platanios et al. [2017, 2016] proposed strategies to apply probabilistic modeling approaches, such
as the probabilistic logic or Bayesian modeling, to analyze and aggregate predictions from multiple
classifiers. Other works approach this task by fitting models on feature statistics of the target
dataset [Risser-Maroix and Chamand, 2023]. Some studies evaluated model agreement, where many
classifiers are used on the target dataset, and the degree of agreement was correlated with model
performance [Chen et al., 2021, Jiang et al., 2022] Other approaches for unsupervised accuracy
estimation include training a neural network on the weight distribution statistics [Unterthiner et al.,
2020] or composing a meta-dataset with available datasets, such that the meta-dataset matched some
target dataset statistics [Deng and Zheng, 2021]. Some have attempted to craft embedding-based
scores, trying to quantify the separability of clusters in the embeddings spaces [Pándy et al., 2022,
Ding et al., 2022]. All these methods assume access to the unlabeled dataset of the target task. Instead,
our method only requires text descriptions of the novel task to estimate the model’s performance.

6 Conclusion

In this work, we introduce a new problem setting and task LOVM, which aims to select the best-
performing VLMs for a downstream vision task by only using its textual description. To demonstrate
the feasibility of such a task, we show how large language models, in combination with the cross-
modal transferability phenomenon, can be leveraged for such a task. We exhaustively test these
methods on the proposed LOVM benchmark, consisting of 35 VLMs and 23 benchmark datasets.
Our findings validate the viability of our proposed LOVM task, with unified (both text scores
and ImageNet benchmarking) baselines outperforming the ImageNet benchmarking baseline. This
suggests that text-based model selection methods (i.e., LOVM methods) provide additional benefits
to baseline selection based on a model’s performance on ImageNet. Furthermore, we found that the
granularity-based scores influence performance prediction and modal ranking more greatly. These
findings bolster the research direction of developing methods for VLM selections using only text.

Our proposed LOVM benchmark aims to foster this research direction. We see two promising avenues
for future research: (i) improving text-based classification correlation with ground-truth accuracy
by either text generation, evaluation metrics, or cross-modal transferability, and (ii) introducing
new granularity and transferability scores to the text-only paradigm. Namely, we anticipate the
development of methods improving over our proposed baselines presented in Tab. 2. Our work aims
to facilitate future research in this area and provide a more accurate and reliable means of comparing
pre-trained VLMs, accelerating their utilization in downstream applications.

For a discussion about broader and potential negative societal impacts please see App. Sec E.
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