
764

Appendix765

Table of Contents
766
767

A Preliminaries, Backgrounds, and Motivations 20768

A.1 Anonymous Random Walks . 20769

A.2 Random Walk on Hypergraphs . 20770

A.3 MLP-Mixer . 21771

B Additional Related Work 21772

B.1 Learning (Multi)Set Functions . 21773

B.2 Simplicial Complexes Representation Learning 22774

B.3 How Does CAt-Walk Differ from Existing Works? (Contributions) 22775

C SetWalk and Random Walk on Hypergraphs 22776

C.1 Extension of SetWalks . 23777

D Efficient Hyperedge Sampling 24778

E Theoretical Results 25779

E.1 Proof of Theorem 1 . 25780

E.2 Proof of Theorem 2 . 27781

E.3 Proof of Theorem 3 . 27782

E.4 Proof of Theorem 4 . 28783

E.5 Proof of Proposition 2 . 29784

F Experimental Setup Details 30785

F.1 Datasets . 30786

F.2 Baselines . 30787

F.3 Implementation and Training Details . 32788

G Additional Experimental Results 32789

G.1 Results on More Datasets . 32790

G.2 Node Classification . 32791

G.3 Performance in Average Precision . 33792

G.4 Scalability Analysis . 33793

G.5 More Results on Rnn v.s. MLP-Mixer in Walk Encoding 33794

H Broader Impacts 34795

I Reproducibility 35796

797
798
799

19

A Preliminaries, Backgrounds, and Motivations800

We begin by reviewing the preliminaries and background concepts that we refer to in the main paper.801

Next, we discuss the fundamental differences between our method and techniques from prior work.802

A.1 Anonymous Random Walks803

Micali and Zhu [44] studied Anonymous Walks (AWs), which replace a node’s identity by the order804

of its appearance in each walk. Given a simple network, an AW starts from a node, performs random805

walks over the graph to collect a sequence of nodes W : (u1, u2, . . . , uk) and then replaces the node806

identities by their order of appearance in each walk. That is:807

IdAW(w0,W) = |{u1, u2, . . . , uk∗ }| where k∗ is the smallest index such that uk∗ = w0. (10)

While this method is a simple anonymization process, it misses the correlation between different808

walks and assigns new node identities based on only one single walk. The correlation between809

different walks is more important in temporal networks to assign new node identities, as a single810

walk cannot capture the frequency of a pattern over time [32]. To this end, Wang et al. [32] design a811

set-based anonymization process that assigns new node identities based on a set of sampled walks.812

Given a vertex u, they sample M walks with length m starting from u and store them in S u. Next, for813

each node w0 that appears on at least one walk in S u, they assign a vector to each node as its hidden814

identity [32]:815

g(w0, S u)[i] = |{W |W ∈ S u,W[i] = w0}| ∀ i ∈ {0, . . . ,m}, (11)

where W[i] shows the i-th node in the walk W. This anonymization process not only hides the identity816

of vertices but it also can establish such hidden identity based on different sampled walks, capturing817

the correlation between several walks starting from a vertex.818

Both of these anonymization processes are designed for graphs with pair-wise interactions, and there819

are three main challenges in adopting them for hypergraphs: 1 To capture higher-order patterns,820

we use SetWalks, which are a sequence of hyperedges. Accordingly, we need an encoding for821

the position of hyperedges. A natural attempt to encode the position of hyperedges is to count the822

position of hyperedges across sampled SetWalks, as CAW [32] does for nodes. However, this823

approach misses the similarity of hyperedges with many same nodes. That is, given two hyperedges824

e1 = {u1, u2, . . . , uk} and e2 = {u1, u2, . . . , uk, uk+1}. Although we want to encode the position of825

these two hyperedges, we also want these two hyperedges to have almost the same encoding as they826

share many vertices. Accordingly, we suggest seeing a hyperedge as a set of vertices. Next, we827

first encode the position of vertices, and then we aggregate the position encodings of nodes that are828

connected by a hyperedge to compute the positional encoding of the hyperedge. 2 However, since829

we focus on undirected hypergraphs, the order of hyperedge’s vertices in the aggregation process830

should not affect the hyperedge positional encodings. Therefore, we need a permutation invariant831

pooling strategy. 3 While several existing studies used simple pooling functions like Mean(.) or832

Sum(.) [25], these pooling functions do not capture the higher-order dependencies between obtained833

nodes’ position encodings, missing the advantage of higher-order interactions. That is, a pooling834

function like Mean(.) is a non-parametric method that sees the positional encoding of each node835

in a hyperedge separately. Therefore, it is unable to aggregate them in a non-linear manner, which836

depending on the data can miss information. To address challenges 2 and 3 , we design SetMixer, a837

permutation invariant pooling strategy that uses MLPs to learn how to aggregate positional encodings838

of vertices in a hyperedge to compute the hyperedge positional encoding.839

A.2 Random Walk on Hypergraphs840

Chung [93] starts one of the first research on hypergraph Laplacian and defines the Laplacian of841

k-uniform hypergraph. Following this direction, Zhou et al. [17] defined a two-step CE-based random842

walk-based Laplacian for general hypergraphs. Given a node u, in the first step, we uniformly843

sample a hyperedge e including node u and in the second step, we uniformly sample a node in e.844

Following this idea, several studies developed more sophisticated (weighted) CE-based random walks845

on hypergraphs [19]. However, Chitra and Raphael [39] shows that random walks on hypergraphs846

with edge-independent node weights are limited to capturing pair-wise interactions, making them847

limited to capturing higher-order information. To this end, they designed an edge-dependent sampling848

procedure of random walks on hypergraphs. Carletti et al. [36] and Carletti et al. [94] argued that849

20

to sample more informative walks from a hypergraph, we are required to consider the degree of850

hyperedges in measuring the importance of vertices in the first step. Concurrently, some studies851

discuss the dependencies among hyperedges and define s-th Laplacian based on simple walks on the852

dual hypergraphs [40, 95]. Finally, more sophisticated random walks with non-linear Laplacian have853

been designed [22, 96–98].854

There are three main drawbacks for existing methods that are addressed by SetWalks: 1 None of855

these methods are designed for temporal hypergraphs and cannot capture the temporal properties856

of the network. Also, natural attempts to extend them to temporal hypergraphs and let walker857

uniformly walk over time misses the fact that recent temporal hyperedges are more informative than858

old ones (see Table 2). To address this issue, SetWalk uses a temporal bias factor in its sampling859

procedure (Equation 1). 2 Existing hypergraph random walks are unable to capture either higher-860

order interactions of vertices or higher-order dependencies of hyperedges. That is, random walks with861

edge-independent weights [36] are not able to capture higher-order interactions and are equivalent862

to simple random walks on the CE of the hypergraph [39]. The expressivity of random walks on863

hypergraphs with edge-dependent walks is also limited when we have a limited number of sampled864

walks (see Theorem 1). Finally, defining hypergraph random walk as a random walk on the dual865

hypergraph also cannot capture the higher-order dependencies of hyperedges (see Appendix C and866

Appendix D). SetWalk by its nature is able to walk over hyperedges (instead of vertices) and time867

and can capture higher-order interactions. Also, with a structural bias factor in its sampling procedure,868

which is based on hyperedge-dependent node weights, it is more informative than a simple random869

walk on the dual hypergraph, capturing higher-order dependencies of hyperedges. See Appendix C870

for more discussions.871

A.3 MLP-Mixer872

MLP-Mixer [43] is a family of models, based on multi-layer perceptions (MLPs), that are simple,873

amenable to efficient implementation, and robust to over-squashing and long-term dependencies874

(unlike Rnns, attention mechanisms, and Transformers [79]). The original architecture is designed875

for image data, where it takes image tokens as inputs. It then encodes them with a linear layer, which876

is equivalent to a convolutional layer over the image tokens, and updates their representations with a877

sequence of feed-forward layers applied to image tokens and features. Accordingly, we can divide878

the architecture of MLP-Mixer into two main parts: 1 Token Mixer: The main intuition of the token879

mixer is to clearly separate the cross-location operations and learn the cross-feature (cross-location)880

dependencies. 2 Channel Mixer: The intuition behind the channel mixer is to clearly separate the881

per-location operations and provide positional invariance, a prominent feature of convolutions. In882

both Mixer and SetMixer we use the channel mixer as designed in MLP-Mixer. Next, we discuss883

the token mixer and its limitation in mixing features in a permutation variant manner:884

Token Mixer. Let E be the input of the MLP-Mixer, then the token mixer phase is defined as:885

Htoken = E +W(2)
tokenσ

(
W(1)

tokenLayerNorm (E)T
)T
, (12)

where σ(.) is nonlinear activation function (usually GeLU [76]). Since it feeds the input’s columns to886

an MLP, it mixes the cross-feature information, which results in the MLP-Mixer being a permutation887

variant method. Natural attempts to remove the token mixer or its linear layer, although can result in a888

permutation invariant method, it misses the cross-feature dependencies, which is the main motivation889

for using MLP-Mixer architecture. To address this issue, SetMixer uses the Softmax(.) function890

over features. Using Softmax over features can be seen as a cross-feature normalization, which can891

capture their dependencies. While Softmax(.) is a non-parametric method that can bind token-wise892

information, it is also permutation equivariant and as we prove in Appendix E.3, makes the SetMixer893

permutation invariant.894

B Additional Related Work895

B.1 Learning (Multi)Set Functions896

(Multi)set functions are pooling architectures for (multi)sets with a wide array of applications in many897

real-world problems including few-shot image classification [99], conditional regression [100], and898

causality discovery [101]. Zaheer et al. [102] develop DeepSets, a universal approach to parameterize899

21

the (multi)set functions. Following this direction, some works design attention mechanisms to900

learn multiset functions [103], which also inspired Baek et al. [104] to adopt attention mechanisms901

designed for (multi)set functions in graph representation learning. Finally, Chien et al. [24] build the902

connection between learning (multi)set functions with propagations on hypergraphs. To the best of903

our knowledge, SetMixer is the first adaptive permutation invariant pooling strategy for hypergraphs,904

which sees each hyperedge as a set of vertices and aggregate node encodings by considering their905

higher-order dependencies.906

B.2 Simplicial Complexes Representation Learning907

Simplicial complexes can be considered a special case of hypergraphs and are defined as a collection of908

polytopes such as triangles and tetrahedra, which are called simplices [105]. While these frameworks909

can be used to represent higher-order relations, simplicial complexes require the downward closure910

property [106]. That is, every substructure or face of a simplex contained in a complex K is also in911

K . Recently, to encode higher-order interactions, representation learning on simplicial complexes912

has attracted much attention [5, 107–113]. The first group of methods extend node2vec [63] to913

simplicial complexes with random walks on interactions through Hasse diagrams and simplex914

connections inside p-chains [107, 109]. With the recent advances in message-passing-based methods,915

several studies focus on designing neural networks on simplicial complexes [110–113]. Ebli et al.916

[110] introduced Simplicial neural networks (SNN), generalization of spectral graph convolution to917

simplicial complexes with higher-order Laplacian matrices. Following this direction, some works918

propose simplicial convolutional neural networks with different simplicial filters to exploit the919

relationships in upper- and lower-neighborhoods [111, 112]. Finally, the last group of studies use920

encoder-decoder architecture as well as message-passing to learn the representation of simplicial921

complexes [108, 114].922

CAt-Walk is different from all these methods in three main aspects: 1 Contrary to these methods,923

CAt-Walk is designed for temporal hypergraphs and is capable of capturing higher-order temporal924

properties in a streaming manner, avoiding the drawbacks of snapshot-based methods. 2 CAt-925

Walk works in the inductive setting by extracting underlying dynamic laws of the hypergraph,926

making it generalizable to unseen patterns and nodes. 3 All these methods are designed for927

simplicial complexes, which are special cases of hypergraphs, while CAt-Walk is designed for928

general hypergraphs and does not require any assumption of the downward closure property.929

B.3 How Does CAt-Walk Differ from Existing Works? (Contributions)930

As we discussed in Appendix A.2, existing random walks on hypergraphs are unable to capture931

either 1 higher-order interactions between nodes, or 2 higher-order dependencies of hyperedges.932

Moreover, all these walks are for static hypergraphs and are not able to capture temporal properties.933

To this end, we design SetWalk a higher-order temporal walk on hypergraphs. Naturally, SetWalks934

are capable of capturing higher-order patterns as a SetWalkis defined as a sequence of hyperedges.935

We further design a new sampling procedure with temporal and structural biases, making SetWalks936

capable of capturing higher-order dependencies of hyperedges. To take advantage of complex937

information provided by SetWalks as well as training the model in an inductive manner, we design a938

two-step anonymization process with a novel pooling strategy, called SetMixer. The anonymization939

process starts with encoding the position of vertices with respect to a set of sampled SetWalks and940

then aggregates node positional encodings via a non-linear permutation invariant pooling function,941

SetMixer, to compute their corresponding hyperedge positional encodings. This two-step process942

lets us capture structural properties while we also care about the similarity of hyperedges. Finally, to943

take advantage of continuous-time dynamics in data and avoid the limitations of sequential encoding,944

we design a neural network for temporal walk encoding that leverages a time encoding module to945

encode time as well as a Mixer module to encode the structure of the walk.946

C SetWalk and Random Walk on Hypergraphs947

We reviewed existing random walks in Appendix A.2. Here, we discuss how these concepts are948

different from SetWalks and investigate whether SetWalks are more expressive than these methods.949

22

As we discussed in Sections 1 and 3.2, there are two main challenges for designing random walks950

on hypergraphs: 1 Random walks are a sequence of pair-wise interconnected vertices, even though951

edges in a hypergraph connect sets of vertices. 2 A sampling probability of a walk on a hypergraph952

must be different from its sampling probability on the CE of the hypergraph [36–42]. To address953

these challenges, most existing works on random walks on hypergraphs ignore 1 and focus on 2 to954

distinguish the walks on simple graphs and hypergraphs, and 1 is relatively unexplored. To this end,955

we answer the following questions:956

Q1: Can 2 alone be sufficient to take advantage of higher-order interactions? First, semanti-957

cally, decomposing hyperedges into sequences of simple pair-wise interactions (CE) loses the958

semantic meaning of the hyperedges. Consider the collaboration network in Figure 1. When de-959

composing the hyperedges into pair-wise interactions, both (A, B,C) and (H,G, E) have the same960

structure (a triangle), while the semantics of these two structures in the data are completely different.961

That is, (A, B,C) have all published a paper together, while each pair of (H,G, E) separately have962

published a paper. One might argue that although the output of hypergraph random walks and simple963

random walks on the CE might be the same, the sampling probability of each walk is different964

and with a large number of samples, our model can distinguish these two structures. In Theorem 1965

(proof in Appendix E) we theoretically show that when we have a finite number of hypergraph walk966

samples, M, there is a hypergraph G such that with M hypergraph walks, the G and its CE are not967

distinguishable. Note that in reality, the bottleneck for the number of sampled walks in machine968

learning-based methods is memory. Accordingly, even with tuning the number of samples for each969

dataset, the size of samples is bounded by a small number. This theorem shows that with a limited970

budget for walk sampling, 2 alone is not enough to capture higher-order patterns.971

Q2: Can addressing 1 alone be sufficient to take advantage of higher-order interactions? To972

answer this question, we use the extended version of the edge-to-vertex dual graph concept for973

hypergraphs:974

Definition 3 (Dual Hypergraph). Given a hypergraph G = (V,E), the dual hypergraph of G is975

defined as G̃ = (Ṽ, Ẽ), where Ṽ = E and a hyperedge ẽ = {e1, e2, . . . , ek} ∈ Ẽ shows that
⋂k

i=1 ei , ∅.976

To address 1 , we need to see walks on hypergraphs as a sequence of hyperedges (instead of a977

sequence of pair-wise connected nodes). One can interpret this as a hypergraph walk on the dual978

hypergraph. That is, each hypergraph walk on the dual graph is a sequence of G’s hyperedges:979

e1 → e2 → · · · → ek. However, as shown by Chitra and Raphael [39], each walk on hypergraphs980

with edge-independent weights for sampling vertices is equivalent to a simple walk on the (weighted)981

CE graph. To this end, addressing 2 alone can be equivalent to sample walks on the CE of the dual982

hypergraph, which misses the higher-order interdependencies of hyperedges and their intersections.983

Based on the above discussion, both 1 and 2 are required to capture higher-order interaction984

between nodes as well as higher-order interdependencies of hyperedges. The definition of SetWalks985

(Definition 2) with structural bias, introduced in Equation 1, satisfies both 1 and 2 . In the next986

section, we discuss how a simple extension of SetWalks can not only be more expressive than all987

existing walks on hypergraphs and their CEs, but its definition also is universal and all these methods988

are special cases of extended SetWalk.989

C.1 Extension of SetWalks990

Random walks on hypergraphs are simple but less expressive methods for extracting network motifs991

while SetWalks are more complex patterns that provide more expressive motif extraction approaches.992

One can model the trade-off of simplicity and expressivity to connect all these concepts in a single993

notion of walks. To establish a connection between SetWalks and existing walks on hypergraphs, as994

well as a universal random walk model on hypergraphs, we extend SetWalks to r-SetWalks, where995

parameter r controls the size of hyperedges appear in the walk:996

Definition 4 (r-SetWalk). Given a temporal hypergraph G = (V,E,X), and a threshold r ∈ Z+, a997

r-SetWalk with length ℓ on temporal hypergraph G is a randomly generated sequence of hyperedges998

(sets):999

Sw : (e1, te1)→ (e2, te2)→ · · · → (eℓ, teℓ),
where ei ∈ E, |ei| ≤ r, tei+1 < tei , and the intersection of ei and ei+1 is not empty, ei ∩ ei+1 , ∅. In other1000

words, for each 1 ≤ i ≤ ℓ − 1: ei+1 ∈ E
ti (ei). We use Sw[i] to denote the i-th hyperedge-time pair in1001

the SetWalk. That is, Sw[i][0] = ei and Sw[i][1] = tei .1002

23

The only difference between this definition and Definition 2 is that r-SetWalk limits hyperedges in1003

the walk to hyperedges with size at most r. The sampling process of r-SetWalks is the same as the1004

SetWalk’s (introduced in Section 3.2 and Appendix D) while we only sample hyperedges with size1005

at most r. Now to establish the connection of r-SetWalks and existing walks on hypergraphs, we1006

define the extended version of the clique expansion technique:1007

Definition 5 (r-Projected Hypergraph). Given a hypergraph G = (V,E) and an integer r ≥ 2, we1008

construct the (weighted) r-projected hypergraph of G as a hypergraph Ĝr = (V, Êr), where for each1009

e = {u1, u2, . . . , uk} ∈ E:1010

1. if k ≤ r: add e to the Êr,1011

2. if k ≥ r + 1: add ei = {ui1 , ui2 , . . . , uir } to Êr, for every possible {i1, i2, . . . , ir} ⊆ {1, 2, . . . , k}.1012

Each of steps 1 or 2 can be done in a weighted manner. In other words, we approximate each1013

hyperedge with a size of more than r with
(

k
r

)
(weighted) hyperedges with size r. For example,1014

when r = 2, the 2-projected graph of G is equivalent to its clique expansion, and r = ∞ is the1015

hypergraph itself. Furthermore, we define Union Projected Hyperaph (UP hypergraph) as the union1016

of all r-projected hypergraphs, i.e., G∗ = (V,
⋃∞

r=2 Êr). Note that the UP hypergraph has downward1017

closure property and is equivalent to the simplicial complex representation of the hypergraph G. The1018

next proposition establishes the universality of the r-SetWalk concept.1019

Proposition 2. Edge-independent random walks on hypergraphs [36], edge-dependent random1020

walks on hypergraphs [39], and simple random walks on the CE of hypergraphs are all special1021

cases of r-SetWalk, when applied to the 2-projected graph, UP hypergraph, and 2-projected graph,1022

respectively. Furthermore, all the above methods are less expressive than r-SetWalks.1023

The proof of this proposition is in Appendix E.5.1024

D Efficient Hyperedge Sampling1025

For sampling SetWalks, inspired by Wang et al. [32], we use two steps: 1 Online score computation:1026

we assign a set of scores to each incoming hyperedge. 2 Iterative sampling: we use assigned scores1027

in the previous step to sample hyperedges in a SetWalk.1028

Algorithm 1 Online Score Computation
Input: Given a hypergraph G = (V,E) and α ∈ [0, 1]
Output: A probability score for each vertex
1: P← ∅;
2: for (e, t) ∈ E with an increasing order of t do
3: Pe,t[0]← exp (αt);
4: Pe,t[1]← 0, Pe,t[2]← 0, Pe,t[3]← ∅;
5: for u ∈ e do
6: for en ∈ E

t(u) do
7: if en is not visited then
8: Pe,t[2]← Pe,t[2] + exp(φ(en, e));
9: Pe,t[3]← Pe,t[3] ∪ {exp(φ(en, e))};

10: Pe,t[1]← Pe,t[1] + exp(α × tn);
return P;

Online Score Computation. The first part essentially works in an online manner and assigns each1029

new incoming hyperedge e a four-tuple of scores:1030

Pe,t[0] = exp(α × t), Pe,t[1] =
∑

(e′,t′)∈Et(e)

exp
(
α × t′

)
Pe,t[2] =

∑
(e′,t′)∈Et(e)

exp
(
φ(e, e′)

)
, Pe,t[3] =

{
exp(φ(e, e′))

}
(e′,t′)∈Et(e)

Iterative Sampling. In the iterative sampling algorithm, we use pre-computed scores by Algorithm 11031

and sample a hyperedge (e, t) given a previously sampled hyperedge (ep, tp). In the next proposition,1032

24

Algorithm 2 Iterative SetWalk Sampling
Input: Given a hypergraph G = (V,E), α ∈ [0, 1], and previously sampled hyperedge (ep, tp)
Output: Next sampled hyperedge (e, t)
1: for (e, t) ∈ Etp (ep) with an decreasing order of t do
2: Sample b ∼ Uniform(0, 1);
3: Get Pe,t[0], Pep ,tp [1], Pep ,tp [2] and φ(e, ep) from the output of Algorithm 1;

4: P ← Normalize Pe,t[0]
Pep ,tp [1] ×

exp(φ(e,ep))
Pep ,tp [2] ;

5: if b < P then return (e, t);
return (eX , tX); ▷ (eX , tX) is a dummy empty hyperedge signaling the end of algorithm.

...

Figure 5: The example of a hypergraph G and its 2- and 3-projected hypergraphs.

we show that this sampling algorithm samples each hyperedge with the probability mentioned in1033

Section 3.2.1034

Proposition 3. Algorithm 2 sample a hyperedge (e, t) after (ep, tp) with a probability proportional to1035

P[(e, t)|(ep, tp)] (Equation 1).1036

How can this sampling procedure capture higher-order patterns? As discussed in Appendix C,1037

SetWalks on G can be interpreted as a random walk on the dual hypergraph of G, G̃. However, a1038

simple (or hyperedge-independent) random walk on the dual hypergraph is equivalent to the walk on1039

the CE of the dual hypergraph [39, 40], missing the higher-order dependencies of hyperedges. Inspired1040

by Chitra and Raphael [39], we use hyperedge-dependent weights Γ : V × E → R≥0 and sample1041

hyperedges with a probability proportional to exp
(∑

u∈e∩ep
Γ(u, e)Γ(u, e′)

)
, where ep is the previously1042

sampled hyperedge. In the dual hypergraph G̃ = (E,V), we assign a score Γ̃ : E × V → R≥0 to1043

each pair of (e, u) as Γ̃(e, u) = Γ(u, e). Now, a SetWalk with this sampling procedure is equivalent1044

to the edge-dependent hypergraph walk on the dual hypergraph of G with edge-dependent weight1045

Γ̃(.). Chitra and Raphael [39] show that an edge-dependent hypergraph random walk can capture1046

some information about higher-order interactions and is not equivalent to a simple walk on the1047

weighted CE of the hypergraph. Accordingly, even on the dual hypergraph, SetWalk with this1048

sampling procedure can capture higher-order dependencies of hyperedges and is not equivalent to a1049

simple walk on the CE of the dual hypergraph G̃. We conclude that, unlike existing random walks1050

on hypergraphs [36, 37, 40, 75], SetWalk can capture both higher-order interactions of nodes, and,1051

based on its sampling procedure, higher-order dependencies of hyperedges.1052

E Theoretical Results1053

E.1 Proof of Theorem 11054

Theorem 1. A random SetWalk is equivalent to neither the hypergraph random walk, the random1055

walk on the CE graph, nor the random walk on the SE graph. Also, for a finite number of samples of1056

each, SetWalk is more expressive than existing walks.1057

Proof. In this proof, we focus on the hypergraph random walk and simple random walk on the CE.1058

The proof for the SE graph is the same and also it has been proven that the SE graph and the CE of a1059

hypergraph have close (or equal in uniform hypergraphs) Laplacian and have the same expressiveness1060

power in the representation of hypergraphs [115–117].1061

First, note that each SetWalk can be approximately decomposed to a set of either hypergraph1062

walks, simple random walks, or walk on the SE. Moreover, each of these walks can be mapped to1063

25

a corresponding SetWalk(but not a bijective mapping), by sampling hyperpedges corresponding1064

to each consecutive pair of nodes in these walks. Accordingly, SetWalks includes the information1065

provided by these walks and so its expressiveness is not less than these methods. To this end, next,1066

we discuss two examples in two different tasks that SetWalks are successful while other walks fail.1067

1 In the first task, we want to see if there is any pair of hypergraphs with different semantics that1068

SetWalks can distinguish them while other walks fail to do so. We construct such hypergraphs. Let1069

G = (V,E) be a hypergraph withV = {u1, u2, . . . , uN} and E = {(e, ti)}Ti=1, where e = {u1, u2, . . . , uN}1070

and t1 < t2 < · · · < tT . Also, let A be an edge-independent hypergraph random walk (or random1071

walk on the CE) sampling algorithm. Chitra and Raphael [39] show that each of these walks is1072

equivalent to a random walk on the weighted CE. Assume that ξ(.) is a function that assigns weights1073

to edges in G∗ = (V,E∗), the weighted CE of the G, such that a hypergraph random walk on G1074

is equivalent to a walk on this weighted CE graph. Next, we construct a weighted hypergraph1075

G′ = (V,E′) with the same set of vertices but with E′ =
⋃T

k=1{((ui, u j), tk)}ui,u j∈V, such that each1076

edge ei, j = (ui, u j) is associated with a weight ξ(ei, j). Clearly, sampling procedure A on G and G′1077

are the same, while they have different semantics. For example, assume that both are collaboration1078

networks. While in G all vertices have published a single paper together, in the G′ each pair of1079

vertices have published a separate paper together. The proof for the hypergraph random walk with1080

hyperedge-dependent weights is the same, while we construct weights of the hypergraph G′ based on1081

the sampling probability of hyperedges in the hypergraph random walk procedure.1082

2 Next, in the second task, we investigate the expressiveness of these walks for reconstructing1083

hyperedges. That is, we want to see given a perfect classifier, whether these walks can provide enough1084

information to detect higher-order patterns in the network. To this end, we show that for a finite1085

number of samples of each walk, SetWalk is more expressive than all these walks in detecting higher-1086

order patterns. To this end, let M be the maximum number of samples and L be the maximum length1087

of walks, we show that for any M ≥ 2 and L ≥ 2 there exists a pair of hypergraphs G, with higher-1088

order interactions, and G′, with pairwise interactions, such that SetWalks can distinguish them, while1089

they are indistinguishable by any of these walks. We construct a temporal hypergraph G = (V,E) as1090

a hypergraph withV = {u1, u2, . . . , uM(L+1)+1} and E = {(e, ti)}Li=1, where e = {u1, u2, . . . , uM(L+1)+1}1091

and t1 < t2 < · · · < tL. We further construct G′ = (V,E′) with the same set of vertices but with1092

E′ =
⋃L

k=1{((ui, u j), tk)}ui,u j∈V. Figure 5 illustrates G and its projected graphs at a given timestamp1093

t ∈ {t1, t2, . . . , tL}.1094

SetWalk with only one sample, Sw, can distinguish interactions in these two hypergraphs. That is,1095

let Sw : (e, tL) → (e, tL−1) → · · · → (e, t1) be the sample SetWalk from G (note that masking the1096

time, this is the only SetWalk on G so in any case the sampled SetWalk is Sw). Since all interactions1097

in G′ are pairwise, any sampled SetWalk on G′, Sw′, only includes pairwise interactions and so1098

Sw , Sw′, in any case. Accordingly, in any case, SetWalk can distinguish interactions in these two1099

hypergraphs.1100

Since the output of hypergraph random walks, simple walks on the CE, and walks on the SE include1101

pairwise interaction, it seems that they are unable to detect higher-order patterns, so are unable to1102

distinguish these two hypergraphs. However, one might argue that by having a large number of1103

sampled walks and using a perfect classifier, which learned the distribution of sampled random walks1104

and can detect whether a set of sampled walks is from a higher-order interaction, we might be able to1105

detect higher-order interactions. To this end, we next assume that we have a perfect classifier C(.)1106

that can detect whether a set of sampled hypergraph walks, simple walks on the CE, or walks on the1107

SE are sampled from a higher-order structure or pair-wise patterns. Next, we show that hypergraph1108

random walks cannot provide enough information about every vertex for C(.) to detect whether all1109

vertices inV shape a hyperedge. To this end, assume that we sample S = {W1,W2, . . . ,WM} walks1110

from hypergraph G and S ′ = {W ′1,W
′
2, . . . ,W

′
M} walks from hypergraph G′. In the best case scenario,1111

since C(.) is a perfect classifier, it can detect G′ only includes pair-wise interactions based on sampled1112

walk S ′. To distinguish these two hypergraphs, we need C(.) to detect sampled walks from G (i.e., S)1113

that come from a higher-order pattern. For any M sampled walks with length L from G, we observe1114

at most M × (L + 1) vertices, so we have information about at most M × (L + 1) vertices, unable1115

to capture any information about the neighborhood of at least one vertex. Due to the symmetry of1116

vertices, without loss of generality, we can assume that this vertex is u1. This means that with these1117

M sampled hypergraph random walks with length L, we are not able to provide any information about1118

node u1 at any timestamp for C(.). Therefore, even a perfect classifier C(.) cannot verify whether u11119

26

is a part of higher-order interaction or pair-wise interaction, which completes the proof. Note that the1120

proof for the simple random walk is completely the same.1121

□1122

Remark 1. Note that while the first task investigates the expressiveness of these methods with respect1123

to their sampling procedure, the second tasks discuss the limitation and difference in their outputs.1124

Remark 2. Note that in reality, we can have neither an unlimited number of samples nor an unlimited1125

walk length. Also, the upper bound for the number of samples or walk length depends on the RAM of1126

the machine on which the model is being trained. In our experiments, we observe that usually, we1127

cannot sample more than 125 walks with a batch size of 32.1128

E.2 Proof of Theorem 21129

Theorem 2. Given an arbitrary positive integer k ∈ Z+, let Ψ(.) be a pooling function such that for1130

any set S = {w1, . . . ,wd}:1131

Ψ(S) =
∑
S ′⊆S
|S ′ |=k

f (S ′), (13)

where f is some function. Then the pooling function can cause missing information, limiting the1132

expressiveness of the method to applying to the CE of the hypergraph.1133

Proof. The main intuition of this theorem is that a pooling function needs to capture higher-order1134

dependencies of its input’s elements and if it can be decomposed to a summation of functions that1135

capture lower-order dependencies, it misses information. We show that, in the general case for a given1136

k ∈ Z+, the pooling function Ψ(.) when applied to a hypergraph G is at most as expressive as Ψ(.)1137

when applied to the k-projected hypergraph of G (Definition 5). Let G = (V,E) be a hypergraph with1138

V = {u1, u2, . . . , uk+1} and E = {(V, t)} = {({u1, u2, . . . , uk+1}, t)} for a given time t, and Ĝ = (V, Ê)1139

be its k-projected graph, i.e., Ê = {(e1, t), . . . , (e(k+1
k), t)}, where ei ⊂ {u1, u2, . . . , uk+1} such that |ei| = k.1140

Applying pooling function Ψ(.) on the hypergraph G is equivalent to applying Ψ(.) to the hyperedge1141

(V, t) ∈ E, which provides Ψ(V) =
∑k+1

i=1 f (ei). On the other hand, applying Ψ(.) on projected graph1142

Ĝ means applying it on each hyperedge ei ∈ Ê. Accordingly, since for each hyperedge ei ∈ Ê we1143

have Ψ(ei) = f (ei), all captured information by pooling function Ψ(.) on Ĝ is the set of S = { f (ei)}k+1
i=1 .1144

It is clear that Ψ(V) =
∑k+1

i=1 f (ei) is less informative than S = { f (ei)}k+1
i=1 as it is the summation of1145

elements in S (in fact, Ψ(V) cannot capture the non-linear combinations of positional encodings of1146

vertices, while S can). Accordingly, the provided information by applying Ψ(.) on G cannot be more1147

informative than applying Ψ(.) on the G’s k-projected hypergraph. □1148

Remark 3. Note that the pooling function Ψ(.) is defined on a (hyper)graph and gets only (hy-1149

per)edges as input.1150

Remark 4. Although Ψ(.) = Mean(.) cannot be written as Equation 13, we can simply see that the1151

above proof works for this pooling function as well.1152

E.3 Proof of Theorem 31153

Theorem 3. SetMixer is permutation invariant.1154

Proof. Let π(S) be a given permutation of set S , we aim to show that Ψ(S) = Ψ(π(S)). We first1155

recall the SetMixer and its two phases: Let S = {v1, . . . , vd}, where vi ∈ R
d1 , be the input set and1156

V = [v1, . . . , vd]T ∈ Rd×d1 be its matrix representation:1157

Ψ(V) = Mean
(
Htoken + σ

(
LayerNorm (Htoken) W(1)

s

)
W(2)

s

)
, (Channel Mixer)

where1158

Htoken = V + σ
(
Softmax

(
LayerNorm (V)T

))T
. (Token Mixer)

Let π(V) = [vπ(1), . . . , vπ(d)]T be a permutation of the input matrix V. In the token mixer phase, None1159

of LayerNorm, Softmax, and activation function σ(.) can affect the order of elements (note that1160

27

Softmax is applied row-wise). Accordingly, we can see the output of the token mixer is permuted by1161

π(.):1162

Htoken(π(V)) = π(V) + σ
(
Softmax

(
LayerNorm (π(V))T

))T

= π(V) + π
(
σ

(
Softmax

(
LayerNorm (V)T

))T
)

= π
(
V + σ

(
Softmax

(
LayerNorm (V)T

))T
)

= π (Htoken(V)) . (14)
Next, in the channel mixer, by using Equation 14 we have:1163

Ψ(π(V)) = Mean
(
π(Htoken) + σ

(
LayerNorm (π(Htoken)) W(1)

s

)
W(2)

s

)
= Mean

(
π(Htoken) + π

(
σ

(
LayerNorm (Htoken) W(1)

s

))
W(2)

s

)
= Mean

(
π(Htoken) + π

(
σ

(
LayerNorm (Htoken) W(1)

s

)
W(2)

s

))
= Mean

(
π
(
Htoken +W(2)

s σ
(
LayerNorm (Htoken) W(1)

s

)))
= Ψ(V). (15)

In the last step, we use the fact that Mean(.) is permutation invariant. Based on Equation 15 we can1164

see that SetMixer is permutation invariant. □1165

E.4 Proof of Theorem 41166

Theorem 4. The set-based anonymization method is more expressive than any existing anonymization1167

strategies on the CE of the hypergraph. More precisely, there exists a pair of hypergraphs G1 =1168

(V1,E1) and G2 = (V2,E2) with different structures (i.e., G1 � G2) that are distinguishable by our1169

anonymization process and are not distinguishable by the CE-based methods.1170

Proof. To the best of our knowledge, there exist two anonymization processes for random walks1171

by Wang et al. [32] and Micali and Zhu [44]. Both of these methods are designed for graphs and1172

to adapt them to hypergraphs we need to apply them to the (weighted) CE. Here, we focus on the1173

process designed by Wang et al. [32], which is more informative than the other. The proof for the1174

Micali and Zhu [44] process is the same. Note that the goal of this theorem is to investigate whether1175

a method can distinguish a hypergraph from its CE. Accordingly, this theorem does not provide any1176

information about the expressivity of these methods in terms of the isomorphism test.1177

The proposed 2-step anonymization process can be seen as a positional encoding for both vertices1178

and hyperedges. Accordingly, it is expected to assign different positional encodings to vertices and1179

hyperedges of two non-isomorphism hypergraphs. To this end, we construct the same hypergraphs as1180

in the proof of Theorem 1. Let M be the number of sampled SetWalks with length L. We construct a1181

temporal hypergraph G = (V,E) as a hypergraph withV = {u1, u2, . . . , uM(L+1)+1} and E = {(e, ti)}Li=1,1182

where e = {u1, u2, . . . , uM(L+1)+1} and t1 < t2 < · · · < tL. We further construct G′ = (V,E′) with the1183

same set of vertices but with E′ =
⋃L

k=1{((ui, u j), tk)}ui,u j∈V. As we have seen in Theorem 1, random1184

walks on the CE of the hypergraph cannot distinguish these two hypergraphs. Since CAW [32]1185

also uses simple random walks, it cannot distinguish these two hypergraphs. Accordingly, after its1186

anonymization process, it again cannot distinguish these two hypergraphs.1187

The main part of the proof is to show that in our method, the assigned positional encodings are1188

different in these hypergraphs. The first step is to assign each node a positional encoding. Masking1189

the timestamps, there is only one SetWalk in the G. Accordingly, the positional encodings of nodes in1190

G are the same and non-zero. Given a SetWalk with length L we might see at most L× (dmax − 1)+ 11191

nodes, where dmax is the maximum size of hyperedges in the hypergraph. Accordingly, with M1192

samples on G′, which dmax = 2, we can see at most M × (L + 1) vertices. Therefore, in any case, we1193

assign a zero vector to at least one vertex. This proves that the positional encodings by SetWalks1194

are different in these two hypergraphs, and if the assigned hidden identities to counterpart nodes are1195

different, clearly, feeding them to the SetMixer results in different hyperedge encodings.1196

Note that each SetWalk can be decomposed into a set of causal anonymous walks [32]. Accordingly,1197

it includes the information provided by these walks, so its expressiveness is not less than the CAW1198

method on hypergraphs, which completes the proof of the theorem. □1199

28

Although the above statement completes the proof, next we discuss that even given the same positional1200

encodings for vertices in these two hypergraphs, SetMixer can capture higher-order interactions by1201

capturing the size of the hyperedge. Recall token mixer phase in SetMixer:1202

Htoken = V + σ
(
Softmax

(
LayerNorm (V)T

))T
,

where V = [v1, . . . , vM(L+1)+1]T ∈ R(M(L+1)+1)×d1 and vi , 01×d1 represents the positional encoding of1203

ui in G. We assumed that the positional encoding of ui in G′ is the same. The input of the token mixer1204

phase on G isV as all of them are connected by a hyperedge. Then we have:1205

(Htoken)i, j = vi, j + σ

 exp(vi, j)∑M(L+1)+1
k=1 exp(vk, j)

 . (16)

On the other hand, when applied to hypergraph G′ and (uk1 , uk2). We have:1206

(H′token)i, j = vi, j + σ

(
exp(vi, j)

exp(vk1, j) + exp(vk2, j)

)
, i ∈ {k1, k2}. (17)

Since we use zero padding, for any i ≥ 3, (Htoken)i, j , 0 and (H′token)i, j = 0. These zero rows, which1207

capture the size of the hyperedge, result in different encodings for each connection.1208

Remark 5. To the best of our knowledge, the only anonymization process that is used on hypergraphs1209

is by Liu et al. [74], which uses simple walks on the CE and is the same as Wang et al. [32].1210

Accordingly, it also suffers from the above limitation. Also, note that this theorem shows the limitation1211

of these anonymization procedures when simply adopted to hypergraphs.1212

E.5 Proof of Proposition 21213

Proposition 2. Edge-independent random walks on hypergraphs [36], edge-dependent random walks1214

on hypergraphs [39], and simple random walks on the CE of hypergraphs are all special cases of1215

r-SetWalk, when applied to the 2-projected graph, UP graph, and 2-projected graph, respectively.1216

Furthermore, all the above methods are less expressive than r-SetWalks.1217

Proof. For the first part, we discuss each walk separately:1218

1 Simple random walks on the CE of the hypergraphs: We perform 2-SetWalks on the (weighted)1219

2-projected hypergraph with Γ(.) = 1. Accordingly, for every two adjacent edges in the 2-Projected1220

graph like e and e′, we have φ(e, e′) = 1. Therefore, it is equivalent to a simple random walk on the1221

CE (2-projected graph).1222

2 Edge-independent random walks on hypergraphs: As is shown by Chitra and Raphael [39],1223

each edge-independent random walk on hypergraphs is equivalent to a simple random walk on the1224

(weighted) CE of the hypergraph. Therefore, as discussed in 1 , these walks are a special case of1225

r-SetWalks, when r = 2 and applied to (weighted) 2-Projected hypergraph.1226

3 Edge-dependent random walks on hypergraphs: Let Γ′(e, u) be an edge-dependent weight function1227

used in the hypergraph random walk sampling. For each node u in the UP hypergraph, we store1228

the set of Γ′(e, u) that e is a maximal hyperedge that u belongs to. Note that there might be several1229

maximal hyperedges that u belongs to. Now, we perform 2-SetWalk sampling on the UP hypergraph1230

with these weights and in each step, we sample each hyperedge with weight Γ(u, e) = Γ′(e, u). It is1231

straightforward to show that given this procedure, the sampling probability of a hyperedge is the same1232

in both cases. Therefore, edge-dependent random walks on hypergraphs are equivalent to 2-SetWalks1233

when applied to the UP hypergraph.1234

As discussed above, all these walks are special cases of r-SetWalks and cannot be more expressive1235

than r-SetWalks. Also, as discussed in Theorem 1, all these walks are less expressive than SetWalks,1236

which are also special cases of r-SetWalks, when r = ∞. Accordingly, all these methods are less1237

expressive than r-SetWalks. □1238

29

F Experimental Setup Details1239

F.1 Datasets1240

We use 10 publicly available1 benchmark datasets, whose descriptions are as follows:1241

• NDC Class [5]: The NDC Class dataset is a temporal higher-order network, in which each1242

hyperedge corresponds to an individual drug, and the nodes contained within the hyperedges1243

represent class labels assigned to these drugs. The timestamps, measured in days, indicate1244

the initial market entry of each drug. Here, hyperedge prediction aims to predict future1245

drugs.1246

• NDC Substances [5]: The NDC Substances is a temporal higher-order network, where1247

each hyperedge represents an NDC code associated with a specific drug, while the nodes1248

represent the constituent substances of the drug. The timestamps, measured in days, indicate1249

the initial market entry of each drug. The hyperedge prediction task is the same as NDC1250

Classes dataset.1251

• High School [5, 88]: The High School is a temporal higher-order network dataset con-1252

structed from interactions recorded by wearable sensors in a high school setting. The dataset1253

captures a high school contact network, where each student/teacher is represented as a1254

node and each hyperedge shows Face-to-face contact among individuals. Interactions were1255

recorded at a resolution of 20 seconds, capturing all interactions that occurred within the1256

previous 20 seconds. Node labels in this data are the class of students, and we focus on the1257

node class "PSI" in our classification tasks.1258

• Primary School [5, 89]: The primary school dataset resembles the high school dataset,1259

differing only in terms of the school level from which the data is collected. Node labels1260

in this data are the class of students, and we focus on the node class "Teachers" in our1261

classification tasks.1262

• Congress Bill [5, 90, 91]: Each node in this dataset represents a US Congressperson.1263

Each hyperedge is a legislative bill in both the House of Representatives and the Senate,1264

connecting the sponsors and co-sponsors of each respective bill. The timestamps, measured1265

in days, indicate the date when each bill was introduced.1266

• Email Enron [5]: In this dataset nodes are email addresses at Enron and hyperedges are1267

formed by emails, connecting the sender and recipients of each email. The timestamps have1268

a resolution of milliseconds.1269

• Email Eu [5, 92]: In this dataset, the nodes represent email addresses associated with a1270

European research institution. Each hyperedge consists of the sender and all recipients of1271

the email. The timestamps in this dataset are measured with a resolution of 1 second.1272

• Question Tags M (Math sx) [5]: This dataset consists of nodes representing tags and1273

hyperedges representing sets of tags applied to questions on math.stackexchange.com. The1274

timestamps in the dataset are recorded at millisecond resolution and have been normalized1275

to start at 0.1276

• Question Tags U (Ask Ubuntu) [5]: In this dataset, the nodes represent tags, and the1277

hyperedges represent sets of tags applied to questions on askubuntu.com. The timestamps in1278

the dataset are recorded with millisecond resolution and have been normalized to start at 0.1279

• Users-Threads [5]: In this dataset, the nodes represent users on askubuntu.com, and a1280

hyperedge is formed by users participating in a thread that lasts for a maximum duration1281

of 24 hours. The timestamps in the dataset denote the time of each post, measured in1282

milliseconds but normalized such that the earliest post begins at 0.1283

The statistics of these datasets can be found in Table 3.1284

F.2 Baselines1285

We compare our method to eight previous state-of-the-art methods and baselines on the hyperedge1286

prediction task:1287

1https://www.cs.cornell.edu/~arb/data/

30

https://www.cs.cornell.edu/~arb/data/

Table 3: Dataset statistics. HeP: Hyperedge Prediction, NC: Node Classification
Dataset NDC Class High School Primary School Congress Bill Email Enron Email Eu Question Tags M Users-Threads NDC Substances Question Tags U

|V| 1,161 327 242 1,718 143 998 1,629 125,602 5,311 3,029
|E| 49,724 172,035 106,879 260,851 10,883 234,760 822,059 192,947 112,405 271,233

#Timestamps 5,891 7,375 3,100 5,936 10,788 232,816 822,054 189,917 7,734 271,233
Task HeP HeP& NC HeP & NC HeP HeP HeP HeP HeP HeP HeP

• CHESHIRE [10]: Chebyshev spectral hyperlink predictor (CHESHIRE), is a hyperedge1288

prediction methods that initializes node embeddings by directly passing the incidence matrix1289

through a one-layer neural network. CHESHIRE treats a hyperedge as a fully connected1290

graph (clique) and uses a Chebyshev spectral GCN to refine the embeddings of the nodes1291

within the hyperedge. The Chebyshev spectral GCN leverages Chebyshev polynomial1292

expansion and spectral graph theory to learn localized spectral filters. These filters enable1293

the extraction of local and composite features from graphs that capture complex geometric1294

structures. The model with code provided is here.1295

• HyperSAGCN [25]: Self-attention-based graph convolutional network for hypergraphs1296

(HyperSAGCN) utilizes a Spectral Aggregated Graph Convolutional Network (SAGCN)1297

to refine the embeddings of nodes within each hyperedge. HyperSAGCN generates initial1298

node embeddings by hypergraph random walks and combines node embeddings by Mean (.)1299

pooling to compute the embedding of hyperedge. The model with code provided is here.1300

• NHP [83]: Neural Hyperlink Predictor (NHP), is an enhanced version of HyperSAGCN.1301

NHP initializes node embeddings using Node2Vec on the CE graph and then uses a novel1302

maximum minimum-based pooling function that enables adaptive weight learning in a1303

task-specific manner, incorporating additional prior knowledge about the nodes. The model1304

with code provided is here.1305

• HPLSF [85]: Hyperlink Prediction using Latent Social Features (HPLSF) is a probabilistic1306

method. It leverages the homophily property of the networks and introduces a latent feature1307

learning approach, incorporating the use of entropy in computing hyperedge embedding.1308

The model with code provided is here.1309

• HPRA [84]: Hyperlink Prediction Using Resource Allocation (HPRA) is a hyperedge1310

prediction method based on the resource allocation process. HPRA calculates a hypergraph1311

resource allocation (HRA) index between two nodes, taking into account direct connections1312

and shared neighbors. The HRA index of a candidate hyperedge is determined by averaging1313

all pairwise HRA indices between the nodes within the hyperedge. The model with code1314

provided is here.1315

• CE-CAW: This model is a baseline that we apply CAW [32] on the CE of the hypergraph.1316

CAW is a temporal edge prediction method that uses causal anonymous random walks to1317

capture the dynamic laws of the network in an inductive manner. The model with code1318

provided is here.1319

• CE-EvolveGCN: This is a snapshot-based temporal graph learning method that we apply1320

EvolveGCN [86], which uses Rnns to estimate the GCN parameters for the future snapshots,1321

on the CE of the hypergraph. The model with code provided is here.1322

• CE-GCN: We apply Graph Convolutional Networks [87] to the CE of the hypergraph to1323

obtain node embeddings. Next, we use MLP to predict edges. The implementation is1324

provided in the Pytorch Geometric library.1325

For node classification, we use four state-of-the-art deep hypergraph learning methods and a CE-based1326

baseline:1327

• HyperGCN [18]: This is a generalization of GCNs to hypergraphs, where it uses hypergraph1328

Laplacian to define convolution.1329

• AllDeepSets and AllSetTransformer [24]: These two methods are two variants of the gen-1330

eral message passing framework, Allset, on hypergraphs, which are based on the aggregation1331

of messages from nodes to hyperedges and from hyperedges to nodes.1332

• UniGCNII [27]: Is an advanced variant of UniGnn, a general framework for message passing1333

on hypergraphs.1334

31

https://github.com/canc1993/cheshire-gapfilling
https://github.com/ma-compbio/Hyper-SAGNN
https://drive.google.com/file/d/1pgSPvv6Y23X5cPiShCpF4bU8eqz_34YE/view
https://github.com/muhanzhang/HyperLinkPrediction
https://github.com/darwk/HyperedgePrediction
https://github.com/snap-stanford/CAW
https://github.com/IBM/EvolveGCN

Table 4: Hyperparameters used in the grid search.
Datasets Sampling Number M Sampling Time Bias α SetWalk Length m Hidden dimensions

NDC Class 4, 8, 16, 32, 64, 128 {0.5, 2.0, 20, 200} × 10−7 2, 3, 4, 5 32, 64, 128
High School 4, 8, 16, 32, 64, 128 {0.5, 2.0, 20, 200} × 10−7 2, 3, 4, 5 32, 64, 128
Primary School 4, 8, 16, 32, 64, 128 {0.5, 2.0, 20, 200} × 10−7 2, 3, 4, 5 32, 64, 128
Congress Bill 8, 16, 32, 64 {0.5, 2.0, 20, 200} × 10−7 2, 3, 4, 5 32, 64, 128
Email Enron 8, 16, 32, 64 {0.5, 2.0, 20, 200} × 10−7 2, 3, 4, 5 32, 64, 128
Email Eu 8, 16, 32, 64 {0.5, 2.0, 20, 200} × 10−7 2, 3, 4 32, 64, 128
Question Tags M 8, 16, 32, 64 {0.5, 2.0, 20, 200} × 10−7 2, 3, 4 32, 64, 128
Users-Threads 8, 16, 32, 64 {0.5, 2.0, 20, 200} × 10−7 2, 3, 4 32, 64, 128
NDC Substances 8, 16, 32, 64 {0.5, 2.0, 20, 200} × 10−7 2, 3, 4 32, 64, 128
Question Tags U 8, 16, 32, 64 {0.5, 2.0, 20, 200} × 10−7 2, 3, 4 32, 64, 128

• CE-GCN: We apply Graph Convolutional Networks [87] to the CE of the hypergraph to ob-1335

tain node embeddings. Next, we use MLP to predict the labels of nodes. The implementation1336

is provided in the Pytorch Geometric library. [87]1337

For all the baselines, we set all sensitive hyperparameters (e.g., learning rate, dropout rate, batch1338

size, etc.) to the values given in the paper that describes the technique. Following [57], for deep1339

learning methods, we tune their hidden dimensions via grid search to be consistent with what we did1340

for CAt-Walk. We exclude HPLSF [85] and HPRA [84] from inductive hyperedge prediction as it1341

does not apply to them.1342

F.3 Implementation and Training Details1343

In addition to hyperparameters and modules (activation functions) mentioned in the main paper, here,1344

we report the training hyperparameters of CAt-Walk: On all datasets, we use a batch size of 64 and1345

set learning rate = 10−4. We also use an early stopping strategy to stop training if the validation1346

performance does not increase for more than 5 epochs. We use the maximum training epoch number1347

of 30 and dropout layers with rate = 0.1. Other hyperparameters used in the implementation can be1348

found in the README file in the supplement.1349

Also, for tuning the model’s hyperparameters, we systematically tune them using grid search. The1350

search domains of each hyperparameter are reported in Table 4. Note that, the last column in Table 41351

reports the search domain for hidden dimensions of modules in CAt-Walk, including SetMixer,1352

MLP-Mixer, and MLPs. Also, we tune the last layer pooling strategy with two options: SetMixer or1353

Mean(.) whichever leads to a better performance.1354

We implemented our method in Python 3.7 with PyTorch and run the experiments on a Linux machine1355

with nvidia RTX A4000 GPU with 16GB of RAM.1356

1357

G Additional Experimental Results1358

G.1 Results on More Datasets1359

Due to the space limit, we report the AUC results on only eight datasets in Section 4. Table 6 reports1360

both AUC and average precision (AP) results on all 10 datasets in both inductive and transductive1361

hyperedge prediction tasks.1362

G.2 Node Classification1363

In the main text, we focus on the hyperedge prediction task. Here we describe how CAt-Walk can be1364

used for node classification tasks.1365

For each node u0 in the training set, we sample max{deg(u0), 10} hyperedges such as e0 =1366

{u0, u1, . . . , uk}. Next, for each sampled hyperedge we sample M SetWalks with length m start-1367

ing from each ui ∈ e0 to construct S(ui). Next, we anonymize each hyperedge that appears in at1368

least one SetWalk in
⋃k

i=0 S(ui) by Equation 3 and then use the MLP-Mixer module to encode each1369

Sw ∈
⋃k

i=0 S(ui). To encode each node ui ∈ e0, we use Mean(.) pooling over SetWalks in S(ui).1370

32

Table 5: Performance on node classification: Mean ACC (%) ± standard deviation. Boldfaced letters
shaded blue indicate the best result, while gray shaded boxes indicate results within one standard
deviation of the best result.

Methods High School Primary School Average Performance

In
du

ct
iv

e CE-GCN 76.24 ± 2.99 79.03 ± 3.16 77.63 ± 3.07
HyperGCN 83.91 ± 3.05 86.17 ± 3.40 85.04 ± 3.23
AllDeepSets 85.67 ± 4.17 81.43 ± 6.77 83.55 ± 5.47
UniGCNII 88.36 ± 3.78 88.27 ± 3.52 88.31 ± 3.63
AllSetTransformer 91.19 ± 2.85 90.00 ± 4.35 90.59 ± 3.6
CAt-Walk 88.99 ± 4.76 93.28 ± 2.41 91.13 ± 3.58

Tr
an

sd
uc

tiv
e CE-GCN 78.93 ± 3.11 77.46 ± 2.97 78.20 ± 3.04

HyperGCN 84.90 ± 3.59 85.23 ± 3.06 85.07 ± 3.33
AllDeepSets 85.97 ± 4.05 80.20 ± 10.18 83.09 ± 7.12
UniGCNII 89.16 ± 4.37 90.29 ± 4.01 89.73 ± 4.19
AllSetTransformer 90.75 ± 3.13 89.80 ± 2.55 90.27 ± 2.84
CAt-Walk 90.66 ± 4.96 93.20 ± 2.45 91.93 ± 3.71

Finally, for node classification task, we use a 2-layer perceptron over the node encodings to make the1371

final prediction.1372

Table 5 reports the results of dynamic node classification tasks on High School and Primary School1373

datasets. CAt-Walk achieves the best or on-par performance on dynamic node classification tasks.1374

While all baselines are specifically designed for node classification tasks, CAt-Walk achieves superior1375

results due to 1 its ability to incorporate temporal properties (both from SetWalks and our time1376

encoding module), which helps to learn underlying dynamic laws of the network, and 2 its two-step1377

set-based anonymization process that hides node identities from the model. Accordingly, CAt-Walk1378

can learn underlying patterns needed for the node classification task, instead of using node identities,1379

which might cause memorizing vertices.1380

1381

G.3 Performance in Average Precision1382

In addition to the AUC, we also compare our model with baselines with respect to Average Precision1383

(AP). Table 6 reports both AUC and AP results on all 10 datasets in inductive and transductive1384

hyperedge prediction tasks. As discussed in Section 4, CAt-Walk due to its ability to capture1385

both temporal and higher-order properties of the hypergraphs, achieves superior performance and1386

outperforms all baselines in both transductive and inductive settings with a significant margin.1387

G.4 Scalability Analysis1388

In this part, we investigate the scalability of CAt-Walk. To this end, we use different versions of1389

the High School dataset with different numbers of hyperedges from 104 to 1.6 × 105. Figure 6 (left)1390

reports the runtimes of SetWalk sampling and Figure 6 (right) reports the runtimes of CAt-Walk1391

for training one epoch using M = 8, m = 3 with batch-size = 64. Interestingly, our method scales1392

linearly with the number of hyperedges, which enables it to be used on long hyperedge streams and1393

large hypergraphs.1394

G.5 More Results on Rnn v.s. MLP-Mixer in Walk Encoding1395

Most existing methods on (temporal) random walk encoding see a walk as a sequence of vertices and1396

uses sequence encoders like Rnns or Transformers to encode each walk. The main drawback of these1397

methods is that they fail to directly process temporal walks with irregular gaps between timestamps.1398

That is, sequential encoders can be seen as discrete approximations of dynamic systems; however,1399

this discretization often fails if we have irregularly observed data [118]. This is the main motivation1400

of recent studies to develop methods on continuous-time temporal networks [33, 119]. Most of these1401

methods are too complicated and sometimes fail to generalize [120]. In CAt-Walk, we suggest1402

a simple architecture to encode temporal walks by a time-encoding module along with a Mixer1403

module (see Section 3.4 for the details). In this part, we evaluate the power of our Mixer module1404

33

Table 6: Performance on hyperedge prediction: AUC and Average Precision (%) ± standard deviation.
Boldfaced letters shaded blue indicate the best result, while gray shaded boxes indicate results within
one standard deviation of the best result. N/A: the method has computational issues.

Datasets NDC Class High School Primary School Congress Bill Email Enron

Metric AUC AP AUC AP AUC AP AUC AP AUC AP

In
du

ct
iv

e

Strongly Inductive

CE-GCN 52.31 ± 2.99 54.33 ± 2.48 60.54 ± 2.06 59.92 ± 2.25 52.34 ± 2.75 56.41 ± 2.06 49.18 ± 3.61 53.85 ± 3.92 63.04 ± 1.80 57.70 ± 2.27
CE-EvolveGCN 49.78 ± 3.13 55.24 ± 3.56 46.12 ± 3.83 52.87 ± 3.48 58.01 ± 2.56 55.68 ± 2.41 54.00 ± 1.84 50.27 ± 1.76 57.31 ± 4.19 54.52 ± 3.79
CE-CAW 76.45 ± 0.29 78.58 ± 1.32 83.73 ± 1.42 82.96 ± 1.04 80.31 ± 1.46 82.84 ± 1.71 75.38 ± 1.25 77.19 ± 1.38 70.81 ± 1.13 72.07 ± 1.52
NHP 70.53 ± 4.95 68.18 ± 4.31 65.29 ± 3.80 62.86 ± 3.74 70.86 ± 3.42 71.31 ± 3.51 69.82 ± 2.19 64.09 ± 2.87 49.71 ± 6.09 50.01 ± 4.87
HyperSAGCN 79.05 ± 2.48 77.24 ± 2.05 88.12 ± 3.01 82.72 ± 2.93 80.13 ± 1.38 76.32 ± 2.96 79.51 ± 1.27 80.58 ± 2.61 73.09 ± 2.60 72.29 ± 3.69
CHESHIRE 72.24 ± 2.63 70.31 ± 2.26 82.54 ± 0.88 80.34 ± 1.19 77.26 ± 1.01 77.72 ± 0.76 79.43 ± 1.58 78.63 ± 1.25 70.03 ± 2.55 72.97 ± 1.81
CAt-Walk 98.89 ± 1.82 98.97 ± 1.69 96.03 ± 1.50 96.41 ± 0.70 95.32 ± 0.89 96.03 ± 0.84 93.54 ± 0.56 93.93 ± 0.36 73.45 ± 2.92 74.66 ± 3.87

Weakly Inductive

CE-GCN 51.80 ± 3.29 50.94 ± 3.77 50.33 ± 3.40 48.54 ± 3.92 52.19 ± 2.54 53.21 ± 3.59 52.38 ± 2.75 50.81 ± 2.68 50.81 ± 2.87 55.38 ± 2.79
CE-EvolveGCN 55.39 ± 5.16 57.24 ± 4.98 57.85 ± 3.51 63.26 ± 4.01 51.50 ± 4.07 52.59 ± 4.53 55.63 ± 3.41 5.19 ± 3.56 45.66 ± 2.10 50.93 ± 2.57
CE-CAW 77.61 ± 1.05 80.03 ± 1.65 83.77 ± 1.41 83.41 ± 1.19 82.98 ± 1.06 80.84 ± 1.57 79.51 ± 0.94 80.39 ± 1.07 80.54 ± 1.02 77.41 ± 1.28
NHP 75.17 ± 2.02 77.23 ± 3.11 67.25 ± 5.19 66.73 ± 4.94 71.92 ± 1.83 72.30 ± 1.89 69.58 ± 4.07 72.48 ± 4.83 60.38 ± 4.45 55.62 ± 4.67
HyperSAGCN 79.45 ± 2.18 80.32 ± 2.23 88.53 ± 1.26 87.26 ± 1.49 85.08 ± 1.45 86.84 ± 1.60 80.12 ± 2.00 73.48 ± 2.77 78.86 ± 0.63 79.14 ± 1.51
CHESHIRE 79.03 ± 1.24 78.98 ± 1.17 88.40 ± 1.06 86.53 ± 1.82 83.55 ± 1.27 79.42 ± 2.03 79.67 ± 0.83 80.03 ± 1.38 74.53 ± 0.91 75.88 ± 1.14
CAt-Walk 99.16 ± 1.08 99.33 ± 0.89 94.68 ± 2.37 96.54 ± 0.82 96.53 ± 1.39 96.83 ± 1.16 98.38 ± 0.21 98.48 ± 0.18 64.11 ± 7.96 67.68 ± 6.93

Tr
an

sd
uc

tiv
e

HPRA 70.83 ± 0.01 67.40 ± 0.00 94.91 ± 0.00 89.17 ± 0.00 89.86 ± 0.06 88.11 ± 0.02 79.48 ± 0.03 77.16 ± 0.03 78.62 ± 0.00 76.74 ± 0.00
HPLSF 76.19 ± 0.82 77.62 ± 1.42 92.14 ± 0.29 92.79 ± 0.15 88.57 ± 1.09 87.69 ± 1.61 79.31 ± 0.52 75.88 ± 0.43 75.73 ± 0.05 75.32 ± 0.08
CE-GCN 66.83 ± 3.74 65.83 ± 3.61 62.99 ± 3.02 59.76 ± 3.78 59.14 ± 3.87 55.59 ± 3.46 64.42 ± 3.11 63.19 ± 3.34 58.06 ± 3.80 55.27 ± 3.12
CE-EvolveGCN 67.08 ± 3.51 66.51 ± 3.80 65.19 ± 2.26 59.27 ± 2.19 63.15 ± 1.32 65.18 ± 1.89 69.30 ± 2.27 64.38 ± 2.66 69.98 ± 5.38 67.76 ± 5.16
CE-CAW 76.30 ± 0.84 77.73 ± 1.42 81.63 ± 0.97 79.37 ± 0.53 86.53 ± 084 87.03 ± 1.15 76.99 ± 1.02 77.05 ± 1.14 79.57 ± 0.14 78.37 ± 1.15
NHP 82.39 ± 2.81 80.72 ± 2.04 76.85 ± 3.08 75.37 ± 3.12 80.04 ± 3.42 80.24 ± 3.49 80.27 ± 2.53 77.82 ± 1.91 63.17 ± 3.79 66.87 ± 3.19
HyperSAGCN 80.76 ± 2.64 80.50 ± 2.73 94.98 ± 1.30 89.73 ± 1.21 90.77 ± 2.05 88.64 ± 2.09 82.84 ± 1.61 81.12 ± 1.79 83.59 ± 0.98 80.54 ± 1.66
CHESHIRE 84.91 ± 1.05 82.24 ± 1.49 95.11 ± 0.94 94.29 ± 1.23 91.62 ± 1.18 92.72 ± 1.07 86.81 ± 1.24 83.66 ± 1.90 82.27 ± 0.86 81.39 ± 0.81
CAt-Walk 98.72 ± 1.38 98.71 ± 1.36 95.30 ± 0.43 95.90 ± 0.44 97.91 ± 3.30 97.92 ± 2.95 88.15 ± 1.46 88.66 ± 1.57 80.47 ± 5.30 82.87 ± 3.50

Datasets Email Eu Question Tags M Users-Threads NDC Substances Question Tags U

Metric AUC AP AUC AP AUC AP AUC AP AUC AP

In
du

ct
iv

e

Strongly Inductive

CE-GCN 52.76 ± 2.41 50.37 ± 2.59 56.10 ± 1.88 54.15 ± 1.94 57.91 ± 1.56 59.45 ± 1.21 55.70 ± 2.91 54.29 ± 2.78 51.97 ± 2.91 55.03 ± 2.72
CE-EvolveGCN 44.16 ± 1.27 49.15 ± 1.23 64.08 ± 2.75 60.64 ± 2.78 52.00 ± 2.32 52.69 ± 2.15 58.17 ± 2.24 57.35 ± 2.13 54.57 ± 2.25 57.16 ± 2.55
CE-CAW 72.99 ± 0.20 73.45 ± 0.68 70.14 ± 1.89 70.26 ± 1.77 73.12 ± 1.06 72.64 ± 1.18 75.87 ± 0.77 73.19 ± 0.86 74.21 ± 2.04 76.52 ± 2.06
NHP 65.35 ± 2.07 64.24 ± 1.61 68.23 ± 3.34 69.82 ± 3.41 71.83 ± 2.64 71.09 ± 2.83 70.43 ± 3.64 73.22 ± 3.03 72.52 ± 2.90 71.56 ± 2.26
HyperSAGCN 78.01 ± 1.24 80.04 ± 1.87 73.66 ± 1.95 73.98 ± 1.35 73.94 ± 2.57 72.97 ± 2.45 75.85 ± 2.21 73.24 ± 2.75 78.88 ± 2.69 77.53 ± 2.28
CHESHIRE 69.98 ± 2.71 70.10 ± 3.05 N/A N/A 76.99 ± 2.82 74.03 ± 2.78 76.60 ± 2.19 74.91 ± 2.71 75.04 ± 3.39 75.46 ± 2.90
CAt-Walk 91.68 ± 2.78 91.75 ± 2.82 88.03 ± 3.38 88.46 ± 3.09 89.84 ± 6.02 91.58 ± 4.37 93.29 ± 1.55 94.26 ± 1.21 97.59 ± 2.21 97.71 ± 2.07

Weakly Inductive

CE-GCN 49.60 ± 3.96 55.01 ± 3.25 55.13 ± 2.76 51.48 ± 2.66 57.06 ± 3.16 58.37 ± 2.86 60.92 ± 2.81 55.93 ± 2.03 56.85 ± 2.73 57.19 ± 2.52
CE-EvolveGCN 52.44 ± 2.38 50.61 ± 2.32 61.79 ± 1.63 59.61 ± 1.12 55.81 ± 2.54 50.63 ± 2.46 58.48 ± 2.49 55.90 ± 2.51 54.10 ± 1.21 56.13 ± 2.32
CE-CAW 73.54 ± 1.19 74.10 ± 1.41 77.29 ± 0.86 77.67 ± 1.94 80.79 ± 0.82 81.88 ± 0.63 77.28 ± 1.30 79.24 ± 1.19 76.51 ± 1.26 77.17 ± 1.39
NHP 67.19 ± 4.33 66.53 ± 4.21 70.46 ± 3.52 65.66 ± 3.94 76.44 ± 1.90 75.23 ± 3.96 73.37 ± 3.51 70.62 ± 3.71 78.15 ± 4.41 79.64 ± 4.32
HyperSAGCN 77.26 ± 2.09 74.05 ± 2.12 78.15 ± 1.41 76.19 ± 1.53 75.38 ± 1.43 70.35 ± 1.63 80.82 ± 2.18 76.67 ± 2.06 74.22 ± 1.91 70.57 ± 1.02
CHESHIRE 77.31 ± 0.95 76.01 ± 0.98 N/A N/A 81.27 ± 0.85 82.96 ± 1.41 80.68 ± 1.31 80.78 ± 1.13 77.60 ± 1.57 79.48 ± 1.79
CAt-Walk 91.98 ± 2.41 92.22 ± 2.40 90.28 ± 2.81 90.56 ± 2.62 97.15 ± 1.81 97.55 ± 1.49 95.65 ± 1.82 96.18 ± 1.52 98.11 ± 1.31 98.25 ± 1.13

Tr
an

sd
uc

tiv
e

HPRA 72.51 ± 0.00 71.08 ± 0.00 83.18 ± 0.00 80.12 ± 0.00 70.49 ± 0.02 72.83 ± 0.00 77.94 ± 0.01 75.78 ± 0.01 81.05 ± 0.00 81.71 ± 0.00
HPLSF 75.27 ± 0.31 77.95 ± 0.14 83.45 ± 0.93 82.29 ± 1.06 74.38 ± 1.11 73.81 ± 1.45 82.12 ± 0.71 84.51 ± 0.62 80.89 ± 1.51 75.62 ± 1.38
CE-GCN 64.19 ± 2.79 65.93 ± 2.52 55.18 ± 5.12 55.84 ± 4.53 62.78 ± 2.69 59.71 ± 2.25 63.08 ± 2.19 65.37 ± 2.48 66.79 ± 2.88 60.51 ± 2.26
CE-EvolveGCN 64.36 ± 4.17 66.98 ± 3.72 72.56 ± 1.72 69.38 ± 1.51 68.55 ± 2.26 67.86 ± 2.61 70.09 ± 3.42 66.37 ± 3.17 71.31 ± 2.92 70.36 ± 2.72
CE-CAW 78.19 ± 1.10 77.95 ± 0.98 81.73 ± 2.48 83.27 ± 2.34 80.86 ± 0.45 80.57 ± 1.08 84.72 ± 1.65 84.93 ± 1.26 80.37 ± 1.77 83.14 ± 0.97
NHP 78.90 ± 4.39 76.95 ± 5.08 79.14 ± 3.36 78.79 ± 3.15 82.33 ± 1.02 81.44 ± 1.53 81.38 ± 1.42 82.17 ± 1.38 78.99 ± 4.16 80.06 ± 4.33
HyperSAGCN 79.61 ± 2.35 75.99 ± 2.23 84.07 ± 2.50 84.22 ± 2.43 79.62 ± 2.04 79.38 ± 2.55 85.07 ± 2.46 85.32 ± 2.20 85.18 ± 2.64 80.99 ± 3.04
CHESHIRE 86.38 ± 1.23 87.39 ± 1.07 N/A N/A 82.75 ± 1.99 81.96 ± 1.75 86.30 ± 1.57 83.18 ± 1.92 87.83 ± 2.15 88.62 ± 1.76
CAt-Walk 96.74 ± 1.28 97.08 ± 1.20 91.63 ± 1.41 92.28 ± 1.26 93.51 ± 1.27 94.98 ± 0.98 90.64 ± 0.44 91.96 ± 0.41 96.59 ± 4.39 97.06 ± 3.72

and compare its performance when we replace it with Rnns [78]. Figure 7 reports the results on all1405

datasets. We observe that using MLP-Mixer with the time-encoding module in CAt-Walk can always1406

outperform CAt-Walk when we replace MLP-Mixer with a Rnn, and mostly this improvement is1407

more on datasets with high variance in their timestamps. We relate this superiority to the importance1408

of using continuous-time encoding instead of sequential encoders.1409

H Broader Impacts1410

Temporal hypergraph learning methods, such as CAt-Walk, benefit a wide array of real-world1411

applications, including but not limited to social network analysis, recommender systems, brain1412

network analysis, drug discovery, stock price prediction, and anomaly detection (e.g. bot detection in1413

social media or abnormal human brain activity). However, there might be some potentially negative1414

impacts, which we list as: 1 Learning underlying biased patterns in the training data, which may1415

result in stereotyped predictions. Since CAt-Walk learns underlying dynamic laws in the training data,1416

given biased training data, the predictions of CAt-Walk can be biased. 2 Also, powerful dynamic1417

hypergraph models can be used for manipulation in the abovementioned applications (e.g., stock price1418

34

10 50 100 160

|E| (×103)

0

5

10

15

20

25

30

S
am

p
lin

g
T

im
e

(s
)

10 50 100 160

|E| (×103)

10

100

200

300

400

500
550

T
ra

in
in

g
T

im
e

(s
)

Figure 6: Scalability evaluation: The runtime of (left) SetWalk extraction and (right) the training
time of CAt-Walk over one epoch on High School (using different |E| for training).

NDC Class

Congress
Bill

Email Enron

Email Eu

Questi
on Tags M

NDC Substances

Questi
on Tags U

High School

Prim
ary School

Users
in Threa

ds
40

60

80

100

A
U

C

MLP-MIXER RNN

Figure 7: The importance of using MLP-Mixer in CAt-Walk. Using an Rnn instead of MLP-Mixer
can damage the performance in all datasets. Rnns are sequential encoders and are not able to encode
continuous time in the data.

manipulation). Accordingly, to prevent the potential risks in sensitive tasks, e.g., decision-making1419

from graph-structured data in health care, interpretability and explainability of machine learning1420

models on hypergraphs is a critical area for future work.1421

Furthermore, this work does not perform research on human subjects as part of the study and all used1422

datasets are anonymized and publicly available.1423

I Reproducibility1424

All codes and implementations are available in the supplement.1425

References1426

[1] Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David Grusky,1427

and Jure Leskovec. Mobility network models of covid-19 explain inequities and inform1428

reopening. Nature, 589(7840):82–87, 2021.1429

[2] Martino Ciaperoni, Edoardo Galimberti, Francesco Bonchi, Ciro Cattuto, Francesco Gullo,1430

and Alain Barrat. Relevance of temporal cores for epidemic spread in temporal networks.1431

Scientific reports, 10(1):1–15, 2020.1432

[3] Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and modeling of1433

dynamic networks using dynamic graph neural networks: A survey. IEEE Access, 9:79143–1434

79168, 2021.1435

[4] Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri, Pietro Lio,1436

Franco Scarselli, and Andrea Passerini. Graph neural networks for temporal graphs: State of1437

the art, open challenges, and opportunities. arXiv preprint arXiv:2302.01018, 2023.1438

35

[5] Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Kleinberg.1439

Simplicial closure and higher-order link prediction. Proceedings of the National Academy of1440

Sciences, 2018. ISSN 0027-8424. doi: 10.1073/pnas.1800683115.1441

[6] Federico Battiston, Enrico Amico, Alain Barrat, Ginestra Bianconi, Guilherme Ferraz de1442

Arruda, Benedetta Franceschiello, Iacopo Iacopini, Sonia Kéfi, Vito Latora, Yamir Moreno,1443

Micah M. Murray, Tiago P. Peixoto, Francesco Vaccarino, and Giovanni Petri. The physics of1444

higher-order interactions in complex systems. Nature Physics, 17(10):1093–1098, Oct 2021.1445

ISSN 1745-2481. doi: 10.1038/s41567-021-01371-4. URL https://doi.org/10.1038/1446

s41567-021-01371-4.1447

[7] Yuanzhao Zhang, Maxime Lucas, and Federico Battiston. Higher-order interactions shape1448

collective dynamics differently in hypergraphs and simplicial complexes. Nature Communi-1449

cations, 14(1):1605, Mar 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-37190-9. URL1450

https://doi.org/10.1038/s41467-023-37190-9.1451

[8] Eun-Sol Kim, Woo Young Kang, Kyoung-Woon On, Yu-Jung Heo, and Byoung-Tak Zhang.1452

Hypergraph attention networks for multimodal learning. In Proceedings of the IEEE/CVF1453

conference on computer vision and pattern recognition, pages 14581–14590, 2020.1454

[9] Yichao Yan, Jie Qin, Jiaxin Chen, Li Liu, Fan Zhu, Ying Tai, and Ling Shao. Learning1455

multi-granular hypergraphs for video-based person re-identification. In Proceedings of the1456

IEEE/CVF conference on computer vision and pattern recognition, pages 2899–2908, 2020.1457

[10] Can Chen, Chen Liao, and Yang-Yu Liu. Teasing out missing reactions in genome-scale1458

metabolic networks through hypergraph learning. Nature Communications, 14(1):2375, 2023.1459

[11] Guobo Xie, Yinting Zhu, Zhiyi Lin, Yuping Sun, Guosheng Gu, Jianming Li, and Weiming1460

Wang. Hbrwrlda: predicting potential lncrna–disease associations based on hypergraph bi-1461

random walk with restart. Molecular Genetics and Genomics, 297(5):1215–1228, 2022.1462

[12] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung, and Xian-1463

gliang Zhang. Self-supervised multi-channel hypergraph convolutional network for social1464

recommendation. In Proceedings of the web conference 2021, pages 413–424, 2021.1465

[13] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudre-Mauroux. Revisiting user mobility1466

and social relationships in lbsns: a hypergraph embedding approach. In The world wide web1467

conference, pages 2147–2157, 2019.1468

[14] Junren Pan, Baiying Lei, Yanyan Shen, Yong Liu, Zhiguang Feng, and Shuqiang Wang.1469

Characterization multimodal connectivity of brain network by hypergraph gan for alzheimer’s1470

disease analysis. In Pattern Recognition and Computer Vision: 4th Chinese Conference, PRCV1471

2021, Beijing, China, October 29–November 1, 2021, Proceedings, Part III 4, pages 467–478.1472

Springer, 2021.1473

[15] Li Xiao, Junqi Wang, Peyman H Kassani, Yipu Zhang, Yuntong Bai, Julia M Stephen, Tony W1474

Wilson, Vince D Calhoun, and Yu-Ping Wang. Multi-hypergraph learning-based brain func-1475

tional connectivity analysis in fmri data. IEEE transactions on medical imaging, 39(5):1476

1746–1758, 2019.1477

[16] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural1478

networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages1479

3558–3565, 2019.1480

[17] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs:1481

Clustering, classification, and embedding. In B. Schölkopf, J. Platt, and T. Hoffman,1482

editors, Advances in Neural Information Processing Systems, volume 19. MIT Press,1483

2006. URL https://proceedings.neurips.cc/paper_files/paper/2006/file/1484

dff8e9c2ac33381546d96deea9922999-Paper.pdf.1485

[18] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and1486

Partha Talukdar. Hypergcn: A new method for training graph convolutional networks on1487

hypergraphs. Advances in neural information processing systems, 32, 2019.1488

36

https://doi.org/10.1038/s41567-021-01371-4
https://doi.org/10.1038/s41567-021-01371-4
https://doi.org/10.1038/s41567-021-01371-4
https://doi.org/10.1038/s41467-023-37190-9
https://proceedings.neurips.cc/paper_files/paper/2006/file/dff8e9c2ac33381546d96deea9922999-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/dff8e9c2ac33381546d96deea9922999-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/dff8e9c2ac33381546d96deea9922999-Paper.pdf

[19] Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor, Pietro Perona, David Kriegman, and1489

Serge Belongie. Beyond pairwise clustering. In 2005 IEEE Computer Society Conference on1490

Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages 838–845. IEEE, 2005.1491

[20] Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.1492

Pattern Recognition, 110:107637, 2021.1493

[21] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram. The total varia-1494

tion on hypergraphs - learning on hypergraphs revisited. In C.J. Burges, L. Bottou, M. Welling,1495

Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Sys-1496

tems, volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/1497

paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf.1498

[22] Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, Cheeger inequalities1499

and spectral clustering. In Jennifer Dy and Andreas Krause, editors, Proceedings of the1500

35th International Conference on Machine Learning, volume 80 of Proceedings of Machine1501

Learning Research, pages 3014–3023. PMLR, 10–15 Jul 2018. URL https://proceedings.1502

mlr.press/v80/li18e.html.1503

[23] I (Eli) Chien, Huozhi Zhou, and Pan Li. hs2: Active learning over hypergraphs with pointwise1504

and pairwise queries. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings of1505

the Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 891506

of Proceedings of Machine Learning Research, pages 2466–2475. PMLR, 16–18 Apr 2019.1507

URL https://proceedings.mlr.press/v89/chien19a.html.1508

[24] Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset1509

function framework for hypergraph neural networks. In International Conference on Learning1510

Representations, 2022. URL https://openreview.net/forum?id=hpBTIv2uy_E.1511

[25] Ruochi Zhang, Yuesong Zou, and Jian Ma. Hyper-sagnn: a self-attention based graph neural1512

network for hypergraphs. In International Conference on Learning Representations, 2020.1513

URL https://openreview.net/forum?id=ryeHuJBtPH.1514

[26] Yuan Luo. SHINE: Subhypergraph inductive neural network. In Alice H. Oh, Alekh Agarwal,1515

Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing1516

Systems, 2022. URL https://openreview.net/forum?id=IsHRUzXPqhI.1517

[27] Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural1518

networks. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference1519

on Artificial Intelligence, IJCAI-21, pages 2563–2569. International Joint Conferences on1520

Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/353. URL https:1521

//doi.org/10.24963/ijcai.2021/353. Main Track.1522

[28] Ghadeer AbuOda, Gianmarco De Francisci Morales, and Ashraf Aboulnaga. Link prediction1523

via higher-order motif features. In Machine Learning and Knowledge Discovery in Databases:1524

European Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019,1525

Proceedings, Part I, pages 412–429. Springer, 2020.1526

[29] Mayank Lahiri and Tanya Y Berger-Wolf. Structure prediction in temporal networks using1527

frequent subgraphs. In 2007 IEEE Symposium on computational intelligence and data mining,1528

pages 35–42. IEEE, 2007.1529

[30] Mahmudur Rahman and Mohammad Al Hasan. Link prediction in dynamic networks using1530

graphlet. In Machine Learning and Knowledge Discovery in Databases: European Conference,1531

ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I 16,1532

pages 394–409. Springer, 2016.1533

[31] Giang H Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and1534

Sungchul Kim. Dynamic network embeddings: From random walks to temporal random walks.1535

In 2018 IEEE International Conference on Big Data (Big Data), pages 1085–1092. IEEE,1536

2018.1537

37

https://proceedings.neurips.cc/paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.mlr.press/v80/li18e.html
https://proceedings.mlr.press/v80/li18e.html
https://proceedings.mlr.press/v80/li18e.html
https://proceedings.mlr.press/v89/chien19a.html
https://openreview.net/forum?id=hpBTIv2uy_E
https://openreview.net/forum?id=ryeHuJBtPH
https://openreview.net/forum?id=IsHRUzXPqhI
https://doi.org/10.24963/ijcai.2021/353
https://doi.org/10.24963/ijcai.2021/353
https://doi.org/10.24963/ijcai.2021/353

[32] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive rep-1538

resentation learning in temporal networks via causal anonymous walks. In International1539

Conference on Learning Representations, 2021. URL https://openreview.net/forum?1540

id=KYPz4YsCPj.1541

[33] Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation1542

learning on continuous-time dynamic graphs. In Alice H. Oh, Alekh Agarwal, Danielle1543

Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,1544

2022. URL https://openreview.net/forum?id=NqbktPUkZf7.1545

[34] Zhining Liu, Dawei Zhou, Yada Zhu, Jinjie Gu, and Jingrui He. Towards fine-grained1546

temporal network representation via time-reinforced random walk. In Proceedings of the AAAI1547

Conference on Artificial Intelligence, volume 34, pages 4973–4980, 2020.1548

[35] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and1549

Sungchul Kim. Continuous-time dynamic network embeddings. In Companion proceedings1550

of the the web conference 2018, pages 969–976, 2018.1551

[36] Timoteo Carletti, Federico Battiston, Giulia Cencetti, and Duccio Fanelli. Random walks on1552

hypergraphs. Physical review E, 101(2):022308, 2020.1553

[37] Koby Hayashi, Sinan G Aksoy, Cheong Hee Park, and Haesun Park. Hypergraph random1554

walks, laplacians, and clustering. In Proceedings of the 29th ACM International Conference1555

on Information & Knowledge Management, pages 495–504, 2020.1556

[38] Josh Payne. Deep hyperedges: a framework for transductive and inductive learning on1557

hypergraphs, 2019.1558

[39] Uthsav Chitra and Benjamin Raphael. Random walks on hypergraphs with edge-dependent1559

vertex weights. In International conference on machine learning, pages 1172–1181. PMLR,1560

2019.1561

[40] Sinan G. Aksoy, Cliff Joslyn, Carlos Ortiz Marrero, Brenda Praggastis, and Emilie Purvine.1562

Hypernetwork science via high-order hypergraph walks. EPJ Data Science, 9(1):16, Jun 2020.1563

ISSN 2193-1127. doi: 10.1140/epjds/s13688-020-00231-0. URL https://doi.org/10.1564

1140/epjds/s13688-020-00231-0.1565

[41] Austin R. Benson, David F. Gleich, and Lek-Heng Lim. The spacey random walk: A stochastic1566

process for higher-order data. SIAM Review, 59(2):321–345, 2017. doi: 10.1137/16M1074023.1567

URL https://doi.org/10.1137/16M1074023.1568

[42] Ankit Sharma, Shafiq Joty, Himanshu Kharkwal, and Jaideep Srivastava. Hyperedge2vec:1569

Distributed representations for hyperedges, 2018. URL https://openreview.net/forum?1570

id=rJ5C67-C-.1571

[43] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-1572

terthiner, Jessica Yung, Andreas Peter Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,1573

and Alexey Dosovitskiy. MLP-mixer: An all-MLP architecture for vision. In A. Beygelzimer,1574

Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information1575

Processing Systems, 2021. URL https://openreview.net/forum?id=EI2KOXKdnP.1576

[44] Silvio Micali and Zeyuan Allen Zhu. Reconstructing markov processes from independent and1577

anonymous experiments. Discrete Applied Mathematics, 200:108–122, 2016. ISSN 0166-1578

218X. doi: https://doi.org/10.1016/j.dam.2015.06.035. URL https://www.sciencedirect.1579

com/science/article/pii/S0166218X15003212.1580

[45] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured1581

sequence modeling with graph convolutional recurrent networks. In International conference1582

on neural information processing, pages 362–373. Springer, 2018.1583

[46] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li.1584

T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Transactions on1585

Intelligent Transportation Systems, 21(9):3848–3858, 2019.1586

38

https://openreview.net/forum?id=KYPz4YsCPj
https://openreview.net/forum?id=KYPz4YsCPj
https://openreview.net/forum?id=KYPz4YsCPj
https://openreview.net/forum?id=NqbktPUkZf7
https://doi.org/10.1140/epjds/s13688-020-00231-0
https://doi.org/10.1140/epjds/s13688-020-00231-0
https://doi.org/10.1140/epjds/s13688-020-00231-0
https://doi.org/10.1137/16M1074023
https://openreview.net/forum?id=rJ5C67-C-
https://openreview.net/forum?id=rJ5C67-C-
https://openreview.net/forum?id=rJ5C67-C-
https://openreview.net/forum?id=EI2KOXKdnP
https://www.sciencedirect.com/science/article/pii/S0166218X15003212
https://www.sciencedirect.com/science/article/pii/S0166218X15003212
https://www.sciencedirect.com/science/article/pii/S0166218X15003212

[47] Hao Peng, Hongfei Wang, Bowen Du, Md Zakirul Alam Bhuiyan, Hongyuan Ma, Jianwei1587

Liu, Lihong Wang, Zeyu Yang, Linfeng Du, Senzhang Wang, et al. Spatial temporal incidence1588

dynamic graph neural networks for traffic flow forecasting. Information Sciences, 521:277–290,1589

2020.1590

[48] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia, and Jian1591

Yu. Traffic flow prediction via spatial temporal graph neural network. In Proceedings of The1592

Web Conference 2020, pages 1082–1092, 2020.1593

[49] Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: Graph learning framework for dynamic1594

graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery1595

and Data Mining, KDD ’22, page 2358–2366, New York, NY, USA, 2022. Association1596

for Computing Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3539300. URL1597

https://doi.org/10.1145/3534678.3539300.1598

[50] Farnoosh Hashemi, Ali Behrouz, and Milad Rezaei Hajidehi. Cs-tgn: Community search1599

via temporal graph neural networks. In Companion Proceedings of the Web Conference1600

2023, WWW ’23, New York, NY, USA, 2023. Association for Computing Machinery. doi:1601

10.1145/3543873.3587654. URL https://doi.org/10.1145/3543873.3587654.1602

[51] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory1603

in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International1604

Conference on Knowledge Discovery & Data Mining, KDD ’19, page 1269–1278, New1605

York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362016. doi:1606

10.1145/3292500.3330895. URL https://doi.org/10.1145/3292500.3330895.1607

[52] Ali Behrouz and Margo Seltzer. Anomaly detection in multiplex dynamic networks: from1608

blockchain security to brain disease prediction. In NeurIPS 2022 Temporal Graph Learning1609

Workshop, 2022. URL https://openreview.net/forum?id=UDGZDfwmay.1610

[53] Sudhanshu Chanpuriya, Ryan A. Rossi, Sungchul Kim, Tong Yu, Jane Hoffswell, Nedim Lipka,1611

Shunan Guo, and Cameron N Musco. Direct embedding of temporal network edges via time-1612

decayed line graphs. In The Eleventh International Conference on Learning Representations,1613

2023. URL https://openreview.net/forum?id=Qamz7Q_Ta1k.1614

[54] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong,1615

and Mehrdad Mahdavi. Do we really need complicated model architectures for temporal1616

networks? In The Eleventh International Conference on Learning Representations, 2023. URL1617

https://openreview.net/forum?id=ayPPc0SyLv1.1618

[55] Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation1619

learning. In The First Learning on Graphs Conference, 2022. URL https://openreview.1620

net/forum?id=EPUtNe7a9ta.1621

[56] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas1622

Markovich, Nils Yannick Hammerla, Michael M. Bronstein, and Max Hansmire. Graph1623

neural networks for link prediction with subgraph sketching. In The Eleventh International1624

Conference on Learning Representations, 2023. URL https://openreview.net/forum?1625

id=m1oqEOAozQU.1626

[57] Can Chen and Yang-Yu Liu. A survey on hyperlink prediction. arXiv preprint1627

arXiv:2207.02911, 2022.1628

[58] Devanshu Arya, Deepak Gupta, Stevan Rudinac, and Marcel Worring. Hyper{sage}: General-1629

izing inductive representation learning on hypergraphs, 2021. URL https://openreview.1630

net/forum?id=cKnKJcTPRcV.1631

[59] Devanshu Arya, Deepak K Gupta, Stevan Rudinac, and Marcel Worring. Adaptive neural1632

message passing for inductive learning on hypergraphs. arXiv preprint arXiv:2109.10683,1633

2021.1634

[60] Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs. In1635

Proceedings of the 23rd international conference on Machine learning, pages 17–24, 2006.1636

39

https://doi.org/10.1145/3534678.3539300
https://doi.org/10.1145/3543873.3587654
https://doi.org/10.1145/3292500.3330895
https://openreview.net/forum?id=UDGZDfwmay
https://openreview.net/forum?id=Qamz7Q_Ta1k
https://openreview.net/forum?id=ayPPc0SyLv1
https://openreview.net/forum?id=EPUtNe7a9ta
https://openreview.net/forum?id=EPUtNe7a9ta
https://openreview.net/forum?id=EPUtNe7a9ta
https://openreview.net/forum?id=m1oqEOAozQU
https://openreview.net/forum?id=m1oqEOAozQU
https://openreview.net/forum?id=m1oqEOAozQU
https://openreview.net/forum?id=cKnKJcTPRcV
https://openreview.net/forum?id=cKnKJcTPRcV
https://openreview.net/forum?id=cKnKJcTPRcV

[61] Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher. Hypergraph learning with1637

line expansion. arXiv preprint arXiv:2005.04843, 2020.1638

[62] Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li, and Huan Liu. Be more with less:1639

Hypergraph attention networks for inductive text classification. In Proceedings of the 20201640

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4927–1641

4936, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/1642

2020.emnlp-main.399. URL https://aclanthology.org/2020.emnlp-main.399.1643

[63] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In1644

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and1645

data mining, pages 855–864, 2016.1646

[64] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social1647

representations. In Proceedings of the 20th ACM SIGKDD international conference on1648

Knowledge discovery and data mining, pages 701–710, 2014.1649

[65] Xin-Jian Xu, Chong Deng, and Li-Jie Zhang. Hyperlink prediction via local random walks1650

and jensen–shannon divergence. Journal of Statistical Mechanics: Theory and Experiment,1651

2023(3):033402, mar 2023. doi: 10.1088/1742-5468/acc31e. URL https://dx.doi.org/1652

10.1088/1742-5468/acc31e.1653

[66] Valerio La Gatta, Vincenzo Moscato, Mirko Pennone, Marco Postiglione, and Giancarlo Sperlí.1654

Music recommendation via hypergraph embedding. IEEE Transactions on Neural Networks1655

and Learning Systems, pages 1–13, 2022. doi: 10.1109/TNNLS.2022.3146968.1656

[67] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudre-Mauroux. Revisiting user mobility1657

and social relationships in lbsns: A hypergraph embedding approach. In The World Wide1658

Web Conference, WWW ’19, page 2147–2157, New York, NY, USA, 2019. Association1659

for Computing Machinery. ISBN 9781450366748. doi: 10.1145/3308558.3313635. URL1660

https://doi.org/10.1145/3308558.3313635.1661

[68] Aurélien Ducournau and Alain Bretto. Random walks in directed hypergraphs and application1662

to semi-supervised image segmentation. Computer Vision and Image Understanding, 120:1663

91–102, 2014. ISSN 1077-3142. doi: https://doi.org/10.1016/j.cviu.2013.10.012. URL1664

https://www.sciencedirect.com/science/article/pii/S1077314213002038.1665

[69] Lei Ding and Alper Yilmaz. Interactive image segmentation using probabilistic hypergraphs.1666

Pattern Recognition, 43(5):1863–1873, 2010. ISSN 0031-3203. doi: https://doi.org/10.1016/j.1667

patcog.2009.11.025. URL https://www.sciencedirect.com/science/article/pii/1668

S0031320309004440.1669

[70] Sai Nageswar Satchidanand, Harini Ananthapadmanaban, and Balaraman Ravindran. Extended1670

discriminative random walk: A hypergraph approach to multi-view multi-relational transduc-1671

tive learning. In Proceedings of the 24th International Conference on Artificial Intelligence,1672

IJCAI’15, page 3791–3797. AAAI Press, 2015. ISBN 9781577357384.1673

[71] Jie Huang, Chuan Chen, Fanghua Ye, Jiajing Wu, Zibin Zheng, and Guohui Ling. Hyper2vec:1674

Biased random walk for hyper-network embedding. In Guoliang Li, Jun Yang, Joao Gama, Jug-1675

gapong Natwichai, and Yongxin Tong, editors, Database Systems for Advanced Applications,1676

pages 273–277, Cham, 2019. Springer International Publishing. ISBN 978-3-030-18590-9.1677

[72] Jie Huang, Xin Liu, and Yangqiu Song. Hyper-path-based representation learning for hyper-1678

networks. In Proceedings of the 28th ACM International Conference on Information and1679

Knowledge Management, CIKM ’19, page 449–458, New York, NY, USA, 2019. Association1680

for Computing Machinery. ISBN 9781450369763. doi: 10.1145/3357384.3357871. URL1681

https://doi.org/10.1145/3357384.3357871.1682

[73] Jie Huang, Chuan Chen, Fanghua Ye, Weibo Hu, and Zibin Zheng. Nonuniform hyper-network1683

embedding with dual mechanism. ACM Trans. Inf. Syst., 38(3), may 2020. ISSN 1046-8188.1684

doi: 10.1145/3388924. URL https://doi.org/10.1145/3388924.1685

40

https://aclanthology.org/2020.emnlp-main.399
https://dx.doi.org/10.1088/1742-5468/acc31e
https://dx.doi.org/10.1088/1742-5468/acc31e
https://dx.doi.org/10.1088/1742-5468/acc31e
https://doi.org/10.1145/3308558.3313635
https://www.sciencedirect.com/science/article/pii/S1077314213002038
https://www.sciencedirect.com/science/article/pii/S0031320309004440
https://www.sciencedirect.com/science/article/pii/S0031320309004440
https://www.sciencedirect.com/science/article/pii/S0031320309004440
https://doi.org/10.1145/3357384.3357871
https://doi.org/10.1145/3388924

[74] Yunyu Liu, Jianzhu Ma, and Pan Li. Neural predicting higher-order patterns in temporal1686

networks. In Proceedings of the ACM Web Conference 2022, WWW ’22, page 1340–1351,1687

New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450390965.1688

doi: 10.1145/3485447.3512181. URL https://doi.org/10.1145/3485447.3512181.1689

[75] Jiying Zhang, Fuyang Li, Xi Xiao, Tingyang Xu, Yu Rong, Junzhou Huang, and Yatao Bian.1690

Hypergraph convolutional networks via equivalency between hypergraphs and undirected1691

graphs, 2022. URL https://openreview.net/forum?id=zFyCvjXof60.1692

[76] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2020.1693

[77] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint1694

arXiv:1607.06450, 2016.1695

[78] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by1696

back-propagating errors. nature, 323(6088):533–536, 1986.1697

[79] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,1698

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information1699

processing systems, 30, 2017.1700

[80] da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan achan. Inductive represen-1701

tation learning on temporal graphs. In International Conference on Learning Representations,1702

2020. URL https://openreview.net/forum?id=rJeW1yHYwH.1703

[81] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Self-attention1704

with functional time representation learning. Advances in neural information processing1705

systems, 32, 2019.1706

[82] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota,1707

Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec:1708

Learning a vector representation of time. arXiv preprint arXiv:1907.05321, 2019.1709

[83] Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and1710

Partha Talukdar. Nhp: Neural hypergraph link prediction. In Proceedings of the 29th ACM1711

International Conference on Information & Knowledge Management, pages 1705–1714, 2020.1712

[84] Tarun Kumar, K Darwin, Srinivasan Parthasarathy, and Balaraman Ravindran. Hpra: Hyper-1713

edge prediction using resource allocation. In 12th ACM conference on web science, pages1714

135–143, 2020.1715

[85] Ye Xu, Dan Rockmore, and Adam M Kleinbaum. Hyperlink prediction in hypernetworks1716

using latent social features. In Discovery Science: 16th International Conference, DS 2013,1717

Singapore, October 6-9, 2013. Proceedings 16, pages 324–339. Springer, 2013.1718

[86] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-1719

shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional1720

networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,1721

volume 34, pages 5363–5370, 2020.1722

[87] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.1723

Simplifying graph convolutional networks. In International conference on machine learning,1724

pages 6861–6871. PMLR, 2019.1725

[88] Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high school: A1726

comparison between data collected using wearable sensors, contact diaries and friendship1727

surveys. PLOS ONE, 10(9):e0136497, 2015. doi: 10.1371/journal.pone.0136497. URL1728

https://doi.org/10.1371/journal.pone.0136497.1729

[89] Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella, Jean-François1730

Pinton, Marco Quaggiotto, Wouter Van den Broeck, Corinne Régis, Bruno Lina, and Philippe1731

Vanhems. High-resolution measurements of face-to-face contact patterns in a primary school.1732

PLoS ONE, 6(8):e23176, 2011. doi: 10.1371/journal.pone.0023176. URL https://doi.1733

org/10.1371/journal.pone.0023176.1734

41

https://doi.org/10.1145/3485447.3512181
https://openreview.net/forum?id=zFyCvjXof60
https://openreview.net/forum?id=rJeW1yHYwH
https://doi.org/10.1371/journal.pone.0136497
https://doi.org/10.1371/journal.pone.0023176
https://doi.org/10.1371/journal.pone.0023176
https://doi.org/10.1371/journal.pone.0023176

[90] James H. Fowler. Connecting the congress: A study of cosponsorship networks. Political1735

Analysis, 14(04):456–487, 2006. doi: 10.1093/pan/mpl002. URL https://doi.org/10.1736

1093/pan/mpl002.1737

[91] James H. Fowler. Legislative cosponsorship networks in the US house and senate. Social1738

Networks, 28(4):454–465, oct 2006. doi: 10.1016/j.socnet.2005.11.003. URL https://doi.1739

org/10.1016/j.socnet.2005.11.003.1740

[92] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local higher-order graph1741

clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge1742

Discovery and Data Mining. ACM Press, 2017. doi: 10.1145/3097983.3098069. URL1743

https://doi.org/10.1145/3097983.3098069.1744

[93] Fan RK Chung. The laplacian of a hypergraph. In "", 1993.1745

[94] Timoteo Carletti, Duccio Fanelli, and Renaud Lambiotte. Random walks and community1746

detection in hypergraphs. Journal of Physics: Complexity, 2(1):015011, 2021.1747

[95] Linyuan Lu and Xing Peng. High-order random walks and generalized laplacians on hyper-1748

graphs. Internet Mathematics, 9(1):3–32, 2013.1749

[96] Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and TH Hubert Chan. Re-revisiting learning1750

on hypergraphs: confidence interval and subgradient method. In International Conference on1751

Machine Learning, pages 4026–4034. PMLR, 2017.1752

[97] T-H Hubert Chan, Zhihao Gavin Tang, Xiaowei Wu, and Chenzi Zhang. Diffusion operator1753

and spectral analysis for directed hypergraph laplacian. Theoretical Computer Science, 784:1754

46–64, 2019.1755

[98] Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications.1756

Advances in neural information processing systems, 30, 2017.1757

[99] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.1758

Advances in neural information processing systems, 30, 2017.1759

[100] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton,1760

Murray Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural1761

processes. In International conference on machine learning, pages 1704–1713. PMLR, 2018.1762

[101] David Lopez-Paz, Robert Nishihara, Soumith Chintala, Bernhard Scholkopf, and Léon Bottou.1763

Discovering causal signals in images. In Proceedings of the IEEE conference on computer1764

vision and pattern recognition, pages 6979–6987, 2017.1765

[102] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,1766

and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,1767

2017.1768

[103] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.1769

Set transformer: A framework for attention-based permutation-invariant neural networks. In1770

International conference on machine learning, pages 3744–3753. PMLR, 2019.1771

[104] Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations1772

with graph multiset pooling. In International Conference on Learning Representations, 2021.1773

URL https://openreview.net/forum?id=JHcqXGaqiGn.1774

[105] Ronald Harry Atkin. Mathematical structure in human affairs. Heinemann Educational1775

London, 1974.1776

[106] David I Spivak. Higher-dimensional models of networks. arXiv preprint arXiv:0909.4314,1777

2009.1778

[107] Jacob Charles Wright Billings, Mirko Hu, Giulia Lerda, Alexey N Medvedev, Francesco1779

Mottes, Adrian Onicas, Andrea Santoro, and Giovanni Petri. Simplex2vec embeddings for1780

community detection in simplicial complexes. arXiv preprint arXiv:1906.09068, 2019.1781

42

https://doi.org/10.1093/pan/mpl002
https://doi.org/10.1093/pan/mpl002
https://doi.org/10.1093/pan/mpl002
https://doi.org/10.1016/j.socnet.2005.11.003
https://doi.org/10.1016/j.socnet.2005.11.003
https://doi.org/10.1016/j.socnet.2005.11.003
https://doi.org/10.1145/3097983.3098069
https://openreview.net/forum?id=JHcqXGaqiGn

[108] Mustafa Hajij, Kyle Istvan, and Ghada Zamzmi. Cell complex neural networks. In TDA &1782

Beyond, 2020. URL https://openreview.net/forum?id=6Tq18ySFpGU.1783

[109] Celia Hacker. k-simplex2vec: a simplicial extension of node2vec. In TDA & Beyond, 2020.1784

URL https://openreview.net/forum?id=Aw9DUXPjq55.1785

[110] Stefania Ebli, Michaël Defferrard, and Gard Spreemann. Simplicial neural networks. In TDA1786

& Beyond, 2020. URL https://openreview.net/forum?id=nPCt39DVIfk.1787

[111] Maosheng Yang, Elvin Isufi, and Geert Leus. Simplicial convolutional neural networks. In1788

ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Process-1789

ing (ICASSP), pages 8847–8851. IEEE, 2022.1790

[112] Eric Bunch, Qian You, Glenn Fung, and Vikas Singh. Simplicial 2-complex convolutional1791

neural networks. In TDA & Beyond, 2020. URL https://openreview.net/forum?id=1792

TLbnsKrt6J-.1793

[113] Christopher Wei Jin Goh, Cristian Bodnar, and Pietro Lio. Simplicial attention networks. In1794

ICLR 2022 Workshop on Geometrical and Topological Representation Learning, 2022. URL1795

https://openreview.net/forum?id=ScfRNWkpec.1796

[114] Mustafa Hajij, Karthikeyan Natesan Ramamurthy, Aldo Guzmán-Sáenz, and Ghada Za. High1797

skip networks: A higher order generalization of skip connections. In ICLR 2022 Workshop on1798

Geometrical and Topological Representation Learning, 2022.1799

[115] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram. The total varia-1800

tion on hypergraphs - learning on hypergraphs revisited. In C.J. Burges, L. Bottou, M. Welling,1801

Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Sys-1802

tems, volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/1803

paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf.1804

[116] Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs.1805

In Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, page1806

17–24, New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933832.1807

doi: 10.1145/1143844.1143847. URL https://doi.org/10.1145/1143844.1143847.1808

[117] Edmund Ihler, Dorothea Wagner, and Frank Wagner. Modeling hypergraphs by graphs with1809

the same mincut properties. Inf. Process. Lett., 45(4):171–175, mar 1993. ISSN 0020-0190.1810

doi: 10.1016/0020-0190(93)90115-P. URL https://doi.org/10.1016/0020-0190(93)1811

90115-P.1812

[118] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential1813

equations for irregular time series. Advances in Neural Information Processing Systems, 33:1814

6696–6707, 2020.1815

[119] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh,1816

and Sungchul Kim. Continuous-time dynamic network embeddings. In Companion Pro-1817

ceedings of the The Web Conference 2018, WWW ’18, page 969–976, Republic and Canton1818

of Geneva, CHE, 2018. International World Wide Web Conferences Steering Committee.1819

ISBN 9781450356404. doi: 10.1145/3184558.3191526. URL https://doi.org/10.1145/1820

3184558.3191526.1821

[120] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong,1822

and Mehrdad Mahdavi. Do we really need complicated model architectures for temporal1823

networks? In The Eleventh International Conference on Learning Representations, 2023. URL1824

https://openreview.net/forum?id=ayPPc0SyLv1.1825

1826

43

https://openreview.net/forum?id=6Tq18ySFpGU
https://openreview.net/forum?id=Aw9DUXPjq55
https://openreview.net/forum?id=nPCt39DVIfk
https://openreview.net/forum?id=TLbnsKrt6J-
https://openreview.net/forum?id=TLbnsKrt6J-
https://openreview.net/forum?id=TLbnsKrt6J-
https://openreview.net/forum?id=ScfRNWkpec
https://proceedings.neurips.cc/paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://doi.org/10.1145/1143844.1143847
https://doi.org/10.1016/0020-0190(93)90115-P
https://doi.org/10.1016/0020-0190(93)90115-P
https://doi.org/10.1016/0020-0190(93)90115-P
https://doi.org/10.1145/3184558.3191526
https://doi.org/10.1145/3184558.3191526
https://doi.org/10.1145/3184558.3191526
https://openreview.net/forum?id=ayPPc0SyLv1

	 Appendix
	Preliminaries, Backgrounds, and Motivations
	Anonymous Random Walks
	Random Walk on Hypergraphs
	MLP-Mixer

	Additional Related Work
	Learning (Multi)Set Functions
	Simplicial Complexes Representation Learning
	How Does CAt-Walk Differ from Existing Works? (Contributions)

	SetWalk and Random Walk on Hypergraphs
	Extension of SetWalks

	Efficient Hyperedge Sampling
	Theoretical Results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Proposition 2

	Experimental Setup Details
	Datasets
	Baselines
	Implementation and Training Details

	Additional Experimental Results
	Results on More Datasets
	Node Classification
	Performance in Average Precision
	Scalability Analysis
	More Results on Rnn v.s. MLP-Mixer in Walk Encoding

	Broader Impacts
	Reproducibility

