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Abstract

Weakly-Supervised Concealed Object Segmentation (WSCOS) aims to segment
objects well blended with surrounding environments using sparsely-annotated data
for model training. It remains a challenging task since (1) it is hard to distinguish
concealed objects from the background due to the intrinsic similarity and (2)
the sparsely-annotated training data only provide weak supervision for model
learning. In this paper, we propose a new WSCOS method to address these two
challenges. To tackle the intrinsic similarity challenge, we design a multi-scale
feature grouping module that first groups features at different granularities and
then aggregates these grouping results. By grouping similar features together, it
encourages segmentation coherence, helping obtain complete segmentation results
for both single and multiple-object images. For the weak supervision challenge,
we utilize the recently-proposed vision foundation model, “Segment Anything
Model (SAM)”, and use the provided sparse annotations as prompts to generate
segmentation masks, which are used to train the model. To alleviate the impact of
low-quality segmentation masks, we further propose a series of strategies, including
multi-augmentation result ensemble, entropy-based pixel-level weighting, and
entropy-based image-level selection. These strategies help provide more reliable
supervision to train the segmentation model. We verify the effectiveness of our
method on various WSCOS tasks, and experiments demonstrate that our method
achieves state-of-the-art performance on these tasks. The code will be available at
https://github.com/ChunmingHe/WS-SAM.

1 Introduction

Concealed object segmentation (COS) aims to segment objects visually blended with surrounding
environments [1]. COS is a general term with different applications, e.g., camouflaged object
detection [2, 3], polyp image segmentation [4, 5], transparent object detection [6, 7], etc. COS is a
challenging task due to the intrinsic between foreground objects and background, which makes it
extremely difficult to identify discriminative clues for accurate foreground-background separation. To
address this challenge, existing methods have employed approaches that mimic human vision [8–10],
introduce frequency information [11, 12], or adopt joint modeling in multiple tasks [13–18].

Weakly-Supervised COS (WSCOS) studies an even more challenging yet more practical problem,
involving learning a COS model without relying on pixel-wise fully-annotated training data. WSCOS
greatly reduces annotation costs by only requiring a few annotated points or scribbles in the foreground
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or background. However, the sparsity of annotated training data diminishes the limited discrimination
capacity of the segmenter during model learning, thus further restricting segmentation performance.

In this paper, we propose a new algorithm for the challenging WSCOS task. To tackle the intrinsic
similarity of foreground and background, we introduce a Multi-scale Feature Grouping (MFG) module
that first evacuates discriminative cues at different granularities and then aggregates these cues to
handle various concealing scenarios. By performing feature grouping, MFG essentially promotes
coherence among features and thus is able to alleviate incomplete segmentation by encouraging local
correlation within individual objects, while also facilitating multiple-object segmentation by seeking
global coherence across multiple objects.

To address the challenge of weak supervision, we propose to leverage the recently proposed vision
foundation model, Segment Anything Model (SAM), to generate dense masks by using sparse annota-
tions as prompts, and use the generated masks as pseudo labels to train a segmenter. However, due to
the intrinsic similarity between foreground objects and the background, the pseudo labels generated
by SAM may not always be reliable. We propose a series of strategies to address this problem.
First, we propose to generate multiple augmentation views for each image and fuse the segmentation
masks produced from all views. The fused mask can highlight reliable predictions resistant to image
augmentations and tend to be more accurate and complete as an effect of ensemble. Second, we
propose an entropy-based weighting mechanism that assigns higher weights to predictions of pixels
of high certainty. Lastly, to deal with the extreme images that SAM fails to generate reasonably
correct masks, we propose an entropy-based image-level selection technique to assess the quality of
the generated mask and decide whether to use the masks as pseudo labels for model training. These
strategies ensure that only high-quality pseudo labels are used for training the segmenter. For ease of
description, we refer to our solution of using SAM to address this task as WS-SAM.

Our contributions are summarized as follows:

(1) We propose to leverage SAM for weakly-supervised segmentation by using the provided sparse
annotations as prompts to generate dense segmentation masks and train a task segmentation model.
To the best of our knowledge, this is the first attempt to leverage the vision foundation model to
address the weakly-supervised segmentation task.

(2) We propose a series of strategies for dealing with potentially low segmentation mask quality,
including the multi-augmentation result ensemble technique, entropy-based pixel-level weighting
technique, and entropy-based image-level selection technique. These techniques help provide reliable
guidance to train the model and lead to improved segmentation results.

(3) We introduce a Multi-scale Feature Grouping (MFG) technique to tackle the intrinsic similarity
challenge in the WSCOS task. MFG evacuates discriminative cues by performing feature grouping
at different granularities. It encourages segmentation coherence, facilitating to obtain complete
segmentation results for both single and multiple object images.

(4) We evaluate our method on various WSCOS tasks, and the experiments demonstrate that our
method achieves state-of-the-art performance.

2 Related Works

Segment Anything Model. SAM [19] is a recently proposed vision foundation model trained on SA-
1B of over 1 billion masks. Its primary objective is to segment any object in any given image without
requiring any additional task-specific adaptation. Its outstanding quality in segmentation results and
zero-shot generalization to new scenes make SAM a promising candidate for various computer vision
tasks. However, recent studies have highlighted that SAM encounters difficulties when segmenting
objects with poor visibility, such as camouflaged objects [20–22], medical polyps [23–27], and
transparent glasses [28, 22]. These findings suggest that SAM still has limitations in COS tasks.

In this paper, we propose using SAM to generate dense segmentation masks from sparse annotations
and introduce the first SAM-based weakly-supervised framework in COS, termed WS-SAM. To
further increase the accuracy of the generated pseudo-labels, we propose a pseudo label refinement
strategy. Such a strategy assigns higher weights to those reliable predictions that are resistant to
various image augmentation. Therefore, WS-SAM can offer more precise and stable guidance for the
learning process, ultimately boosting the segmentation performance of the segmenter.
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Figure 1: Framework of WS-SAM with scribble supervision. Note that the corresponding masks of
the augmented images are inversely transformed so as to be consistent with the original image.

Concealed Object Segmentation. With the rapid development of deep learning, learning-based
segmenters have obtained great achievements in the fully-supervised COS tasks [4, 2, 29]. PraNet [4]
proposed a parallel reverse attention network to segment polyps in colonoscopy images. Drawn
inspiration from biology, SINet [2] designed a predator network to discover and locate camou-
flaged objects. To detect transparent objects, GSDNet [29] integrated an aggregation module and
a reflection refinement module. However, there is limited research on the weakly-supervised COS
task. SCOD [30] introduced the first weakly-supervised COD framework, but it is only supervised
with sparse annotations, which greatly restricts its discrimination capacity and inevitably inhibits
segmentation performance. To address this problem, we first propose using SAM to generate precise
pseudo-labels. Besides, to tackle intrinsic similarity, we introduce the multi-scale feature grouping
module to evacuate discriminative cues at different granularities and thus promote feature coherence.

3 Methodology

Weakly-Supervised Concealed Object Segmentation (WSCOS) aims to learn a segmentation model
from a sparsely-annotated training dataset S = {Xi,Yi}Si=1 and test the model on a test dataset
T = {Ti}Ti=1, where Xi and Ti denote the training and test images, respectively; Yi represents the
sparse annotations, which could be a few points or scribbles annotated as foreground or background.

Learning the segmentation model could be a challenging task, as concealed objects usually blend
well with their surrounding environment, making it hard to distinguish foreground from background.
Besides, the sparse annotations Yi may not provide sufficient supervision to learn the model capable
of making accurate dense predictions. To address these challenges, we first propose a strategy
of leveraging the recently-proposed vision foundation model, Segment Anything Model (SAM), to
generate high-quality dense masks from sparse annotations and use the dense masks as pseudo labels
to train the segmentation model. In addition, we propose a Multi-scale Feature Grouping (MFG)
module that groups features at different granularities, encouraging segmentation coherence and
facilitating obtain complete segmentation results for various concealing scenarios.

3.1 Pseudo Labeling with SAM

SAM is a recently-released vision foundation model for generic object segmentation [19]. It is
trained with more than one billion segmentation masks and has shown impressive capabilities of
producing precise segmentation masks for a wide range of object categories (so-called “segment
anything”). Unlike some enthusiasts who brag SAM has “killed” the segment task, we find that SAM
is far from reaching that level, at least for the studied concealed object segmentation task. This is
first because SAM requires “prompts” that provide clues about the objects of interest to produce
segmentation results. While the prompts could be in many forms, e.g., points, masks, bounding boxes,
etc., they are required to be provided by humans or other external sources (e.g., other algorithms)
2. This requirement of the additional prompt inputs makes SAM unable to be (directly) used for
applications where only test images are provided. In addition, we find that while SAM exhibits

2SAM includes an automatic prompt generation mechanism that first densely selects points across the whole
image as prompts, then generates results based on the dense prompts, and last fuse the results. The problem is it
segments everything possible in the image, with no distinguishing of objects of interest and others.
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Figure 2: Masks of SAM with different augmented images. We inversely transform the masks to
keep consistent with the original image. It is observed that fused masks contain more accurate and
complete segmentation information.

impressive performance for general scene images, it still struggles for concealed object images, due
to the intrinsic similarity between foreground objects and the background.

In this paper, we introduce SAM for the Weakly-Supervised Concealed Object Segmentation (WS-
COS) task. As shown in Fig. 1, we use SAM to generate segmentation masks on training images by
taking the sparse annotations as prompts, and take the segmentation masks as pseudo labels to train a
COS model, which will be used for the test. It is expected that the SAM-generated pseudo labels are
not reliable. We address this problem by proposing three techniques, namely, Multi-augmentation
result fusion, and pixel-level weighting and image-level selection.

Multi-augmentation result fusion. Given a concealed image (Xi,Yi) ∈ S, we generate K
augmented images {Xk

i }Kk=1 by applying stochastic augmentations randomly sampled from image
flipping, rotation (0◦, 90◦, 180◦, 270◦), and scaling (×0.5, ×1.0, ×2.0). We send {Xk

i }Kk=1 to SAM
by using the sparse annotations Yi as prompts, and generate segmentation masks {Mk

i }Kk=1, where
Mk

i = SAM
(
Xk

i ,Yi

)
. (1)

Note that Mk
i has the same shape as input image Xk

i , which may differ in shape from Xi; we perform
inverse image transformation to ensure all masks have the same shape as the original image.

As different segmentation results can be obtained when feeding SAM with different prompts, we
expect {Mk

i }Kk=1 to vary since different augmented images are used for segmentation. Fig. 2 shows
some examples. We can see that while these masks vary significantly in shape, they overlap in
certain regions, which are reliably predicted by SAM regardless of image transformations and usually
correspond to correctly predicted foreground regions. Besides, these masks complement each other,
such that some foreground regions missed by one mask can be found in other masks. Based on these
observations, we propose to fuse the segmentation masks for different augmented images, as

M̃i =
1

K

K∑
k=1

Mk
i , (2)

where M̃i is the fused mask. We expect M̃i to be more reliable than the individual masks as it is an
ensemble over various augmented images.

Pixel-level weighting. The prediction reliability of different pixels may vary. To highlight those
more reliable ones, we propose to use entropy to weight the predictions. We calculate the entropy of
each pixel and get an entropy map as

Ẽi = −M̃i log M̃i − (1− M̃i) log(1− M̃i). (3)
As the entropy map is calculated from the fused mask, it measures the prediction uncertainty of each
pixel across all augmentation as a pixel will have low entropy only if it is confidently and meanwhile
consistently predicted from all augmented images. Therefore, we can use this entropy map to weigh
the fused mask Mk

i and assign higher weights to those reliable pixels.

Image-level selection. We have observed that for some highly challenging concealed images, SAM
fails to produce even reasonably correct results with the sparse annotations as the prompts, with
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Figure 3: Architecture of the proposed model. ΦP denotes feature grouping with P prototypes. We
simplify the broadcast process in ΦP for space limitation.

whatever types of augmented images. This fundamentally invalidates the above pixel-wise weighting
strategy. To deal with this case, we further propose an image-level selection mechanism to selectively
choose images for training, further striving to provide reliable supervision to train the segmenter.

Similar to using entropy to define the pixel-level prediction uncertainty, we propose two entropy-based
image-level uncertainty measurements, namely, absolute uncertainty Ua and relative uncertainty Ur.
Absolute uncertainty Ua refers to the proportion of high-uncertainty pixels among all pixels, while
relative uncertainty Ur indicates the proportion of high-uncertainty pixels and foreground pixels with
low uncertainty, which is specifically designed to accommodate small-object scenarios. We regard a
pixel as a high-uncertainty pixel when its entropy is above 0.9. We define the following indicator
function to decide whether to keep an image for training or not:

M̂i = 1[Ua < τa]× 1[Ur < τr], (4)
where τa and τr are the thresholds that are set as 0.1 and 0.5 in this paper, respectively.

Applying the entropy weights Ẽi on the image selection indicator M̂i, we reach our final mask that
will be used for training the segmenter as,

Ŷi = (1− Ẽi)× M̂i. (5)
Our technique leverages SAM to generate segmentation masks and further incorporates multi-
augmentation result fusion, pixel-level uncertainty weighting, and image-level uncertainty filtering,
thus being able to generate reliable pseudo labels to train the segmenter.

3.2 Multi-scale Feature Grouping

The intrinsic similarity in concealed objects may cause incomplete segmentation and partial object
localization in multi-object segmentation. Such problems could be further aggravated in weakly
supervised scenarios due to the limited discriminative capacity of the segmenter. To address this
issue, we propose a Multi-scale Feature Grouping (MFG) module that evacuates discriminative cues
at various granularities. MFG achieves this by exploring the coherence of foreground/background
regions and performing feature grouping at different levels. By encouraging feature coherence, MFG
can alleviate incomplete segmentation by enhancing local correlation within individual objects and
further facilitate multiple-object segmentation by seeking global coherence across multiple objects.
The architecture of the proposed MFG module is illustrated in Fig. 3.

Feature grouping. Suppose F ∈ RH×W×C is the feature representation of an input image. We
perform feature grouping by mapping F to N learnable cluster prototypes P ∈ RN×C . These cluster
prototypes P are randomly initialized. We first append the learnable spatial positional embedding Pe

to the input feature F and get Fp. Then, we linearly transform the prototypes P and the positioned
feature Fp into Q ∈ RN×C , K ∈ RHW×C , and V ∈ RHW×C :

Q = WqP, K = WkFp, V = WvFp, (6)
where Wq,Wk,Wv ∈ RC×C are the learnable weights. To ensure the exclusive assignment of
features to the cluster prototypes, we normalize the coefficients over all prototypes,

Āi,j =
eAi,j∑
l e

Ai,l
, where A =

1√
C
K⊤Q. (7)

We then calculate the integral value U of the input values with respect to the prototypes as

U = D⊤V, where Di,j =
Ai,j∑
l Ai,l

, (8)
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and update the prototypes P by feeding P and U into a Gated Recurrent Units GRU(·):
P = GRU (inputs = U, states = P) . (9)

By repeating Eqs. (6) - (9) for T iterations, the cluster prototypes are iteratively updated and gradually
strengthen the association between similar features, where T = 3 in this paper.

We broadcast each prototype onto a 2D grid augmented with the learnable spatial position embedding
Pe to obtain {F′

i}Ni=1 ∈ RH×W×C , and use 1 × 1 convolution to downsample each prototype,
obtaining {F′′

i }Ni=1 ∈ RH×W×C/N . We concatenate those prototypes and obtain Fc ∈ RH×W×C .

For ease of future use, we denote the feature grouping process with N prototypes as Fc = ΦN (F).

Multi-scale feature aggregation. The number of prototypes N in the above feature grouping
technique controls the grouping granularity: a smaller value of N facilitates the extraction of global
information, while a larger value of N can provide more valuable detailed information. To strike
a balance, we propose to aggregate the multi-scale grouping features with different numbers of
prototypes. Taking inspiration from the second-order Runge-Kutta (RK2) structure known for its
superior numerical solutions compared to the traditional residual structure [31, 32], we employ RK2
to aggregate those features. Additionally, as shown in Fig. 3, we adopt a weighted gate mechanism
αg to adaptively estimate the trade-off parameter rather than using a fixed coefficient. Given the
feature F, the adaptively aggregated feature F̂ is formulated as follows:

F̂ = F+ αgΦN1(F) + (1− αg)ΦN2(F+ΦN1(F)), (10)
where αg = S(σ cat(ΦN1

(F),ΦN2
(F+ ΦN1

(F))) + µ). S is Sigmoid. σ and µ are the learnable
parameters in αg . N1 and N2 are the numbers of groups, which are empirically set as 4 and 2.

Our multi-scale feature grouping technique is inspired by the slot attention technique [33], but we
differ from slot attention in the following aspects. Slot attention targets at instance-level grouping in
a self-supervised manner, our MFG is proposed to adaptively excavate the feature-level coherence for
complete segmentation and accurate multi-object localization. To relax the segmenter and ensure
generalization, we remove the auxiliary decoder used in slot attention for image reconstruction,
along with the reconstruction constraint. Additionally, we employ an RK2 structure to aggregate
the multiscale grouping feature with different numbers of prototypes, which further facilitates the
excavation of feature coherence and therefore helps improve segmentation performance.

3.3 Weakly-Supervised Concealed Object Segmentation

To use the proposed MFG technique for concealed object segmentation, we integrate MFG with the
encoder and decoder architecture utilized in an existing camouflaged object detection model [12]
to construct a novel segmenter. The model comprises a ResNet50-backed encoder E that maps an
input image Xi to a feature space as Fi = E(Xi). Using the obtained Fi, we apply MFG to perform
multi-scale feature grouping, resulting in F̂i = MFG(Fi). Subsequently, a decoder D maps F̂i

back to the image space, generating the predicted mask Y′
i = D(F̂i). Fig. 3 provides a conceptual

illustration of this model, and more architecture details can be found in the supplementary materials.

Following [30], we train the whole model jointly with the sparse annotations Yi, and the generated
segmentation mask Ŷi and M̃i by the SAM model, as

L =
1

Ns

∑
(Xi,Yi)∼S

Lpce (Y
′
i,Yi) + ŶiLce(Y

′
i, M̃i) + ŶiLIoU (Y

′
i, M̃i). (11)

Where the first term is the partial cross-entropy loss Lpce used to ensure consistency between the
prediction maps and the sparse annotations Yi [34]. The second and third terms are the cross-entropy
loss Lce and the intersection-over-union loss LIoU , both calculated using the pseudo label Ŷi [35].

4 Experiments

4.1 Experimental Setup

Implementation details. The image encoder uses ResNet50 as the backbone and is pre-trained on
ImageNet [39]. The batch size is 36 and the learning rate is initialized as 0.0001, decreased by 0.1
every 80 epochs. For scribble supervision, we propose a nine-box strategy, namely constructing
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Table 1: Results on COD with point supervision and scribble supervision. SCOD+ indicates
integrating SCOD with our WS-SAM framework. The best two results are in red and blue fonts.

CHAMELEON CAMO COD10K NC4KMethods Pub.
M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑

Scribble Supervision

SAM [19] — 0.207 0.595 0.647 0.635 0.160 0.597 0.639 0.643 0.093 0.673 0.737 0.730 0.118 0.675 0.723 0.717
SAM-S [19] — 0.076 0.729 0.820 0.650 0.105 0.682 0.774 0.731 0.046 0.695 0.828 0.772 0.071 0.747 0.832 0.763
WSSA [36] CVPR20 0.067 0.692 0.860 0.782 0.118 0.615 0.786 0.696 0.071 0.536 0.770 0.684 0.091 0.657 0.779 0.761
SCWS [37] AAAI21 0.053 0.758 0.881 0.792 0.102 0.658 0.795 0.713 0.055 0.602 0.805 0.710 0.073 0.723 0.814 0.784
TEL [38] CVPR22 0.073 0.708 0.827 0.785 0.104 0.681 0.797 0.717 0.057 0.633 0.826 0.724 0.075 0.754 0.832 0.782
SCOD [30] AAAI23 0.046 0.791 0.897 0.818 0.092 0.709 0.815 0.735 0.049 0.637 0.832 0.733 0.064 0.751 0.853 0.779
SCOD+ — 0.046 0.797 0.900 0.820 0.090 0.716 0.818 0.741 0.047 0.650 0.845 0.742 0.060 0.766 0.862 0.785
Ours — 0.046 0.777 0.897 0.824 0.092 0.742 0.818 0.759 0.038 0.719 0.878 0.803 0.052 0.802 0.886 0.829

Point Supervision

SAM [19] — 0.207 0.595 0.647 0.635 0.160 0.597 0.639 0.643 0.093 0.673 0.737 0.730 0.118 0.675 0.723 0.717
SAM-P [19] — 0.101 0.696 0.745 0.697 0.123 0.649 0.693 0.677 0.069 0.694 0.796 0.765 0.082 0.728 0.786 0.776
WSSA [36] CVPR20 0.105 0.660 0.712 0.711 0.148 0.607 0.652 0.649 0.087 0.509 0.733 0.642 0.104 0.688 0.756 0.743
SCWS [37] AAAI21 0.097 0.684 0.739 0.714 0.142 0.624 0.672 0.687 0.082 0.593 0.777 0.738 0.098 0.695 0.767 0.754
TEL [38] CVPR22 0.094 0.712 0.751 0.746 0.133 0.662 0.674 0.645 0.063 0.623 0.803 0.727 0.085 0.725 0.795 0.766
SCOD [30] AAAI23 0.092 0.688 0.746 0.725 0.137 0.629 0.688 0.663 0.060 0.607 0.802 0.711 0.080 0.744 0.796 0.758
SCOD+ — 0.089 0.704 0.757 0.731 0.129 0.642 0.693 0.666 0.058 0.618 0.812 0.719 0.075 0.767 0.825 0.771
Ours — 0.056 0.767 0.868 0.805 0.102 0.703 0.757 0.718 0.039 0.698 0.856 0.790 0.057 0.801 0.859 0.813

Table 2: Results for PIS and TOD with point supervision.
Polyp Image Segmentation (PIS) Transparant Object Detection (TOD)

CVC-ColonDB ETIS Kvasir GDD GSDMethods
M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑

SAM [19] 0.479 0.343 0.419 0.427 0.429 0.439 0.512 0.503 0.320 0.545 0.564 0.582 0.245 0.512 0.530 0.551 0.266 0.473 0.501 0.514
SAM-P [19] 0.194 0.587 0.664 0.671 0.144 0.625 0.719 0.715 0.108 0.793 0.811 0.802 0.164 0.668 0.715 0.625 0.177 0.687 0.730 0.668
WSSA [36] 0.127 0.645 0.732 0.713 0.123 0.647 0.733 0.762 0.082 0.822 0.852 0.828 0.173 0.652 0.710 0.616 0.185 0.661 0.712 0.650
SCWS [37] 0.082 0.674 0.758 0.787 0.085 0.646 0.768 0.731 0.078 0.837 0.860 0.831 0.170 0.631 0.702 0.613 0.172 0.706 0.738 0.673
TEL [38] 0.089 0.669 0.743 0.761 0.083 0.639 0.776 0.726 0.091 0.810 0.826 0.804 0.230 0.640 0.586 0.536 0.275 0.571 0.501 0.495
SCOD [30] 0.077 0.691 0.795 0.802 0.071 0.664 0.802 0.766 0.071 0.853 0.877 0.836 0.146 0.801 0.778 0.723 0.154 0.743 0.751 0.710
SCOD+ 0.074 0.702 0.806 0.803 0.066 0.670 0.811 0.769 0.068 0.860 0.880 0.836 0.129 0.818 0.796 0.732 0.145 0.761 0.765 0.720
Ours 0.043 0.721 0.839 0.816 0.037 0.694 0.849 0.797 0.046 0.878 0.917 0.877 0.078 0.858 0.863 0.775 0.089 0.839 0.841 0.764

the minimum outer wrapping rectangle of the foreground/background scribble and dividing it into
a nine-box grid, to sample one point in each box and send them to SAM for segmentation mask
generation. Following [2], all images are resized as 352× 352 in both the training and testing phases.
For SAM [19], we adopt the ViT-H SAM model to generate segmentation masks. We implement our
method with PyTorch and run experiments on two RTX3090 GPUs.

Baselines. We explore SAM [19] for the WSCOS task by generating segmentation masks with sparse
annotations as prompts and using the segmentation masks to train a COS segmenter. However, a more
straightforward way to explore SAM for this task is to use the sparse annotation to fine-tune SAM
and then directly apply SAM for the test. To verify the advantages of our method over this direct way,
we construct two baseline methods, SAM-S and SAM-P, which fine-tune the mask decoder of SAM
with scribble and point supervisions, respectively, by the partial cross-entropy loss. We will show the
results of these two baselines in our comparative evaluations. For reference, we also report the results
of the vanilla SAM. When applying SAM and its variants, SAM-S and SAM-P, on test images, we
use the automatic prompt generation strategy and report the results with the highest IoU scores.

Metrics. Following existing methods [1, 2], we use four common metrics for evaluation, including
mean absolute error (M ), adaptive F-measure (Fβ) [40], mean E-measure (Eϕ) [41], and structure
measure (Sα) [42]. Smaller M , or larger Fβ , Eϕ, Sα means better segmentation performance.

4.2 Comparative Evaluation

We perform evaluations on the following COS tasks, namely, Camouflaged Object Detection, Polyp
Image Segmentation (PIS), and Transparent Object Detection (TOD). For all the tasks, we evaluate
the performance with point annotations. We follow the previous weakly-supervised segmentation
method [43] and randomly select two points (one from the foreground and one from the background)
from the training masks as the point annotations. For COD, we additionally evaluate the performance
using scribble annotations, using the scribble data provided in [43].

Camouflaged object detection. Four datasets are used for experiments, i.e., CHAMELEON [44],
CAMO [45], COD10K [1], and NC4K [16]. Table 1 shows that our method reaches the best
performance over all competing methods and baselines. Notably, while SAM has shown impressive
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Table 3: Ablations for WS-SAM.
Baseline MAF PLW ILS M ↓ Fβ ↑ Eϕ ↑ Sα ↑

✓ 0.052 0.674 0.838 0.737
✓ ✓ 0.047 0.689 0.853 0.772
✓ ✓ ✓ 0.044 0.697 0.866 0.793
✓ ✓ ✓ ✓ 0.038 0.719 0.878 0.803

Table 4: Ablations for MFG.
Metrics w/o MFG FG->SA w/o multiscale WGM->FC w/ MFG

M ↓ 0.044 0.038 0.040 0.039 0.038
Fβ ↑ 0.684 0.708 0.702 0.710 0.719
Eϕ ↑ 0.857 0.868 0.858 0.871 0.878
Sα ↑ 0.780 0.797 0.783 0.792 0.803

Table 5: Results of MFG with full supervision.
Metrics Baseline SegMaR [17] PreyNet [8] FGANet [15] Ours

M ↓ 0.035 0.035 0.034 0.032 0.032
Fβ ↑ 0.688 0.699 0.715 0.708 0.706
Eϕ ↑ 0.879 0.890 0.894 0.894 0.897
Sα ↑ 0.812 0.813 0.813 0.803 0.813

Table 6: Results on multi-object images.
Metrics SCWS [37] TEL [38] SCOD [30] Ours

M ↓ 0.094 0.101 0.084 0.070
Fβ ↑ 0.378 0.350 0.381 0.452
Eϕ ↑ 0.740 0.726 0.718 0.772
Sα ↑ 0.625 0.617 0.643 0.687

performance for natural scene images, its performance on the challenging COD task is far from the
existing methods particularly designed for this task. We do see performance gains after finetuning
SAM with point (SAM-P) and scribble (SAM-S) supervision, but the results are still far below our
method. This substantiates the superiority of our way of leveraging SAM to generate segmentation
masks with sparse annotations and use the segmentation masks to train the segmenter. To verify our
performance improvement over the existing WSCOS methods does not merely come from the usage
of SAM, we integrate the most recent WSCOS method, SCOD [30], into our WS-SAM framework to
also leverage the additional mask supervision. This results in the method, “SCOD+”. We can see that
our method still shows better performance, further verifying our advantages for this task.

Polyp image segmentation. Three widely-used Polyp datasets are selected, namely CVC-
ColonDB [46], ETIS [47], and Kvasir [48]. Table 2 shows that our method significantly surpasses the
second-best method, SCOD, with point supervision. SAM and SAM-P do not perform well on this
task, further substantiating their weakness on this challenging segmentation task. While empowering
SCOD with the proposed WS-SAM framework indeed improves the performance, the results are still
lower than our method. This again verifies our benefit in handling challenging segmentation tasks.

Transparent object detection. Two datasets, GDD [6] and GSD [29], are used for evaluation. As
shown in Table 2, our method surpasses all baseline methods and existing methods for this task as
well. This shows strong robustness and generalizability of our proposed method.

4.3 Ablation Study

Our method includes two main components, the SAM-based weakly-supervised mask generation
framework, WS-SAM, and the multi-scale feature grouping (MFG) module. We conduct ablation
studies about these two components on COD10K of the COD task with scribble supervision.

Ablation study for WS-SAM. We establish a baseline by using SAM to generate only one segmenta-
tion mask from one training image without augmentations for model training. On top of this baseline,
we add the multi-augmentation fusion (MAF), pixel-level weighting (PLW), and image-level selection
(ILS) techniques. Table 3 showing adding these components helps improve the performance, thus
demonstrating their effectiveness.

Ablation study for MFG. We examine the effect of MFG by completely removing the MFG module,
substituting the proposed feature grouping (FG) with slot attention (SA) [33], removing the multi-
scale strategy, and substituting the weighted gate mechanism (WGM) with fixed coefficient (FC).
Table 4 shows that our designs reach better performance than the alternative ones.

4.4 Further Analysis

MFG for the fully-supervised setting. The proposed MFG module is designed to evacuate discrimi-
native cues from concealed images. We have demonstrated its effectiveness with sparse annotations
for the weakly-supervised setting. However, it is expected to also work in the fully-supervised setting.
To verify this, we conduct experiments for the standard fully-supervised COD task. Table 5 shows
the results on the COD10K dataset. We can see that MFG indeed helps improve the performance of
the baseline model, to the level comparative with state-of-the-art methods.

Performance on multi-object images. The proposed MFG module evacuates discriminative cues by
performing feature grouping at different granularities, which facilitates discovering multiple objects
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Table 7: Parameter analysis on K, τa, τr, T , and (N1, N2).
Metrics K τa τr T (N1, N2)

1 6 12 18 0.05 0.1 0.2 0.3 0.3 0.5 0.7 0.9 1 2 3 4 (2,4) (2,8) (4,8) (2,4,8)

M ↓ 0.052 0.042 0.038 0.039 0.037 0.038 0.038 0.040 0.038 0.038 0.039 0.040 0.039 0.039 0.038 0.038 0.038 0.038 0.039 0.038
Fβ ↑ 0.674 0.697 0.719 0.718 0.706 0.719 0.716 0.704 0.723 0.719 0.715 0.700 0.706 0.715 0.719 0.720 0.719 0.714 0.711 0.721
Eϕ ↑ 0.838 0.857 0.878 0.878 0.868 0.878 0.876 0.865 0.866 0.878 0.874 0.851 0.862 0.872 0.878 0.876 0.878 0.875 0.873 0.878
Sα ↑ 0.737 0.776 0.803 0.800 0.795 0.803 0.805 0.793 0.792 0.803 0.789 0.781 0.794 0.800 0.803 0.805 0.803 0.802 0.799 0.802

C
O

D

(a) Origin (b) GT (c) Ours (d) SCOD (e) TEL (f) SCWS (g) WSSA (h) SAM-P

Figure 4: Visualized results for COD tasks.

in images. To verify this, we evaluate the performance on the 186 images with more than one object
from COD10K. Table 6 shows that MFG achieves the best performance, surpassing the second-best
method (SCOD) by 10.7%. This gap is large than that with all test images, where the gap is 5.8%.

Randomness of point supervision. We follow the existing point-supervision segmenta-
tion methods and randomly select points from ground truth masks as the point annotation.

0 . 0 1 0 0

0 . 0 1 6 7
0 . 0 1 2 5

0 . 0 1 0 5 0 . 0 1 3 6

0 . 0 0 8 7

S A M - P W S S A S C W S T E L
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0 . 5

0 . 6

0 . 7

F �
Figure 5: Five runs results
with varied point annotations.

To study the variance of the random selection, we repeat the random
selection 5 times and calculate the mean and standard deviation of
the results. Fig. 5 shows that our method reaches the best results
while having the smallest deviation.

Number of augmented views K. Table 7 shows that more aug-
mented views help improve performance in the beginning, but the
effect turns weaker when further increasing it.

Hyperparameters in image-level selection. Table 7 shows that it
is best to set the absolute uncertainty threshold τa = 0.1 and the
relative uncertainty threshold τr = 0.5, and our method is not sensitive to these two parameters.

Hyperparameters in MFG. Table 7 shows that MFG achieves the best results when the iteration
number T is set as 3, and the groups and scales setting is set as (N1, N2) = (2, 4). Notice that when
adopting (2, 4, 8), RK2 is replaced with the third-order RK structure, resulting in extra computational
burden with limited benefits. Hence, we select the RK2 structure with (N1, N2) = (2, 4).

Result visualization. Fig. 4 shows the prediction maps with point supervision. We can see that our
method produces more complete results than existing methods and localizes multiple objects more
comprehensively. More visualization results can be found in the supplementary materials.

5 Conclusions

This paper proposes a new WSCOS method that includes two key components. The first one is the
WS-SAM framework that generates segmentation masks with the recently proposed vision foundation
model, SAM, and proposes multi-augmentation result fusion, pixel-level uncertainty weighting, and
image-level uncertainty filtration to get reliable pseudo labels to train a segmentation model. The
second is the MFG module that leverages the extracted clues for additional nuanced discrimination
information. MFG improves feature coherence from a grouping aspect, allowing for alleviating
incomplete segmentation and better multiple-object segmentation. Experiments on multiple WSCOS
tasks confirm the superiority of our method over the baseline and existing methods.
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