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Abstract

Independent Component Analysis (ICA) aims to recover independent latent vari-
ables from observed mixtures thereof. Causal Representation Learning (CRL) aims
instead to infer causally related (thus often statistically dependent) latent variables,
together with the unknown graph encoding their causal relationships. We introduce
an intermediate problem termed Causal Component Analysis (CauCA). CauCA can
be viewed as a generalization of ICA, modelling the causal dependence among the
latent components, and as a special case of CRL. In contrast to CRL, it presupposes
knowledge of the causal graph, focusing solely on learning the unmixing function
and the causal mechanisms. Any impossibility results regarding the recovery of
the ground truth in CauCA also apply for CRL, while possibility results may serve
as a stepping stone for extensions to CRL. We characterize CauCA identifiability
from multiple datasets generated through different types of interventions on the
latent causal variables. As a corollary, this interventional perspective also leads
to new identifiability results for nonlinear ICA—a special case of CauCA with an
empty graph—requiring strictly fewer datasets than previous results. We introduce
a likelihood-based approach using normalizing flows to estimate both the unmixing
function and the causal mechanisms, and demonstrate its effectiveness through
extensive synthetic experiments in the CauCA and ICA setting.

1 Introduction

Independent Component Analysis (ICA) [7] is a principled approach to representation learning, which
aims to recover independent latent variables, or sources, from observed mixtures thereof. Whether
this is possible depends on the identifiability of the model [32, 57]: this characterizes assumptions
under which a learned representation provably recovers (or disentangles) the latent variables, up to
some well-specified ambiguities [22, 58]. A key result shows that, when nonlinear mixtures of the
latent components are observed, the model is non-identifiable based on independent and identically
distributed (i.i.d.) samples from the generative process [8, 19]. Consequently, a learned model may
explain the data equally well as the ground truth, even if the corresponding representation is strongly
entangled, rendering the recovery of the original latent variables fundamentally impossible.

Identifiability can be recovered under deviations from the i.i.d. assumption, e.g., in the form of
temporal autocorrelation [14, 18] or spatial dependence [15] among the latent components; auxiliary
variables which render the sources conditionally independent [17, 21, 25, 26]; or additional, noisy
views [11]. An alternative path is to restrict the class of mixing functions [4, 13, 63].
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Figure 1: Causal Component Analysis (CauCA). We posit that observed variables X are
generated through a nonlinear mapping f , applied to unobserved latent variables Z which are
causally related. The causal structure G of the latent variables is assumed to be known, while
the causal mechanisms Pi(Zi j Zpa(i)) and the nonlinear mixing function are unknown and to be
estimated. (Known or observed quantities are highlighted in red.) CauCA assumes access to multiple
datasets Dk that result from stochastic interventions on the latent variables.

Despite appealing identifiability guarantees for ICA, the independence assumption can be
limiting, since interesting factors of variation in real-world data are often statistically, or causally,
dependent [51]. This motivates Causal Representation Learning (CRL) [45], which aims instead
to infer causally related latent variables, together with a causal graph encoding their causal
relationships. This is challenging if both the graph and the unmixing are unknown. Identifiability
results in CRL therefore require strong assumptions such as counterfactual data [1, 3, 9, 37, 54],
temporal structure [30, 33], a parametric family of latent distributions [5, 6, 30, 47, 59, 60], graph
sparsity [28–30], pairs of interventions and genericity [55] or restrictions on the mixing function
class [2, 49, 52]. It has been argued that knowing either the graph or the unmixing might help better
recover the other, giving rise to a chicken-and-egg problem in CRL [3].

We introduce an intermediate problem between ICA and CRL which we call Causal Component
Analysis (CauCA), see Fig. 1 for an overview. CauCA can be viewed as a generalization of ICA that
models causal connections (and thus statistical dependence) among the latent components through
a causal Bayesian network [41]. It can also be viewed as a special case of CRL that presupposes
knowledge of the causal graph, and focuses on learning the unmixing function and causal mechanisms.

Since CauCA is solving the CRL problem with partial ground truth information, it is strictly easier
than CRL. This implies that impossibility results for CauCA also apply for CRL. Possibility results
for CauCA, on the other hand, while not automatically generalizing to CRL, can nevertheless serve
as stepping stones, highlighting potential avenues for achieving corresponding results in CRL. Note
also that there are only finitely many possible directed acyclic graphs for a fixed number of nodes, but
the space of spurious solutions in representation learning (e.g., in nonlinear ICA) is typically infinite.
By solving CauCA problems, we can therefore gain insights into the minimal assumptions required
for addressing CRL problems. CauCA may be applicable to scenarios in which domain knowledge
can be used to specify a causal graph for the latent components. For instance, in computer vision
applications, the image generation process can often be modelled based on a fixed graph [44, 50].

Structure and Contributions. We start by recapitulating preliminaries on causal Bayesian networks
and interventions in § 2. Next, we introduce Causal Component Analysis (CauCA) in § 3. Our primary
focus lies in characterizing the identifiability of CauCA from multiple datasets generated through
various types of interventions on the latent causal variables (§ 4). Importantly, all our results are
applicable to the nonlinear and nonparametric case. The interventional perspective we take exploits
the modularity of the causal relationships (i.e., the possibility to change one of them without affecting
the others)—a concept that was not previously leveraged in works on nonlinear ICA. This leads to
extensions of existing results that require strictly fewer datasets to achieve the same level of identifi-
ability. We introduce and investigate an estimation procedure for CauCA in § 5, and conclude with a
summary of related work (§ 6) and a discussion (§ 7). We highlight the following main contributions:

• We derive sufficient and necessary conditions for identifiability of CauCA from different types of
interventions (Thm. 4.2, Prop. 4.3, Thm. 4.5).

• We prove additional results for the special case with an empty graph, which corresponds to a novel
ICA model with interventions on the latent variables (Prop. 4.6, Prop. 4.7, Corollary 4.8, Prop. 4.9).

• We show in synthetic experiments in both the CauCA and ICA settings that our normalizing
flow-based estimation procedure effectively recovers the latent causal components (§ 5).
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2 Preliminaries

Notation. We use P to denote a probability distribution, with density function p. Uppercase letters
X;Y; Z denote unidimensional and bold uppercase X;Y;Z denote multidimensional random
variables. Lowercase letters x; y; z denote scalars in R and x;y; z denote vectors in Rd. We use
Ji; jK to denote the integers from i to j, and [d] denotes the natural numbers from 1 to d. We use
common graphical notation, see App. A for details. The ancestors of i in a graph are the nodes j
in G such that there is a directed path from j to i, and they are denoted by anc(i). The closure of
the parents (resp. ancestors) of i is defined as pa(i) := pa(i) [ fig (resp. anc(i) := anc(i) [ fig).
A key definition connecting directed acyclic graphs (DAGs) and probabilistic models is the following.

Definition 2.1 (Distribution Markov relative to a DAG [41]). A joint probability distribution P is
Markov relative to a DAG G if it admits the factorization P(Z1; : : : ; Zd) =

Qd
i=1 Pi(ZijZpa(i)).

Defn. 2.1 is a key assumption in directed graphical models, where a distribution being Markovian
relative to a graph implies that the graph encodes specific independences within the distribution,
which can be exploited for efficient computation or data storage [43, §6.5].

Causal Bayesian networks and interventions. Causal systems induce multiple distributions
corresponding to different interventions. Causal Bayesian networks [CBNs; 41] can be used to
represent how these interventional distributions are related. In a CBN with associated graph G,
arrows signify causal links among variables, and the conditional probabilities Pi

�
Zi j Zpa(i)

�
in

the corresponding Markov factorization are called causal mechanisms.2

Interventions are modelled in CBNs by replacing a subset �k � V (G) of the causal mechanisms
by new, intervened mechanisms fePj

�
Zj j Zpak(j)

�
gj∈τk , while all other causal mechanisms are left

unchanged. Here, pak(j) denotes the parents of Zj in the post-intervention graph in the interventional
regime k and �k the intervention targets. We will omit the superscript k when the parent set is
unchanged and assume that interventions do not add new parents, pak(j) � pa(j). Unless ePj is a
point mass, we call the intervention stochastic or soft. Further, we say that ePj is a perfect intervention
if the dependence of the j-th variable from its parents is removed (pak(j) = ?), corresponding to
deleting all arrows pointing to i, sometimes also referred to as graph surgery [48].3 An imperfect
intervention is one for which pak(j) 6= ?. We summarise this in the following definition.

Definition 2.2 (CBN ). A causal Bayesian network (CBN) consists of a graphG, a collection of causal
mechanisms fPi(Zi j Zpa(i))gi∈[d], and a collection of interventions ffePk

j

�
Zj j Zpak(j)

�
gj∈τkgk∈[K]

across K interventional regimes. The joint probability for interventional regime k is given by:

Pk(Z) :=

(Qd
i=1 Pi(Zi j Zpa(i)) k = 0Q
j∈τk

ePk
j

�
Zj j Zpak(j)

�Q
i/∈τk

Pi

�
Zi j Zpa(i)

�
8k 2 [K]

(1)

where P0 is the unintervened, or observational, distribution, and Pk are interventional distributions.

Remark 2.3. The joint probabilities Pk in (1) are uniquely factorized into causal mechanisms accord-
ing to G. We therefore use the equivalent notation (G; (Pk; �k)k∈J0,KK), where Pk is defined as in (1).

3 Problem Setting

The main object of our study is a latent variable model termed latent causal Bayesian network (CBN).

Definition 3.1 (Latent CBN). A latent CBN is a tuple (G; f ; (Pk; �k)k∈J0,KK), where f : Rd ! Rd is
a diffeomorphism (i.e. invertible with both f and f−1 differentiable).

2The term can also be used in structural causal models to denote deterministic functions of endogenous
and exogenous variables in assignments, see [43, Def. 3.1]. A central idea in causality [41, 43] is that causal
mechanisms are modular or independent, i.e., it is possible to modify some without affecting the others: after an
intervention, typically only a subset of the causal mechanisms change.

3A special case of perfect interventions are hard interventions, where P̃j corresponds to a Dirac distribution:
P(Z j do(Zj = zj)) = �Zj=zj

∏
i ̸=j Pi

(
Zi j Zpa(i)

)
.
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Data-generating process for Causal Component Analysis (CauCA).In CauCA, we assume that
we are given multiple datasetsfD k gk2 J0;K K generated by a latent CBN(G; f ; (Pk ; � k )k2 J0;K K):

Dk :=
�

� k ;
n

x (n;k )
oN k

n =1

�
; with x (n;k ) = f

�
z(n;k )

�
and z(n;k ) i.i.d.� Pk ; (2)

whereNk denotes the sample size for interventional regimek, see Fig. 1 for an illustration. The graph
G is assumed to be known. Further, we assume that the intervention targets� k are observed, see § 7
for further discussion. Both the mixing functionf and the latent distributionsPk in (2) are unknown.

The problem we aim to address is the following: given only the graphG and the datasetsDk in (2),
can we learn toinvert the mixing functionf and thus recover the latent variablesz? Whether this is
possible, and up to what ambiguities, depends on the identi�ability of CauCA.
De�nition 3.2 (Identi�ability of CauCA). A model class for CauCA is a tuple(G; F ; PG ), where
F is a class of functions andPG is a class of joint distributions Markov relative toG. A latent CBN
(G; f ; (Pk ; � k )k2 J0;K K) is said to be in(G; F ; PG ) if f 2 F andPk 2 P G for all k 2 J0; K K. We
say(G; F ; PG ) hasknown intervention targetsif all its elements share the sameG and(� k )k2 J0;K K.

We say that CauCA in(G; F ; PG ) is identi�able up toS (a set of functions called “indeterminacy
set”) if for any two latent CBNs(G; f ; (Pk ; � k )k2 J0;K K) and(G0; f 0; (Qk ; � k )k2 J0;K K), the equality
of pushforwardf � Pk = f 0

� Qk 8k 2 J0; K Kimplies that9h 2 S s.t. h = f 0� 1 � f on the support ofP.

We justify the de�nition of known intervention targets and generalize them to a more �exible scenario
in App. E. Defn. 3.2 is inspired by the identi�ability de�nition of ICA in [4, Def. 1]. Intuitively, it
states that, if two models in(G; F ; PG ) give rise to the same distribution, then they are equal up to
ambiguities speci�ed byS. Consequently, when attempting to invertf based on the data in(2), the
inversion can only be achieved up to those ambiguities.

In the following, we chooseF to be the class of allC1-diffeomorphismsRd ! Rd, denotedC1(Rd),
and suppose the distributions inPG are absolutely continuous with full support inRd, with the
densitypk differentiable.

A �rst question is what ambiguities are unavoidable by construction in CauCA, similar to scaling and
permutation in ICA [22, § 3.1]. The following Lemma characterizes this.
Lemma 3.3. For any(G; f ; (Pk ; � k )k2 J0;K K) in (G; F ; PG ), and for anyh 2 Sscaling with

Sscaling : =
�

h : Rd ! Rd j h(z) = ( h1(z1); : : : ; hd(zd)) , hi is a diffeomorphism inR
	

; (3)

there exists a(G; f � h; (Qk ; � k )k2 J0;K K) in (G; F ; PG ) s.t.f � Pk = ( f � h) � Qk for all k 2 J0; K K.

Lemma 3.3 states that, as in nonlinear ICA, the ambiguity up to element-wise nonlinear scaling is
also unresolvable in CauCA. However, unlike in nonlinear ICA, there is no permutation ambiguity in
CauCA: this is a consequence of the assumption of known intervention targets. The next question is
under which conditions we can achieve identi�ability up to(3), and when the ambiguity set is larger.

4 Theory

In this section, we investigate the identi�ability of CauCA. We �rst study the general case (§ 4.1),
and then consider the special case of ICA in which the graph is empty (§ 4.2).

4.1 Identi�ability of CauCA

Single-node interventions. We start by characterizing the identi�ability of CauCA based on
single-nodeinterventions. For datasetsDk de�ned as in(2), everyk > 0 corresponds to interventions
on a single variable: i.e.,8k > 0; j� k j = 1 . This is the setting depicted in Fig. 1, where each
interventional dataset is generated by intervening on a single latent variable. The following
assumption will play a key role in our proofs.
Assumption 4.1(Interventional discrepancy). Givenk 2 [K ], let p� k denote the causal mechanism
of z� k . We say that a stochastic intervention~p� k satis�es interventional discrepancy if

@(ln p� k )
@z� k

�
z� k j zpa( � k )

�
6=

@(ln ep� k )
@z� k

�
z� k j zpak ( � k )

�
almost everywhere (a.e.). (4)
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