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Abstract
The ability to perform causal reasoning is widely considered a core feature of in-
telligence. In this work, we investigate whether large language models (LLMs) can
coherently reason about causality. Much of the existing work in natural language
processing (NLP) focuses on evaluating commonsense causal reasoning in LLMs,
thus failing to assess whether a model can perform causal inference in accordance
with a set of well-defined formal rules. To address this, we propose a new NLP
task, causal inference in natural language, inspired by the “causal inference engine”
postulated by Judea Pearl et al. We compose a large dataset, CLADDER, with
10K samples: based on a collection of causal graphs and queries (associational,
interventional, and counterfactual), we obtain symbolic questions and ground-truth
answers, through an oracle causal inference engine. These are then translated into
natural language. We evaluate multiple LLMs on our dataset, and we introduce
and evaluate a bespoke chain-of-thought prompting strategy, CAUSALCOT. We
show that our task is highly challenging for LLMs, and we conduct an in-depth
analysis to gain deeper insights into the causal reasoning abilities of LLMs.1

1 Introduction
Once we really understand the logic behind causal thinking, we could emulate it
on modern computers and create an “artificial scientist”.

— Pearl and Mackenzie [2018]

Causal reasoning is believed to be one of the hallmarks of human intelligence [29, 68]. The ability to
draw causal inferences from available information is crucial for scientific understanding and rational
decision-making: for example, knowing whether smoking causes cancer might enable consumers
to make a more informed decision [17, 18]; assessing the causal effect of a vaccine is essential for
effective policy-making during a pandemic [14, 44, 72, 97]; and understanding the interplay behind
family background, education and income helps devise effective education policies [10, 11, 30, 73].

Our opening quote therefore mirrors the aspirations of many scientists in artificial intelligence
and causal inference: to construct a machine capable of performing sound causal reasoning, and
able to answer causal questions at scale and with ease. Recent advances in large language models
(LLMs) have brought about a paradigm shift in natural language processing (NLP) and artificial
intelligence [7, 15, 39, 56, 76, 103, inter alia]. These transformative developments raise the question
of whether these machines are already capable of causal reasoning: Do LLMs understand causality?

∗Main contributors.
1Our data is open-sourced at https://huggingface.co/datasets/causalNLP/cladder, and our code

can be found at https://github.com/causalNLP/cladder.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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Correct steps to lead to the ground-truth answer: 

Question: Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or
causal relationships: 

Physical vulnerability has a direct effect on the likelihood of fatality and vaccination decision. Vaccination has a direct effect on
the fatality rate.

In the entire population, 50% of the people are vulnerable to a certain disease.
For vulnerable and vaccinated people, the fatality rate is 4%. For vulnerable and unvaccinated people, the fatality rate is 7%.
For strong and vaccinated people, the fatality rate is 1%. For strong and unvaccinated people, the fatality rate is 5.8%.  
Overall, the fatality rate for vaccinated people is 5%, while the fatality rate for unvaccinated people is 4.5%.

Does getting vaccinated increase the likelihood of death?

Ground-Truth Answer: No

1) Parse the causal graph: Confounding

2) Classify the query type: Average Treatment Effect

3) Formulate the query to its symbolic form: 
     E[Y | do(X=1)] - E[Y|do(X = 0)]

4) Collect the available data: 
     P(Z=1)=0.5
     P(Y=1|Z=1,X=1)=0.04, P(Y=1|Z=1,X=0)=0.07
     P(Y=1|Z=0,X=1)=0.01, P(Y=1|Z=0,X=0)=0.058
     P(Y=1|X=1)=0.05, P(Y=1|X=0)=0.045

Y

Z

X

5) Derive the estimand using causal inference:
E[Y | do(X=1)] - E[Y|do(X = 0)]
= \sum_{Z=v} P(Z=z)*[P(Y=1|Z=z,X=1) - P(Y=1|Z=z, X=0)] # remove "do" using
do-calculus
= P(Z=0)*[P(Y=1|Z=0,X=1) - P(Y=1|Z=0,X=0)] 
+ P(Z=1)*[P(Y=1|Z=1,X=1) - P(Y=1|Z=1,X=0)] # turn the expression into terms in
the available data

6) Solve for the estimand by plugging in the relevant data in Step 4:
= 0.5*(0.01 - 0.058)+0.5*(0.04-0.07) # plug in the numbers in the available data
= -0.039
< 0 # the effect size is negative, so the final answer is "No"

Subskill: Causal Relation Extraction

Subskill: Causal Question Classification

Subskill: Formalization

Subskill: Semantic Parsing

Subskill: Formal Causal Inference

CLadder

Subskill: Arithmetics

Figure 1: Example question in our CLADDER dataset featuring an instance of Simpson’s paradox [63]. We
generate the following (symbolic) triple: (i) the causal query; (ii) the ground-truth answer, derived through a
causal inference engine [66]; and (iii) a step-by-step explanation. We then verbalize these questions by turning
them into stories, inspired by examples from the causality literature, which can be expressed in natural language.

Many previous works addressed the above question by focusing on commonsense causality [34, 100,
101], inspired by the literature that explores LLMs as knowledge bases [40, 70, 83] (we refer to this
line of work as causality as knowledge). This involves assessing the alignment between commonsense
knowledge about causal relationships in humans and LLMs. This line of work generally does not focus
on evaluating how well models are capable of causal reasoning. For example, it may be difficult
to rule out the possibility that LLMs perform potentially unreliable amortized causal inference,
answering causal questions by a simple repetition of verbal patterns present in the texts composing
their training data:2,3 in other words, LLMs may just be “causal parrots” [100].

In this work, we introduce a way to test the formal causal reasoning in LLMs. To this end, we
introduce the CLADDER dataset. The specificity of CLADDER is that causal questions posed in
natural language are grounded in symbolic questions and ground truth answers: the latter are derived
through an oracle causal inference engine (CI engine) [66], which abides by the rules of the causal
inference approach described by Pearl [61], based on graphical models and structural causal models
(SCMs) [23, 59, 61, 69, 88]. We compose more than 10,000 causal questions that cover a variety of
causal queries across the three rungs of the Ladder of Causation [3, 66]—i.e., associational (Rung 1),
interventional (Rung 2), and counterfactual (Rung 3). We consider several causal graphs, giving rise
to scenarios which require different causal inference abilities. Additionally, we generate ground-truth
explanations with step-by-step reasoning for more in-depth analysis of LLM behavior. Our symbolic
questions and answers are then verbalized, by turning them into stories which can be expressed in
natural language. To probe whether LLMs employ amortized causal inference, we construct stories
with commonsensical, as well as anti-commonsensical and with nonsensical causal relations: in these
latter cases, amortized causal inference is expected to fail, whereas formal causal reasoning would
still yield the correct answer. An example question from CLADDER is shown in Figure 1.

Exploiting CLADDER, we also introduce a method to elicit sound causal reasoning in LLMs
and help them solve challenging causality questions. Specifically, we develop CAUSALCOT, a
chain-of-thought prompting strategy [96] inspired by the CI engine, which prompts the LLM to
extract the causal graph, causal query, and available “data” (e.g., conditional or interventional do-
probabilities [24]) from the question, formalize them precisely, and perform correct causal inferences.

2which may itself contain instances of fallacious causal reasoning.
3The extent to which this would imply an inaptitude of LLMs for causal reasoning has been questioned [38].
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Our experiments indicate that CAUSALCOT achieves an accuracy of 70.40%, which substantially
improves the performance of vanilla GPT-4 by 8.37 points on CLADDER.

We summarize the main contributions of our work:

1. In contrast to most other works on causality in LLMs, focusing on commonsense causal
knowledge, our goal is to assess the LLMs’ ability to perform formal causal reasoning
(briefly reviewed in Section 2).

2. We introduce CLADDER (Section 3), a dataset containing more than 10K causal questions,
spanning all three rungs of the ladder of causation, several causal graphs, and various stories
for verbalization.

3. We develop CAUSALCOT (Section 4), a chain-of-thought prompting strategy to elicit
formal causal reasoning in LLMs, inspired by the causal inference engine.

4. We perform extensive experiments on eight LLMs (Section 5), analyze fine-grained errors
to showcase the limitations of LLMs in formal causal reasoning, and suggest directions
for future research.

2 Preliminaries on Causal Inference
Our dataset design takes inspiration from the Causal Inference Engine as postulated by Pearl and
Mackenzie [66], see also [59]. We begin with a brief overview of the causality framework by Pearl
et al. [67].4 This framework was largely developed within the field of artificial intelligence, and there-
fore puts particular emphasis on algorithmic aspects of causal reasoning (e.g., [62])—which makes
it particularly suited for our work, where we want to algorithmically generate ground truth answers
to causal queries, without having to appeal to common sense to assess the correctness of an answer.

2.1 The Ladder of Causation
The Ladder of Causation, introduced by Pearl and Mackenzie [66], is a proposed taxonomy, and
hierarchy, of causal inference tasks [3]. It consists of three distinct rungs.

Rung 1 (“seeing”). This describes statistical associations (“How often do I take an aspirin when
I have a headache?”). Rung 1 deals with statistical dependences among random variables, and
involves probabilistic reasoning about joint and conditional distributions, P (X = x, Y = y) and
P (Y = y|X = x), which can be formalised through Bayesian Networks [12, 58] representing a set
of variables and their conditional dependencies via a directed acyclic graph (DAG).

Rung 2 (“doing”). This enables us to formalize the concept of actively intervening in the world, and
modifying it toward some end (“If I take an aspirin now, will my headache subside?”). Interventions
can be formalized using the do-operator [24] and Causal Bayesian Networks [67] to represent, for
example, the distribution over Y when intervening on X to set its value to x as P (Y = y|do(X = x)).

Rung 3 (“imagining”). This rung deals with counterfactual reasoning, i.e., reasoning about alter-
native scenarios in which the world could have been different, possibly even contradicting the factual
state (“Would my headache have subsided, if I had taken an aspirin?”). Counterfactual probabilities
can be written as P (Yx = y), representing the probability that “Y would be y, had X been x”. Reason-
ing about Rung 3 quantities requires the introduction of Structural Causal Models (SCMs) [67]. SCMs
are especially powerful as they enable any quantity in Rungs 1, 2, and 3 to be formulated precisely [3].

2.2 Causal Inference
Identification. Causal inference is especially difficult since we typically only have measurements
from lower rungs, but want to reason about higher ones. A crucial question is then under what
conditions are such inferences possible, i.e., what assumptions and measurements are required
to unambiguously answer a causal query of interest: this is the question of identification. As
argued in [3], “it is generically impossible to draw higher-layer inferences using only lower-layer
information”. One may be able to draw inferences at a higher layer given a combination of partial
knowledge of the underlying SCM, in the form of a causal graph, and data at lower layers. The
graphical structure therefore plays a crucial role in bridging the rungs of the Ladder of Causation, and
many prior works have been dedicated to exploiting properties of the graph to transform higher-rung
queries into expressions which can be estimated based on lower-rung quantities [36, 64, 84].

4We refer to [3, 65] for a comprehensive introduction. See also Appendix C for further details.
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Natural Language Part of the Question Generation

Stories (Variable Name Instantiations)

Formal Part of the Question Generation

Common causal graphs with treatment-effect (X-Y) pairs

Sample a causal graph

~

X Y

Z

X Y

X Y

Collision:

Confounding:

Mediation:

X
YFork:

X
YDiamond:

Sample a query type

~

Rung 1: Association
● Marginal prob.     ● Conditional prob.

Rung 2: Intervention
● ATE     ● Valid adjustment set

Rung 3: Counterfactuals
● Counterfactual prob.     ● ATT 
● NDE     ● NIE

For Commonsensical Confounding Graphs:
● Story 1: X=vaccine, Z=vulnerability, Y=fatality rate
● Story 2: X=drug, Z=gender, Y=recovery
● Story 3: X=treatment, Z=age, Y=recovery

X YChain:

~

: example option to choose

Generate 
available data

... ...

Generate the data s.t.
the estimand is identifiable= ∫Z = z P(Z = z) [E(Y | X = 1, Z = z) -

E(Y | X = 0, Z = z)]

ATE = E[Y| do(X=1)] - E[Y |do(X=0)]
Map to the estimand

Apply do-calculus given the causal graph

Observational:
P(...) = ...

Interventional:
E[...|do(...)] = ...

Sample a degree of alignment
with common sense

● Commonsensical  e.g., smoking causes cancer
● Anti-commonsensical  e.g., smoking affects ear shape
● Nonsensical  e.g., zory affects qixy

Sample a story for
variable name instantiation

... ...

~

Levels of Empirical Alignment Verbalize the
entire question

Figure 2: The data-generating process of the CLADDER dataset. The upper part of the figure describes the
formal part of the question generation, which samples inputs for the CI Engine and derives a ground truth answer.
The bottom part describes the natural language part of the question generation—i.e., its verbalization, based on
multiple stories and different degrees of alignment with commonsense knowledge.

Causal Inference Engine. An overarching objective of this research is the construction of a Causal
Inference Engine (CI Engine) [37, 59, 66], which takes as input a query, a graph, and some available
data (typically from lower rungs than the query); and outputs whether a solution exists, and, if
so, an equivalent expression of the query which is estimable from the available data. While some
previous works refer to the CI engine in the context of Rung 2 queries, where it corresponds to the
do-calculus [36, 84], here we refer to it in a more general sense, encompassing all three rungs.

3 Composing the CLADDER Dataset

Task Formulation. Like in the example of Figure 1, our dataset D := {(qi,ai, ei)}Ni=1 consists
of N triples, each containing a question qi, binary answer ai ∈ {Yes,No}, and an explanation ei.
Our main task is to test the accuracy of the prediction function f : q 7→ a, i.e., a LLM which maps
a natural language causal question to an answer. Apart from directly evaluating the answer, we also
compose the ground-truth explanations e to evaluate the reasoning steps of LLMs.

Design Principles. In the composition of our dataset, we adhere to the following design principles.
First, we ensure broad coverage of all rungs of the ladder of causation. Second, we avoid settings that
involve continuous variables and use binary variables instead: this is partly due to the large availability
of identifiability results for binary and categorical variables, and partly because queries involving
binary variables lend themselves to more natural-sounding verbalization. Moreover, since LLMs strug-
gle with calculation-heavy tasks [32, 91], and we are chiefly interested in causal reasoning abilities,
we focus on graphs with few (three to four) variables, in various common configurations, to produce
questions which are identifiable from the outset. Lastly, we carefully design a rich set of templates
to translate the abstract formulas into grammatically correct and natural-sounding, fluent prompts.

Overall Pipeline. The generation pipeline for CLADDER, depicted in Figure 2, consists of two parts:

1. In the Formal Part (which we illustrate in Section 3.1), we specify all the required inputs (query,
model, data) and the ground truth answer generated by the CI Engine.
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2. In the Natural Language Part (in Section 3.2), we verbalize the formal queries and specification of
the causal model and data by associating them to a story or narrative, using a rich set of templates.

3.1 Formal Part of the Question Formulation
The first step of our data generating process is to construct a set of inputs to the CI Engine such
that by design there exists a well-defined ground truth answer: i.e., we construct triples of causal
queries, graphs, and data such that the query can be unambiguously answered based on the available
data (ensuring identifiability by construction).5 The ground truth causal models, which specify all
quantities which are considered measurable in our questions, are causal Bayesian networks (CBNs),
where each causal mechanism (i.e., conditional probability of a variable given its parents in the
factorization according to the causal graph G) corresponds to a Bernoulli distribution. We compile a
selection of graphs G based on examples drawn from multiple sources from the literature [66, 67,
69, 88], where suitable graph structures are used to illustrate toy problems in causal inference. The
complete list of structures we consider can be found in Appendix A.3; the complete list of sources
in Appendix A.1.

Selecting Query Types. We again draw from the causal inference literature to collect common
query types in each rung. As illustrated in the “Sample a query type” box in Figure 2, for Rung 1, we
can ask about probability distributions such as marginal probabilities and conditional probabilities.
For Rung 2 questions, we can enquire average treatment effects (ATE) (“how will Y change if X
changes from x to x′?”), or what constitutes a valid adjustment set that can block all backdoor
spurious correlations between X and Y . Lastly, for Rung 3, we include counterfactuals (“what
would happen to Y had X been x′ instead of x?”), average treatment effect on the treated (ATT)
(“for the subpopulation whose X changed from x to x′, how does their Y change on average?”),
natural direct effect (NDE) (“what is the direct effect of X in Y , but not through the mediator?”),
and natural indirect effect (NIE) (“what is the effect from X to Y through the mediator?”).

Applying the Causal Inference Engine for the Ground-truth answer. By construction, the causal
processes we define encapsulates all necessary information to make the causal quantities of the query
types identifiable. This allows us to apply the rules of causal inference to obtain an estimand for each
causal graph and query type, and evaluate the estimand to get a ground truth answer. The Rung 2
queries simplify to Rung 1 terms using the rules of do-calculus [59], and, for the Rung 3 queries, we
apply methods of counterfactual causal inference [67] (with details in Appendix C.3). The estimand
also specifies exactly which terms are necessary to include in the prompt as “available data” in order
to ensure that enough information is provided to answer the question correctly (i.e., for identifiability),
provided the correct causal reasoning is applied. Our entire code base of the data generation process
can be found at our GitHub repository, https://github.com/causalNLP/cladder.

3.2 Natural Language Part of the Question Formulation
While Section 3.1 describes a way to generate the ground-truth causal model, query and answers, com-
puted through a causal inference engine, real-world causal reasoning problems are expressed in natural
language rather than symbolic expressions. The next part of the data generation pipeline therefore
focuses on the verbalization of all these components with a plausible narrative in natural language.

Generating the Stories. For each causal graph, we collect a set of two to five stories which consist
of a list of variable names for each node in the graph. The stories are primarily selected from examples
in commonly cited causal inference books and papers (see Appendix A.1), which ensures that the
stories and corresponding causal graph structures adhere to empirical common sense (e.g., the drug-
gender-recovery example of Pearl and Mackenzie [66]). However, it is very likely that at least some
of the stories appear in the training data of many LLMs. Therefore, we also generate various anti-
common sense and nonsensical variants of the stories, meant to isolate the effects of memorization.
For the anti-commonsensical stories, we randomly do one of the actions: (1) replace the effect
variable Y with an unusual attribute, that would not be an effect variable in any of the stories (e.g.,
“ear shape”); or (2) create an irrelevant treatment variable X that does not play a causal role in any of
our commonsensical stories, such as “playing card games” (see Appendix A.7). For the nonsensical
variants, we invent artificial words as variable names such as “zory” and “qixy” (see Appendix A.6). .

5We use the term “data” to denote numerical values of conditional or do-probabilities, and not as collections
of data samples. This is in line with how the term is used in other descriptions of the CI Engine [37, 66].
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Verbalizing the Prompts. The verbalization procedure applies the mapping of symbolic variables
to semantic concepts to form a plausible narrative for the underlying causal process and then translates
the symbolic expressions from the underlying causal process to natural language using carefully
designed templates.

Specifically, we use several different grammatical forms for each semantic concept t in the story to
make the resulting prompt sound natural and grammatically correct. We first have the overall variable
name voverall(t) (e.g., the recovery status), and, then, for each binary value i ∈ {0, 1}, we compose
its noun vnoun(t = i) (e.g., recovery), verb (e.g., to recover), sentence vsent(t = i) (e.g., the patients
recover), noun with attributive clause vattr(t = i) (e.g., patients who recover), and third conditional
vcond(t = i) (e.g., if the patient had recovered).

Using these elements, we first verbalize the causal graph by iterating through each node and its
outgoing edges, using the template “t has a direct effect on CH(t).”, where CH(·) denotes the set of
direct effects (children) of a variable. Then, for the available data d, we verbalize each conditional
probability by “For vattr(tm = i), the probability of vnoun(tn = 1) is p.”, and each marginal
probability by “The overall probability of vattr(t = 1) is p.” Note that our distributions are Bernoulli,
so it is adequate to just introduce the parameter p, which is the likelihood of t = 1. For example, we
generate sentences such as “The overall probability of recovery is 60%.” and “For patients who have
small kidney stones, the probability of recovery is 70%.” Finally, for the query q, we instantiate each
query type in our dataset following our question templates in Appendix A.5 such that the questions
can always be answered with “yes” or “no”.

Generating the Explanations. Apart from the question-answer pairs, we also generate the step-by-
step explanations. Our goal is to provide all intermediate reasoning steps a student of causal inference
would use to answer the questions, so that each necessary subskill necessary for causal inference
can be evaluated individually. We identify the following six subskills: ① causal graph extraction;
② correct query type interpretation; ③ symbolic formalization of the query; ④ semantic parsing to
compile the available data; ⑤ estimand derivation; and ⑥ arithmetic calculation to solve the estimand,
as in the colored boxes in Figure 1. Our explanation e verbalizes all the elements ①-⑥ as sequential
steps using our template in Appendix A.8.

3.3 Dataset Statistics
Our data-generating procedure has the potential to algorithmically generate a vast large number of
questions. In practice, we pick a dataset size that is large enough to be representative, and at the same
time not too large to be problematic given the expensive inference costs of LLMs. We therefore set
our dataset size to be 10K, and report the statistics in Table 1.

The dataset roughly balance across the query types, graph structures, stories, and ground truth answers
(as seen in Figure 3). Note that some causal queries are only compatible with a subset of the graphs,
thereby resulting in a slightly lower representation of those queries (such as the NDE and NIE). More
details on our design choices can be found in Appendix A.4.

Total Rung 1 Rung 2 Rung 3
Size

# Samples 10,112 3,160 3,160 3,792
Question

# Sentences/Sample 6.01 5.88 5.37 6.65
# Words/Sample 80.9 73.43 76.95 90.42
# Nodes/Graph 3.52 3.5 3.5 3.54
# Edges/Graph 3.38 3.3 3.3 3.5

Answer
Positive Class (%) 50 50 50 50

Explanations
# Sentences/Sample 9.11 9.1 8.1 9.96
# Words/Sample 47.95 49.87 32.8 58.97

Table 1: Statistics of our CLADDER dataset v1.5.
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Figure 3: Distributions of
query types in our 10K data.

3.4 Data Quality Check
Our dataset is generated through an algorithmic procedure, which has the following potential benefits:
formal correctness; zero human annotation cost; and, most importantly, controllability—e.g., for
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the question distribution, as well as for making it more unlikely that the data was previously seen
by the model. However, since the dataset is different from common NLP datasets collected from
human natural language writing, we also need to perform additional data quality checks. We therefore
checked for a list of non-formal, natural language properties: grammaticality; human readability;
naturalness/perplexity; and how well humans perform on this task.

For grammaticality, we ran a grammatical error check on our dataset using the LanguageTool
package [51], and got on average 1.26 grammatical errors per 100 words (i.e., 98.74% correctness),
which shows that most of the language in our dataset follows English grammar. For human readability,
we checked how comprehensible the questions are to students who have taken causality courses. We
selected a random subset of 50 questions from the dataset, and let a graduate student annotator go
through the questions to judge whether they could understand them or not: 96% of the questions were
deemed readable. Next, for the naturalness/perplexity score, we used the open-sourced GPT-2 model
and obtained a perplexity score of 21.17 on our dataset, which is substantially lower (i.e., closer to
the distribution of natural human-written text) than the one of MATH [32], a commonly used dataset
of maths questions. Lastly, we conducted a sanity check where one expert evaluator tried to solve a
random sample of 50 questions from the dataset, and we recorded an accuracy of 82% on this task.

4 Our CAUSALCOT Model

Determine the query type.

Formalize the query.

Gather all relevant data.

Extract the causal graph.

Our Causal Chain-of-Thought (CausalCoT) Model:
Guidance: Address the question by following the steps below:

Final answer: No

Step 1

Step 2

Step 3

Step 4

Solution
Phase

Average Treatment Effect (ATE)

P(Z=1)=0.50, P(Y=1|X=0)=0.045, P(Y=1|X=1)=0.05
P(Y=1|Z=0,X=0)=0.07, P(Y=1|Z=0,X=1)=0.058
P(Y=1|Z=1,X=0)=0.04, P(Y=1|Z=1,X=1)=0.01

E[Y|do(X=1)] - E[Y|do(X = 0)] 

= ΣZ=z P(Z=z) [P(Y=1|Z=z,X=1)-P(Y=1|Z=z, X=0)] (Apply backdoor adjustment formula) 

YX

Z

Preparation
Phase

Deduce the estimand using causal inference: Given all the information above, deduce the estimand
using skills such as do-calculus, counterfactual prediction, and the basics of probabilities.

Calculate the estimand: Insert the relevant data in Step 4 into the estimand, perform basic arithmetic
calculations, and derive the final answer.

Based on all the reasoning above, output one word to answer the initial question with just "Yes" or "No".Final Q

Step 5

Step 6

ATE(X) = ... = -0.021 < 0

Question

Figure 4: Illustration of our CAUSALCOT prompting strategy, which designs a chain of subquestions inspired by
the idea of a CI engine [66].

In order to guide LLMs in correctly answering the questions in CLADDER, we draw inspiration
from the ideal functioning of the CI engine [66], which breaks down a causal reasoning problem
into multiple symbolically-grounded, simpler steps. We develop CAUSALCOT, a multi-step causal
chain-of-thought prompt in Figure 4, which combines formal causal reasoning skills with the idea of
chain-of-thought prompting [96] and the use of scratch pads for solving more complicated problems
requiring a long list of steps [55] for LLMs.

We base our prompt design on the multi-step reasoning process of causal inference as shown in
Figure 4, first starting with four preparation steps: ① identifying the causal graph structure; ②
determining the causal query type;6 ③ formulating the query symbolically precisely; and ④ extracting
relevant data from the prompt. Then, given all the information collected in the preparation stage, we
introduce the formal solution: ⑤ correctly deducing the estimand using causal inference techniques;
and finally ⑥ evaluating the estimand to answer the question. This set of steps require both natural
language understanding to parse the question (as in most steps in the preparation phase), as well as
formal causal reasoning to derive the correct estimand (as in the solution phase).

6This step amounts to a multi-class classification problem, where each class is a different causal query.
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We build our CAUSALCOT prompting strategy using GPT-4 [56], a recent autoregressive LLM that
achieves state-of-the-art performance on many tasks. This latest model builds upon the previous series
of general pretrained models (GPT) [7, 76] and adds reinforcement learning with human feedback,
or instruction-tuning [1, 57, 104], to align the model responses to free-form questions with human
preferences. It has achieved human-competitive performance over a list of tasks [8, 43, 54, 56, 105],
among which the more formal tasks unseen in the training data still remain elusive [42, 78, 91].

Given a causal question q, we provide the LLM a list of instructions ℓ := (s1, . . . , s6) consisting
of the detailed descriptions of the six steps s1, . . . , s6 in Figure 4. As the model fLLM : si 7→ ri
autoregressively produces responses r1, · · · , r6 sequentially corresponding to the six steps, we
concatenate all the above before asking the final question “Based on all the reasoning above, output
one word to answer the initial question with just ‘Yes’ or ‘No’.” See the complete prompt in
Appendix B.1. In the end, we obtain the binary answer a ∈ {Yes,No} as the final result.

Compared with the standard strategy of directly prompting the LLMs a question, we impose an
inductive bias upon LLMs by using the causal inference framework, thus incorporating some of
the powerful, principled insights of the causal inference community for NLP tasks. In this way, we
enhance the strong natural language ability of LLMs with formal causal reasoning skills.

5 Testing LLMs with CLADDER

5.1 Experimental Setup
Our empirical investigation focuses on some of the most recent language models. We include the latest
GPT-4 [56] with 1T parameters by the time we conduct the experiments (i.e., gpt-4-1106-preview),
the previous ChatGPT (i.e., GPT-3.5) with 175B parameters, and then a series of earlier models with
instruction-tuning on the 175B GPT-3 (text-davinci-001, -002, and -003) [57]. As baselines, we also
include the non-instruction-tuned GPT-3 (davinci). We use the OpenAI API with temperature 0 when
querying these models. We also include open-source, more efficient models like LLaMa [93] and its
instruction-tuned version Alpaca [92], both with the same number of parameters, 6.7B.

5.2 Main Results

Overall Acc. Acc. by Rung Acc. by Commonsense Alignment
1 2 3 Comm. Nonsens. Anti-C.

Random 49.27 50.28 48.40 49.12 49.01 49.69 49.12
LLaMa 44.03 48.23 29.46 52.66 45.14 44.22 42.67
Alpaca 44.66 52.03 29.53 51.13 44.86 44.40 44.77
GPT-3 Non-Instr. (davinci) 49.92 50.00 49.75 50.00 49.06 49.97 50.72
GPT-3 Instr. (text-davinci-001) 51.40 51.30 52.63 50.47 54.31 50.13 50.05
GPT-3 Instr. (text-davinci-002) 53.15 50.85 56.96 51.90 55.33 52.47 51.81
GPT-3 Instr. (text-davinci-003) 56.26 51.11 62.97 54.96 56.83 54.79 57.49
GPT-3.5 52.18 51.80 54.78 50.32 54.09 50.68 52.09
GPT-4 62.03 63.01 62.82 60.55 62.27 63.09 60.47
+ CAUSALCOT 70.40 83.35 67.47 62.05 69.25 71.58 70.12

Table 2: Performance of all models on our CLADDER dataset v1.5. We report the overall accuracy (Acc.), and
also fine-grained accuracy by rung, and by degree of commonsense alignment, from commonsensical (Comm.),
nonsensical (Nonsens.), to anti-commonsensical (Anti-C.).

We compare the performance of all models in Table 2. First, we can see that the causal reasoning task
in CLADDER is in general very challenging for all models. Models such as the earlier, non-instruction-
tuned GPT-3, and both LLaMa and Alpaca are around random performance. With instruction-tuning,
models start to show some improvement. And amongst all, our CAUSALCOT achieves the highest
performance of 70.40%, which is substantially better than the vanilla GPT-4 by 8.37 points. Moreover,
CAUSALCOT also achieve the best performance across all three rungs of causal questions, with a
monotonically decreasing performance as the rungs get higher, i.e., the questions get more difficult.
See Appendix D for experiments on our earlier dataset v1.0.

5.3 Isolating the Effect of Data Contamination
A well-known problem with evaluating LLMs on question-answering tasks is the data contamination
problem, i.e., that LLMs perform well on a test set because the test set is (unintentionally) contained
partially or even entirely in the training data [7, 56]. We address this problem by creating not only the
commonsensical subset of our dataset, but also anti-commonsensical and nonsensical, both of which,
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by construction, are very likely not in the training data of LLMs. From the accuracy by commonsense
alignment degree in Table 2, we can see the original GPT-4 model performs the worst on the anti-
commonsensical subset (1.8 points lower than that on the commonsensical subset). However, our
CAUSALCOT enhances the reasoning ability across all levels, with substantial improvement on
anti-commonsensical data by 9.65 points, highlighting the strength of CAUSALCOT on unseen data.

5.4 Error Analysis by Subquestions

Step ① Step ② Step ③ & ⑤ Step ④ Step ⑥
Node Edge Dist. (↓) Overall F1 Rung 1 Rung 2 Rung 3 Estimand F1 Arithmetic
99.34 97.01 1.69 50.65 69.99 59.14 42.12 53 47.53 99

Table 3: Performance for each step in CAUSALCOT. For Step ①, we report the F1 score of node prediction, edge
prediction, and also the graph edit distance (Dist.) with the true graph. See more details in Appendix E.1.

We conduct a fine-grained error analysis by looking into the performance of different steps of
CAUSALCOT in Table 3.7 We can see that the model is good at Step ① to extract causal graph
G, achieving high F1 scores for predicting both the nodes and the edges correctly, although not
perfect, still leaving a graph edit distance of 1.69 between the ground truth causal graph and the
model-identified graph. The other steps are more challenging for the model. Among those, Steps
②, ③ and ⑤ require careful and correct application of causal inference, where the model struggles.
This reveals a notable weakness of current LLMs to perform formal causal reasoning, which is an
important direction for future work on improving and enhancing LLMs. To better understand the
reasoning abilities of LLMs, we also perform an extensive analysis taking the entire reasoning chain
of our CAUSALCOT and the ground-truth explanations, to produce 20 fine-grained scores about
the multi-step reasoning quality using the ROSCOE framework [25], and show detailed results in
Appendix E.2.

5.5 Effect of In-Context Learning
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Figure 5: Heatmap showing the
how helpful each query type is to
solving subsequent query types.

As an additional analysis, we look into the effect of in-context learn-
ing (ICL) by providing an example solution before asking the ques-
tion. The interesting question to us is whether models can generalize
across different query types. Namely, we keep our CAUSALCOT
framework, and prepend a reasoning example of query type i, and
then calculate how much improvement it can bring when models
answer new questions of query type j. In Figure 5, we can see that
conditional probability and NIE are the questions that benefit the
most from ICL, and showing examples of marginal probability and
ATT are among the most helpful to all questions in general.

6 Related Work
Skill evaluation for LLMs. Our work may be seen as part of the literature aimed at evaluating the
performance of current LLMs [7, 15, 56, 76, 103, inter alia], focusing on understanding their strengths
and weaknesses. Various studies into the capabilities of LLMs [8, 39, 56, 74] change people’s
perception of domains such as education [2, 80], medicine [54, 87], law [43], and computational
social science [105]. However, most work evaluates new models on existing datasets from previously-
curated large-scale benchmarks [89, 94, 95], or human exams [41, 43, 56] which is becoming
increasingly unreliable due to training set contamination.

Causality-related skills for NLP. With the increasing attention on LLMs and causality [100, 101],
we review several formulations of causality-related skills for NLP, which we summarize into (1)
causality as knowledge, (2) causality as language comprehension, and (3) causality as reasoning. In
the causality-as-knowledge line of work, many existing studies investigate how well NLP models
understand commonsense causality, such as the cause and effect of an agent’s action [81], motivation
and emotional reaction in a social context [82], correspondence of a set of steps with a high-level
goal [102], development of a story given a different beginning [75], and how in general LLMs serve
as a knowledge base of causality [100]. Concurrent work [45] focuses on evaluating LLMs on
various causality related tasks by leveraging the conceptual knowledge accrued from the training

7We experienced some rate-limiting in the fine-grained analysis of LLMs that are only accessible through a
web API. As a result, we occasionally had to evaluate on a subset of 2K random samples.
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data, rather than formal causal inference, except for their causal sufficiency analysis which is close
to our counterfactual questions. Importantly, most work in this line does not define explicit causal
graphs, making it difficult to quantitatively define the ground-truth causal relationships in a principled
way. The causality-as-language-comprehension line of work stems from traditional linguistic studies
on causal connectives and causal language usage [9, 90, 99], to the recent causal relation extraction
[4, 33, 98] to identify cause-effect pairs as a subtask of information extraction from text.

Finally, for causality as formal reasoning, our CLADDER work formulates the task of causal infer-
ence for NLP, and our other work, CORR2CAUSE [42], addresses the causal discovery problem to
infer causation from correlation. Together, they cover the two major branches of causal reasoning
investigated in existing technical literature on causality. See a comprehensive comparison of literature
in Appendix F.

7 Discussion of Limitations and Future Work
A Natural Language “Mini Turing Test” for Causality. Pearl and Mackenzie [66] describe an
ideal “mini-Turing test” to assess understanding of causal inference, and argue that if a machine can
answer all possible questions correctly, then it “understands” causality. According to the authors, this
is because there are no possible shortcuts when you consider all possible combinations of queries,
graphs and data in this ideal test: due to their combinatorial explosion, the machine can only answer
all questions right if it correctly applies causal reasoning. From this point of view, our work constitutes
a first step towards a mini-Turing test formulated in natural language. However, we cover only some
of the commonly studied causal queries spanning all three rungs. Future work may extend this to
further queries, such as, e.g., path-specific effects other than NDE and NIE [52], thereby increasing
the number of potential questions and moving closer to the ideal test.

LLMs and Causal Reasoning. It has been claimed that LLMs understand causality well (e.g., [45]
report high performance, such as 97% and 92%). In contrast, our work suggests that LLMs may
still be far from reasoning reliably about causality (reaching only 60+% on CLADDER). As argued
in Section 1, we believe that investigating this aspect may be of particular importance, since causal
inference is crucial in many policy-relevant scenarios, where reliable AI systems could assist decision-
making: from epidemiology [22, 79] to economics [10, 37] to fairness [47, 71]. Testing the abilities of
these systems in semi-realistic scenarios is therefore crucial, motivating some of the design choices in
our dataset: e.g., the example in Figure 1 was inspired by similar questions which arose in the context
of the COVID-19 pandemic, where incorrect causal reasoning resulted in a fallacy where vaccinations
were considered to be harmful instead of beneficial [20, 49]. Further work may be dedicated to making
the questions and verbalizations even closer to realistic instances of causal inference problems.

A CI Engine Plug-in for LLMs. An interesting direction for future research could be to provide
the LLM access to an actual implementation of the CI engine. For example, Davis and Aaronson [13]
tested the improvement of math abilities in LLMs augmented with plug-ins (i.e., external modules
that extend the model’s capabilities by adding specific functionality or customizing its behaviour for
particular tasks, like a calculator), suggesting that they significantly enhance the model’s ability to
solve these problems. However, even with plug-ins, there are still often “interface” failures: that
is, “[the LLM] often has trouble formulating problems in a way that elicits useful answers from the
plug-ins”. We hypothesise that something similar would happen for causal inference: even once
suitable plug-ins are built, the language-to-tool interface may still be a non-trivial research question.

8 Conclusion
We proposed formal causal reasoning as a new task to evaluate LLMs, and created the CLADDER
benchmark, covering several aspects of causal inference across all rungs of the ladder of causation
and verbalizations involving semi-realistic scenarios. To address the task, we proposed a prompting
strategy, CAUSALCOT, inspired by the principles of formal causal inference, which introduces
multistep chain-of-thought reasoning for causal questions. Extensive experiments indicate that this
dataset is highly challenging, thus offering a principled tool to gain a better understanding of the
reasoning abilities of LLMs and to develop better models for causal reasoning in natural language.
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A Supplementary for Dataset Generation

A.1 List of References for Causal Inference
When collecting the causal graphs, query types, and commonsensical stories for our dataset, we took
our examples from the following books (sorted by year):

1. Causality [67]
2. Causal inference in statistics: A Primer [23]
3. Elements of Causal Inference [69]
4. The Book of Why [66]
5. Introduction to Causal Inference [53]

And the following papers:

1. Causes and Explanations: A Structural-Model Approach. Part I: Causes [27]
2. Causes and Explanations: A Structural-Model Approach. Part II: Explanations [28]
3. Causality and Counterfactuals in the Situation Calculus [35]
4. Causal inference in statistics: An overview [60]
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Figure 6: List of all ten causal graphs with treatment-effect pairs (CGTEs). We omit CGTEs that trivially
resemble existing ones.

A.2 Formulation of the Query Types
Here, we introduce all the query types included in our dataset.

Rung-1 Queries: Marginal and Conditional Probabilities. For marginal probabilities, we ask
questions about the overall distribution of a variable. For conditional probabilities, we ask whether
conditioning on one variable increases or decreases the likelihood of another variable. For the
explaining away questions, we condition on a collider node and ask how that affects the correlation
between the two parents.

19



Rung-2 Queries: ATE and Adjustment Set. For ATE questions, we ask whether the treatment
(X = 1) increases or decreases the likelihood of the effect variable Y = y. For adjustment set
questions, we ask whether a set of variables should be adjusted for when estimating the causal
effect between treatment and effect. By adjusting, we aim to blocked the non-causal paths from the
treatments to effect, and hence eliminate spurious correlation. For example, to query whether the set
gender is an adjustment set for the effect of a treatment on recovery, we ask "To estimate the effect
of the treatment on recovery, should we directly look at how the treatment correlates with recovery,
or should we look at gender-specific correlation?" In the collider bias questions, similarly to the
explaining away questions, we condition on a collider variable and ask about how an intervention on
one of the parents (treatment X) affects the other parent (outcome Y ). However since by construction
X and Y do not have common causes, the answer to this question is always “no”.

Rung-3 Queries: Counterfactual Probability, ATT, NDE, and NIE. For counterfactual probabil-
ity, we ask about what would have been the likelihood of Y = y, if the treatment variable X had been
x, given sufficient evidence e such that the query is identifiable. For ATT, we ask how the likelihood
of Y = y would change for those who received treatment (X = 1) if there had been no treatment
(X = 0). For NDE, we ask whether the X = 1 directly increases or decreases the likelihood of the
Y = y, not through any mediators. For NIE, we ask whether the treatment (setting X = 1) increases
or decreases the likelihood of Y = y through mediators, not directly.

A.3 Collection of Causal Graphs
We include all the ten causal graphs with treatment-effect pairs (CGTEs) in Figure 6.

Note that one causal graph can have several different CGTEs, such as the confounding structure,
which has three CGTEs: confounding, mediation, and collision in the triangle form. To generate all
the causal graphs and CGTEs here, we iterate all commonly used ones within four nodes in the CI
books, and omit CGTEs whose solution by CI methods trivially resembles existing ones.

A.4 Data Coverage
Starting from the full set of 12 distinct causal graphs and 10 query types, there are a few combinations
that must be omitted as the ground truth answer would be trivial or ill-defined. For example, in the
“Immorality” graph, the treatment “X” and outcome “Y” are by construction statistically independent,
so there correlation is necessarily 0. Similarly, there are several graphs where certain causal queries
are ill-defined or don’t make sense to ask. Specifically:

1. For the Natural Direct Effect, we only include questions on the “IV”, “Arrowhead”, “Con-
founding”, “Mediation” and “DiamondCut” graphs.

2. For the Natural Indirect Effect, we only include questions on the “Mediation”, “Frontdoor”,
“Arrowhead”, “Diamond” and “Chain” graphs.

3. For the Collider Bias and Explaining Away effect, we only include questions on the “Colli-
sion” graph.

4. For the Average Treatment Effect, we include questions on all graphs except “Collision”.
5. For the (deterministic) Counterfactuals, we include questions on all graphs except “Colli-

sion”.
6. For the Average Treatment Effect on the Treated (ATT), we include questions on all graphs

except “Collision” and “IV”.

The “balanced” benchmark (main benchmark in v1.5), containing 10,112 questions split between all
stories, graphs, query types, and commonsensicalness, is balanced such that there are roughly the
same number of questions for each distinct story-graph-query combination (ranging from 50-100
per combination) across the different variants: commonsense, anticommonsense, and nonsense.
Furthermore, we balance the distribution of correct answers so that there are the same number of
“yes”s and “no”s.

The “aggregate” variant (main benchmark in v1.0) contains 10,560 questions and is primarily
balanced across all stories. However since the number of stories for each variant (commonsense,
anticommonsense, and nonsense) varies significantly, the results in an unbalanced benchmark in
terms of sensicalness.
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A.5 Query Form and Text Templates
We provide in Table 4 the text templates we use for each query type.

Query Type Symbolic Expres-
sion

Natural Language Question Template

Rung 1: Association
Marg. Prob. P (Y ) Is the overall likelihood of {vnoun(X = 1)} greater than

chance?
Cond. Prob. P (Y |X) Is the chance of {vnoun(Y = 1)} larger when observing

{vnoun(X = 1)}?
Rung 2: Intervention
ATE E[Y |do(X = 1)]−

E[Y |do(X = 0)]
Will {vnoun(X = 1)} increase the chance of {vnoun(Y = 1)}?

Adjust. Set If S opens a back-
door path

To understand how {voverall(X)} affects {voverall(Y = 1)},
should we look directly at how {voverall(X)} correlates with
{voverall(Y )} in general, or this correlation case by case accord-
ing to {voverall(S)}?

Rung 3: Counterfactuals
Counterf. Prob. P (Yx = y) Can we infer that {vsent(Y = 1)} had it been that {vcond(X =

1)} instead of X=0?
ATT E[Y1 − Y0|X = 1] For {vattr(X = 1)}, would it be more likely to see {vnoun(Y =

1)} {vcond(X = 0)}?
NDE E[Y1,M0 − Y1,M0 ] If we disregard the mediation effect through {voverall(Y = 1)},

would {vnoun(X = 1)} still positively affect {vnoun(Y = 1)}?
NIE E[Y0,M1 − Y0,M0 ] Does {voverall(X)} affect {voverall(Y )} through

{voverall(OtherVars)}?
Table 4: Example natural language templates for each query type.

A.6 Nonsensical Stories
To come up with a collection of nonsensical variable names, we use GPT-4 to generate some
meaningless words. Specifically, we use the prompt: “Create 100 non-existent words that are
short, i.e., within 5-characters.”, with temperature=0 with the OpenAI interface. The collection of
nonsensical words we later use as variable names are as follows: ziblo, truq, fyze, glimx, jorv, wexi,
snov, yupt, kraz, qixy, vubr, chiz, pliv, moxa, fygo, rukz, tasp, xevo, jyke, wibl, zorf, quzy, nyrp,
gwex, smez, vytz, hupx, cwoj, lirf, ovka, pexu, yigz, twaz, kwox, zuph, fraq, jyxo, swoy, uvzi, nekl,
gyzp, rixq, vwem, xyfu, blyz, qwip, zeku, tijv, yomx, hwaz, czix, plof, muvy, fyqo, rujz, tasb, xevi,
jyka, wibm, zorx, quzw, nyro, gwet, smeu, vyta, hupz, cwoi, lirg, ovki, pexy, yigw, twac, kwoz, zupj,
fraq, jyxi, swoq, uvzo, nekm, gyzl, rixw, vwen, xyfo, blyx, qwiu, zeky, tijw, yomz, hwax, czir, ploz,
muvq, fyqi, rujx, tasn, xevu, jyko, wibp, zory, and quzt.

A.7 Anti-Commonsensical Stories
For the anti-commonsensical stories, we randomly do one of the actions:

1. Replace the effect variable Y with an attribute that would not be an effect variable in any of
the stories. Such replacement variables include: “lip thickness”, “earthquakes”, “lactose
intolerance”, “rainfall”, “is allergic to peanuts”, “brown eyes”, “curly hair”, “black hair”,
“foot size”, “freckles”

2. Create an irrelevant treatment variable X that does not play a causal role in any of our
commonsensical stories. Such as: “can swim”, “is religious”, “has a brother”, “has visited
England”, “likes spicy food”, “is vegetarian”, “speaks english”, “drinks coffee”, “plays card
games”, “listens to jazz”, “solar eclipse”, “has a sister”, “full moon”

To transform a commonsensical story into an anti-commonsensical story, we apply one of these
replacements sampled uniformly, resulting in stories such as:

• Ability to swim has a direct effect on studying habit and exam score. Studying habit has a
direct effect on exam score.

• Gender has a direct effect on department competitiveness and peanut allergy. Department
competitiveness has a direct effect on peanut allergy.
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• Liking spicy food has a direct effect on relationship status. Appearance has a direct effect
on relationship status.

• Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect
on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved.

For a full list of the replacements and how the replacements are made, check out the code.

A.8 Explanation Template
Step ① Extract the causal graph: The causal graph expressed in the context is: "G".

Step ② Identify the query type: The query type of the above question is "query_type".

Step ③ Formulate the query to its symbolic form: The formal form of the query is
"symbolic_expression".

Step ④ Collect all the available data: The available data are: "d".

Step ⑤ Derive the estimand: Based on the graph structure and causal query, the question
can be simplified into estimand "est".

Step ⑥ Solve for the estimand: Plug in the available data "d" into "est".
est(d)
≈ float(a)

Since the estimate for the estimand is float(a), the overall answer to the question is bool(a).

B Experimental Details

B.1 CAUSALCOT Prompt
Q: [question from the dataset]

Guidance: Address the question by following the steps below:

Step 1) Extract the causal graph: Identify the causal graph that depicts the relationships in the scenario.
The diagram should simply consist of edges denoted in "var1 -> var2" format, separated by commas.

Step 2) Determine the query type: Identify the type of query implied by the main question. Choices
include "marginal probability", "conditional probability", "explaining away effect", "backdoor ad-
justment set", "average treatment effect", "collider bias", "normal counterfactual question", "average
treatment effect on treated", "natural direct effect" or "natural indirect effect". Your answer should
only be a term from the list above, enclosed in quotation marks.

Step 3) Formalize the query: Translate the query into its formal mathematical expression based on its
type, utilizing the "do(·)" notation or counterfactual notations as needed.

Step 4) Gather all relevant data: Extract all the available data. Your answer should contain nothing
but marginal probabilities and conditional probabilities in the form "P(...)=..." or "P(...|...)=...", each
probability being separated by a semicolon. Stick to the previously mentioned denotations for the
variables.

Step 5) Deduce the estimand using causal inference: Given all the information above, deduce the
estimand using skills such as do-calculus, counterfactual prediction, and the basics of probabilities.
Answer step by step.

Step 6) Calculate the estimand: Insert the relevant data in Step 4 into the estimand, perform basic
arithmetic calculations, and derive the final answer. There is an identifiable answer. Answer step by
step.

A: [LLM previous response]

Q: Based on all the reasoning above, output one word to answer the initial question with just "Yes" or
"No".
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A: [LLM final answer]

C Additional Technical Background for Preliminaries
C.1 Graphical Models
We adopt the causal inference framework described in [61]. A causal graph G := (V ,E) consists
of a set of k vertices V : {V1, . . . , Vk} and directed edges E := {eij}, where the existence of
each eij means that there is a direct causation from Vi to Vj , also denoted as Vi → Vj . We also
introduce some notations to describe the relative positions among the nodes. Following a standard
assumption in causality (but see, e.g., [6]), we will assume that G is a direct acyclic graph (DAG),
where we denote the parents of a node Vi as PA(Vi) := {Vj |eij ∈ E}. We denote descendants
DE(Vi) := {Vj |Vj → · · · → Vi ∈ E} of a node Vi as all the nodes that have at least one direct
path leading to a node. We call a node Vk as a confounder (i.e., common cause) of the other two
nodes Vi and Vj if eki, ekj ∈ E; a collider (i.e., common effect) if eik, ejk ∈ E; and a mediator if
eik, ekj ∈ E.

Among all the variables in V , we use X and Y to denote two special variables, the treatment and
effect, respectively.

C.2 Illustration of the Three Rungs of the Causal Ladder
In Figure 7, we illustrate the difference among the three rungs by enumerating what actions are
performed on the variables other than target variables X and Y .

YZ
X
W

Rung 2. Intervention Rung 3. Counterfactuals

YZ
X

W

Rung 1. Association

YZ W

NY

NW
NZ

NX

X

do(X)

(b) Backdoor path through
the confounder Z

Direct intevention on X
 cuts off all its parents

Average over all the non-descendants
of X to get P(Y | do(X)).

To completely isolate the effect of X, we 
look at the counterfactual P(Yx' | X=x).
Namely, we infer all non-descendants 
of X as if X were still the original value x.

(a) Direct causation path

The correlation of X and Y, i.e., P(Y|X), flows
through all undirected paths: Force X to be the

counterfactual value x'

Figure 7: The Causal Ladder consists of three rungs: association, intervention and counterfactuals. We color in
blue the treatment X and effect Y , as well as the actions on X . We color in orange words about how to get the
estimand, and we use the orange circle to include all the non-descendants of X .

C.3 Causal Inference Methods
We introduce do-calculus which can downgrade the Rung-2 queries to Rung-1 quantities when it is
applicable, and counterfactual predictions which downgrade the Rung-3 queries.

C.3.1 Do-Calculus
Do-Operator as a Notation As mentioned in Rung 2, the do-operator is a convenient notation to
represent an intervention on a variable. For example, do(X = x) sets the value of variable X to x.

Three Inference Rules for Climbing the Ladder Do-calculus is a set of rules that allows us to
answer higher-rung questions using lower-rung quantities, such as probability distributions of Rung 1.
Given a causal graphical model with and four disjoint sets of variables X , Y , Z, and W , and a joint
probability distribution that is Markov and faithful to the graph, do-calculus contains the following
three rules:

Rule 1 (Insertion/deletion of observations):

P (Y |do(X), Z,W ) = P (Y |do(X),W ) , (1)

if Y and Z are d-separated by X ∪ W in G∗, the graph obtained from G by removing all arrows
pointing into variables in X .

Rule 2 (Action/observation exchange):

P (Y |do(X),do(Z),W ) = P (Y |do(X), Z,W ) , (2)
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if Y and Z are d-separated by X ∪ W in G†, the graph obtained from G by removing all arrows
pointing into variables in X and all arrows pointing out of variables in Z.

Rule 3 (Insertion/deletion of actions):
P (Y |do(X),do(Z),W ) = P (Y |do(X),W ) , (3)

if Y and Z are d-separated by X ∪W in G‡, the graph obtained from G by first removing all arrows
pointing into variables in X (thus creating G∗) and then removing all arrows pointing into variables
in Z that are not ancestors of any variable in W in G∗.

These rules are sound and complete [85]. Namely, iff we have all the terms on the right hand side,
then the causal term on the left hand side is identifiable.

Example Application of Do-Calculus Taking the example in Figure 2, g1 maps the query type
ATE to its symbolic expression E[Y |do(X = 1)]− E[Y |do(X = 0)].

Next, g2 further simplifies the estimand given the confounding graph, as in the flow chart in the
middle of Figure 2:

ATE := E[Y |do(X = 1)]− E[Y |do(X = 0)] (4)

=
∑
z

P (Z = z)[E(Y |X = 1, Z = z)− E(Y |X = 0, Z = z)] , (5)

which which resolves all the do(·) terms to probability terms. This example shows the famous
backdoor adjustment in do-calculus [59].

C.3.2 Three Steps for Counterfactual Prediction
Given a SCM M , distribution on the exogenous variables P (u), and evidence e from the model
⟨M,P (u)⟩, the probability of the counterfactual "if X had been x then Y would have been y, given
we observed e,” denoted P (Yx = y|e), can be evaluated using the following three steps [67]:

Abduction: Update the probability distribution P (u) by the evidence e to obtain P (u|e)
Action: Modify M by the action do(X = x), i.e. replace X with X = x in the structural equations,
to obtain the modified SCM Mx

Prediction: Use the modified model ⟨Mx, P (u|e)⟩, to compute the probability of Y = y.

D Previous Results on CLADDER v1.0
D.1 Dataset Statistics for v1.0

Total Rung 1 Rung 2 Rung 3
Size

# Samples 10,560 3,288 3,288 3,984
Question

# Sentences/Sample 6.85 6.00 7.00 7.25
# Words/Sample 94.47 76.41 96.84 103.42
# Nodes/Graph 3.54 3.54 3.55 3.54
# Edges/Graph 3.44 3.41 3.43 3.46

Answer
Positive Class (%) 50 50 50 50

Explanations
# Sentences/Sample 13.11 12.04 13.76 13.83
# Words/Sample 146.82 141.88 147.88 151.30

Table 5: Statistics of our CLADDER data v1.0.
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Marg. Prob.

ATE

Adjust. Set

Figure 8: Distributions of
query types in our dataset
v1.0.

Our data-generating procedure has the potential to algorithmically generate very large amounts of
questions. In practice, we pick a dataset size that is large enough to be representative, and at the same
time not too large to be problematic given the expensive inference costs of LLMs. We therefore set
our dataset size to be 10K. We report the statistics of our dataset in Table 5.

The dataset roughly balanced across the query types, graph structures, stories, and ground-truth
answers (as seen in Figure 8). Note that there are some slight adjustments such as more samples for
ATE because it allows us to test various techniques, including backdoor and front door adjustments.
More details on our design choices can be found in Appendix A.4.
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D.2 Main Results on v1.0

Overall Acc. Acc. by Rung Acc. by Empirical Alignment
1 2 3 Anti-C. Nonsens. Comm.

Random 49.27 50.28 48.40 49.12 49.69 49.01 49.12
LLaMa 45.22 63.33 31.10 41.45 45.31 45.21 45.12
Alpaca 45.54 63.33 31.57 41.91 45.94 45.21 45.49
GPT-3 Non-Instr. (davinci) 47.42 63.88 32.99 44.89 47.0 48.28 46.97
GPT-3 Instr. (text-davinci-001) 57.07 63.95 63.63 48.04 59.12 57.81 54.28
GPT-3 Instr. (text-davinci-002) 56.24 46.03 69.55 55.04 54.75 59.65 54.31
GPT-3 Instr. (text-davinci-003) 62.69 58.0 80.83 54.52 63.93 62.09 62.05
GPT-3.5 (queried in May 2023) 61.71 65.12 69.9 54.11 65.43 55.15 64.55
GPT-4 (queried in May 2023) 64.28 53.94 81.87 63.11 65.75 60.87 66.21
+ CAUSALCOT 66.64 61.67 86.13 58.23 69.32 63.02 67.60

Table 6: Performance of all models on our CLADDER dataset v1.0. We report the overall accuracy (Acc.), and
also fine-grained accuracy by rung and by empirical alignment.

We compare the performance of all models in Table 6. First, we can see that the causal reasoning
task in CLADDER is in general very challenging for all models. And models such as the earlier,
non-instruction-tuned GPT-3 and both LLaMa and Alpaca are no better than random performance.
With instruction-tuning, models start to show some improvement. And amongst all, our CAUSALCOT
achieves the highest performance of 66.64%, which is 2.36 points better than vanilla GPT-4.

Moreover, from the accuracy by empirical alignment level in Table 6, we can see that the original
GPT-4 model performs the best on commonsensical data, but 5.34 points worse on nonsensical
data. However, our CAUSALCOT enhances the reasoning ability across all levels, with substantial
improvement on anti-commonsensical data and nonsensical data, indicating that CAUSALCOT is
particularly beneficial on unseen data.

D.3 Ablation Study on v1.0

Acc.
CAUSALCOT 66.64
w/o Step ① 64.54
w/o Step ② 63.74
w/o Step ③ 63.43
w/o Step ④ 64.47

Table 7: Ablation study.

We conduct an ablation study for our multi-step CAUSALCOT. We ablate
each of the four subquestions, and observe in Table 7 that classifying the
query type and formalizing it has the most effect on the model’s perfor-
mance, which might be because that they are the crucial formalization
step in order to do the causal inference correctly. Meanwhile, removing
Steps ① and ④, which are mostly about parsing the prompt correctly,
have the least impact on performance.

E More Experiments

E.1 Details of Our Error Analysis
For Step 2 about the query type prediction, we report the overall F1 classification score, and also
F1 by rungs. For the rest of the steps, we manually annotate the correctness of 100 samples of
CAUSALCOT. We report the correctness of est by accuracy, and the correctness of the predicted set
of available data by taking the F1 with the ground-truth d. For Step 5, we report the accuracy of
whether the model simplifies the estimand correctly to est′ using causal inference, and also arithmetic
correctness (Arith.).

E.2 ROSCOE Evaluation
We employed the ROSCOE suite of evaluation metrics on step-by-step text reasoning, as introduced
by [25], to automate the evaluation of the outputs from CAUSALCOT on 2,000 randomly sampled
questions from our dataset. Differing from conventional metrics, ROSCOE is specifically designed
to scrutinize the quality of large language model outputs, focusing on aspects such as semantic
consistency, logicality, informativeness, fluency, and factuality, all evaluated within the context of
step-by-step reasoning, rather than solely the final response. This allows for a more objective and
comprehensive assessment of a model’s output, greatly aiding in the verification of its interpretability.
The results of this evaluation can be found in Table 8 and Figure 9. We consider the model’s
performance as unsatisfying if it falls out of the top quantile, namely receiving a score s ∈ [0, 1]
smaller than 0.25 when the score should be minimized, or greater than 0.75 when it should be
maximized.
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We can see in the plot that the good-performing aspects are faithfulness to the original question,
reasoning alignment with the ground truth, and absence of external hallucinations, which are consis-
tently within the top quantile. This suggests that the model carries out accurate reasoning within the
constraints of the fictitious world introduced in each question.

However, there are some performance dips in redundancy, perplexity chain, and missing step metrics.
The first two could potentially be attributed to complex elements such as graph notation, while the
relatively lower “missing step” score warrants further investigation. Despite these observations, this
analysis largely aligns with our qualitative understanding of the models’ good response ability in
answering causal questions in our dataset.

Mean Std Min 25% 50% 75% Max
Faithfulness 0.89 0.02 0.83 0.88 0.89 0.90 0.93
Informativeness Step 0.88 0.01 0.83 0.87 0.88 0.89 0.92
Informativeness Chain 0.88 0.03 0.76 0.87 0.89 0.90 0.96
Faithfulness Word 0.95 0.01 0.92 0.94 0.95 0.96 0.97
Repetition Word 0.02 0.02 -0.00 0.00 0.02 0.04 0.05
Repetition Step 0.02 0.01 -0.00 0.00 0.01 0.03 0.06
Reasoning Alignment 0.92 0.01 0.86 0.91 0.92 0.93 0.95
External Hallucination 0.97 0.02 0.84 0.96 0.97 0.98 0.99
Redundancy 0.80 0.05 0.56 0.77 0.80 0.83 0.92
Common Sense Error 0.95 0.01 0.86 0.94 0.95 0.96 0.98
Missing Step 0.78 0.03 0.58 0.76 0.78 0.80 0.88
Semantic Coverage Step 0.99 0.01 0.95 0.98 0.99 0.99 1.00
Semantic Coverage Chain 0.98 0.01 0.93 0.98 0.98 0.99 0.99
Discourse Representation 0.06 0.13 0.00 0.01 0.01 0.05 0.67
Coherence Step Vs Step 0.14 0.27 0.00 0.00 0.01 0.07 0.94
Perplexity Step 0.02 0.01 0.00 0.02 0.02 0.03 0.07
Perplexity Chain 0.17 0.07 0.05 0.11 0.17 0.23 0.42
Perplexity Step Max 0.00 0.00 0.00 0.00 0.00 0.01 0.02
Grammar Step 0.93 0.04 0.77 0.90 0.93 0.96 0.99
Grammar Step Max 0.53 0.35 0.02 0.12 0.65 0.85 0.99

Table 8: Statistics of ROSCOE scores evaluated on answers from CAUSALCOT on 2,000 randomly sampled
questions from our dataset.

F Comparison with Existing Causality-Related Datasets
We show in Table 9 the distinction of our work from all existing causality-related datasets that address
either the causality-as-knowledge task, or the causality-as-language-comprehension task.
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Question Types Skill Types

Assoc. Interv. Counterf. CI Method
Formalization
of Causal
Queries

Causal RE Qualitative
Reasoning

Datasets for Causality as Knowledge (Commonsense Causality)
COPA [2012] ✗ ✓ ✗ ✗ ✗ ✗ ✗
Event2Mind [2018] ✗ ✓ ✗ ✗ ✗ ✗ ✗
ATOMIC [2019] ✗ ✓ ✗ ✗ ✗ ✗ ✗
SocialIQA [2019] ✗ ✓ ✗ ✗ ✗ ✗ ✗
TimeTravel [2019] ✗ ✓ ✗ ✗ ✗ ✗ ✗
Goal-Step [2020] ✗ ✓ ✗ ✗ ✗ ✗ ✗
Abductive (ART) [2020] ✗ ✓ ✗ ✗ ✗ ✗ ✗
Com2Sense [2021] ✗ ✓ ✗ ✗ ✗ ✗ ✗
CRASS [2022] ✗ ✗ ✓ ✗ ✗ ✗ ✗
Datasets for Causality as Language Comprehension (Causal Relation Extraction)
SemEval2021 Task8 [2010] ✗ ✗ ✗ ✗ ✗ ✓ ✗
EventCausality [2011] ✗ ✗ ✗ ✗ ✗ ✓ ✗
Causal-TimeBank [2014] ✗ ✗ ✗ ✗ ✗ ✓ ✗
CaTeRS [2016] ✗ ✗ ✗ ✗ ✗ ✓ ✗
BECauSE [2017] ✗ ✗ ✗ ✗ ✗ ✓ ✗
TellMeWhy [2021] ✗ ✗ ✗ ✗ ✗ ✓ ✗
Datasets for Formal Causal Reasoning
Corr2Cause [42] ✗ ✓ ✗ ✓ ✓ ✗ ✗

CLADDER (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Table 9: Comparison of our dataset and existing causal or reasoning datasets. The aim of our dataset is to test
the pure reasoning ability of LLMs on causal questions. For each dataset, we first identify whether its question
types cover the three rungs: association (Assoc.), intervention (Interv.), and counterfactuals (Counterf.). We also
check what skill types the dataset tests: the application of causal inference methods (CI Method), formalization
of causal queries, causal relation extraction from the given text (Causal RE), and qualitative reasoning.
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Figure 9: ROSCOE scores of answers from CAUSALCOT on 2,000 randomly sampled questions from our
dataset.
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