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A Simulation Details of Figure 1450

In Figure 1, we report the cost complexities of Algorithm 1 with EXPLORE-A and Algorithm 1451

with EXPLORE-B (let µ̃(M)
1 = 0.95 and µ̃(M)

2 = 0.75). We set the confidence parameter � as452

0.05, 0.1, 0.15, 0.2, 0.25 respectively in comparing the performance of both procedures. For each453

simulation, we run 100 trials, plot their cost complexities’ mean as markers and their deviation as454

shaded regions. We present the parameters of MF-MAB instances of Figures 1a and 1b in Tables 2455

and 3 respectively. We note that it is more difficult to find the optimal fidelity m⇤
k

in the MF-MAB456

instances for Figure 1b because (1) there are more fidelities choices in this instance than that of457

Figure 1a; (2) the value of �̃(m)
k

/
p

�(m) are closer in the second instance than that of Figure 1a.458

Table 2: Figure 1a’s MF-MAB with K = 5 arms and M = 3 fidelities

Parameters µ(m)
1 µ(m)

2 µ(m)
3 µ(m)

4 µ(m)
5 ⇣(m) �(m)

m = 1 0.70 0.75 0.50 0.50 0.30 0.30 1
m = 2 0.80 0.775 0.60 0.55 0.45 0.15 1.1
m = 3 0.90 0.80 0.70 0.60 0.50 0 1.2

Table 3: Figure 1b’s MF-MAB with K = 5 arms and M = 5 fidelities

Parameters µ(m)
1 µ(m)

2 µ(m)
3 µ(m)

4 µ(m)
5 ⇣(m) �(m)

m = 1 0.83 0.82 0.76 0.82 0.70 0.10 1
m = 2 0.84 0.83 0.80 0.80 0.72 0.08 1.1
m = 3 0.85 0.85 0.80 0.82 0.74 0.06 1.2
m = 4 0.85 0.86 0.80 0.80 0.76 0.04 1.3
m = 5 0.90 0.88 0.86 0.84 0.80 0 1.4

B A Third Fidelity Selection Procedure: EXPLORE-C459

Besides the EXPLORE-A and -B procedures, here we consider a third naïve and conservative idea for460

fidelity selection that one should start from low risk (cost), gradually increase the risk (cost) as the461

learning task needs, and stop when finding the optimal arm. To decide when to increase the fidelity462

for exploring an arm k, we use the arm’s confidence radius �(N (m)
k,t

, t, �) at fidelity m as a measure463

of the amount of information left in this fidelity, and when the fidelity m’s confidence radius is less464

than the error upper bound ⇣(m) at this fidelity, we increase the fidelity by 1 for higher accuracy, or465

formally, the fidelity is selected as follows,466

mk,t  min
n
m
����(N (m)

k,t
, t, �) > ⇣(m)

o
.

Algorithm 3 EXPLORE-C Procedures
procedure EXPLORE-C(k)

mk,t  min
n
m
����(N (m)

k,t
, t, �) > ⇣(m)

o

Pull (k,mk,t), observe reward, and update corresponding statistics

Theorem B.1 (Cost complexity upper bounds for Algorithm 1 with EXPLORE-C). Given Assump-467

tion 3.3 and L > 4KM , Algorithm 1 outputs the optimal arm with a probability at least 1� �. The468

cost complexity of Algorithm 1 with EXPLORE-C are upper bounded as follows,469

E[⇤] = O

✓
H‡ log

✓
L(H‡ +Q)

�(1)�

◆
+Q log

✓
L(H‡ +Q)

�(1)�

◆◆
, (10)

12



where, letting m‡
k

denote the smallest fidelity for arm k such that �(m)
k

> 2⇣(m), or formally,470

m‡
k
:= min{m : �(m)

k
> 2⇣(m)

},

and we denote471

H‡ :=
X

k2K

�(m‡
k)

(�
(m‡

k)
k

)2
, Q :=

X

k2K

m
‡
k�1X

m=1

�(m)

(⇣(m))2
.

Remark B.2 (EXPLORE-C vs. EXPLORE-A and -B). The EXPLORE-C procedure does not require472

additional knowledge as the other two. It is a one-size-fits-all option. If with some addition473

information of a specific scenario, e.g., the exact or approximated reward means of top two arms, one474

can use the EXPLORE-A or B.475

C Proofs for Best Arm Identification with Fixed Confidence476

C.1 Proof of Theorem 3.1477

Lemma C.1 (Kaufmann et al. [21], Lemma 1). Let ⌫ and ⌫0 be two bandit models with K arms such478

that for all k, the distributions ⌫k and ⌫0
k

are mutually absolutely continuous. For any almost-surely479

finite stopping time � with respect to the filtration {Ft}t2N where Ft = �(I1, X1, . . . , It, Xt),480

KX

k=1

E⌫ [Nk(�)] KL(⌫k, ⌫
0
k
) > sup

E2F�

kl(P⌫(E),P⌫0(E)),

where kl(x, y) is the binary relative entropy.481

In MF-MAB model, regarding each arm-fidelity (k,m)-pair as an individual arm, we can extend482

Lemma C.1 to multi-fidelity case as follows,483

KX

k=1

MX

m=1

E⌫ [N
(m)
k

(�)] KL(⌫(m)
k

, ⌫0
(m)
k

) > sup
E2F�

kl(P⌫(E),P⌫0(E)). (11)

Next, we construct instances ⌫ and ⌫0. We set the reward distributions ⌫ = (⌫(m)
k

)(k,m)2K⇥M484

as Bernoulli and the reward means fulfill µ(M)
1 > µ(M)

2 > µ(M)
3 > . . . > µ(M)

K
, where µ(m)

k
=485

E
X⇠⌫

(m)
k

[X]. We let ⌫0(m)
k

be the same to ⌫(m)
k

for all k and m, except for that an arm ` 6= 1. We set486

arm `’s reward means on fidelities m 2Mk to be ⌫0(m)
`

= ⌫(M)
1 � ⇣(m) + ✏. So, in instance ⌫0, the487

optimal arm is ` and its true reward mean µ0(M)
`

is slightly greater than µ(M)
1 . This implies for the488

event E = {output arm 1} and any algorithm ⇡ that can find the optimal arm with a confidence 1� �,489

P⌫,⇡(E) > 1� � and P⌫0,⇡(E) 6 �. Then, from Eq.(11), we have490
X

m2Mk

E⌫ [N
(m)
`

(�)] KL(⌫(m)
`

, ⌫0
(m)
`

) > sup
E2F�

kl(P⌫,⇡(E),P⌫0,⇡(E))

> kl(1� �, �)

> log
1

2.4�
.

We rewrite the above inequality as follows,491

X

m2Mk

�(m)E⌫ [N
(m)
`

(�)] ·
KL(⌫(m)

`
, ⌫0(m)

`
)

�(m)
> log

1

2.4�
.

Therefore, for the arm `, our aim is to minimize its cost complexity with a constraint as follows,492

min
E[N(m)

` ],8m

MX

m=1

�(m)E⌫ [N
(m)
`

(�)]

such that
X

m2Mk

�(m)E⌫ [N
(m)
`

(�)] ·
KL(⌫(m)

`
, ⌫0(m)

`
)

�(m)
> log

1

2.4�
.
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Note that the above is a linear programming (LP) and its optimum is reached at one of its polyhedron493

constraint’s vertex—only one E[N (m)
`

] is positive and all others are equal to zero.494

min
E[N(m)

` ],8m

MX

m=1

�(m)E⌫ [N
(m)
`

(�)]
(a)
> min

m2Mk

�(m)

KL(⌫(m)
`

, ⌫0(m)
`

)
log

1

2.4�

= min
m2Mk

�(m)

KL(⌫(m)
`

, ⌫(M)
1 � ⇣(m) + ✏)

log
1

2.4�

(b)
> min

m2Mk

�(m)

(1 + ")KL(⌫(m)
`

, ⌫(M)
1 � ⇣(m))

log
1

2.4�

where the inequality (a) is due to the property of LP we mentioned above, and the inequality (b) is495

because of the continuity of KL-divergence.496

To bound the optimal arm 1’s cost complexity, we use the same ⌫ as above and construct another497

instance ⌫00. The instance ⌫00’s reward means are the same to ⌫ except for arm 1 whose reward means498

for fidelity m 2M1 are set as µ00(m)
1 = µ(m)

2 + ⇣(m)
� ✏. Then, with similar procedure as the above,499

we obtain500

min
E[N(m)

1 ],8m

MX

m=1

�(m)E⌫ [N
(m)
1 (�)] > min

m2M1

�(m)

(1 + ")KL(⌫(m)
1 , ⌫(M)

2 + ⇣(m))
log

1

2.4�
.

Summing up the above costs leads to the lower bound as follows, and letting the ✏ goes to zeros501

concludes the proof.502

E[⇤] >
0

@ min
m2M1

�(m)

(1 + ")KL(⌫(m)
1 , ⌫(M)

2 + ⇣(m))
+
X

k 6=1

min
m2Mk

�(m)

(1 + ")KL(⌫(m)
k

, ⌫(M)
1 � ⇣(m))

1

A log
1

2.4�
.

C.2 Proof of Theorem 3.4503

Notation. Denote the threshold c = µ
(M)
1 +µ

(M)
2

2 as the average of the optimal and best suboptimal504

arms’ reward means. Denote At := {k 2 K : LCBk,t > c} and Bt := {k 2 K : UCBk,t < c} as the505

above and below sets which respectively contain arms whose rewards are clearly higher or lower506

than the threshold with high probability, and let Ct := K \ (At [ Bt) as the complement of both sets’507

union. Then, we define two events as follows508

TERMt := {LCB`t,t > UCBut,t},

CROSt := {9k 6= 1 : k 2 At} [ {1 2 Bt}.

The TERMt event corresponds to the complement of the main while loop condition in the LUCB509

algorithm. When the TERMt event happens, the LUCB algorithm terminates. The CROSt event means510

there exists a suboptimal arm whose LCBk,t is greater than c or that the optimal arm 1’s UCB1,t is511

less than c, both of which means that at least one arm’s reward mean confidence interval incorrectly512

crosses the threshold c.513

Step 1. Prove ¬TERMt\¬CROSt =) (`t 2 Ct)[(ut 2 Ct). We show this statement by contradiction514

case by case. That is, the negation of (`t 2 Ct) [ (ut 2 Ct) cannot happen when ¬TERMt \ ¬CROSt.515

Case 1: (`t 2 At) \ (ut 2 At) \ ¬TERMt
=)(`t 2 At) \ (ut 2 At) =) |At| > 2 =) 9k 6= 1 : k 2 At =) CROSt,

Case 2: (`t 2 Bt) \ (ut 2 At) \ ¬TERMt
=)UCB`t,t < c < LCBut,t < UCBut,t =) ; (contradicts the selection of `t and ut),

Case 3: (`t 2 At) \ (ut 2 Bt) \ ¬TERMt
=){LCB`t,t > c > UCBut,t} \ ¬TERMt =) ;,

Case 4: (`t 2 Bt) \ (ut 2 Bt) \ ¬TERMt
=)(`t 2 Bt) \ (ut 2 Bt) =) |Bt| = K =) 1 2 Bt =) CROSt.
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Step 2. Prove P (CROSt) 6 KM�

Lt3
. For any suboptimal arm k 6= 1, we bound the probability that516

the arm k is in At as follows,517

P(k 2 At) = P(LCBk,t > c) = P
✓
max
m2M

LCB(m)
k,t

> c

◆
6
X

m2M
P
⇣
LCB(m)

k,t
> c
⌘

=
X

m2M
P
⇣
µ̂(m)
k,t
� ⇣(m)

� �(N (m)
k,t

, t) > c
⌘

=
X

m2M
P
⇣
µ̂(m)
k,t
� µ(m)

k
+ (µ(m)

k
� ⇣(m)

� c) > �(N (m)
k,t

, t)
⌘

(a)
6
X

m2M
P
⇣
µ̂(m)
k,t
� µ(m)

k
> �(N (m)

k,t
, t)
⌘
6
X

m2M

tX

n=1

P(µ̂(m)
k,t
� µ(m)

k
> �(n, t))

6
X

m2M

tX

n=1

exp(�n(�(n, t))2) =
X

m2M

tX

n=1

�

Lt4

6 M�

Lt3
,

where the inequality (a) is due to that µ(m)
k
� ⇣(m) 6 µ(M)

k
< c. With similar derivation, we518

have P(1 2 Bt) 6 M�

Lt3
. Noticing that P(CROSt) 6 P

k 6=1 P(k 2 At) + P(1 2 Bt), we have519

P(CROSt) 6 KM�

Lt3
.520

Step 3. Prove P
⇣
9k 2 K : (N

(m⇤
k)

k,t
> 16N⇤

k,t
) \ (k 2 Midt)

⌘
6 16�

P
k2K ��2

k

Lt4
, where N⇤

k,t
:=521

log(Lt
4
/�)

(�
(m̃⇤

k
)

k )2
. For any fixed suboptimal arm k 6= 1 (with µ(M)

k
< c), we have522

P
⇣
(N

(m⇤
k)

k,t
> 16N⇤

k,t
) \ (k 2 Midt)

⌘

= P
⇣
(N

(m⇤
k)

k,t
> 16N⇤

k,t
) \ (k 62 At [ Bt)

⌘

6 P
⇣
(N

(m⇤
k)

k,t
> 16N⇤

k,t
) \ (UCBk,t > c)

⌘

= P
✓
(N

(m⇤
k)

k,t
> 16N⇤

k,t
) \

✓
min
m2M

µ̂(m)
k,t

+ ⇣(m) + �(N (m)
k,t

, t) > c

◆◆

6 P
⇣
(N

(m⇤
k)

k,t
> 16N⇤

k,t
) \ (µ̂

(m⇤
k)

k,t
+ ⇣(m

⇤
k) + �(N

(m⇤
k)

k,t
, t) > c)

⌘

6 P
⇣
(N

(m⇤
k)

k,t
> 16N⇤

k,t
) \ (µ̂

(m⇤
k)

k,t
� µ

(m⇤
k)

k
> (c� µ

(m⇤
k)

k
� ⇣(m

⇤
k))� �(N

(m⇤
k)

k,t
, t))

⌘

(a)
6 P

 
(N

(m⇤
k)

k,t
> 16N⇤

k,t
) \

 
µ̂
(m⇤

k)
k,t

� µ
(m⇤

k)
k

>
�

(m̃⇤
k)

k

2
� �(N

(m̃⇤
k)

k,t
, t)

!!

(b)
6

X

⌧>16N⇤
k,t

P
 
µ̂
(m⇤

k)
k,t(⌧) � µ

(m⇤
k)

k
>

�
(m̃⇤

k)
k

4

! ⇣
denote µ̂

(m⇤
k)

k,t(⌧) as the empirical mean of ⌧ observations
⌘

6
X

⌧>16N⇤
k,t

exp

 
�
⌧(�

(m̃⇤
k)

k
)2

16

!
6
Z

⌧>16N⇤
k,t

exp

 
�
⌧(�

(m̃⇤
k)

k
)2

16

!
d⌧ 6 16�

(�
(m̃⇤

k)
k

)2Lt4
,

where inequality (a) is due to Eq.(6) and inequality (b) is due to �(⌧, t) < �k
4 for ⌧ > 16N⇤

k,t
.523

From Step 3, we obtain that the following equation holds with high probability,524

N
(m̃⇤

k)
k,t

6 16

(�
(m̃⇤

k)
k

)2
log

✓
Lt4

�

◆
6 64

(�
(m̃⇤

k)
k

)2
log

✓
Lt

�

◆
. (12)

Next, we respectively present the cost complexity upper bounds for different fidelity selection525

procedures in Algorithm 2.526
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C.2.1 Proof for EXPLORE-A’s Upper Bound527

Step 4 for EXPLORE-A: prove that if the small probability events of Steps 2 and 3 do not528

happen, then the algorithm terminates with a high probability when ⇤ is large.529

Lemma C.2. Give reward means µ(M)
1 and µ(M)

2 . For a fixed arm k, there exist N̄k,t and ↵k > 0530

such that when Nk,t > N̄k,t, Nk,t < 2N
(m̃⇤

k)
k,t

, the number of times of pulling this arm k at fidelities531

m ( 6= m̃⇤
k
) is O(log(logNk,t)), or formally,532

N (m)
k,t

6 8

�(m)

 
�

(m̃⇤
k)

k
p

�(m̃⇤
k)
�

�(m)
k

p

�(m)

!�2

logNk,t, 8m 6= m̃⇤
k
. (13)

Combine Lemma C.2 with Eq.(12) in Step 3, we have, for any arm k and fidelity m 6= m̃⇤
k
:533

N (m)
k,t

6 8

�(m)

 
�

(m̃⇤
k)

k
p

�(m̃⇤
k)
�

�(m)
k

p

�(m)

!�2

log

 
128

(�
(m̃⇤

k)
k

)2
log

✓
Lt

�

◆!
(14)

Next, we can upper bound the total cost of the LUCB algorithm (before it terminating) via Eq.(12)534

and Eq.(14). Specially, we show it is impossible for ⇤ = C
⇣
H log L(G+H)

�(1)�
+G log log L(G+H)

�(1)�

⌘
535

via contradiction. Suppose ⇤ = C
⇣
H log L(G+H)

�(1)�
+G log log L(G+H)

�(1)�

⌘
, we have the following,536

E[⇤] 6
X

k2K

X

m2M
�(m)N (m)

k,t

6
X

k2K
�(m̃⇤

k)N
(m̃⇤

k)
k,t

+
X

k2K

X

m 6=m̃
⇤
k

�(m)N (m)
k,t

(a)
6 64H log

Lt

�
+ 8G log log

Lt

�
+G log(128H)

(b)
6 64H log

L⇤

�(1)�
+ 8G log log

L⇤

�(1)�
+G log(128H)

(c)
= 64H log

✓
L

�(1)�
C

✓
H log

L(G+H)

�(1)�
+G log log

L(G+H)

�(1)�

◆◆

+ 8G log log

✓
L

�(1)�
C

✓
H log

L(G+H)

�(1)�
+G log log

L(G+H)

�(1)�

◆◆
+G log(128H)

(d)
6 128(2 + logC)

✓
H log

L(G+H)

�(1)�
+G log log

L(G+H)

�(1)�

◆

(e)
< C

✓
H log

L(G+H)

�(1)�
+G log log

L(G+H)

�(1)�

◆
,

where the inequality (a) is due to Eq.(12) and Eq.(14), the inequality (b) is because t 6 ⇤
�(1) , the537

inequality (c) is by the supposition, the inequality (d) is by separately bounding the above first two538

terms via Eq.(15) and Eq.(16) in the following, and the inequality (e) holds for C > 1200. This above539

inequality contradicts the supposition, and, therefore, we conclude the cost complexity upper bound540

proof for EXPLORE-A. Similar proof also holds for EXPLORE-B by replacing m̃⇤
k

with m†
k
.541
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Next, we provide the upper bounds used in the inequality (d) above:542

H log

✓
L

�(1)�
C

✓
H log

L(G+H)

�(1)�
+G log log

L(G+H)

�(1)�

◆◆

6 H log

✓
L

�(1)�
CH log

L(G+H)

�(1)�

◆
+H log

✓
L

�(1)�
CG log log

L(G+H)

�(1)�

◆

6 H logC +H log

✓
LH

�(1)�
log

L(G+H)

�(1)�

◆
+H logC +H log

✓
LG

�(1)�
log log

L(G+H)

�(1)�

◆

6 2H logC + 4H log
L(G+H)

�(1)�

6 (4 + 2 logC)H log
L(G+H)

�(1)�
,

(15)

and543

G log log

✓
L

�(1)�
C

✓
H log

L(G+H)

�(1)�
+G log log

L(G+H)

�(1)�

◆◆

6 G log log

✓
L

�(1)�
CH log

L(G+H)

�(1)�

◆
+G log log

✓
L

�(1)�
CG log log

L(G+H)

�(1)�

◆

6 G log logC +G log log

✓
LH

�(1)�
log

L(G+H)

�(1)�

◆

+G log logC +G log log

✓
LG

�(1)�
log log

L(G+H)

�(1)�

◆

6 2G log logC + 4G log log
L(G+H)

�(1)�

6 (4 + 2 log logC)G log log
L(G+H)

�(1)�
.

(16)

Proof of Lemma C.2.544

Claim 1. For any fixed m 6= m̃⇤
k
, if the following equation holds, then the algorithm will not pull545

arm k at fidelity m with high probability.546

N (m)
k,t

>
8

�(m)

 
�

(m̃⇤
k)

k
p

�(m̃⇤
k)
�

�(m)
k

p

�(m)

!�2

logNk,t.

f-UCB(m)
ut,t

(µ(M)
1 ) =

1
p

�(m)

 
µ(M)
1 � µ̂(m)

ut,t
� ⇣(m) +

s
2 logNut,t

N (m)
ut,t

!

(a)
6 1
p

�(m)

 
µ(M)
1 � µ(m)

ut
� ⇣(m) + 2

s
2 logNut,t

N (m)
ut,t

!

(b)
6 1p

�(m⇤
ut

)

⇣
µ(M)
1 � µ

(m⇤
ut

)
ut � ⇣(m

⇤
ut

)
⌘

(c)
6 1
p

�(m̃⇤
k)

 
µ(M)
1 � µ̂

(m⇤
ut

)
ut,t

� ⇣(m
⇤
ut

) +

s
2 logNut,t

N
(m̃⇤

k)
ut,t

!

= f-UCB
(m⇤

ut
)

ut,t
(µ(M)

1 ),

where the inequalities (a) and (c) hold with a probability at least 1 � 1
(Nk,t)2

respectively (by547

Hoeffding’s inequality), and the inequality (b) holds due to the equation in the claim.548
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C.2.2 Proof for EXPLORE-B’s Upper Bound549

As EXPLORE-B of Algorithm 2 also employs the LUCB framework, it shares the first three steps of550

the proof for Theorem 3.4 in Appendix C.2. Hence, in this part, we focus on the proof of the final551

cost complexity upper bound.552

Lemma C.3. If the condition in Line 10 holds, then the committed fidelity m̂⇤
k

fulfills the following553

inequality:554
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Proof of Lemma C.3. Eq.(17) is proved as follows,555
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where inequality (a) is due to the definition of m̂⇤
k
, and inequality (b) is due to the condition in556

Line 10.557

We next upper bound the number of times of N (m)
k,t

that guarantees that the condition in Line 10 is558

true. Let us consider the case of exploring arm ut.559
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1� �/2KM (therefore, with the union bound over all arm-fidelity pairs, the total failure probability561

of EXPLORE is upper bounded by �/2), and inequality (b) is because µ̂(M)
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To make the condition in Line 10 hold, with the above inequality, we need564
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It means that if the above inequality holds, than the condition in Line 10 must hold. That is, except566

for the committed fidelity m̂⇤
k
, we have567
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For another thing, Eq.(12) of LUCB’s proof guarantees that for the selected fidelity m̂⇤
k
, the number568

of pulling times is upper bounded as follows,569
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Then, we upper bound the total budget of the algorithm as follows,570
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where inequality (a) is due to Eq.(17), inequality (b) is due to that ⇤ 6 A log(B⇤) =) ⇤ 6571

4A log(AB⇤).572

C.2.3 Proof for EXPLORE-C’s Upper Bound in Theorem B.1573

Step 4 for EXPLORE-C: Prove that if the events of Steps 2 and 3 do not happen, for ⇤ >574

O
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, the algorithm terminates with a probability at least O(1��/⇤2). Denote575
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We first upper bound the number of rounds after T̄ as follows,577
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where the equation (a) is due to ¬E1, the inequality (b) is due to Step 1, and the inequality (c) is due578

to ¬E2.579

Also notice that580
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and, combining with Eq.(18), we have,581
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Solving the above inequality concludes the cost complexity upper bound for EXPLORE-C.582

In the end of Step 4, we show that the LUCB algorithm fulfills the fixed confidence requirement.583

The probability that the algorithm does not terminate after spending ⇤ budget is upper bounded by584

P(E1 [ E2). Based on Steps 2 and 3, it can be upper bounded as follows,585
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D Detailed Theorems for Regret Minimization Case587

We first present both the problem-independent (worst-case) and problem-dependent regret lower588

bounds in Section D.1 and then devise an elimination algorithm whose worst-case upper bounds589

match the worst-case lower bound up to some logarithmic factors and whose problem-dependent590

upper bound matches the problem-dependent lower bound in a class of MF-MAB in Section D.2.591

D.1 Regret Lower Bound592

We present the problem-independent regret lower bound in Theorem D.1 and the problem-dependent593

regret lower bound in Theorem D.2. Both proofs are deferred to Appendix E.1 and E.2 respectively.594

Theorem D.1 (Problem-independent regret lower bound). Given budget ⇤, the regret of MF-MAB is595

lower bounded as follows,596
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⇣
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,

where the inf is over any algorithms, the sup is over any possible MF-MAB instances I.597

Theorem D.2 (Problem-dependent lower bound). For any consistent policy that, after spending ⇤598

budgets, fulfills that for any suboptimal arm k (with �(M)
k

> 0) and any a > 0, E[N (8m)
k

(⇤)] =599

o(⇤a), its regret is lower bounded by the following inequality,600
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The above two lower bound proofs utilize two different regret decomposition as follows,601
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where the inequality (a) is due to ⇤ >
P

N

t=1 �
(mt), the N (m)

k
(⇤) is the number of times that arm602

k is pulled in fidelity m after paying budget ⇤. The N with subscript 8k and superscript (8m)603

mean the pulling times of all arms and all fidelities respectively. Due to the multi-fidelity feedback,604

both decompositions are different from classic bandits’ regret decomposition [24, Lemma 4.5], and,605

therefore, we need to non-trivially extend the known approaches to our scenario.606

To prove the problem-independent lower bound ⌦(K1/3⇤2/3) in Theorem D.1, we utilize the607

decomposition in Eq.(19): In the RHS, the first term increases whether one choose fidelity other608

than the lowest; this is a novel term. The second term of RHS corresponds to the cost of pulling609

suboptimal arms which also appears in the classic MAB. With this observation, one can construct610

instance pairs such that it is unavoidable to do exploration at higher fidelities and, therefore, the611

first term is not negligible. Lastly, one needs to balance the magnitude of the above two terms612

case-by-case, which together bounds the regret as ⌦
�
⇤2/3

�
. To prove the problem-dependent lower613

bound in Theorem E.1, we utilize Eq.(20) to decompose the regret to each arm and bound each of614

them separately.615

D.2 An Elimination Algorithm and Its Regret Upper Bound616

In this section, we propose an elimination algorithm for MF-MAB based on Auer and Ortner [1]. This617

algorithm proceeds in phases p = 0, 1, . . . and maintains a candidate arm set Cp. The set Cp is618

initialized as the full arm set K and the algorithm gradually eliminates arms from the set until there is619
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only one arm remaining. When the candidate arm set contains more than one arms, the algorithm620

explores arms with the highest fidelity M , and when the set |Cp| = 1, the algorithm exploits the621

singleton in the set with the lowest fidelity m = 1. We present the detail in Algorithm 4.622

Algorithm 4 Elimination for MF-MAB
1: Input: full arm set K, budget ⇤, and parameter "
2: Initialization: phase p 0, candidate set Cp  K

3: while p < log2
2
"

and |Cp| > 1 do
4: pull each arm k 2 Cp in highest fidelity M such that T (M)

k
=
⌃
22p log ⇤

22p�(M)

⌥

5: Update reward means µ̂(M)
k,p

for all arms k 2 Cp

6: Cp+1 {k 2 Cp:µ̂
(M)
k,p

+ 2�p+1>maxk02Cp µ̂
(M)
k0,p } . Elimination

7: p p+ 1
8: Pull the remaining arms of Cp in turn in fidelity m = 1 until the budget runs up

D.2.1 Analysis Results623

We first present the problem-dependent regret upper bound of Algorithm 4 in Theorem D.3. Its full624

proof is deferred to Appendix E.3.625

Theorem D.3 (Problem-Dependent Regret Upper Bound). For any " > 0. Algorithm 4’s regret is626

upper bounded as follows,627
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Especially, if letting " go to zero and budget ⇤ go to infinity, the above upper bound becomes628
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Letting " = (K log⇤/⇤)1/3 in Eq.(21) of Theorem D.3, one can obtain a problem-independent629

regret upper bound of Algorithm 4 in Theorem D.4 as follows.630

Theorem D.4 (Regret Upper Bound for Algorithm 4). Letting " = (K log⇤/⇤)1/3, Algorithm 4’s631

regret is upper bounded as follows,632

E[R(⇤)] 6 O
⇣
K1/3⇤2/3(log⇤)1/3

⌘
.

E Proofs for Regret Minimization Results633

E.1 Proof of Theorem D.1634

Step 1. Construct instances and upper bound KL-divergence Fix a policy ⇡. We construct two635

MF-MAB instances, each with K arms and M fidelities. For the pulling costs of different fidelities,636

we set �(M) 6 2�(1). For reward feedback, we assume all arms’ reward distributions at any637

fidelity are Bernoulli, and denote µ(m)
k

(1), µ(m)
k

(2) as the reward means of these two instances.638

Let P1 = Pµ(1),⇡,E1 = Eµ(1),⇡ and P2 = Pµ(2),⇡,E2 = Eµ(2),⇡ be the probability measures639

and expectations on the canonical MF-MAB model induced by ⇤-budget interconnection of ⇡ and640

µ1 (and µ2). Denote k0 = argmin
k2K E1[N

(m>1)
k

(⇤)].641
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The only difference between both instance pair is in the arm k0’s reward mean for fidelities m > 1,642

so that instance 1’s optimal arm is arm 1 and instance 2’s optimal arm is arm k0. The detailed reward643

means are listed as follows,644
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Denote the entry (Mt, It, Xt) as a tuple of the pulled fidelity, pulled arm, and observed reward646

random variables at time t, and H := (M1, I1, X1;M2, I2, X2; . . . ;MN , IN , XN ) as a sequence of647

applying policy ⇡. We note that N is also a random variable depending on the sequence of fidelities648

in pulling arms. Next, we calculate the upper bound of the KL-divergence of the above two instances649

in this sequence.650
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where the equation (a) is due to651
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the equation (b) is due to652
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the equation (c) is due to the tower property as well, the inequality (d) is because arm k0 is the arm653

with the smallest number of pulled with fidelity m > 1, and the inequality (e) is by calculating the654

KL-divergent between two Bernoulli distributions.655

Step 2. Lower bound the regret We first note that the regret defined in Eq.(9) for instance 1 can656

be decomposed as follows,657

E1[R(⇤)]
(a)
>

NX

t=1

✓
�(mt) � �(1)

�(1)
µ1 +�(M)

It

◆

=
MX

m=2

T (m)
8k (⇤)

�(m)
� �(1)

�(1)
µ1 +

X

k 6=k
(M)
1

T (8m)
k

(⇤)�(M)
k

where inequality (a) is due to ⇤ >
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k
(⇤) is the number of times that arm k is658

pulled in fidelity m (given total budget ⇤).659
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Then, we lower bound the summation of the regrets under both instances,660

E1[R(⇤)] + E2[R(⇤)]

= E1

2

64
MX

m=2

T (m)
8k (⇤)

�(m)
� �(1)

�(1)
µ1 +

X

k 6=k
(M)
1

T (8m)
k

(⇤)�(M)
k

3

75

+ E2

2

64
MX

m=2

T (m)
8k (⇤)

�(m)
� �(1)

�(1)
µ1 +

X

k 6=k
(M)
1

T (8m)
k

(⇤)�(M)
k

3

75

> E1

2

64T (m>1)
8k (⇤)

�(2)
� �(1)

�(1)
µ1 +

X

k 6=k
(M)
1

T (8m)
k

(⇤)�(M)
k

3

75

+ E2

2

64T (m>1)
8k (⇤)

�(2)
� �(1)

�(1)
µ1 +

X

k 6=k
(M)
1

T (8m)
k

(⇤)�(M)
k

3

75

(a)
> E1

h
T (m>1)
8k (⇤)

i �(2)
� �(1)

�(1)
µ1

+�min

⇢
⇤

�(M)
�

⇤

2�(1)
,

⇤

2�(1)

�✓
P1

✓
T (8m)
1 6 ⇤

2�(1)

◆
+ P2

✓
T (8m)
1 >

⇤

2�(1)

◆◆

(b)
> E1

h
T (m>1)
8k (⇤)

i �(2)
� �(1)

�(1)
µ1 +

⇤�

2
min

⇢
1

�(M)
�

1

2�(1)
,

1

2�(1)

�
exp(�KL(P1,P2))

(c)
> E1

h
T (m>1)
8k (⇤)

i �(2)
� �(1)

�(1)
µ1

+
⇤�

2
min

⇢
1

�(M)
�

1

2�(1)
,

1

2�(1)

�
exp

⇣
�2�2K�1E1

h
T (m>1)
8k (⇤)

i⌘
,

where inequality (a) uses the �(M) 6 2�(1) condition, inequality (b) is by Bretagnolle-Huber661

inequality [24, Theorem 14.2], and inequality (c) is by Eq.(23).662

Step 3. Obtain the ⌦(K
1
3⇤

2
3 ) lower bound We show that E1[R(⇤)] + E2[R(⇤)] > ⌦(K

1
3⇤

2
3 )663

for any possible quantity of E1

h
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i
via categorized discussion as follows,664

• Case 1: If E1

h
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i
= 0, then the last formula becomes C⇤�. Letting � be a665

constant (via sup), we have a ⌦(⇤) lower bound, which means ⌦(K 1
3⇤

2
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h
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1
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1
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first term.668

• Case 3: If 0 < E1

h
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2
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1
3⇤� 1
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⌦(K
1
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2
3 ) lower bound.670

E.2 Proof of Theorem D.2671

In this proof, we prove that for any arm k 2 K, the total regret due to this arm k is lower bounded as672

follows,673
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Then, noticing that R(⇤) =
P

k2M Rk(⇤) concludes the proof.674
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We construct instances ⌫ and ⌫0. We set the reward distributions ⌫ = (⌫(m)
k

)(k,m)2K⇥M as Bernoulli675

and the reward means fulfill µ(M)
1 > µ(M)
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K
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let ⌫0(m)
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for all k and m, except for that an arm ` 6= 1. We set arm `’s reward677

means on fidelities m 2Mk to be ⌫0(m)
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1 � ⇣(m) + ✏. One can verify that the reward means678

of arm k under instance v0 fulfill the condition that |µ0(m)
k
�µ0(M)

k
| 6 ⇣(m) for any fidelity m. Notice679

that µ0(M)
k

> µ(M)
k⇤

. Hence, under instance I 0, the optimal arm is k. We denote P,E and P0,E0 as the680

probability measures and expectations for instances I and I
0 respectively.681

Next, we employ the (extended) key inequality from Garivier et al. [12] as follows,682
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where inequality (a) is due to that for all (p, q) 2 [0, 1]2,kl(p, q) > (1� p) log(1/(1� q))� log 2.684

Notice that the regret attributed to any arm k can be decomposed and lower bounded as follows,685
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with the constraint in Eq.(24). Since this is a linear programming, we know its solution is reached at686

its vertex. Therefore, we lower bound the regret as follows,687
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Notice that the policy is consistent, that is, E[N (8m)
`

(⇤)] = o(T a) and E0[N (8m)
k

(⇤)] = o(⇤a) for688

any a 2 (0, 1] and any suboptimal arm k 6= `. We have �
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Dividing both sides of Eq.(25) by ⇤, and letting ⇤ go to infinity and a go to 1, we have690
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To bound the optimal arm 1’s sample cost, we use the same ⌫ as above and construct another instance691

⌫00. The instance ⌫00’s reward means are the same to ⌫ except for arm 1 whose reward means for692

fidelity m 2M1 are set as µ00(m)
1 = µ(m)

2 + ⇣(m)
� ✏. Then, with similar procedure as the above,693
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E.3 Proof of Theorem D.4695

We first prove a problem dependent regret upper bound as follows and then convert this bound to the696

problem independent regret upper bound presented in Theorem D.4.697

Denote �(M)
k
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k
, and, especially, �(M)

1 = 0.698

Theorem E.1 (Problem-Dependent Regret Upper Bound). For any " > 0. Algorithm 4’s regret is699

upper bounded as follows,700
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Proof of Theorem E.1. By Hoeffding’s inequality, we have701
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That is, the empirical mean µ̂(M)
k

is within the confidence interval (µ(M)
k
� 2�p, µ(M)

k
+ 2�p) with702

high probability.703

Choose any " > e

⇤ . Let K0 = {k 2 K|�(M)
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> "}. Denote pk := min{p : 2�p <
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2 }. From pk’s704

definition, we have the following inequality705
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We also note that the cost of pulling a suboptimal arm k 2 K
0 at highest fidelity M is upper bounded706

as �
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k
, where the factor �

(M)

�(1) is because the budget paying to pull an arm at fidelity707

M can be used to the the arm at fidelity 1 for fractional times.708

The rest of this proof consists of two steps. In the first step, we assume that all empirical means709

are in their corresponding confidence intervals at each phases, and show the algorithm can properly710

eliminate all suboptimal arms in K
0—the arm is eliminated in or before the phase pk. In the second711

step, we upper bound the regret if there are any empirical estimates lying outside their corresponding712

confidence intervals.713

Step 1. If all arms’ empirical means lie in confidence intervals. That is, any suboptimal arm k is714
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where (a) is due to Eq.(27). That is, if this arm k haven’t been eliminated before phase pk, it must be716

eliminated in this phase. Therefore, the total pulling times of this arm k at highest fidelity M is upper717

bounded as follows,718
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where (a) is due to Eq.(27).719
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We then handle the number of times of pulling arms k with �(M)
k

6 " in fidelity M . Although these720

arms’ total pulling times, eliminated in or before phase pk, are also upper bounded by Eq.(28), their721

corresponding phases pk is greater than log2
2
"

and, therefore, cannot be reached. So, these arms’722

(including the optimal arm 1’s) total pulling times in fidelity M is upper bounded by723
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◆
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Therefore, the cost due to pulling arms at fidelity M is upper bounded as follows,724
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After the elimination process, arms with �(M)
k

6 " may remain in the candidate arm set Cp and are725

exploited in turn at fidelity m = 1. As some of them are not the optimal arm, this additional cost can726

be upper bounded as follows,727
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k
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Step 2. There are two cases that some arms are eliminated improperly: for an suboptimal arm k,728

either729

2.1 The suboptimal arm k is not eliminated in (or before) the phase pk, and the optimal arm 1 is730

in Cpk in phase pk; or731

2.2 The suboptimal arm k is eliminated in (or before) the phase pk, and the optimal arm 1 is not732

in Cpk in phase pk.733

Case 2.1’s happening means that arm k is not eliminated in or before phase pk, which can only734

happen when the arm’s empirical mean µ̂(M)
k

lies outside its corresponding confidence interval. This735

event in or before phase pk is with a probability no greater than 2⇥ 22pk�(M)

⇤ . Since this event may736

happen to any suboptimal arm k 2 K
0, then the regret of this case is upper bounded by737
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where (a) is due to Eq.(27).738

If Case 2.2 happens, the optimal arm 1 is not in the candidate arm set Cpk in phase pk. We denote p1739

as the phase that the optimal arm 1 is eliminated, and it is at this phase that some arms’ empirical740

means lie outside their confidence interval so that this mis-elimination happens. The probability of741

this event is upper bounded by 2⇥ 22p1�(M)

⇤ . We assume that arms k with pk < p1 are eliminated in742

or before phase pi properly; otherwise, the regret is counted in Case 2.1. Therefore, the optimal arm743

1 eliminated in phase p1 should be eliminated by an arm k with pk > p1. Consequently, the maximal744

per time slot regret in Case 2.2 is among arms with pk > p1. Denote p" := min{p|2�p < "

2}. We745
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bound the cost of Case 2.2 as follows,746
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where (a) and (c) are due to Eq.(27), and (b) is due to the property of swapping two summations.747

Summing up the costs in Eq.(29), Eq.(30), Eq.(31), and Eq.(32) concludes the proof.748

Next, we derive the problem-independent regret bound from Eq.(26). When ⇤ is large, the O(log⇤)749

and O(⇤) terms dominate other terms in Eq.(26). For any given ", if ⇤ is large enough, we always have750
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regret upper bound as follows,754
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