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Abstract

The implicit bias towards solutions with favorable properties is believed to a key1

reason why neural networks trained by gradient-based optimization can generalize2

well. While the implicit bias of gradient flow has been widely studied for homoge-3

neous neural networks (including ReLU and leaky ReLU networks), the implicit4

bias of gradient descent is currently only understood for smooth neural networks.5

Therefore, implicit bias in non-smooth neural networks trained by gradient de-6

scent remains an open question. In this paper, we aim to answer this question7

by studying the implicit bias of gradient descent for training two-layer fully con-8

nected (leaky) ReLU neural networks. We showed that when the training data are9

nearly-orthogonal, for leaky ReLU activation function, gradient descent will find10

a network with a stable rank that converges to 1, whereas for ReLU activation11

function, gradient descent will find a neural network with a stable rank that is upper12

bounded by a constant. Additionally, we conducted experiments to validate these13

theoretical findings.14

1 Introduction15

Neural networks have achieved remarkable success in a variety of applications, such as image and16

speech recognition, natural language processing, and many others. Recent studies have revealed that17

the effectiveness of neural networks is attributed to their implicit bias towards particular solutions18

which enjoy favorable properties. Understanding how this bias is affected by factors such as network19

architecture, optimization algorithms and data used for training, has become an active research area20

in the field of deep learning theory.21

The literature on the implicit bias in neural networks has expanded rapidly in recent years (Vardi,22

2022), with numerous studies shedding light on the implicit bias of gradient flow (GF) with a wide23

range of neural network architecture, including deep linear networks (Ji and Telgarsky, 2018, 2020;24

Gunasekar et al., 2018), homogeneous networks (Lyu and Li, 2019; Vardi et al., 2022a) and more25

specific cases (Chizat and Bach, 2020; Lyu et al., 2021; Frei et al., 2022b; Safran et al., 2022). The26

implicit bias of gradient descent (GD), on the other hand, is better understood for linear predictors27

(Soudry et al., 2018) and smoothed neural networks (Lyu and Li, 2019; Frei et al., 2022b). Therefore,28

an open question still remains:29

What is the implicit bias of leaky ReLU and ReLU networks trained by gradient descent?30

In this paper, we will answer this question by investigating gradient descent for both two-layer leaky31

ReLU and ReLU neural networks on specific training data, where {xi}ni=1 are nearly-orthogonal32

(Frei et al., 2022b), that is, ∥xi∥22 ≥ Cnmaxk ̸=i |⟨xi,xk⟩| with a constant C.33

Our main results are summarized as follows:34
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• For two-layer leaky ReLU networks trained by GD, we demonstrate that the neuron activation35

pattern reaches a stable state beyond a specific time threshold and provide rigorous proof of the36

convergence of the stable rank of the weight matrix to 1, matching the results of Frei et al. (2022b)37

regarding gradient flow. Additionally, we conduct a convergence rate analysis of the training loss38

related to the extent of orthogonality in the training data. Notably, when the training data exhibit39

mutual orthogonality, we establish a convergence rate of O(t−1), where t is the number of gradient40

descent iterations. This convergence rate improves upon the O(t−1/2) rate provided in Frei et al.41

(2022b) for the case of a two-layer smoothed leaky ReLU network trained using gradient descent.42

• For two-layer ReLU networks trained by GD, we proved that the stable rank of weight matrix can43

be upper bounded by a constant. Moreover, we present an illustrative example using completely44

orthogonal training data, showing that the stable rank of the weight matrix converges to a value45

approximately equal to 2. This finding suggests that ReLU networks possess superior learning46

ability compared to leaky ReLU networks. To the best of our knowledge, this is the first implicit bias47

result for two-layer ReLU networks trained by gradient descent beyond the Karush–Kuhn–Tucker48

(KKT) point49

2 Related Work50

Implicit bias in neural networks. Recent years have witnessed significant progress on implicit51

bias in neural networks trained by gradient flow (GF). Lyu and Li (2019) and Ji and Telgarsky (2020)52

demonstrated that homogeneous neural networks trained with exponentially-tailed classification losses53

converge in direction to the KKT point of a maximum-margin problem. Lyu et al. (2021) studied54

the implicit bias in two-layer leaky ReLU networks trained on linearly separable and symmetric55

data, showing that GF converges to a linear classifier maximizing the ℓ2 margin. Frei et al. (2022b)56

showed that two-layer leaky ReLU networks trained by GF on nearly-orthogonal data produce a57

ℓ2-max-margin solution with a linear decision boundary and rank at most two. Other works studying58

the implicit bias of classification using GF in nonlinear two-layer networks include Chizat and59

Bach (2020); Phuong and Lampert (2021); Sarussi et al. (2021); Safran et al. (2022); Vardi et al.60

(2022a,b); Timor et al. (2023). Although implicit bias in neural networks trained by GF has been61

extensively studied, research on implicit bias in networks trained by gradient descent (GD) remains62

limited. Lyu and Li (2019) examined smoothed homogeneous neural network trained by GD with63

exponentially-tailed losses and proved a convergence to KKT points of a max-margin problem. Frei64

et al. (2022b) studied two-layer smoothed leaky ReLU trained by GD and revealed the implicit bias65

towards low-rank networks. Other works studying implicit bias towards rank minimization include Ji66

and Telgarsky (2018, 2020); Timor et al. (2023); Arora et al. (2019); Razin and Cohen (2020); Li67

et al. (2021). Lastly, Vardi (2022) provided a comprehensive literature survey on implicit bias.68

Benign overfitting and double descent in neural networks. A parallel line of research aims to69

understand the benign overfitting phenomenon (Bartlett et al., 2020) of neural networks by considering70

a variety of models. For example, Allen-Zhu and Li (2020); Jelassi and Li (2022); Shen et al. (2022);71

Cao et al. (2022); Kou et al. (2023) studied the generalization performance of two-layer convolutional72

networks on patch-based data models. Several other papers studied high-dimensional mixture models73

(Chatterji and Long, 2021; Wang and Thrampoulidis, 2022; Cao et al., 2021; Frei et al., 2022a).74

Another thread of work Belkin et al. (2020); Hastie et al. (2022); Wu and Xu (2020); Mei and75

Montanari (2019); Liao et al. (2020) focuses on understanding the double descent phenomenon first76

empirically observed by Belkin et al. (2019).77

3 Preliminaries78

In this section, we introduce the notation, fully connected neural networks, the gradient descent-based79

training algorithm, and a signal-noise decomposition technique.80

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters81

to denote scalars, vectors, and matrices respectively. For a vector v = (v1, · · · , vd)⊤, we denote by82

∥v∥2 :=
(∑d

j=1 v
2
j

)1/2
its ℓ2 norm. For a matrix A ∈ Rm×n, we use ∥A∥F to denote its Frobenius83

norm and ∥A∥2 its spectral norm. We use sign(z) as the function that is 1 when z > 0 and −184
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otherwise. For a vector v ∈ Rd, we use [v]i ∈ R to denote the i-th component of the vector. For85

two sequence {ak} and {bk}, we denote ak = O(bk) if |ak| ≤ C|bk| for some absolute constant C,86

denote ak = Ω(bk) if bk = O(ak), and denote ak = Θ(bk) if ak = O(bk) and ak = Ω(bk). We also87

denote ak = o(bk) if lim |ak/bk| = 0.88

Two-layer fully connected neural newtork. We consider a two-layer neural network described89

as follows: its first layer consists of m positive neurons and m negative neurons; its second layer90

parameters are fixed as +1/m and −1/m respectively for positive and negative neurons. Then the91

network can be written as f(W,x) = F+1(W+1,x) − F−1(W−1,x), where the partial network92

function of positive and negative neurons, i.e., F+1(W+1,x), F−1(W−1,x), are defined as:93

Fj(Wj ,x) =
1

m

m∑
r=1

σ(⟨wj,r,x⟩) (3.1)

for j ∈ {±1}. Here, σ(z) represents the activation function. For ReLU, σ(z) = max{0, z}, and94

for leaky ReLU, σ(z) = max{γz, z}, where γ ∈ (0, 1). Wj ∈ Rm×d is the collection of model95

weights associated with Fj , and wj,r ∈ Rd denotes the weight vector for the r-th neuron in Wj . We96

use W to denote the collection of all model weights.97

Gradient Descent. Instead of considering the gradient flow (GF) that commonly studied in prior98

work on implicit bias, we use gradient descent (GD) to optimize the empirical loss on the training99

data100

LS(W) =
1

n

n∑
i=1

ℓ(yi · f(W,xi)),

where ℓ(z) = log(1 + exp(−z)) is the logistic loss, and S = {(xi, yi)}ni=1 is the training data set.101

The gradient descent update rule of each neuron in the two-layer neural network can be written as102

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,rLS(W

(t)) = w
(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r,xi⟩) · jyixi (3.2)

for all j ∈ {±1} and r ∈ [m], where we introduce a shorthand notation ℓ
′(t)
i = ℓ′[yi · f(W(t),xi)]103

and assume the derivative of the ReLU activation function at 0 is σ′(0) = 1 without loss of generality.104

We initialize the gradient descent by Gaussian initialization, where all the entries of W(0) are sampled105

from i.i.d. Gaussian distributions N (0, σ2
0) with σ2

0 being the variance.106

4 Main Results107

In this section, we present our main theoretical results. For training data S = {(xi, yi)}ni=1 ⊆108

Rd × {±1}, let Rmin = mini ∥xi∥2, Rmax = maxi ∥xi∥2, p = maxi ̸=k |⟨xi,xk⟩|, and suppose109

R = Rmax/Rmin is at most an absolute constant.110

Theorem 4.1 (Leaky ReLU Networks). For two-layer neural network defined in (3.1) with leaky111

ReLU activation σ(z) = max{γz, z}, γ ∈ (0, 1). Assume the training data satisfy R2
min ≥112

CR2γ−4np for some sufficiently large constant C. For any δ ∈ (0, 1), if the learning rate113

η ≤ (CR2
max/nm)−1 and the initialization scale σ0 ≤ γ

(
CRmax

√
log(mn/δ)

)−1
, then with114

probability at least 1 − δ over the random initialization of gradient descent, the trained network115

satisfies:116

• The ℓ2 norm of each neuron increases to infinity at a logarithmic rate: ∥w(t)
j,r∥2 = Θ(log(t)) for all117

j ∈ {±1} and r ∈ [m].118

• Throughout the gradient descent trajectory, the stable rank of the weights W(t)
j for all j ∈ {±1}119

satisfies,120

lim
t→∞

∥W(t)
j ∥2F /∥W

(t)
j ∥22 = 1,

with a convergence rate of O
(
1/ log(t)

)
.121
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• The empirical risk under the logistic loss converges to zero at the following rate:122

LS(W
(t)) = O

(
t−(1−cγ−2R−2

minpn)/(1+cγ−2R−2
minpn)

)
,

where c is a constant.123

Remark 4.2. In Theorem 4.1, we show that when using the leaky ReLU activation function on124

nearly orthogonal training data, gradient descent asymptotically finds a network with a stable rank of125

Wj equal to 1. Additionally, we provide a convergence rate for the training loss, which depends on126

the level of orthogonality in the training data. The more orthogonal the training data is, the faster127

convergence rate we can achieve. Specifically, when the training data is completely orthogonal128

(p = 0), we attain an O(t−1) convergence rate. Furthermore, we analyze the rate of weight norm129

increase and the convergence rate of the stable rank for gradient descent, both of which exhibit a130

logarithmic order.131

Theorem 4.3 (ReLU Networks). For two-layer neural network defined in (3.1) with ReLU activation132

σ(z) = max{0, z}. Assume the training data satisfy R2
min ≥ CR2np for some sufficiently large133

constant C. For any δ ∈ (0, 1), if the neural network width m ≥ C log(n/δ), learning rate134

η ≤ (CR2
max/nm)−1 and initialization scale σ0 ≤

(
CRmax

√
log(mn/δ)

)−1
, then with probability135

at least 1− δ over the random initialization of gradient descent, the trained network satisfies:136

• Throughout the gradient descent trajectory, the stable rank of the weights W(t)
j for all j ∈ {±1}137

satisfies,138

lim sup
t→∞

∥W(t)
j ∥2F /∥W

(t)
j ∥22 ≤ c,

where c is a constant.139

• The empirical risk under the logistic loss converges to zero at the following rate:140

LS(W
(t)) = O

(
t−c1(1−c2R

−2
minpn)/(1+c2R

−2
minpn)

)
,

where c1, c2 are constants.141

Remark 4.4. For ReLU networks, we provide an example in the appendix concerning fully orthogo-142

nal training data and prove that the activation pattern during training depends solely on the initial143

activation state. Specifically, when training a two-layer ReLU network with gradient descent using144

such data, the stable rank of the network’s weight matrix Wj eventually converges to approximately145

2. It is worth noting that this stable rank value is higher than the stable rank achieved by leaky ReLU146

networks, which is 1.147

Comparison with previous work. One notable related work is Lyu et al. (2021), which also148

investigates the implicit bias of two-layer leaky ReLU networks. The main distinction between our149

work and Lyu et al. (2021) is the optimization method employed. We utilize gradient descent, whereas150

they utilize gradient flow. Additionally, our assumption is that the training data is nearly-orthogonal,151

while they assume the training data is symmetric. Our findings are more closely related to the152

work by Frei et al. (2022b), which investigates both gradient flow and gradient decent. In both our153

study and Frei et al. (2022b), we examine two-layer neural networks with leaky ReLU activations.154

However, they focus on networks trained via gradient flow, while we investigate networks trained155

using gradient descent. For the gradient descent approach, Frei et al. (2022b) provide a constant156

stable rank upper bound for smoothed leaky ReLU. In contrast, we prove that the stable rank of157

leaky ReLU networks converges to 1, aligning with the implicit bias of gradient flow proved in Frei158

et al. (2022b). Furthermore, they presented an O(t−1/2) convergence rate for the empirical loss,159

whereas our convergence rate is dependent on the level of orthogonality and becomes O(t−1) when160

the training data is completely orthogonal. It is worth noting that Lyu et al. (2021); Frei et al. (2022b)161

demonstrated that neural networks trained by gradient flow converge to a Karush-Kuhn-Tucker (KKT)162

point of the max-margin problem. We do not have such a result and have only proven that gradient163

descent can find a neural network with a low stable rank.164
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5 Overview of Proof Techniques165

In this section, we discuss the key techniques we invent in our proofs to analyze the implicit bias of166

ReLU and leaky ReLU networks.167

5.1 Refined Analysis of Decomposition Coefficient168

Signal-noise decomposition, a technique initially introduced by Cao et al. (2022), is used to analyze the169

learning dynamics of two-layer convolutional networks. This method decomposes the convolutional170

filters into a linear combination of initial filters, signal vectors, and noise vectors, converting the171

neural network learning into a dynamical system of coefficients derived from the decomposition. In172

this work, we extend the signal-noise decomposition to data-correlated decomposition to facilitate173

the analysis of the training dynamic for two-layer fully connected neural networks.174

Definition 5.1 (Data-correlated Decomposition). Let w(t)
j,r, j ∈ {±1}, r ∈ [m] be the weights of175

first-layer neurons at the t-th iteration of gradient descent. There exist unique coefficients ρ(t)j,r,i such176

that177

w
(t)
j,r = w

(0)
j,r +

n∑
i=1

ρ
(t)
j,r,i · ∥xi∥−2

2 · xi. (5.1)

By defining ρ
(t)
j,r,i := ρ

(t)
j,r,i 1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
:= ρ

(t)
j,r,i 1(ρ

(t)
j,r,i ≤ 0), (5.1) can be further written as178

w
(t)
j,r = w

(0)
j,r +

n∑
i=1

ρ
(t)
j,r,i · ∥xi∥−2

2 · xi +

n∑
i=1

ρ(t)
j,r,i

· ∥xi∥−2
2 · xi. (5.2)

As an extension of the signal-noise decomposition first proposed in Cao et al. (2022) for analyzing179

two-layer convolutional networks, data-correlated decomposition defined in Definition 5.1 can be180

used to analyze two-layer fully-connected network, where the normalization factors ∥xi∥−2
2 are181

introduced to ensure that ρ(t)j,r,i ≈ ⟨w(t)
j,r,xi⟩. This is also inspired by previous works by Lyu and Li182

(2019); Frei et al. (2022b), which demonstrate that W converges to a KKT point of the max-margin183

problem. This implies that w(∞)
j,r /∥w(∞)

j,r ∥2 can be expressed as a linear combination of the training184

data {xi}ni=1, with the coefficient λi corresponding to ρ
(t)
j,r,i in our analysis. With the help of such185

decomposition techniques, one can reduce the study of neural network training process to a careful186

assessment of the coefficients ρ
(t)
j,r,i, ρ

(t)
j,r,i

throughout training. This technique does not rely on187

the strictly increasing and smoothness properties of the activation function and will serve as the188

foundation for our analysis. Let us first investigate the update rule of the coefficient ρ(t)j,r,i, ρ
(t)
j,r,i

.189

Lemma 5.2. The coefficients ρ
(t)
j,r,i, ρ

(t)
j,r,i

defined in Definition 5.1 satisfy the following iterative190

equations:191

ρ
(0)
j,r,i, ρ

(0)
j,r,i

= 0, (5.3)

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = j), (5.4)

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = −j), (5.5)

for all r ∈ [m], j ∈ {±1} and i ∈ [n].192

To study implicit bias, the first main challenge is to generalize the decomposition coefficient analysis193

to infinite time. The signal-noise decomposition used in Cao et al. (2022); Kou et al. (2023) require194

early stopping with threshold T ∗ to facilitate their analysis. They only provided upper bounds of195

4 log(T ∗) for ρ(t)j,r,i, |ρ(t)j,r,i
| (See Proposition 5.3 in Cao et al. (2022), Proposition 5.2 in Kou et al.196

(2023)), and then carried out a two-stage analysis. To obtain upper bounds for ρ(t)j,r,i, |ρ(t)j,r,i
|, they197

used an upper bound for |ℓ′(t)i | and directly plugged it into (5.4) and (5.5) to demonstrate that ρ(t)j,r,i198
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and |ρ(t)
j,r,i

| would not exceed 4 log(T ∗), which is a fixed value related to the early stopping threshold.199

Therefore, dealing with infinite time requires new techniques. To overcome this difficulty, we propose200

a refined analysis of decomposition coefficients which generalizes Cao et al. (2022)’s technique. We201

first give the following key lemma.202

Lemma 5.3. For non-negative real number sequence {xt}∞t=0 satisfying203

C1 exp(−xt) ≤ xt+1 − xt ≤ C2 exp(−xt), (5.6)

it holds that204

log(exp(−x0) + C1 · t) ≤ xt ≤ log(exp(−x0) + C2 exp(C2) · t). (5.7)

We can establish the relationship between (5.4), (5.5) and inequality (5.6) if we are able to express205

|ℓ′(t)i | using coefficients ρ
(t)
j,r,i and |ρ(t)

j,r,i
|. To achieve this, we can first approximate ℓ

(t)
i using206

the margin yif(W
(t),xi) and then approximate Fj(W

(t)
j ,xi) using the coefficients ρ

(t)
j,r,i. The207

approximation is given as follows:208

ℓ
(t)
i = Θ(exp(−yif(W

(t),xi))) = Θ
(
exp

(
F−yi

(W
(t)
−yi

,xi)− Fyi
(W(t)

yi
,xi)

))
, (5.8)∣∣∣∣Fj(W

(t)
j ,xi)−

1

m

m∑
r=1

ρ
(t)
j,r,i

∣∣∣∣ ≤ ∑
i′ ̸=i

(
1

m

m∑
r=1

|ρ(t)j,r,i′ |R
−2
minp

)
, (5.9)

From (5.9), one can see that we need to decouple ℓ
(t)
i from |ρ(t)j,r,i′ |(i′ ̸= i). In order to accomplish209

this, we also prove the following lemma, which demonstrates that the ratio between
∑m

r=1 |ρ
(t)
j,r,i|210

and
∑m

r=1 |ρ
(t)
j,r,i′ |(i′ ̸= i) will maintain a constant order throughout the training process. Here, we211

present the lemma for leaky ReLU networks.212

Lemma 5.4 (leaky ReLU automatic balance). For two-layer leaky ReLU network defined in (3.1),213

for any t ≥ 0, we have214
m∑
r=1

|ρ(t)j,r,i| ≥ cγ2
m∑
r=1

|ρ(t)j,r,i′ |, (5.10)

for any j ∈ {±1} and r, r′ ∈ [m], where c is a constant.215

By Lemma 5.4, we can approximate the neural network output using equation (5.9). This approxima-216

tion expresses the output Fj(W
(t)
j ,xi) as a sum of the coefficients ρ(t)j,r,i:217

Fj(W
(t)
j ,xi) ≈

1± cγ2R−2
minpn

m

m∑
r=1

ρ
(t)
j,r,i. (5.11)

By combining (5.4), (5.5), (5.8), and (5.11), we obtain the following relationship:218

1

m

m∑
r=1

|ρ(t+1)
j,r,i | − 1

m

m∑
r=1

|ρ(t)j,r,i| = Θ
(η∥xi∥22

nm

)
· exp

(
− 1± cγ2R−2

minpn

m

m∑
r=1

|ρ(t)j,r,i|
)
.

This relationship aligns with the form of (5.6), if we set xt =
1±cγ2R−2

minpn

m

∑m
r=1 |ρ

(t)
j,r,i|. Thus, we219

can directly apply Lemma 5.3 to gain insights into the logarithmic rate of increase for the average220

magnitudes of the coefficients 1
m

∑m
r=1 |ρ

(t)
j,r,i|. This analysis provides a deeper understanding of the221

dynamics and convergence properties of the coefficient magnitudes during the training process. In222

the case of ReLU networks, we have the following lemma that provides automatic balance:223

Lemma 5.5 (ReLU automatic balance). For two-layer ReLU network defined in (3.1), there exists a224

constant c such that for any t ≥ 0, we have225

|ρ(t)yi,r,i
| ≥ c|ρ(t)j,r′,i′ |,

for any j ∈ {±1}, r ∈ S
(0)
i := {r ∈ [m] : ⟨w(0)

yi,r,xi⟩ ≥ 0}, r′ ∈ [m] and i, i′ ∈ [n].226
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The automatic balance lemma guarantees that the magnitudes of coefficients related to the neurons of227

class yi, which are activated by xi during initialization, dominate those of other classes. With the228

help of Lemma 5.5, we can get the following approximation for the margin yif(W
(t),xi):229

Fyi
(W(t)

yi
,xi)− F−yi

(W
(t)
−yi

,xi) ≈
1± cR−2

minpn

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

. (5.12)

By combining (5.4), (5.5), (5.8) and (5.12), we obtain the following relationship:230 ∑
r∈S

(0)
i

|ρ(t+1)
yi,r,i

| −
∑

r∈S
(0)
i

|ρ(t)yi,r,i
| = Θ

(η∥xi∥22|S
(0)
i |

nm

)
· exp

(
− 1± cR−2

minpn

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

)
,

which precisely matches the form of (5.6) by setting xt =
1±cR−2

minpn

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

. Therefore, we231

can directly apply Lemma 5.3 and obtain the logarithmic increasing rate of |ρ(t)yi,r,i
| for r ∈ S

(0)
i ,232

which provides further insights into the behavior of the coefficients.233

5.2 Analysis of Activation Pattern234

One notable previous work (Frei et al., 2022b) provided a constant upper bound for stable rank of235

two-layer smoothed leaky ReLU networks trained by gradient descent and an O(t−1/2) convergence236

rate for training loss in their Theorem 4.2. To achieve better stable rank bound and better convergence237

rate, we characterize the activation pattern of leaky ReLU network neurons after certain threshold238

time T in the following lemma.239

Lemma 5.6 (leaky ReLU activation pattern). Let T = Cη−1nmR−2
max. For two-layer leaky ReLU240

network defined in (3.1), for any t ≥ T , it holds that241

sign(⟨w(t)
j,r,xi⟩) = jyi,

for any j ∈ {±1} and r ∈ [m].242

Lemma 5.6 indicates that the activation pattern will not change after time T . Given Lemma 5.6, we243

can get σ′(⟨w(t)
j,r,xi⟩) = γ for j ̸= yi and σ′(⟨w(t)

j,r,xi⟩) = 1 for j = yi. Plugging this into (5.4)244

and (5.5) can give the following useful lemma.245

Lemma 5.7. Let T be defined in Lemma 5.6. For t ≥ T , it holds that246

ρ
(t)
yi,r,i

− ρ
(T )
yi,r,i

= ρ
(t)
yi,r′,i

− ρ
(T )
yi,r′,i

, ρ(t)−yi,r,i
− ρ(T )

−yi,r,i
= ρ(t)−yi,r′,i

− ρ(T )
−yi,r′,i

,

ρ
(t)
yi,r,i

− ρ
(T )
yi,r,i

= (ρ(t)−yi,r′,i
− ρ(T )

−yi,r′,i
)/γ,

for any i ∈ [n] and r, r′ ∈ [m].247

This lemma reveals that beyond a certain time threshold T , the increase in ρ
(t)
j,r,i is consistent across248

neurons within the same positive or negative class. However, for neurons belonging to the oppose249

class, this increment in ρ
(t)
j,r,i is scaled by a factor equivalent to the slope of the leaky ReLU function250

γ. From this and (5.1), we can demonstrate that ∥w(t)
j,r −w

(t)
j,r′∥2(r ̸= r′) can be upper bounded by a251

constant, leading to the following inequalities:252

∥W(t)
j ∥2F ≤ m∥w(t)

j,1∥
2
2 +mC1∥w(t)

j,1∥2 +mC2, ∥W(t)
j ∥22 ≥ m∥w(t)

j,1∥
2
2 −mC3∥w(t)

j,1∥2 −mC4.

Considering that ∥w(t)
j,r∥2 = Θ(log t), the stable rank of W(t)

j naturally converges to a value of253

1. As for the convergence rate analysis, by applying the activation pattern to (5.4) and (5.5), and254

using Lemma 5.3 again, we can achieve a more fine-grained analysis to obtain a more precise255

approximation of ρ(t)j,r,i/ log(t). This leads to yif(W
(t),xi) ≥

1−cγ−2R−2
minpn

1+cγ−2R−2
minpn

log(t) for sufficiently256

large t. Consequently, this results in an O(t−(1−cγ−2R−2
minpn)/(1+cγ−2R−2

minpn)) convergence rate for257

the training loss, which is faster than O(t−1/2) as demonstrated by Theorem 4.2 in (Frei et al., 2022b),258
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Figure 1: Stable ranks and training loss for different leaky ReLU slopes γ across multiple runs. A
slope of 1 corresponds to linear activation, while a slope of 0 corresponds to ReLU activation. Each
line represents the mean stable rank or training loss for a given leaky ReLU slope, while the shaded
regions indicate the variability of the values (±3 times the standard deviation) across the 5 runs.

if the training data is nearly orthogonal enough. For ReLU networks, we can partially characterize259

the activation pattern as illustrated in the following lemma.260

Lemma 5.8. (ReLU activation pattern) For two-layer ReLU network defined in (3.1), for any i ∈ [n]261

and r ∈ S
(0)
i := {r ∈ [m] : ⟨w(0)

yi,r,xi⟩ ≥ 0}, we have262

sign(⟨w(t)
yi,r,xi⟩) = sign(⟨w(0)

yi,r,xi⟩) = 1,

for any t ≥ 0, or in other words, S(0)
i ⊆ S

(t)
i := {r ∈ [m] : ⟨w(t)

yi,r,xi⟩ ≥ 0}.263

Lemma 5.8 suggests that once the neuron of class yi is activated by xi during initialization, it264

will continue to remain activated throughout the training process. Leveraging such an activation265

pattern, |S(0)
i | = Θ(m), and ρ

(t)
yi,r,i

= Θ(log t), we can establish a lower bound for ∥W(t)
j ∥2 as266

Ω(
√
mn log(t)). This matches the trivial upper bound of ∥W(t)

j ∥F of order Θ(
√
mn log(t)), thus267

providing us with a constant upper bound for the stable rank for ReLU networks. The convergence268

rate analysis of the training loss also utilizes this activation pattern and |S(0)
i | = Θ(m) to ensure that269

the margin satisfies yif(W(t),xi) = Ω(ρ
(t)
yi,r,i

), r ∈ S
(0)
i . As a result, as time t goes to infinity, the270

ratio yif(W
(t),xi)/ log(t) has no correlation with the width m.271

6 Experiments272

In this section, we present simulations of both synthetic and real data to back up our theoretical273

analysis in the previous section.274

Synthetic-data experiments. Here we generate a synthetic mixture of Gaussian data as follows:275

Let µ ∈ Rd be a fixed vector representing the signal contained in each data point. Each data point276

(x, y) with predictor x ∈ Rd and label y ∈ {−1, 1} is generated from a distribution D, which we277

specify as follows:278

1. The label y is generated as a Rademacher random variable, i.e. P[y = 1] = P[y = −1] = 1/2.279

2. A noise vector ξ is generated from the Gaussian distribution N (0, σ2
pId). And x is assigned as280

y · µ+ ξ where µ is a fixed feature vector.281

Specifically, we set training data size n = 10, d = 784 and train the NN with stochastic gradient282

descent with batch size 64 and learning rate 0.1 for 50 epochs. We set µ to be a feature randomly283

drawn from N (0, 10−4Id). We then generate the noise vector ξ from the Gaussian distribution284

N (0, σ2
pI) with fixed standard deviation σp = 1. We train the FNN model defined in Section 3 with285

ReLU (or leaky-RelU) activation function and width m = 100. As we can infer from Figure 1, the286

stable rank will decrease faster for larger leaky ReLU slopes and have a smaller value when epoch287

t → ∞.288
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Figure 2: Stable ranks and test errors for different weight variances across multiple runs (ReLU
Activation Function). Each line represents the mean stable rank or test accuracy for a given weight
variance, while the shaded regions indicate the variability of the values (±3 times the standard
deviation) across the 5 runs.
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Figure 3: Stable ranks and test errors for different weight variances across multiple runs (leaky-ReLU
Activation Function with slope 0.1). Each line represents the mean stable rank or test accuracy for a
given weight variance, while the shaded regions indicate the variability of the values (±3 times the
standard deviation) across the 5 runs.

Real-data experiments on MNIST dataset. Here we train a two-layer feed-forward neural289

network defined in Section 3 with ReLU (or leaky-ReLU) functions. The number of widths is290

set as m = 1000. We use the Gaussian initialization and consider different weight variance291

σ0 ∈ {0.00001, 0.00005, 0.0001, 0.0005, 0.001}. We train the NN with stochastic gradient de-292

scent with batch size 64 and learning rate 0.1 for 10 epochs. As we can infer from Figures 2 and 3,293

the stable rank of ReLU or leaky ReLU networks will largely depend on the initialization and the294

training time. When initialization is sufficiently small, the stable rank will quickly decrease to a small295

value compared to its initialization values.296

7 Conclusion and Future Work297

This paper employs a data-correlated decomposition technique to examine the implicit bias of two-298

layer ReLU and Leaky ReLU networks trained using gradient descent. By analyzing the training299

dynamics, we provide precise characterizations of the weight matrix stable rank limits for both ReLU300

and Leaky ReLU cases, demonstrating that both scenarios will yield a network with a low stable301

rank. Additionally, we present an empirical analysis of the convergence rate of the loss function. A302

crucial direction for future research is to explore the directional convergence of the weight matrix in303

neural networks trained via gradient descent. It would be valuable to investigate whether the weight304

matrix eventually converges to a Karush-Kuhn-Tucker (KKT) point of the max-margin problem.305

Furthermore, it is important to extend our analysis to fully understand the neuron activation patterns306

in the case of ReLU activations. Specifically, we can explore whether certain neurons continuously307

switch their activation states an infinite number of times throughout the training process or if the308

activation patterns stabilize after surpassing a certain threshold.309
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A Preliminary Lemmas389

In this section, we present some pivotal lemmas that illustrate some important properties of the390

data and neural network parameters at their random initialization and provide the update rule of391

coefficients from data-correlated decomposition.392

Now turning to network initialization, the following lemma studies the inner product between a393

randomly initialized neural network neuron w
(0)
j,r (j ∈ {±1} and r ∈ [m]) and the training data. The394

calculations characterize how the neural network at initialization randomly captures the information395

in training data.396

Lemma A.1. Suppose that d = Ω(log(mn/δ)), m = Ω(log(1/δ)). Then with probability at least397

1− δ,398

σ2
0d/2 ≤ ∥w(0)

j,r ∥
2
2 ≤ 3σ2

0d/2,

|⟨w(0)
j,r ,xi⟩| ≤

√
2 log(8mn/δ) · σ0Rmax

for all r ∈ [m], j ∈ {±1} and i ∈ [n].399

Proof of Lemma A.1. First of all, the initial weights w(0)
j,r ∼ N (0, σ0I). By Bernstein’s inequality,400

with probability at least 1− δ/(4m) we have401 ∣∣∥w(0)
j,r ∥

2
2 − σ2

0d
∣∣ = O(σ2

0 ·
√
d log(8m/δ)).

Therefore, if we set appropriately d = Ω(log(m/δ)), we have with probability at least 1− δ/2, for402

all j ∈ {±1} and r ∈ [m],403

σ2
0d/2 ≤ ∥w(0)

j,r ∥
2
2 ≤ 3σ2

0d/2.

Under definition, we have ∥xi∥2 ≤ Rmax for all i ∈ [n]. It is clear that for each j, r, ⟨w(0)
j,r ,µ⟩ is a404

Gaussian random variable with mean zero and variance σ2
0∥xi∥22. Therefore, by Gaussian tail bound405

and union bound, with probability at least 1− δ/2,406

|⟨w(0)
j,r ,xi⟩| ≤

√
2 log(8mn/δ) · σ0Rmax.

407

Next, we denote S
(0)
i as {r ∈ [m] : ⟨w(0)

yi,r,xi⟩ > 0}. We give a lower bound of |S(0)
i | in the408

following two lemmas.409

Lemma A.2. Suppose that δ > 0 and m ≥ 50 log(2n/δ). Then with probability at least 1− δ,410

0.4m ≤ |S(0)
i | ≤ 0.6m, ∀i ∈ [n].

Proof of Lemma A.2. Note that |S(0)
i | =

∑m
r=1 1[⟨w

(0)
yi,r,xi⟩ > 0] and P (⟨w(0)

yi,r,xi⟩ > 0) = 1/2,411

then by Hoeffding’s inequality, with probability at least 1− δ/n, we have412 ∣∣∣∣ |S(0)
i |
m

− 1

2

∣∣∣∣ ≤
√

log(2n/δ)

2m
.

Therefore, as long as m ≥ 50 log(2n/δ), by applying union bound, with probability at least 1− δ,413

we have414

0.4m ≤ |S(0)
i | ≤ 0.6m, ∀i ∈ [n].

415

Now we give the update rule of coefficients from data-correlated decomposition. We will begin416

by analyzing the coefficients in the data-correlated decomposition in Definition 5.1. The following417

lemma presents an iterative expression for the coefficients.418
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Lemma A.3. (Restatement of Lemma 5.2) The coefficients ρ
(t)
j,r,i, ρ

(t)
j,r,i

defined in Definition 5.1419

satisfy the following iterative equations:420

ρ
(0)
j,r,i, ρ

(0)
j,r,i

= 0,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = −j),

for all r ∈ [m], j ∈ {±1} and i ∈ [n].421

Proof of Lemma A.3. First, we iterate the gradient descent update rule (3.2) t times and get422

w
(t+1)
j,r = w

(0)
j,r − η

nm

t∑
s=0

n∑
i=1

ℓ
′(s)
i · σ′(⟨w(s)

j,r ,xi⟩) · jyixi.

According to the definition of ρ(t)j,r,i, we have423

w
(t)
j,r = w

(0)
j,r +

n∑
i=1

ρ
(t)
j,r,i · ∥xi∥−2

2 · xi.

Therefore, we have the unique representation424

ρ
(t)
j,r,i = − η

nm

t∑
s=0

ℓ
′(s)
i · σ′(⟨w(s)

j,r ,xi⟩) · ∥xi∥22 · jyi.

Now with the notation ρ
(t)
j,r,i := ρ

(t)
j,r,i 1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
:= ρ

(t)
j,r,i 1(ρ

(t)
j,r,i ≤ 0) and the fact425

ℓ
′(s)
i < 0, we get426

ρ
(t)
j,r,i = − η

nm

t∑
s=0

ℓ
′(s)
i · σ′(⟨w(s)

j,r ,xi⟩) · ∥xi∥22 · 1(yi = j), (A.1)

ρ(t)
j,r,i

=
η

nm

t∑
s=0

ℓ
′(s)
i · σ′(⟨w(s)

j,r ,xi⟩) · ∥xi∥22 · 1(yi = −j). (A.2)

Writing out the iterative versions of (A.1) and (A.2) completes the proof.427

B Coefficient Analysis of Leaky ReLU428

In this section, we establish a series of results on the data-correlated decomposition for two-layer429

leaky ReLU network defined as430

f(W(t),x) = F+1(W
(t)
+1,x)− F−1(W

(t)
−1,x)

=
1

m

m∑
r=1

σ(⟨w(t)
+1,r,x⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−1,r,x⟩),

σ(z) = max{γz, z}, γ ∈ (0, 1).

(B.1)

The results in Section B, C and D are based on Lemma A.1, which hold with high probability. Denote431

by Eprelim the event that Lemma A.1 in Section A holds (for a given δ, we see P(Eprelim) ≥ 1− δ).432

For simplicity and clarity, we state all the results in Section B, C and D conditional on Eprelim.433

Denote β = maxi,j,r{|⟨w(0)
j,r ,xi⟩|}, Rmax = maxi∈[n] ∥xi∥2, Rmin = mini∈[n] ∥xi∥2, p =434

maxi̸=k |⟨xi,xk⟩| and suppose R = Rmax/Rmin is at most an absolute constant. Here we list435
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the exact conditions for η, σ0, Rmin, Rmax, p required by the proofs in this section.436

σ0 ≤ γ
(
CRmax

√
log(mn/δ)

)−1
, (B.2)

η ≤ (CR2
max/nm)−1, (B.3)

R2
min ≥ Cr−4R2np, (B.4)

where C is a large enough constant. By Lemma A.1, we can upper bound β by 2
√
log(12mn/δ) ·437

σ0Rmax. Then, by (B.2) and (B.4), it is straightforward to verify the following inequality:438

β ≤ cγ, (B.5)

γ−4R−2
minnp ≤ c, (B.6)

γ−4R−2
minR

2np ≤ c, (B.7)

where c is a sufficiently small constant.439

Suppose the conditions listed in (B.2) and (B.4) hold, we claim that for any t ≥ 0 the following440

property holds.441

Lemma B.1. Under the same conditions as Theorem 4.1, for any t ≥ 0, we have that442

m∑
r=1

|ρ(t)j,r,i| ≥ c1γ
2

m∑
r=1

|ρ(t)j′,r,i′ |,∀j, j
′ ∈ {±1},∀i, i′ ∈ [n], (B.8)

where c1 is a constant.443

To prove Lemma B.1, we divide it into two lemmas, each addressing a specific case: 0 ≤ t ≤ T1444

(Lemma B.2) when the logit |ℓ(t)i | = Θ(1), and t ≥ T1 (Lemma B.3) when the logit |ℓ(t)i | is smaller445

than constant order. Here, T1 = C ′η−1nmR−2
max, and C ′ is a constant. For each case, we apply446

different techniques to establish the proof.447

Lemma B.2 (0 ≤ t ≤ T1). Under the same conditions as Theorem 4.1, for any 0 ≤ t ≤ T1 =448

C ′η−1nmR−2
max, where C ′ is a constant, we have that449

|ρ(t)j,r,i| ≥ c2γ|ρ(t)j′,r′,i′ |,∀j, j
′ ∈ {±1},∀r, r′ ∈ [m],∀i, i′ ∈ [n], (B.9)

where c2 is a constant.450

Proof of Lemma B.2. In this lemma, we first show that (B.8) hold for t ≤ T1 = C ′η−1nmR−2
max451

where C ′ = Θ(1) is a constant. Recall from Lemma A.3 that452

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = −j),

we can get453

ρ
(t)
−yi,r,i

, ρ(t)
yi,r,i

= 0, (B.10)

and454

ρ
(t+1)
yi,r,i

≤ ρ
(t)
yi,r,i

+
η

nm
· ∥xi∥22 ≤ ρ

(t)
yi,r,i

+
ηR2

max

nm
, (B.11)

|ρ(t+1)
−yi,r,i

| ≤ |ρ(t)−yi,r,i
|+ η

nm
· ∥xi∥22 ≤ |ρ(t)−yi,r,i

|+ ηR2
max

nm
. (B.12)

Therefore, we have maxj,r,i{ρ(t)j,r,i, |ρ(t)j,r,i
|} = O(1) for any t ≤ T1 and hence455

maxi{F+1(W
(t)
+1,xi), F−1(W

(t)
−1,xi)} = O(1) for any t ≤ T1. Thus there exists a positive constant456

c̃ such that |ℓ′(t)i | ≥ c̃ for any t ≤ T1. And it follows for any j ∈ {±1}, r ∈ [m], i ∈ [n] that457

|ρ(t+1)
j,r,i | ≥ |ρ(t)j,r,i|+

γη

nm
· |ℓ′(t)i | · ∥xi∥22 ≥ |ρ(t)j,r,i|+

c̃γη

nm
· ∥xi∥22,∀ 0 ≤ t ≤ T1,
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|ρ(t)j,r,i| ≥
c̃γηt

nm
· ∥xi∥22 ≥ c̃γηR2

mint

nm
,∀ 0 ≤ t ≤ T1. (B.13)

On the other hand, by (B.10), (B.11) and (B.12), we have for any j′ ∈ {±1}, r′ ∈ [m], i′ ∈ [n] that458

|ρ(t)j′,r′,i′ | ≤
ηR2

maxt

nm
,∀ 0 ≤ t ≤ T1. (B.14)

Dividing (B.14) by (B.13), we can get for any j, j′ ∈ {±1}, r, r′ ∈ [m], i, i′ ∈ [n] that459

|ρ(t)j,r,i| ≥
c̃γR2

min

R2
max

|ρ(t)j′,r′,i′ |,

which indicates that the first bullet holds for time t ≤ T1 as long as c2 ≤ c̃R2
minR

−2
max.460

Lemma B.3 (t ≥ T1). Let T1 be defined in Lemma B.2. Under the same conditions as Theorem 4.1,461

for any t ≥ T1, we have that462

m∑
r=1

|ρ(t)j,r,i| ≥ c3γ
2

m∑
r=1

|ρ(t)j′,r,i′ |,∀j, j
′ ∈ {±1},∀i, i′ ∈ [n], (B.15)

where c3 = Θ(1) is a constant. Moreover, we also have the following increasing rate estimation of463

|ρ(t)yi,r,i
|, |ρ(t)−yi,r,i

|:464

• 1
m

∑m
r=1 ρ

(t)
yi,r,i

≤ c−1
4 log

(
1 +

η∥xi∥2
2c4e

2β

nm · t
)

,465

• 1
m

∑m
r=1 |ρ

(t)
−yi,r,i

| ≤ c−1
5 γ−1 log

(
1 +

γη∥xi∥2
2c5e

2β

nm · t
)

,466

• 1
m

∑m
r=1 ρ

(t)
yi,r,i

≥ c−1
6 log

(
1 +

γη∥xi∥2
2c6e

−(γ+1)β

nm · t
)

,467

• 1
m

∑m
r=1 |ρ

(t)
−yi,r,i

| ≥ c−1
6 γ log

(
1 +

η∥xi∥2
2c6e

−(γ+1)β

nm · t
)

,468

where c4, c5, c6 are constants.469

Proof of Lemma B.3. We prove this lemma by induction. By Lemma B.2, we know that (B.15) holds470

for time t = T1 as long as c3 ≤ c2. Suppose that there exists t̃ > T1 such that (B.15) holds for all471

time 0 ≤ t ≤ t̃− 1. We aim to prove that they also hold for t = t̃. For any 0 ≤ t ≤ t̃− 1, we have472

Fyi
(W(t)

yi
,xi) =

1

m

m∑
r=1

σ(⟨w(t)
yi,r,xi⟩)

≥ 1

m

m∑
r=1

⟨w(t)
yi,r,xi⟩

=
1

m

m∑
r=1

(
⟨w(0)

yi,r,xi⟩+
n∑

i′=1

ρ
(t)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

)

≥ 1

m

m∑
r=1

(
ρ
(t)
yi,r,i

−
∑
i′ ̸=i

|ρ(t)yi,r,i′
|R−2

minp

)
− β

=
1

m

m∑
r=1

ρ
(t)
yi,r,i

−
∑
i′ ̸=i

(
1

m

m∑
r=1

ρ
(t)
yi,r,i′

)
R−2

minp− β

≥ 1− γ−2c−1
3 R−2

minpn

m

m∑
r=1

ρ
(t)
yi,r,i

− β,

(B.16)
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where the first inequality is by σ(z) ≥ z; the second equality is by (5.1); the third inequality is473

by triangle inequality and the definition of β, p,Rmin; the fourth inequality is by the induction474

hypothesis (B.15). Besides, for any 0 ≤ t ≤ t̃ − 1, we also have the following upper bound of475

Fyi
(W

(t)
yi ,xi):476

Fyi(W
(t)
yi
,xi) =

1

m

m∑
r=1

σ(⟨w(t)
yi,r,xi⟩)

=
1

m

m∑
r=1

σ

(
⟨w(0)

yi,r,xi⟩+
n∑

i′=1

ρ
(t)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

)

≤ 1

m

m∑
r=1

σ

(
ρ
(t)
yi,r,i

+
∑
i′ ̸=i

|ρ(t)yi,r,i′
|R−2

minp+ β

)

=
1

m

m∑
r=1

(
ρ
(t)
yi,r,i

+
∑
i′ ̸=i

|ρ(t)yi,r,i′
|R−2

minp+ β

)

=
1

m

m∑
r=1

ρ
(t)
yi,r,i

+
∑
i′ ̸=i

(
1

m

m∑
r=1

ρ
(t)
yi,r,i′

)
R−2

minp+ β

≤ 1 + γ−2c−1
3 R−2

minpn

m

m∑
r=1

ρ
(t)
yi,r,i

+ β,

(B.17)

where the first inequality is by triangle inequality and the definition of β, p,Rmin; the second477

inequality is by the induction hypothesis (B.15). On the other hand, for any 0 ≤ t ≤ t̃, we can give478

following upper and lower bounds for F−yi
(W

(t)
−yi

,xi) by applying similar arguments like (B.16)479

and (B.17):480

F−yi
(W

(t)
−yi

,xi) ≥
γ

m

m∑
r=1

⟨w(t)
−yi,r,xi⟩

≥ γ

m

m∑
r=1

(
ρ
(t)
−yi,r,i

−
∑
i′ ̸=i

|ρ(t)−yi,r,i′
|R−2

minp− β

)
,

≥ γ(1 + γ−2c−1
3 R−2

minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

− γβ, (B.18)

and481

F−yi(W
(t)
−yi

,xi) ≤
1

m

m∑
r=1

σ

(
ρ
(t)
−yi,r,i

+
∑
i′ ̸=i

|ρ(t)−yi,r,i′
|R−2

minp+ β

)

≤ 1

m

m∑
r=1

[
σ(ρ

(t)
−yi,r,i

) + σ
(∑

i′ ̸=i

|ρ(t)−yi,r,i′
|R−2

minp
)
+ σ(β)

]

=
γ

m

m∑
r=1

ρ
(t)
−yi,r,i

+
∑
i′ ̸=i

(
1

m

m∑
r=1

|ρ(t)−yi,r,i
|
)
+ β

=
γ(1− γ−3c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

+ β, (B.19)

where the second inequality is by a property of leaky ReLU function that σ(a + b) ≤ σ(a) +482

σ(b),∀a, b ∈ R.483
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Next, we can bound |ℓ′(t)i | for 0 ≤ t ≤ t̃− 1:484

|ℓ′(t)i |

=
1

1 + exp{Fyi(W
(t)
yi ,xi)− F−yi(W

(t)
−yi

,xi)}

≤ exp{−Fyi(W
(t)
yi
,xi) + F−yi(W

(t)
−yi

,xi)}

≤ exp

{
− 1− γ−2c−1

3 R−2
minpn

m

m∑
r=1

ρ
(t)
yi,r,i

+
γ(1− γ−3c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

+ 2β

}
,

(B.20)
where the second inequality is by (B.16) and (B.19). And485

|ℓ′(t)i |

=
1

1 + exp{Fyi(W
(t)
yi ,xi)− F−yi(W

(t)
−yi

,xi)}

≥ 1

1 + exp
{

1+γ−2c−1
3 R−2

minpn

m

∑m
r=1 ρ

(t)
yi,r,i

− γ(1+γ−2c−1
3 R−2

minpn)

m

∑m
r=1 ρ

(t)
−yi,r,i

+ (γ + 1)β
}

≥ 1

2
exp

{
− 1 + γ−2c−1

3 R−2
minpn

m

m∑
r=1

ρ
(t)
yi,r,i

+
γ(1 + γ−2c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

− (γ + 1)β

}
,

(B.21)
where the first inequality is by (B.17) and (B.18); the last inequality is by 1/(1 + exp(z)) ≥486

exp(−z)/2 if z ≥ 0. By (B.20), we can get for 0 ≤ t ≤ t̃− 1 that487

|ℓ′(t)i | ≤ exp

{
− 1− γ−2c−1

3 R−2
minpn

m

m∑
r=1

ρ
(t)
yi,r,i

+ 2β

}
, (B.22)

|ℓ′(t)i | ≤ exp

{
γ(1− γ−3c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

+ 2β

}
. (B.23)

By (B.21) and γρ
(t)
yi,r,i

≤ |ρ(t)−yi,r,i
| ≤ γ−4ρ

(t)
yi,r,i

, we can get for 0 ≤ t ≤ t̃− 1 that488

|ℓ′(t)i | ≥ 1

2
exp

{
− 2(1 + γ−2c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
yi,r,i

− (γ + 1)β

}
, (B.24)

|ℓ′(t)i | ≥ 1

2
exp

{
(γ−1 + γ)(1 + γ−2c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

− (γ + 1)β

}

≥ 1

2
exp

{
2(1 + γ−2c−1

3 R−2
minpn)

γm

m∑
r=1

ρ
(t)
−yi,r,i

− (γ + 1)β

}
. (B.25)

By (5.4), (5.5) and σ′ ∈ [γ, 1], we have for 0 ≤ t ≤ t̃− 1 that489

ρ
(t+1)
yi,r,i

≤ ρ
(t)
yi,r,i

+
η

nm
· |ℓ′(t)i | · ∥xi∥22,

ρ
(t+1)
yi,r,i

≥ ρ
(t)
yi,r,i

+
γη

nm
· |ℓ′(t)i | · ∥xi∥22,

|ρ(t+1)
−yi,r,i

| ≤ |ρ(t)−yi,r,i
|+ η

nm
· |ℓ′(t)i | · ∥xi∥22,

|ρ(t+1)
−yi,r,i

| ≥ |ρ(t)−yi,r,i
|+ γη

nm
· |ℓ′(t)i | · ∥xi∥22.

(B.26)
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By plugging (B.22), (B.24), (B.23) and (B.25) into (B.26), we have for 0 ≤ t ≤ t̃− 1 that490

m∑
r=1

ρ
(t+1)
yi,r,i

≤
m∑
r=1

ρ
(t)
yi,r,i

+
η∥xi∥22e2β

n
· exp

{
− 1− γ−2c−1

3 R−2
minpn

m

m∑
r=1

ρ
(t)
yi,r,i

}
, (B.27)

m∑
r=1

|ρ(t+1)
−yi,r,i

| ≤
m∑
r=1

|ρ(t)−yi,r,i
|+ η∥xi∥22e2β

n
· exp

{
− γ(1− γ−3c−1

3 R−2
minpn)

m

m∑
r=1

|ρ(t)−yi,r,i
|
}
,

(B.28)
m∑
r=1

ρ
(t+1)
yi,r,i

≥
m∑
r=1

ρ
(t)
yi,r,i

+
γη∥xi∥22e−(γ+1)β

2n
· exp

{
− 2(1 + γ−2c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
yi,r,i

}
,

(B.29)
m∑
r=1

|ρ(t+1)
−yi,r,i

| ≥
m∑
r=1

|ρ(t)−yi,r,i
|+ γη∥xi∥22e−(γ+1)β

2n
· exp

{
− 2(1 + γ−2c−1

3 R−2
minpn)

γm

m∑
r=1

|ρ(t)−yi,r,i
|
}
.

(B.30)

By applying Lemma H.1 to (B.27) and taking491

xt =
1− γ−2c−1

3 R−2
minpn

m

m∑
r=1

ρ
(t)
yi,r,i

,

we can get for 0 ≤ t ≤ t̃ that492

1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ c−1
4 log

(
1 +

η∥xi∥22c4e2β

nm
exp

{
η∥xi∥22c4e2β

nm

}
· t
)

≤ c−1
4 log

(
1 +

η∥xi∥22c4e2β

nm
· t
)
,

(B.31)

where c4 := 1 − γ−2c−1
3 R−2

minpn and the last inequality is by η ≤ (CR2
max/nm)−1 and C is a493

sufficiently large constant.494

By applying Lemma H.1 to (B.28) and taking495

xt =
γ(1− γ−3c−1

3 R−2
minpn)

m

m∑
r=1

|ρ(t)−yi,r,i
|,

we can get for 0 ≤ t ≤ t̃ that496

1

m

m∑
r=1

|ρ(t)−yi,r,i
| ≤ c−1

5 γ−1 log

(
1 +

γη∥xi∥22c5e2β

nm
exp

{
γη∥xi∥22c5e2β

nm

}
· t
)

≤ c−1
5 γ−1 log

(
1 +

γη∥xi∥22c5e2β

nm
· t
)
,

(B.32)

where c5 := 1 − γ−3c−1
3 R−2

minpn and the last inequality is by η ≤ (CR2
max/nm)−1 and C is a497

sufficiently large constant.498

By applying Lemma H.2 to (B.29) and taking499

xt =
2(1 + γ−2c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
yi,r,i

,

we can get500

1

m

m∑
r=1

ρ
(t)
yi,r,i

≥ (2c6)
−1 log

(
1 +

γη∥xi∥22c6e−(γ+1)β

nm
· t
)
, (B.33)

where c6 := 1 + γ−2c−1
3 R−2

minpn.501
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By applying Lemma H.2 to (B.30) and taking502

xt =
2(1 + γ−4c−1

3 R−2
minpn)

γm

m∑
r=1

|ρ(t)−yi,r,i
|,

we can get503

1

m

m∑
r=1

|ρ(t)−yi,r,i
| ≥ (2c6)

−1γ log

(
1 +

η∥xi∥22c6e−(γ+1)β

nm
· t
)
, (B.34)

where c6 := 1 + γ−2c−1
3 R−2

minpn.504

In order to apply Lemma H.4 (requiring b > a), we loosen the bounds in (B.31), (B.32), (B.33) and505

(B.34) as follows:506

1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ c−1
4 γ−1 log

(
1 +

γηR2
maxc5e

2β

nm
· t
)
,∀ 0 ≤ t ≤ t̃, (B.35)

1

m

m∑
r=1

|ρ(t)−yi,r,i
| ≤ c−1

4 γ−1 log

(
1 +

γηR2
maxc5e

2β

nm
· t
)
,∀ 0 ≤ t ≤ t̃, (B.36)

1

m

m∑
r=1

ρ
(t)
yi,r,i

≥ (2c6)
−1γ log

(
1 +

ηR2
minc6e

−(γ+1)β

nm
· t
)
,∀ 0 ≤ t ≤ t̃, (B.37)

1

m

m∑
r=1

|ρ(t)−yi,r,i
| ≥ (2c6)

−1γ log

(
1 +

ηR2
minc6e

−(γ+1)β

nm
· t
)
,∀ 0 ≤ t ≤ t̃, (B.38)

where (B.35) is by Bernoulli’s inequality that 1+γ−1x ≤ (1+x)γ
−1

for every real number 0 ≤ r ≤ 1507

and x ≥ −1; (B.37) is by Bernoulli’s inequality that 1 + γx ≥ (1 + x)γ for every real number508

0 ≤ r ≤ 1 and x ≥ −1. If R2
minc6e

−(γ+1)β ≥ γR2
maxc5e

2β , we have509

1

m

m∑
r=1

|ρ(t)j,r,i| ≥
γ2(2c6)

−1c4
m

m∑
r=1

|ρ(t)j′,r,i′ |. (B.39)

If R2
minc6e

−(γ+1)β < γR2
maxc5e

2β , by Lemma H.4, we have510

min{ 1
m

∑m
r=1 ρ

(t)
yi,r,i

, 1
m

∑m
r=1 |ρ

(t)
−yi,r,i

|}

max{ 1
m

∑m
r=1 ρ

(t)
yi′ ,r,i

′ , 1
m

∑m
r=1 |ρ

(t)
−yi′ ,r,i

′ |}

≥ γ2(2c6)
−1c4 ·

log
(
1 +

ηR2
minc6e

−(γ+1)β

nm · t
)

log
(
1 +

γηR2
maxc5e

2β

nm · t
)

≥ γ2(2c6)
−1c4 ·

log
(
1 +

ηR2
minc6e

−(γ+1)β

nm · T1

)
log

(
1 +

γηR2
maxc5e

2β

nm · T1

)
≥ γ2(2c6)

−1c4 ·
log(1 +R−2c6e

−(γ+1)βC ′)

log(1 + γc5e2βC ′)
.

Therefore, we can get for 0 ≤ t ≤ t̃ that511

m∑
r=1

|ρ(t)j,r,i| ≥ γ2c3

m∑
r=1

|ρ(t)j′,r,i′ |,∀j, j
′ ∈ {±1},∀i, i′ ∈ [n], (B.40)

as long as512

c3 ≤ (2c6)
−1c4 ·min

{
1,

log(1 +R−2c6e
−(γ+1)βC ′)

log(1 + γc5e2βC ′)

}
.
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This condition holds under the following conditions:513

γ−3c−1
3 R−2

minpn ≤ 1

2
=⇒ c4, c5 ≥ 1

2
, c6 ≤ 3

2
,

c3 =
1

6
min

{
1,

log(1 +R−2e−(γ+1)βC ′)

log(1 + γe2βC ′)

}
.

This implies that induction hypothesis (B.15) holds for t = t̃.514

Lemma B.4 (Implication of Lemma B.1). Under the same condition as Theorem 4.1, if (B.8) hold515

for time t, then we have that516

|ρ(t)j,r,i| ≥ c1γ
4|ρ(t)j′,r′,i′ |,

where c1 is the same constant as defined in Lemma B.1.517

Proof of Lemma B.4. By σ′ ∈ [γ, 1], (5.4) and (5.5), we have518

|ρ(t+1)
j,r,i | ≥ |ρ(t)j,r,i|+

γη

nm
· |ℓ′(t)i | · ∥xi∥22,∀j ∈ {±1},∀r ∈ [m],∀i ∈ [n],

|ρ(t+1)
j,r,i | ≤ |ρ(t)j,r,i|+

η

nm
· |ℓ′(t)i | · ∥xi∥22,∀j ∈ {±1},∀r ∈ [m],∀i ∈ [n].

Thus, we have519

|ρ(t)j,r,i| ≥
γη∥xi∥22

nm
·
t−1∑
s=1

|ℓ′(t)i |,∀j ∈ {±1},∀r ∈ [m],∀i ∈ [n],

|ρ(t)j,r,i| ≤
η∥xi∥22
nm

·
t−1∑
s=1

|ℓ′(t)i |,∀j ∈ {±1},∀r ∈ [m],∀i ∈ [n].

Therefore, |ρ(t)j,r,i| ≥ γ|ρ(t)j′,r′,i| for any j, j′ ∈ {±1}, r′, r ∈ [m] and i ∈ [n], and hence520

m|ρ(t)j,r,i| ≥ γ

m∑
r=1

|ρ(t)j,r,i|,

m∑
r=1

|ρ(t)j′,r,i′ | ≥ mγ|ρ(t)j′,r′,i′ |.
(B.41)

Plugging (B.41) back into (B.8) completes the proof.521

Lemma B.5. Let T1 be defined in Lemma B.2. Every neuron will never change its activation pattern522

after time T1, that is,523

sign(⟨w(t)
j,r,xi⟩) = sign(⟨w(T1)

j,r ,xi⟩),
for any t ≥ T1, j ∈ {±1} and r ∈ [m]. Moreover, it holds that524

sign(⟨w(t)
j,r,xi⟩) = jyi, (B.42)

for any t ≥ T1, j ∈ {±1} and r ∈ [m].525

Proof of Lemma B.5. For j = yi and t ≥ 0, we have ρ(t)
j,r,i

= 0, and so526

⟨w(t)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+
n∑

i′=1

ρ
(t)
j,r,i′∥xi′∥−2

2 · ⟨xi′ ,xi⟩

= ⟨w(0)
j,r ,xi⟩+ ρ

(t)
j,r,i +

∑
i′ ̸=i

ρ
(t)
j,r,i′∥xi′∥−2

2 · ⟨xi′ ,xi⟩

≥ ρ
(t)
j,r,i −

∑
i′ ̸=i

|ρ(t)j,r,i′ |R
−2
minp− β

20



≥ ρ
(t)
j,r,i − γ−4c−1

1 ρ
(t)
j,r,iR

−2
minpn− β

= (1− γ−4c−1
1 R−2

minpn) · ρ
(t)
j,r,i − β,

where the first inequality is by triangle inequality; the second inequality is by |ρ(t)j,r,i′ | ≤ γ−4c−1
1 ρ

(t)
yi,r,i

527

from Lemma B.1 and Lemma B.4.528

By (B.13), we have for t ≥ T1 that529

ρ
(t)
yi,r,i

≥ c̃γηR2
minT1

nm
= C ′c̃γR2

minR
−2
max. (B.43)

Therefore, by (B.5), (B.6) and (B.43), we know that530

(1− γ−1c−4
1 R−2

minpn) · ρ
(t)
yi,r,i

> β,∀ r ∈ [m], i ∈ [n].

and thus sign(⟨w(t)
j,r,xi⟩) = 1 for any r ∈ [m], i ∈ [n], j = yi.531

For j ̸= yi and any t ≥ 0, we have ρ
(t)
j,r,i = 0, and so532

⟨w(t)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+
n∑

i′=1

ρ
(t)
j,r,i′∥xi′∥−2

2 · ⟨xi′ ,xi⟩

= ρ(t)
j,r,i

+
∑
i′ ̸=i

ρ
(t)
j,r,i′∥xi′∥−2

2 · ⟨xi′ ,xi⟩

≤ ρ(t)
j,r,i

+
∑
i′ ̸=i

|ρ(t)j,r,i′ |R
−2
minp+ β

≤ ρ(t)
j,r,i

− γ−1c−1
2 ρ(t)

j,r,i
R−2

minpn− β

= (1− γ−1c−1
2 R−2

minpn)ρ
(t)
j,r,i

− β,

where the first inequality is by triangle inequality; the second inequality is by |ρ(t)j,r,i′ | ≤533

γ−4c−1
1 |ρ(t)−yi,r,i

| from Lemma B.1 and Lemma B.4.534

By (B.13), we have535

|ρ(t)−yi,r,i
| ≥ c̃γηR2

minT1

nm
= C ′c̃γR2

minR
−2
max. (B.44)

Therefore, by (B.5), (B.6) and (B.44), we know that536

(1− γ−4c−1
1 R−2

minpn) · |ρ
(t)
−yi,r,i

| > β,∀ r ∈ [m], i ∈ [n],

and thus sign(⟨w(t)
j,r,xi⟩) = −1 for j ̸= yi, which completes the proof.537

C Stable Rank of Leaky ReLU Network538

In this section, we consider the properties of stable rank of the weight matrix W(t) found by gradient539

descent at time t, defined as ∥W(t)∥2F /∥W(t)∥22, the square of the ratio of the Frobenius norm to540

the spectral norm of W(t). Given Lemma B.5, we have following coefficient update rule for t ≥ T1541

where T1 is defined in Lemma B.2:542

ρ
(t+1)
yi,r,i

= ρ
(t)
yi,r,i

+
η

nm
· |ℓ′(t)i | · ∥xi∥22, (C.1)

ρ(t+1)
−yi,r,i

= ρ(t)−yi,r,i
− γη

nm
· |ℓ′(t)i | · ∥xi∥22, (C.2)

where543

|ℓ′(t)i | = 1

1 + exp{Fyi(W
(t)
yi ,xi)− F−yi(W

(t)
−yi

,xi)}
.

21



Based on (C.1) and (C.2), we first introduce the following helpful lemmas.544

Lemma C.1. Let T1 be defined in Lemma B.3. For any r, r′ ∈ [m], i ∈ [n] and t ≤ T1,545

|ρ(t)yi,r,i
− ρ

(t)
yi,r′,i

| ≤ C ′, |ρ(t)−yi,r,i
− ρ(t)−yi,r′,i

| ≤ C ′. (C.3)

Proof of Lemma C.1. By (B.14), we can get546

|ρ(t)j,r,i| ≤
ηR2

maxT1

nm
= C ′,

for t ≤ T1. Notice that547

|ρ(t)yi,r,i
− ρ

(t)
yi,r′,i

| ≤ max{|ρ(t)yi,r,i
|, |ρ(t)yi,r′,i

|},

|ρ(t)−yi,r,i
− ρ(t)−yi,r′,i

| ≤ max{|ρ(t)−yi,r,i
|, |ρ(t)−yi,r′,i

|},

which completes the proof.548

Lemma C.2. Let T1 be defined in Lemma B.3. For any r, r′ ∈ [m], i ∈ [n] and t ≥ T1,549

|ρ(t)yi,r,i
− ρ

(t)
yi,r′,i

| ≤ C ′, |ρ(t)−yi,r,i
− ρ(t)−yi,r′,i

| ≤ C ′.

Proof of Lemma C.2. By (C.1) and (C.2), we can get for any r ∈ [m], i ∈ [n] and t ≥ T1 that550

ρ
(t)
yi,r,i

= ρ
(T1)
yi,r,i

+
η

nm

t−1∑
s=T1

|ℓ′(t)i | · ∥xi∥22,

ρ(t)−yi,r,i
= ρ(T1)

−yi,r,i
+

η

nm

t−1∑
s=T1

|ℓ′(t)i | · ∥xi∥22.

Since ρ
(t)
yi,r,i

, ρ
(t)
yi,r′,i

possess the same increment and ρ(t)−yi,r,i
, ρ

(t)
−yi,r′,i

possess the same increment,551

we have552

ρ
(t)
yi,r,i

− ρ
(t)
yi,r′,i

= ρ
(T1)
yi,r,i

− ρ
(T1)
yi,r′,i

,

ρ(t)−yi,r,i
− ρ(t)−yi,r′,i

= ρ(T1)
−yi,r,i

− ρ(T1)
−yi,r′,i

.

Notice that553

max
i,r,r′

{|ρ(T1)
yi,r,i

− ρ
(T1)
yi,r′,i

|, |ρ(T1)
−yi,r,i

− ρ(T1)
−yi,r′,i

|} ≤ max
i,r,r′

{|ρ(T1)
yi,r,i

|, |ρ(T1)
−yi,r,i

|} ≤ C ′,

which completes the proof.554

Now we are ready to prove the second bullet of Theorem 4.1.555

Lemma C.3. Throughout the gradient descent trajectory, the stable rank of the weights Wj satisfies,556

lim
t→∞

∥Wj∥2F
∥Wj∥22

= 1,∀j ∈ {±1},

with a decreasing rate of O
(
1/ log(t)

)
.557

Proof of Lemma C.3. By Definition 5.1, we have558

w
(t)
j,r = w

(0)
j,r +

n∑
i=1

ρ
(t)
j,r,i · ∥xi∥−2

2 · xi︸ ︷︷ ︸
:=v

(t)
j,r

.
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We first show that ∥v(t)
j,r∥2 = Θ(log t).559

∥v(t)
j,r∥

2
2 =

( n∑
i=1

ρ
(t)
j,r,i · ∥xi∥−2

2 · xi

)2

=

n∑
i=1

(ρ
(t)
j,r,i)

2 · ∥xi∥−2
2 +

∑
i ̸=i′

ρ
(t)
j,r,iρ

(t)
j,r,i′∥xi∥−2

2 ∥xi′∥−2
2 ⟨xi,xi′⟩

≥
n∑

i=1

(ρ
(t)
j,r,i)

2 ·R−2
max −

∑
i̸=i′

|ρ(t)j,r,i||ρ
(t)
j,r,i′ | ·R

−4
minp

≥ R−2
max(1−R2R−2

minc
−1
1 γ−4np)

n∑
i=1

(ρ
(t)
j,r,i)

2

= Θ(nR−2
max log

2(t)),

where the second last inequality is by triangle inequality; the last inequality is by |ρ(t)j,r,i| ≤560

γ−4c−1
1 |ρ(t)j,r,i′ | from Lemma B.1 and Lemma B.4.561

By the definition of v(t)
j,r, we have562

∥v(t)
j,r − v

(t)
j,r′∥

2
2 =

∥∥∥∥ n∑
i=1

ρ
(t)
j,r,i · ∥xi∥−2

2 · xi −
n∑

i=1

ρ
(t)
j,r′,i · ∥xi∥−2

2 · xi

∥∥∥∥2
2

=

∥∥∥∥ n∑
i=1

(ρ
(t)
j,r,i − ρ

(t)
j,r′,i) · ∥xi∥−2

2 · xi

∥∥∥∥2
2

=

n∑
i=1

(ρ
(t)
j,r,i − ρ

(t)
j,r′,i)

2 · ∥xi∥−2
2 +

∑
i̸=i′

(ρ
(t)
j,r,i − ρ

(t)
j,r′,i)(ρ

(t)
j,r,i′ − ρ

(t)
j,r′,i′)

⟨xi,xi′⟩
∥xi∥22∥xi′∥22

≤ (C ′)2nR−2
min + (C ′)2n2R−4

minp

≤ 2(C ′)2nR−2
min,

where the first inequality is by Lemma C.1 and Lemma C.2.563

Now, we are ready to estimate the stable rank of W(t). On the one hand, for ∥W(t)
j ∥2F , we have564

∥W(t)
j ∥2F =

∑
r

∥w(t)
j,r∥

2
2

=
∑
r

∥w(0)
j,r + v

(t)
j,r∥

2
2

=
∑
r

∥w(0)
j,r ∥

2
2 + ∥v(t)

j,r∥
2
2 + 2⟨w(0)

j,r ,v
(t)
j,r⟩

≤
∑
r

∥w(0)
j,r ∥

2
2 + (∥v(t)

j,1∥2 + ∥v(t)
j,r − v

(t)
j,1∥2)

2 + 2∥w(0)
j,r ∥2(∥v

(t)
j,1∥2 + ∥v(t)

j,r − v
(t)
j,1∥2)

= m∥v(t)
j,1∥

2
2 + 2

(∑
r

∥v(t)
j,r − v

(t)
j,1∥2 + ∥w(0)

j,r ∥2
)
∥v(t)

j,1∥2

+
(∑

r

∥w(0)
j,r ∥

2
2 + ∥v(t)

j,r − v
(t)
j,1∥

2
2 + 2∥w(0)

j,r ∥2∥v
(t)
j,r − v

(t)
j,1∥2

)
≤ m∥v(t)

j,1∥
2
2 +mC1∥v(t)

j,1∥2 +mC2.

where the first inequality is by triangle inequality and Cauchy inequality; the last inequality is by565

Lemma C.1, Lemma C.2 and taking566

C1 = 3(σ0

√
d+ C ′√nR−1

min),
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C2 = 2(σ0

√
d+ C ′√nR−1

min)
2.

On the other hand, for ∥W(t)
j ∥22, we have567

∥W(t)
j ∥22 = max

x∈Sd−1
∥W(0)

j x+V
(t)
j x∥22

= max
x∈Sd−1

∥W(0)
j x∥22 + ∥V(t)

j x∥22 + 2⟨W(0)
j x,V

(t)
j x⟩

= max
x∈Sd−1

∑
r

⟨w(0)
j,r ,x⟩

2 +
∑
r

⟨v(t)
j,r,x⟩

2 +
∑
r

⟨w(0)
j,r ,x⟩ · ⟨v

(t)
j,r,x⟩

≥
∑
r

〈
w

(0)
j,r ,

v
(t)
j,1

∥v(t)
j,1∥2

〉2

+
∑
r

〈
v
(t)
j,r,

v
(t)
j,1

∥v(t)
j,1∥2

〉2

+
∑
r

〈
w

(0)
j,r ,

v
(t)
j,1

∥v(t)
j,1∥2

〉
·
〈
v
(t)
j,r,

v
(t)
j,1

∥v(t)
j,1∥2

〉

≥
∑
r

〈
v
(t)
j,r,

v
(t)
j,1

∥v(t)
j,1∥2

〉2

−
∑
r

∥w(0)
j,r ∥

2
2 −

∑
r

∥w(0)
j,r ∥2∥v

(t)
j,r∥2

≥ m∥v(t)
j,1∥

2
2 + 2

∑
r

∥v(t)
j,1∥2 ·

〈
v
(t)
j,r − v

(t)
j,1,

v
(t)
j,1

∥v(t)
j,1∥2

〉
+

∑
r

〈
v
(t)
j,r − v

(t)
j,1,

v
(t)
j,1

∥v(t)
j,1∥2

〉2

−
∑
r

∥w(0)
j,r ∥

2
2 −

∑
r

∥w(0)
j,r ∥2

(
∥v(t)

j,1∥2 + ∥v(t)
j,r − v

(t)
j,1∥2

)
≥ m∥v(t)

j,1∥
2
2 −

(∑
r

2∥v(t)
j,r − v

(t)
j,1∥2 + ∥w(0)

j,r ∥2
)
· ∥v(t)

j,1∥2

−
(∑

r

∥w(0)
j,r ∥

2
2 + ∥w(0)

j,r ∥2∥v
(t)
j,r − v

(t)
j,1∥2

)
≥ m∥v(t)

j,1∥
2
2 −mC3∥v(t)

j,1∥2 −mC4

where the first inequality is by taking x = v
(t)
j,1/∥v

(t)
j,1∥2; the second inequality is by Cauchy568

inequality; the third inequality by breaking v
(t)
j,r down into v

(t)
j,1 + v

(t)
j,r − v

(t)
j,1 and then expanding the569

first term as well as applying triangle inequality to the last term; the fourth inequality is by Cauchy570

inequality; the last inequality is by Lemma C.1, Lemma C.2 and taking571

C3 = 1.5σ0

√
d+ 3C ′√nR−1

min,

C4 = 1.5σ2
0d+ 3C ′σ0

√
d
√
nR−1

min.

By leverage the upper bound of ∥W(t)
j ∥2F as well as the lower bound of ∥W(t)

j ∥22, we can get572

∥W(t)
j ∥2F

∥W(t)
j ∥22

≤
∥v(t)

j,1∥22 + C1∥v(t)
j,1∥2 + C2

∥v(t)
j,1∥22 − C3∥v(t)

j,1∥2 − C4

.

Since ∥W(t)
j ∥2F /∥W

(t)
j ∥22 ≥ 1, ∥v(t)

j,1∥2 = Θ(log t) and C1, C2, C3, C4 are constants, it follow that573

lim
t→∞

∥W(t)
j ∥2F

∥W(t)
j ∥22

= 1,

and574

∥W(t)
j ∥2F

∥W(t)
j ∥22

− 1 ≤
(C1 + C3)∥v(t)

j,1∥2 + (C2 + C4)

∥v(t)
j,1∥22 − C3∥v(t)

j,1∥2 − C4

⪯ C1 + C3

∥v(t)
j,1∥2
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≤ 6(C ′√nR−1
min + σ0

√
d)

∥v(t)
j,1∥2

= Θ
(√nR−1

min + σ0

√
d

√
nR−1

max log(t)

)
= Θ

(1 + σ0

√
d/nRmax

log(t)

)
,

which completes the proof.575

D Loss Convergence of Leaky ReLU Network576

Given Lemma B.5 about the activation pattern after time T1, we can now establish a new lemma that577

will aid us in proving the convergence rate later.578

Lemma D.1. Let T1 be defined in Lemma B.3. For t ≥ T1, it holds that579

ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

= ρ
(t)
yi,r′,i

− ρ
(T1)
yi,r′,i

,

ρ(t)−yi,r,i
− ρ(T1)

−yi,r,i
= ρ(t)−yi,r′,i

− ρ(T1)
−yi,r′,i

,

ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

=
(
|ρ(t)−yi,r′,i

| − |ρ(T1)
−yi,r′,i

|
)
/γ,

for any i ∈ [n] and r, r′ ∈ [m].580

Proof of Lemma D.1. By Lemma B.3 about the activation pattern after time T1, we can get581

ρ
(t+1)
yi,r,i

= ρ
(t)
yi,r,i

+
η

nm
· |ℓ′(t)i | · ∥xi∥22, (D.1)

ρ(t+1)
−yi,r,i

= ρ(t)−yi,r,i
− γη

nm
· |ℓ′(t)i | · ∥xi∥22, (D.2)

for t ≥ T1. Recursively using (D.1) and (D.2) t− T1 times, we can get582

ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

=
η∥xi∥22
nm

t−1∑
s=T1

|ℓ′(s)i |,

|ρ(t)−yi,r,i
| − |ρ(T1)

−yi,r,i
| = γη∥xi∥22

nm

t−1∑
s=T1

|ℓ′(s)i |.

This indicates that for different r, r′ ∈ [m], ρ(t)yi,r,i
−ρ

(T1)
yi,r,i

and ρ
(t)
yi,r′,i

−ρ
(T1)
yi,r′,i

are the same, whereas583

γ(|ρ(t)−yi,r,i
| − |ρ(T1)

−yi,r,i
)| and ρ

(t)
yi,r′,i

− ρ
(T1)
yi,r′,i

are the same, which completes the proof.584

By leveraging Lemma B.5 and Lemma D.1, we can now give an upper bound for the convergence585

rate.586

Lemma D.2. Let T be defined in Lemma B.3. For leaky ReLU neural network defined in (3.1), for587

any t ≥ T , we have588

LS(W
(t)) ≤ c

n

n∑
i=1

(
1 +

η∥xi∥22eCi(1 + γ2)(1 + c−1
1 γ−2R−2

minpn)

2nm
· (t− T )

)−
1−c

−1
1 γ−2R

−2
min

pn

1+c
−1
1 γ−2R

−2
min

pn

,

where c1 is the same constant as Lemma B.1 and c, Ci are constants. This indicates that the training589

loss will converge with rate O(t−α) where α = (1 − c−1
1 γ−2R−2

minpn)/(1 + c−1
1 γ−2R−2

minpn) is a590

positive constant.591

Proof of Lemma D.2. To establish an upper bound for LS(W
(t)), we need to first determine a592

lower bound for the margin yif(W
(t),xi). To facilitate improved convergence rate analysis, we593

will initially present a more precise analysis for the increasing rate of ρ
(t)
yi,r,i

, which takes into594

account the activation pattern after T1 given in Lemma B.5. Given the activation pattern outlined in595
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Lemma B.5, we can provide the following refined upper bound for Fyi
(W

(t)
yi ,xi) and lower bound596

for F−yi
(W

(t)
−yi

,xi):597

Fyi
(W(t)

yi
,xi) =

1

m

m∑
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σ(⟨w(t)
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=
1

m
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m
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ρ
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]
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m
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ρ
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1

m

m∑
r=1

∑
i′ ̸=i
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minp+ β

≤ 1 + c−1
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minpn

m

m∑
r=1

ρ
(t)
yi,r,i

+ β, (D.3)

where the second equality is by Lemma B.5; the third equality is by (5.1); the second last inequality598

is by triangle inequality; the last inequality is by Lemma B.1. And599

F−yi(W
(t)
−yi

,xi) =
1

m

m∑
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σ(⟨w(t)
−yi,r,xi⟩)

=
γ

m
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⟨w(t)
−yi,r,xi⟩

=
γ

m
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[
⟨w(0)
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ρ
(t)
−yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

]

≥ γ

m

m∑
r=1

ρ
(t)
−yi,r,i

− γ

m

m∑
r=1

∑
i′ ̸=i

|ρ(t)−yi,r,i′
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minp− γβ

≥ γ(1 + c−1
1 γ−2R−2

minpn)

m

m∑
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ρ
(t)
−yi,r,i

− γβ, (D.4)

where the second equality is by Lemma B.3; the third equality is by (5.1); the second last inequality600

is by triangle inequality; the last inequality is by Lemma B.1. By (D.3) and (D.4), we can obtain the601

following margin upper bound:602

yif(W
(t),xi)

= Fyi
(Wyi

,xi)− F−yi
(W−yi

,xi)

≤ 1 + c−1
1 γ−2R−2

minpn

m

m∑
r=1

ρ
(t)
yi,r,i

+
γ(1 + c−1

1 γ−2R−2
minpn)

m

m∑
r=1

|ρ(t)−yi,r,i
|+ (γ + 1)β

=
1 + c−1

1 γ−2R−2
minpn

m

m∑
r=1

(ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

) +
γ(1 + c−1

1 γ−2R−2
minpn)

m

m∑
r=1

(|ρ(t)−yi,r,i
| − |ρ(T1)

−yi,r,i
|)

+
1 + c−1

1 γ−2R−2
minpn

m

m∑
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ρ
(T1)
yi,r,i

+
γ(1 + c−1

1 γ−2R−2
minpn)

m

m∑
r=1

|ρ(T1)
−yi,r,i

|+ (γ + 1)β︸ ︷︷ ︸
:=Ci

=
(1 + γ2)(1 + c−1

1 γ−2R−2
minpn)

m

m∑
r=1

(ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

) + Ci,
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where the last equality is by Lemma D.1. Here603

Ci ≤ (γ + 1)C ′(1 + c−1
1 γ−2R−2

minpn) + (γ + 1)β

by (C.3) and thus can be seen as a constant. Then, it follows that604

|ℓ′(t)i | = 1

1 + exp{yif(W(t),xi)}

≥ 1

1 + exp
{

(1+γ2)(1+c−1
1 γ−2R−2

minpn)

m

∑m
r=1(ρ

(t)
yi,r,i

− ρ
(T1)
yi,r,i

) + Ci

}
≥ 1

2
exp

{
− (1 + γ2)(1 + c−1

1 γ−2R−2
minpn)

m

m∑
r=1

(ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

)− Ci

}
,

where the last inequality is by 1/(1 + exp(z)) ≥ exp(−z)/2 if z ≥ 0. By the (5.4) and the above605

lower bound for |ℓ′(t)i |, we can get606

m∑
r=1

(ρ
(t+1)
yi,r,i

− ρ
(T1)
yi,r,i

)

≥
m∑
r=1

(ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

) +
η∥xi∥22e−Ci

2n
exp

{
− (1 + γ2)(1 + c−1

1 γ−2R−2
minpn)

m

m∑
r=1

(ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

)

}
.

(D.5)
By applying Lemma H.2 and taking xt =

(1+γ2)(1+c−1
1 γ−2R−2

minpn)

m

∑m
r=1(ρ

(t+T1)
yi,r,i

− ρ
(T1)
yi,r,i

), we can607

get the following increasing rate of ρ(t)yi,r,i
for t ≥ T1:608

m∑
r=1

(ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

)

≥ m

(1 + γ2)(1 + c−1
1 γ−2R−2

minpn)
log

(
1 +

η∥xi∥22e−Ci(1 + γ2)(1 + c−1
1 γ−2R−2

minpn)

2nm
· (t− T1)

)
.

(D.6)
Now we are ready to provide a refined lower bound for the margin yif(W

(t),xi). By taking into609

account the activation pattern after T1 and conducting similar analysis as (D.3) and (D.4), we can610

obtain for t ≥ T1:611

Fyi(W
(t)
yi
,xi) ≥

1− c−1
1 γ−2R−2

minpn

m

m∑
r=1

ρ
(t)
yi,r,i

− β,

F−yi(W
(t)
−yi

,xi) ≤
γ(1− c−1

1 γ−2R−2
minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

+ γβ.

Therefore, we have the following margin lower bound612

yif(W
(t),xi)

= Fyi
(Wyi

,xi)− F−yi
(W−yi

,xi)

≥ 1− c−1
1 γ−2R−2

minpn

m

m∑
r=1

ρ
(t)
yi,r,i

+
γ(1− c−1

1 γ−2R−2
minpn)

m

m∑
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|ρ(t)−yi,r,i
| − (γ + 1)β

=
(1− c−1

1 γ−2R−2
minpn)

m

m∑
r=1

(ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

) +
γ(1− c−1

1 γ−2R−2
minpn)

m

m∑
r=1

(|ρ(t)−yi,r,i
| − |ρ(T1)

−yi,r,i
|)

+
(1− c−1

1 γ−2R−2
minpn)

m

m∑
r=1

ρ
(T1)
yi,r,i

+
γ(1− c−1

1 γ−2R−2
minpn)

m

m∑
r=1

|ρ(T1)
−yi,r,i

| − (γ + 1)β︸ ︷︷ ︸
:=C′

i
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=
(1 + γ2)(1− c−1

1 γ−2R−2
minpn)

m

m∑
r=1

(ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

) + C ′
i

≥ 1− c−1
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minpn
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minpn
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1 +

η∥xi∥22e−Ci(1 + γ2)(1 + c−1
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minpn)

2nm
· (t− T1)

)
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i,

where the last inequality is by (D.6). Here613

|C ′
i| ≤ C ′(1 + γ)(1− c−1

1 γ−2R−2
minpn) + (γ + 1)β

by (C.3) and thus can be seen as a constant. Correspondingly, we can get the following for the614

increasing rate of training loss:615
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(t))

=
1

n

n∑
i=1

ℓ(yif(W
(t),xi))

=
1

n

n∑
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(
1 + exp
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− yif(W
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))

≤ 1

n

n∑
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exp
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)
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i

n
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(
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minpn
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minpn
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(
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η∥xi∥22e−Ci(1 + γ2)(1 + c−1
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minpn)

2nm
· (t− T )
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≤ e−C′
i

n

n∑
i=1

(
1 +

η∥xi∥22e−Ci(1 + γ2)(1 + c−1
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minpn)

2nm
· (t− T )

)−
1−c

−1
1 γ−2R

−2
min

pn

1+c
−1
1 γ−2R

−2
min

pn

= O
(
t−(1−c−1

1 γ−2R−2
minpn)/(1+c−1

1 γ−2R−2
minpn)

)
,

which completes the proof.616

E Coefficient Analysis of ReLU617

In this section, we discuss the stable rank of two-layer ReLU neural network, which is defined as618

f(W,x) = F+1(W+1,x)− F+1(W+1,x),

Fj(Wj ,x) =
1

m

m∑
r=1

σ(⟨wj,r,x⟩),
(E.1)

where σ(z) = max{0, z} is ReLU activation function.619

These results are based on the conclusions in Section A, which hold with high probability. Denote by620

E ′
prelim the event that all the results in Section A hold (for a given δ, we see P(E ′

prelim) ≥ 1− 2δ by a621

union bound). For simplicity and clarity, we state all the results in this and the following sections622

conditional on E ′
prelim.623

Denote β = maxi,j,r{|⟨w(0)
j,r ,xi⟩|}, Rmax = maxi∈[n] ∥xi∥2, Rmin = mini∈[n] ∥xi∥2, p =624

maxi̸=k |⟨xi,xk⟩| and suppose R = Rmax/Rmin is at most an absolute constant. Here we list625

the exact conditions for η, σ0, Rmin, Rmax, p required by the proofs in this section:626

σ0 ≤
(
CRmax

√
log(mn/δ)

)−1
, (E.2)

η ≤ (CR2
max/nm)−1, (E.3)

R2
min ≥ CR2np, (E.4)
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where C is a large enough constant. By Lemma A.1, we can upper bound β by 2
√
log(12mn/δ) ·627

σ0Rmax. Then, by (B.2) and (B.4), it is straightforward to verify the following inequality:628

β ≤ c, (E.5)

R−2
minnp ≤ c, (E.6)

R−2
minR

2np ≤ c, (E.7)

where c is a sufficiently small constant.629

We first introduce the following lemma which characterizes the increasing rate of coefficients ρ(t)j,r,i.630

Lemma E.1. For two-layer ReLU neural network defined in (E.1), under the same condition as631

Theorem 4.3, the decomposition coefficients ρ(t)j,r,i satisfy following properties:632

• ρ
(t)
yi,r,i

≥ c1|ρ(t)j,r′,i′ | for any r ∈ S
(0)
i , r′ ∈ [m], j ∈ {±1} and i, i′ ∈ [n],633

• ρ
(t)
yi,r,i

≥ c2 log
(
1 +

η|S(0)
i |∥xi∥2

2e
−β

2nm2 · t
)

for any r ∈ S
(0)
i and i ∈ [n],634

• ρ
(t)
yi,r,i

≤ c3 log
(
1 +

2η|S(0)
i |∥xi∥2

2e
2β

nm2 · t
)

for any r ∈ S
(0)
i and i ∈ [n],635

where c1, c2, c3 are constants. And the following activation pattern is also observed: S(0)
i ⊆ S

(t)
i636

where S
(t)
i := {r ∈ [m] : ⟨w(t)

yi,r,xi⟩ ≥ 0}, that is, the on-diagonal neuron activated at initialization637

will remain activated throughout the training.638

Proof of Lemma E.1. We first show that the first bullet and S
(0)
i ⊆ S

(t)
i hold for t ≤ T1 =639

Cη−1nmR−2
max where C = Θ(1) is a constant. Now we prove this by induction. When t = 0,640

the two hypotheses hold naturally. Suppose that there exists time t̃ ≤ T1 such that the two hypotheses641

hold for all time t ≤ t̃− 1. We aim to prove they also hold for t = t̃. Recall from Lemma A.3 that642

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = −j),

we can get643

ρ
(t+1)
j,r,i ≤ ρ

(t)
j,r,i +

η

nm
· ∥xi∥22 ≤ ρ

(t)
j,r,i +

ηR2
max

nm
, (E.8)

|ρ(t+1)
j,r,i

| ≤ |ρ(t)
j,r,i

|+ η

nm
· ∥xi∥22 ≤ |ρ(t)

j,r,i
|+ ηR2

max

nm
. (E.9)

Therefore, maxj,r,i{ρ(t)j,r,i, |ρ(t)j,r,i
|} = O(1) for any t ≤ T1 and hence644

maxi{F+1(W
(t)
+1,xi), F−1(W

(t)
−1,xi)} = O(1) for any t ≤ T1. Thus there exists a posi-645

tive constant c such that |ℓ′(t)i | ≥ c for any t ≤ T1. By induction hypothesis, we have S
(0)
i ⊆ S

(t)
i646

for all 0 ≤ t ≤ t̃ − 1 and hence σ′(⟨w(t)
yi,r,xi⟩) = 1 for all 0 ≤ t ≤ t̃ − 1. And it follows that for647

r ∈ S
(0)
i648

ρ
(t+1)
yi,r,i

= ρ
(t)
yi,r,i

+
η

nm
· |ℓ′(t)i | · ∥xi∥22 ≥ ρ

(t)
yi,r,i

+
cη

nm
· ∥xi∥22,∀ 0 ≤ t ≤ t̃− 1,

ρ
(t̃)
yi,r,i

≥ cηt̃

nm
· ∥xi∥22 ≥ cηR2

mint̃

nm
. (E.10)

On the other hand, by (E.8) and (E.9), we have649

ρ
(t̃)
j,r′,i′ ≤

ηR2
maxt̃

nm
, |ρ(t̃)

j,r′,i′
| ≤ ηR2

maxt̃

nm
=⇒ |ρ(t̃)j,r′,i′ | ≤

ηR2
maxt̃

nm
. (E.11)
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Dividing (E.10) by (E.11), we can get650

ρ
(t̃)
yi,r,i

|ρ(t̃)j,r′,i′ |
≥ cR2

min

R2
max

,∀ r ∈ S
(0)
i , j ∈ {±1}, i, i′ ∈ [n], (E.12)

which indicates that the first bullet holds for time t = t̃ as long as c1 ≤ (cR2
min)/R

2
max. For r ∈ S

(0)
i ,651

we have652

⟨w(t̃)
yi,r,xi⟩ = ⟨w(0)

yi,r,xi⟩+
n∑

i′=1

ρ
(t̃)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

= ⟨w(0)
yi,r,xi⟩+ ρ

(t̃)
yi,r,i

+
∑
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ρ
(t̃)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

≥ ρ
(t̃)
yi,r,i

−
∑
i′ ̸=i

|ρ(t̃)yi,r,i′
|R−2

minp

≥ ρ
(t̃)
yi,r,i

−
∑
i′ ̸=i

R2
max

cR2
min

ρ
(t̃)
yi,r,i

·R−2
minp

≥
(
1− R2

max

cR4
min

pn
)
· ρ(t̃)yi,r,i

≥ 0,

where the second inequality is by (E.12). This implies that S(0)
i ⊆ S

(t)
i holds for time t = t̃, which653

completes the induction. By then, we have already proved that the first bullet and S
(0)
i ⊆ S

(t)
i hold654

for t ≤ T1 = Cη−1nmR−2
max.655

Next, we will prove by induction that the three bullets as well as S(0)
i ⊆ S

(t)
i hold for any time t ≥ 0.656

The second and third bullets are obvious at t = 0 as all the coefficients are zero. Suppose there exists657

t̃ such that the three bullets as well as S(0)
i ⊆ S

(t)
i hold for all time 0 ≤ t ≤ t̃− 1. We aim to prove658

that they also hold for t = t̃. We first prove that the second and third bullets hold for t = t̃. To prove659

this, we first provide more precise upper and lower bounds for |ℓ′(t)i |. For lower bound, we have660

|ℓ(t)i | = 1

1 + exp
{
Fyi(W

(t)
yi ,xi)− F−yi(W

(t)
−yi

,xi)
}

≥ 1

1 + exp
{
Fyi(W

(t)
yi ,xi)

}
=

1

1 + exp{ 1
m

∑
r∈S

(t)
i
⟨w(t)

yi,r,xi⟩}
(E.13)

and661 ∑
r∈S

(t)
i

⟨w(t)
yi,r,xi⟩ =

∑
r∈S

(t)
i

(
⟨w(0)

yi,r,xi⟩+ ρ
(t)
yi,r,i

+
∑
i′ ̸=i

ρ
(t)
yi,r,i′
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2 · ⟨xi′ ,xi⟩
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r∈S

(t)
i

ρ
(t)
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∑

r∈S
(t)
i

∑
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|ρ(t)yi,r,i′
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minp+ |S(t)
i | · β

≤
∑

r∈S
(t)
i

ρ
(t)
yi,r,i

+
|S(t)

i |
c1|S(0)

i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i′

R−2
minpn+ |S(t)

i | · β

≤ |S(t)
i |

|S(0)
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(0)
i

ρ
(t)
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r∈S
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i

ρ
(t)
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≤ c′(1 +R−2
minpn/c1)

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

+ |S(t)
i | · β, (E.14)

where the first inequality is by triangle inequality; the second inequality is by the first induction662

hypothesis that ρ(t)yi,r,i
≥ c1|ρ(t)yi,r′,i′

| for r ∈ S
(0)
i and 0 ≤ t ≤ t̃ − 1 and hence |ρ(t)yi,r′,i′

| ≤663

1

c1|S(0)
i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

; the third inequality is by664

ρ
(t)
yi,r′,i

=
η

nm

t−1∑
s=0

|ℓ′(s)i | · σ′(⟨w(s)
yi,r′

,xi⟩) · ∥xi∥22 ≤ η

nm
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s=0

|ℓ′(s)i | · ∥xi∥22,

ρ
(t)
yi,r,i

=
η

nm
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s=0

|ℓ′(s)i | · ∥xi∥22,

and hence ρ
(t)
yi,r′,i

≤ ρ
(t)
yi,r,i

,∀r′ ∈ S
(t)
i \ S

(0)
i , r ∈ S

(0)
i for 0 ≤ t ≤ t̃ − 1; the last inequality is665

by |S(t)
i | ≤ m ≤ c′|S(0)

i | and c′ can be taken as 2.5 by Lemma A.2. By plugging (E.14) back into666

(E.13), we can get667

|ℓ(t)i | ≥ 1
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minpn/c1)
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r∈S

(0)
i
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(t)
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m
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i
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yi,r,i

− β

}
,∀ 0 ≤ t ≤ t̃− 1.

(E.15)

For upper bound of |ℓ′(t)i |, we first bound Fyi
(W

(t)
yi ,xi)− F−yi

(W
(t)
−yi

,xi) as follows:668
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( ∑
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r∈S

(0)
i

ρ
(t)
yi,r,i

R−2
minpn− 2β

≥ 1

m

∑
r∈S
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where the first inequality is by669
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1

m
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≥ 1
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( ∑
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and hence671
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the second inequality is by the first induction hypothesis that ρ
(t)
yi,r,i

≥ c1|ρ(t)yi,r′,i′
|, ρ(t)yi,r,i

≥672

c1|ρ(t)−yi,r′,i′
| and hence |ρ(t)yi,r′,i′
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r∈S

(0)
i

ρ
(t)
yi,r,i
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for r ∈ S
(0)
i and 0 ≤ t ≤ t̃ − 1; the third inequality is by |S(t)

i | ≤ m; the fourth inequality is by674

m ≤ c′|S(0)
i |. Therefore,675
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}
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By the induction hypothesis, we know that S
(0)
i ⊆ S
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i for all 0 ≤ t ≤ t̃ − 1 and hence676
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r∈S

(0)
i

ρ
(t+1)
yi,r,i

≥
∑

r∈S
(0)
i

ρ
(t)
yi,r,i

+
η|S(0)
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(E.18)

By applying Lemma H.2 to (E.17) and taking xt =
c′(1+R−2

minpn/c1)

m

∑
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, we can get679
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(E.19)
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By applying Lemma H.1 to (E.18) and taking xt =
1−2c′R−2

minpn/c1
m

∑
r∈S
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i

ρ
(t)
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, we can get for680

any 0 ≤ t ≤ t̃ that681 ∑
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(E.20)
where the last inequality is by η ≤ (CR2

max/nm)−1, C is a large enough constant and hence682

(1 − 2c′R−2
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i |∥xi∥22e2β/nm2 ≤ log 2. Since S

(0)
i ⊆ S

(t)
i for all 0 ≤ t ≤ t̃ − 1 and683

hence σ′(⟨w(t)
yi,r,xi⟩) = 1 for all r ∈ S

(0)
i and 0 ≤ t ≤ t̃− 1, we have684

ρ
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=
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Accordingly, it holds that685
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Applying this to (E.19) and (E.20), we can get686
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(E.21)
By taking687

c2 =
1

c′(1 +R−2
minpn/c1)

, c3 =
c′

(1− 2c′R−2
minpn/c1)

,

the above inequalities indicates that the second and third bullets hold at time t = t̃. For the first688

bullet, it is only necessary to consider the situation where t̃ ≥ T1 = Cη−1nmR−2
max. In order to689

apply Lemma H.4 (requiring b > a), we loosen the bounds in (E.21) as follows:690

ρ
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−β
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ρ
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≤ c3 log
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6ηR2
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5nm
· t
)
,∀ 0 ≤ t ≤ t̃, (E.23)

where we use 0.4m ≤ |S(0)
i | ≤ 0.6m.691
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By applying Lemma H.4 to (E.22) and (E.23), we can get for any i, i′ ∈ [n], r ∈ S
(0)
i , r′ ∈ S

(0)
i′ and692

T1 ≤ t ≤ t̃ that693
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Notice that S(0)
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i′ for all 0 ≤ t ≤ t̃ − 1 and hence σ′(⟨w(t)

yi′ ,r,xi′⟩) = 1 for all r ∈ S
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0 ≤ t ≤ t̃− 1, we have695
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the first bullet hold for time t = t̃. This condition holds as long as697

c′ = 2.5,
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Finally, we verify that S(0)

i ⊆ S
(t̃)
i . For r ∈ S

(0)
i , we have698
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where the second inequality is by |ρ(t̃)yi,r,i′
| ≤ ρ

(t̃)
yi,r,i

/c1. This implies that S(0)
i ⊆ S

(t)
i holds for time699

t = t̃, which completes the induction.700

Next, we show that |ρ(t)−yi,r,i′
| will be much smaller than |ρ(t)yi,r′,i

| as the training goes on.701

Lemma E.2. There exists time T2 and constant c such that for any time t ≥ T2702

|ρ(t)
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| ≤ cR−2
minpn|ρ

(t)
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|,

where r ∈ [m], r′ ∈ S
(0)
i and i, i′ ∈ [n] satisfying −yi = yi′ .703

Proof of Lemma E.2. First, we will prove by induction that for r ∈ [m], r′ ∈ S
(0)
i and i, i′ ∈ [n]704

satisfying −yi = yi′ it holds that705
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This result holds naturally when t = 0 since all the coefficients are zero. Suppose that there706

exists time t̃ such that the induction hypothesis (E.24) holds for all time t ≤ t̃ − 1. We aim to707

prove that (E.24) also holds for t = t̃. In the following analysis, two cases will be considered:708
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For if |ρ(t̃−1)
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k ̸=i′ |ρ
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yi,r,k

|∥xk∥−2
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and hence711

ρ(t̃)
yi,r,i′

= ρ(t̃−1)
yi,r,i′

+
η

nm
· ℓ′(t̃−1)

i · σ′(⟨w(t̃−1)
yi,r ,xi′⟩) · ∥xi′∥22 = ρ(t̃−1)

yi,r,i′
.

Therefore, by induction hypothesis (E.24) at time t = t̃− 1, we have712
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2 p, by the first bullet in Lemma E.1, we have713
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and thus714
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where the last inequality is by (E.25) and η ≤ (CR2
max/nm)−1 with a sufficiently large constant C.715

This demonstrates that inequality (E.24) holds for t = t̃, thereby completing the induction process.716

By Lemma E.1, we know that there exists time T ′ such that717

|ρ(t)yi,r′,i
| ≥ c1(β + 1)R2

min/pn,
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for any time t ≥ T ′. Taking T2 = T ′ and c = 2/c1, we have718
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which completes the proof.719

Given Lemma E.2, the following corollary can be directly obtained.720

Corollary E.3. There exists time T3 and constant c such that for any time t ≥ T3721
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minpn|ρ

(t)
yi,r′,i

|,∀r ∈ [m], r′ ∈ S
(0)
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F Stable Rank of ReLU Network722

In this section, we consider the properties of stable rank of the weight matrix W(t) found by gradient723

descent at time t, defined as ∥W(t)∥2F /∥W(t)∥22. Given Lemma E.1, we have following coefficient724

update rule for any t ≥ 0, i ∈ [n] and r ∈ S
(0)
i :725

ρ
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= ρ
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where726

|ℓ′(t)i | = 1

1 + exp{Fyi
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(t)
yi ,xi)− F−yi

(W
(t)
−yi

,xi)}
.

Now we are ready to prove the first bullet of Theorem 4.3.727

Lemma F.1. For two-layer ReLU neural network defined in (E.1), under the same condition as728

Theorem 4.3, the stable rank of W(t)
j satisfies the following property:729

lim sup
t→∞

∥W(t)
j ∥2F
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j ∥22

≤ C,

where C = Θ(1) is a constant.730

Proof of Lemma F.1. By decomposition (5.1), we have731
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Let ai(t)⊤ be the i-th column of At. It follows that733
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Accordingly, we have735
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On the other hand, we will give an lower bound for ∥W(t)
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cR−2
minpn

|S(0)
i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

R−2
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≥
∑
i∈Sj

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

R−2
max −

m|S−j | · cR−4
minR

2
maxpn

|Sj | ·mini∈Sj
|S(0)

i |

∑
i∈Sj

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

R−2
max

≥ R−2
max

2

∑
i∈Sj

∑
r∈S

(0)
i

ρ
(t)
j,r,i, (F.2)

where the second inequality is by Corollary E.3 and hence741

|ρ(t)−yi,r,i
| ≤ cR−2

minpnρ
(t)
yi′ ,r

′,i′ ,∀r, r
′ ∈ [m],∀i, i′ ∈ [n],

|ρ(t)−yi,r,i
| ≤ cR−2

minpn

|S(0)
i′ |

∑
r∈S

(0)

i′

ρ
(t)
yi′ ,r,i

′ ,∀r ∈ [m],∀i, i′ ∈ [n],

|ρ(t)−yi,r,i
| ≤ 1

|Sj |
∑
i∈Sj

cR−2
minpn

|S(0)
i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

,∀r ∈ [m],∀i ∈ [n],

the last inequality is by742

m|S−j | · cR−4
minR

2
maxpn

|Sj | ·mini∈Sj
|S(0)

i |
≤ c′cR−4

minR
2
maxpn · |S−j |

|Sj |
≤ 1

2
.

Then, we have for t ≥ T that743

∥At1n∥2 =

√√√√ m∑
r=1

( n∑
i=1

ρ
(t)
j,r,i∥xi∥−2

2

)2

≥
∣∣∣∣ m∑
r=1

n∑
i=1

ρ
(t)
j,r,i∥xi∥−2

2

/√
m

∣∣∣∣
≥ R−2

max

2
√
m

∑
i∈Sj

∑
r∈S

(0)
i

ρ
(t)
j,r,i

≥ R−2
max|Sj ||S(0)

i |
2
√
m

· log
(
1 +

ηR2
mine

−β

2c′nm
· t
)

≥ CR−2
max

√
mn log(t)

where the second inequality is is by (F.2); the third inequality is by the second bullet of Lemma E.1.744

For ∥X⊤(XX⊤)−11n∥2, we have745

∥X⊤(XX⊤)−11n∥2 =
√

1⊤
n (XX⊤)−1XX⊤(XX⊤)−11n

=
√

1⊤
n (XX⊤)−11n

≤ ∥1n∥2√
λmin(XX⊤)

By the Gershgorin circle theorem, we know that λmin(XX⊤) lies within at least one of the Gershgorin746

discs D((XX⊤)ii, Ri), i ∈ [n] where D((XX⊤)ii, Ri) is a closed disc centered at (XX⊤)ii =747

∥xi∥22 with radius Ri =
∑

i′ ̸=i |(XX⊤)ii′ | =
∑

i′ ̸=i |⟨xi,xi′⟩|. Assume λmin(XX⊤) lies within748

D((XX⊤)ii, Ri), then we can get following lower bound for λmin(XX⊤):749

λmin(XX⊤) ≥ ∥xi∥22 −
∑
i′ ̸=i

|⟨xi,xi′⟩| ≥ R2
min − np = (1−R−2

minnp)R
2
min ≥ R2

min/2.
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Therefore, we have750

∥X⊤(XX⊤)−11n∥2 ≤ ∥1n∥2√
λmin(XX⊤)

≤
√
2n

Rmin
.

Accordingly,751

∥W(t)
j −W

(0)
j ∥2 ≥ ∥At1n∥2

∥X⊤(XX⊤)−11n∥2
≥ CR−2

max

√
mn log(t)√

2n/Rmin

= C ′′R−2
maxRmin

√
mn log(t).

Therefore, we have for t ≥ T that752

∥W(t)
j −W

(0)
j ∥2F

∥W(t)
j −W

(0)
j ∥22

≤ C ′mnR2
maxR

−4
min(log(t))

2

C ′′2mnR−4
maxR2

min(log(t))
2
≤ C ′R6

max

C ′′2R6
min

,

which completes the proof.753

Next, we will provide an example of training data satisfying the condition in Theorem 4.3 and prove754

that the stable rank of W(t)
j trained by gradient descent using such data will converge to 2± o(1).755

We first provide the following lemma about the increasing rate of coefficients ρ(t)j,r,i.756

Lemma F.2. If training data x1, · · · ,xn are mutually orthogonal, the activation pattern after time757

T = Cη−1R−2
min/nm is determined by the activation pattern at initialization, that is,758

⟨w(t)
yi,r,xi⟩ ≥ 0, if ⟨w(0)

yi,r,xi⟩ ≥ 0,

⟨w(t)
yi,r,xi⟩ < 0, if ⟨w(0)

yi,r,xi⟩ < 0,

⟨w(t)
−yi,r,xi⟩ < 0, if ⟨w(0)

−yi,r,xi⟩ ≥ 0,

⟨w(t)
−yi,r,xi⟩ < 0, if ⟨w(0)

−yi,r,xi⟩ < 0,

for any time t ≥ T . Besides, ρ(t)j,r,i satisfy the following properties:759

ρ
(t)
yi,r,i

= 0, ∀t ≥ 0, if ⟨w(t)
j,r,xi⟩ < 0,

ρ
(t)
yi,r,i

= ρ
(T )
yi,r,i

, ∀t ≥ T, if ⟨w(t)
−yi,r,xi⟩ ≥ 0,

lim
t→∞

ρ
(t)
yi,r,i

/ log t = m/|S(0)
i |, if ⟨w(t)

yi,r,xi⟩ ≥ 0.

Proof of Lemma F.2. Part 1. For if ⟨w(0)
j,r ,xi⟩ < 0, we first prove by induction that760

ρ
(t)
j,r,i = 0, ⟨w(t)

j,r,xi⟩ = ⟨w(0)
j,r ,xi⟩ < 0,∀t ≥ 0. (F.3)

The result is obvious at t = 0 as all the coefficients are zero. Suppose that there exists t̃ such that761

(F.3) holds for all time 0 ≤ t ≤ t̃− 1. We aim to prove that (F.3) also holds for t = t̃. Recall that by762

(5.4), (5.5) and with (F.3) at time t̃− 1, we have763

ρ
(t̃)
j,r,i = ρ

(t̃−1)
j,r,i − η

nm
· ℓ′(t̃−1)

i · σ′(⟨w(t̃−1)
j,r ,xi⟩) · ∥xi∥22 · 1(yi = j) = ρ

(t̃−1)
j,r,i = 0,

ρ(t̃)
j,r,i

= ρ(t̃−1)
j,r,i

+
η

nm
· ℓ′(t̃−1)

i · σ′(⟨w(t̃−1)
j,r ,xi⟩) · ∥xi∥22 · 1(yi = −j) = ρ(t̃−1)

j,r,i
= 0.

By (5.1) and the orthogonality of training data, we can get764

⟨w(t̃)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+
n∑

i′=1

ρ
(t̃)
j,r,i′∥xi′∥−2

2 · ⟨xi′ ,xi⟩ = ⟨w(0)
j,r ,xi⟩+ ρ

(t̃)
j,r,i = ⟨w(0)

j,r ,xi⟩ < 0.

Therefore, (F.3) holds at time t̃, which completes the induction.765
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For if ⟨w(0)
j,r ,xi⟩ ≥ 0 and j = yi, we will next prove by induction that766

ρ
(t)
j,r,i ≥ 0, ⟨w(t)

j,r,xi⟩ ≥ ⟨w(0)
j,r ,xi⟩ ≥ 0,∀t ≥ 0. (F.4)

The result is natural at t = 0. Suppose that there exists t̃ such that (F.4) hold for all time 0 ≤ t ≤ t̃−1.767

By (5.4) and (F.4) at time t̃− 1, we have768

ρ
(t̃)
j,r,i = ρ

(t̃−1)
j,r,i +

η

nm
· |ℓ′(t̃−1)

i | · ∥xi∥22 ≥ ρ
(t̃−1)
j,r,i ≥ 0

and hence the orthogonality of training data, we can get769

⟨w(t̃)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+ ρ
(t̃)
j,r,i = ⟨w(0)

j,r ,xi⟩ ≥ 0.

Therefore, (F.4) hold at time t̃, which completes the induction.770

For if ⟨w(0)
j,r ,xi⟩ ≥ 0 and j = −yi, we first show that under the same condition as Theorem 4.3 it771

holds that772

ρ(T )
j,r,i

< −⟨w(0)
j,r ,xi⟩.

Since T = Cη−1R−2
min/nm, we have maxj,r,i{|ρ(t)j,r,i|} = O(1) for t ≤ T . Therefore, we know that773

F+1(W
(t)
+1,xi), F−1(W

(t)
−1,xi) = O(1). Thus there exists a positive constant c such that −ℓ

′(t)
i ≥ c774

for all i ∈ [n]. Here we use the method of proof by contradiction. Assume ρ(T )
j,r,i

≥ −⟨w(0)
j,r ,xi⟩.775

Since ρ(T )
j,r,i

≤ ρ(t)
j,r,i

for 0 ≤ t ≤ T which can be seen from (5.5), we have ρ(t)
j,r,i

≥ −⟨w(0)
j,r ,xi⟩ for776

all t ≤ T . Then, we can get777

⟨w(t)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+ ρ
(t)
j,r,i ≥ 0,∀t ≤ T.

Therefore, by the non-negativeness of ⟨w(t)
j,r,xi⟩ and (5.5), we can get778

|ρ(t+1)
j,r,i

| = |ρ(t)
j,r,i

|+ η

nm
· |ℓ′(t)i | · ∥xi∥22 ≥ |ρ(t)

j,r,i
|+ cη∥xi∥22

nm

and hence779

|ρ(T )
j,r,i

| ≥ cη∥xi∥22T
nm

= cC∥xi∥22R−2
min ≥ cC ≥ β,

which is a contradiction. Therefore, ρ(T )
j,r,i

< −⟨w(0)
j,r ,xi⟩. By (5.5), we have ρ(t)

j,r,i
≤ ρ(T )

j,r,i
<780

−⟨w(0)
j,r ,xi⟩ for t ≥ T . Therefore,781

⟨w(t)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+ ρ
(t)
j,r,i < 0,∀t ≥ T.

Plugging this into (5.5) gives us782

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 = ρ(t)
j,r,i

,∀t ≥ T.

This completes the proof of the first half of the lemma about the activation pattern as well as the first783

two properties of ρ(t)j,r,i.784

Part 2. Now we will show that785

lim
t→∞

ρ
(t)
yi,r,i

/ log t = m/|S(0)
i |, (F.5)
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if ⟨w(t)
yi,r,xi⟩ ≥ 0. By the activation pattern, we can get786

ρ
(t+1)
yi,r,i

= ρ
(t)
yi,r,i

+
η

nm
· |ℓ′(t)i | · ∥xi∥22, ∀t ≥ 0, for ⟨w(t)

yi,i
,xi⟩ ≥ 0,

ρ
(t)
yi,r,i

= 0, ∀t ≥ 0, for ⟨w(t)
yi,i

,xi⟩ < 0,

ρ(t)−yi,r,i
= ρ(T )

−yi,r,i
, ∀t ≥ 0, for ⟨w(t)

−yi,i
,xi⟩ ≥ 0,

ρ(t)−yi,r,i
= 0, ∀t ≥ 0, for ⟨w(t)

−yi,i
,xi⟩ < 0.

(F.6)

Given this activation pattern, we can get for t ≥ 0 that787

Fyi
(W(t)

yi
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(W
(t)
−yi

,xi) =
1

m

m∑
r=1

σ(⟨w(t)
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1

m

m∑
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m
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i

ρ
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+ β,

and788

Fyi
(W(t)

yi
,xi)− F−yi

(W
(t)
−yi

,xi) =
1

m

m∑
r=1

σ(⟨w(t)
yi,r,xi⟩)−

1

m
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m

∑
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(0)
i
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i
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(t)
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− 2β.

Therefore, we can get following upper and lower bounds for |ℓ′(t)i |:789

|ℓ′(t)i | ≤ exp
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− 1

m

∑
r∈S

(0)
i

ρ
(t)
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+ 2β

)
,∀t ≥ 0,
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2
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m

∑
r∈S

(0)
i

ρ
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− β

)
,∀t ≥ 0.

And it follows that790

1

m
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ρ
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≤ 1
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(0)
i

ρ
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+
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− 1

m
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i

ρ
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)
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1
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2nm
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)
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By leveraging Lemma H.1 as well as Lemma H.2 and taking791

xt =
1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

,

we can get792

1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

≤ log

(
1 +

η∥xi∥22e2β

nm
exp

(η∥xi∥22e2β
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)
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)
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(
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)
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1
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ρ
(t)
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(
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η∥xi∥22e−β

2nm
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.

Therefore, we have793

lim
t→∞

1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

/ log t = 1.

Since ρ
(t)
yi,r,i

= ρ
(t)
yi,r′,i

for any r ̸= r ∈ S
(0)
i , we have794

lim
t→∞

ρ
(t)
yi,r,i

/ log t = m/|S(0)
i |,

which completes the proof.795

Lemma F.3. For two-layer ReLU neural network defined in (E.1), there exists mutually orthogonal796

data x1, · · · ,xn such that stable rank of W(t)
j will converge to 2± o(1).797

Proof of Lemma F.3. By (5.1), we have798

w
(t)
j,r = w

(0)
j,r +

n∑
i=1

ρ
(t)
j,r,i · ∥xi∥−2

2 · xi︸ ︷︷ ︸
:=v

(t)
j,r

.

Given the definition of v(t)
j,r, we have the following representation of v(t)

j,r and V
(t)
j .799

v
(t)
j,r =

[
ρ
(t)
j,r,1 · ∥x1∥−2

2 · · · , ρ(t)j,r,n · ∥xn∥−2
2

]
·

x1

...
xn

 ,

800

V
(t)
j =


ρ
(t)
j,r,1 · ∥x1∥−2

2 · · · ρ
(t)
j,r,n · ∥xn∥−2

2
...

. . .
...

ρ
(t)
j,m,1 · ∥x1∥−2

2 · · · ρ
(t)
j,m,n · ∥xn∥−2

2

 ·

x1

...
xn

 .

Assume n is an even number and x1, · · · ,xn/2 are with label +1 while x(n/2)+1, · · · ,xn are with801

label −1. And we take x1, · · · ,xn as e1, · · · , en. Given Lemma F.2, W(t)
j = W

(0)
j + V

(t)
j and802

such selection of training data, we have803

lim
t→∞

W
(t)
+1

log t
= [Am×(n/2),0m×(n/2)] · [In,0n×(d−n)] = [Am×(n/2),0m×(d−(n/2))],

lim
t→∞

W
(t)
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log t
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=

[
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]
.
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where804

Am×(n/2) =


1[⟨w(0)

+1,1,x1⟩ ≥ 0] · · · 1[⟨w(0)
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. . .
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1[⟨w(0)

+1,m,x1⟩ ≥ 0] · · · 1[⟨w(0)
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1 |
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m/|S(0)
n |

 .

Then, we can get the stable rank limits as follows:805

lim
t→∞

∥W(t)
+1∥2F

∥W(t)
+1∥22

=
∥A∥2F
∥A∥22
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∥W(t)
−1∥2F

∥W(t)
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=
∥B∥2F
∥B∥22
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∥W(t)∥2F
∥W(t)∥22

=
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(max{∥A∥2, ∥B∥2})2
.

Since x1 = e1, · · · ,xn = en, we can get806

1[⟨w(0)
j,r ,xi⟩ ≥ 0] = 1[[w

(0)
j,r ]i ≥ 0].

Therefore, the entries of matrix C and matrix D can be regarded as i.i.d. random variables taking 0807

or 1 with equal probability. For ∥A∥F and ∥B∥F , we have808
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(0)
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By Lemma A.2, we have with probability at least 1− δ that 0.4m ≤ |S(0)
i | ≤ 0.6m. By Hoeffding’s809

inequality, we have with probability at least 1− 2δ that810
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625mn log(2/δ)

32
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i |)2
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625mn log(2/δ)

32
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Next, we estimate ∥A∥2 and ∥B∥2. Let A = Ã + E[A] and B = B̃ + E[B]. Assume G be the812

m× (n/2) matrix with all entries equal to 1/2. Then,813

E[A] = G · diag
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︸ ︷︷ ︸

:=a

,E[B] = G · diag


m/|S(0)

(n/2)+1|
...

m/|S(0)
n |


︸ ︷︷ ︸

:=b

.
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And the entries of matrix Ã and matrix B̃ are independent, mean zero, sub-gaussian random variables.814

By Lemma H.3, we have with probability at least 1− δ that815

∥Ã∥2 ≤ C

2

(√
m+

√
n+

√
log(2/δ)

)
,

816

∥B̃∥2 ≤ C

2

(√
m+

√
n+

√
log(2/δ)

)
,

where C is a constant. Let 1k denote the row vector with k entries equal to 1. Then for E[A] and817

E[B], we have818

∥E[A]∥2 = max
x∈S

n
2

−1
∥Gdiag(a)x∥2

= max
x∈S

n
2

−1

1

2
∥1⊤

m1n
2
diag(a)x∥2

= max
x∈S

n
2

−1

√
m

2
|1n

2
diag(a)x|

= max
x∈S

n
2

−1

√
m

2
|a⊤x|

=

√
m∥a∥2
2

,

and819

∥E[B]∥2 =

√
m∥b∥2
2

.

By triangle inequality, we have820

∥A∥2 ≥ ∥C∥2 − ∥Ã∥2 ≥ (
√
m∥a∥2)/2−

C

2

(√
m+

√
n+

√
log(2/δ)

)
,

∥A∥2 ≤ ∥C∥2 + ∥Ã∥2 ≤ (
√
m∥a∥2)/2 +

C

2

(√
m+

√
n+

√
log(2/δ)

)
,

∥B∥2 ≥ ∥C∥2 − ∥B̃∥2 ≥ (
√
m∥b∥2)/2−

C

2

(√
m+

√
n+

√
log(2/δ)

)
,

∥B∥2 ≤ ∥C∥2 + ∥B̃∥2 ≤ (
√
m∥b∥2)/2 +

C

2

(√
m+

√
n+

√
log(2/δ)

)
.

Notice that ∥a∥22 = Θ(n) and ∥b∥22 = Θ(n), then with probability at least 1− 2δ, we have821

∥A∥2F
∥A∥22

≤
m∥a∥22/2 +

√
625mn log(2/δ)/32(√

m∥a∥2/2− C
2

(√
m+

√
n+

√
log(2/δ)

))2 = 2 + o(1),

∥A∥2F
∥A∥22

≥
m∥a∥22/2−

√
625mn log(2/δ)/32(√

m∥a∥2/2 + C
2

(√
m+

√
n+

√
log(2/δ)

))2 = 2− o(1),

∥B∥2F
∥B∥22

≥
m∥b∥22/2 +

√
625mn log(2/δ)/32(√

m∥b∥2/2− C
2

(√
m+

√
n+

√
log(2/δ)

))2 = 2 + o(1),

∥B∥2F
∥B∥22

≥
m∥b∥22/2−

√
625mn log(2/δ)/32(√

m∥b∥2/2 + C
2

(√
m+

√
n+

√
log(2/δ)

))2 = 2− o(1).

This leads to822

lim
t→∞

∥W(t)
+1∥2F

∥W(t)
+1∥22

=
∥A∥2F
∥A∥22

= 2± o(1),

lim
t→∞

∥W(t)
−1∥2F

∥W(t)
−1∥22

=
∥B∥2F
∥B∥22

= 2± o(1).
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For W(t), we have the following lower bound823

∥A∥2F + ∥B∥2F
(max{∥A∥2, ∥B∥2})2

≥
m(∥a∥22 + ∥b∥22)/2−

√
625mn log(2/δ)/8(√

mmax{∥a∥2, ∥b∥2}/2 + C
2

(√
m+

√
n+

√
log(2/δ)

))2
≥ (2− o(1)) · ∥a∥22 + ∥b∥22

(max{∥a∥2, ∥b∥2})2

≥ 16

9
− o(1),

where the third inequality is by (5/3)
√
n ≤ ∥a∥2 ≤ (5/2)

√
n and (5/3)

√
n ≤ ∥b∥2 ≤ (5/2)

√
n824

due to 0.4m ≤ |S(0)
i | ≤ 0.6m. And825

∥A∥2F + ∥B∥2F
(max{∥A∥2, ∥B∥2})2

≤
m(∥a∥22 + ∥b∥22)/2 +

√
625mn log(2/δ)/8(√

mmax{∥a∥2, ∥b∥2}/2− C
2

(√
m+

√
n+

√
log(2/δ)

))2
≤ (2 + o(1)) · ∥a∥22 + ∥b∥22

(max{∥a∥2, ∥b∥2})2

≤ 9 + o(1),

where the third inequality is by (5/3)
√
n ≤ ∥a∥2 ≤ (5/2)

√
n and (5/3)

√
n ≤ ∥b∥2 ≤ (5/2)

√
n826

due to 0.4m ≤ |S(0)
i | ≤ 0.6m. Therefore,827

lim
t→∞

∥W∥2F
∥W∥22

=
∥A∥2F + ∥B∥2F

(max{∥A∥2, ∥B∥2})2
∈ [16/9− o(1), 9 + o(1)].

828

G Loss Convergence of ReLU Network829

We have the following convergence rate of the loss function.830

Lemma G.1. For ReLU neural network defined in (E.1), for any t ≥ 1, we have831

LS(W
(t)) ≤ e2β

n

n∑
i=1

(
1 +

η|S(0)
i |∥xi∥22e−β

2nm2
· t
)−

1−c
−1
1 (1+c′)R−2

min
pn

c′2(1+c
−1
1 R

−2
min

pn) ,

where c1 is the same constant defined in Lemma E.1 and c′ is a constant such that m ≤ c′|S(0)
i |,∀i ∈832

[n]. This indicates that the training loss will converge with rate O(t−α) where α = c′−2(1− c−1
1 (1 +833

c′)R−2
minpn)/(1 + c−1

1 R−2
minpn) is a positive constant.834

Proof of Lemma G.1. To establish an upper bound for LS(W
(t)), we need to first determine a lower835

bound for the margin yif(W
(t),xi). This can be accomplished by leveraging the increasing rate of836

ρ
(t)
yi,r,i

and the constant lower bound for ρ(t)yi,r,i
/|ρ(t)j,r′,i′ | given in Lemma E.1 as follows:837

yif(W
(t),xi)

= Fyi
(W(t)

yi
,xi)− F−yi

(W
(t)
−yi

,xi)

≥ 1

m

∑
r∈S

(0)
i

⟨w(t)
yi,r,xi⟩ − F−yi

(W
(t)
−yi

,xi)

=
1

m

∑
r∈S

(0)
i

[
⟨w(0)

yi,r,xi⟩+
n∑

i′=1

ρ
(t)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

]
− F−yi(W

(t)
−yi

,xi)

≥ 1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

− 1

m

∑
r∈S

(0)
i

∑
i′ ̸=i

|ρ(t)yi,r,i′
|R−2

minp−
|S(0)

i |
m

β − 1

m

m∑
r=1

∑
i′ ̸=i

|ρ(t)−yi,r,i′
|R−2

minp− β
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≥ 1− c−1
1 R−2

minpn− c−1
1 R−2

minpnm/|S(0)
i |

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

−
( |S(0)

i |
m

+ 1
)
β

≥ 1− c−1
1 (1 + c′)R−2

minpn

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

− 2β

≥ c2(1− c−1
1 (1 + c′)R−2

minpn)|S
(0)
i |

m
log

(
1 +

η|S(0)
i |∥xi∥22e−β

2nm2
· t
)
− 2β

≥ 1− c−1
1 (1 + c′)R−2

minpn

c′2(1 + c−1
1 R−2

minpn)
log

(
1 +

η|S(0)
i |∥xi∥22e−β

2nm2
· t
)
− 2β, (G.1)

where the first inequality is by the activation pattern S
(0)
i ⊆ S

(t)
i given in Lemma E.1; the838

second inequality is by triangle inequality and (E.16); the third inequality is due to ρ
(t)
yi,r,i

≥839

c1|ρ(t)j,r′,i′ | from Lemma E.1 and hence |S(0)
i | · |ρ(t)yi,r,i′

| ≤ c−1
1

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

, |S(0)
i | · |ρ(t)−yi,r,i′

| ≤840

c−1
1

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

; the fourth inequality is by |S(0)
i | ≤ m ≤ c′|S(0)

i |; the second last inequality841

is by the second bullet of Lemma E.1; the last inequality is by m ≤ c′|S(0)
i | and taking c2 as842

1
c′(1+R−2

minpn/c1)
from the proof of Lemma E.1. Having obtained a lower bound for the margin, we843

can now use it to derive an upper bound for the loss function as follows:844

LS(W
(t)) =

1

n

n∑
i=1

ℓ(yif(W
(t),xi))

=
1

n

n∑
i=1

log
(
1 + exp

(
− yif(W

(t),xi)
))

≤ 1

n

n∑
i=1

exp
(
− yif(W

(t),xi)
)

≤ 1

n

n∑
i=1

exp

(
− 1− c−1

1 (1 + c′)R−2
minpn

c′2(1 +R−2
minpn/c1)

log
(
1 +

η|S(0)
i |∥xi∥22e−β

2nm2
· t
)
+ 2β

)

=
e2β

n

n∑
i=1

(
1 +

η|S(0)
i |∥xi∥22e−β

2nm2
· t
)−

1−c
−1
1 (1+c′)R−2

min
pn

c′2(1+c
−1
1 R

−2
min

pn)

= O
(
t−c′−2(1−c−1

1 (1+c′)R−2
minpn)/(1+c−1

1 R−2
minpn)

)
,

where the first inequality is by log(1 + z) ≤ z; the second inequality is by (G.1). This completes the845

proof.846

H Auxiliary Lemmas847

Lemma H.1. Let {xt}∞t=0 be an non-negative sequence satisfying the following inequality:848

xt+1 − xt ≤ C · e−xt ,∀ t ≥ 0

then we have849

xt ≤ log(ex0 + CeC · t).

Proof of Lemma H.1. Given the inequality xt+1 − xt ≤ C · e−xt for all t ≥ 0, we want to prove that850

xT ≤ log(ex0 + CeC · T ) for T ≥ 0. We start by manipulating the inequality as follows:851

xt+1 − xt ≤ C · e−xt

=⇒ xt+1 − xt ≤ C · e−xt+1+C (using xt+1 instead of xt)
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=⇒ ext+1(xt+1 − xt) ≤ CeC (multiplying both sides by ext+1 ).

Summing the inequality from t = 0 to t = T − 1, we get:852

T−1∑
t=0

ext+1(xt+1 − xt) ≤ CeC · T.

Since ex is a monotone increasing function, we can approximate the above sum with an integral:853 ∫ xT

x0

exdx ≤ CeC · T.

Evaluating the integral, we get:854

exT − ex0 ≤ CeC · T.

Rearranging the inequality, we get:855

exT ≤ ex0 + CeC · T.

Taking the natural logarithm of both sides, we get:856

xT ≤ log(ex0 + CeC · T ).

Therefore, we have shown that xT ≤ log(ex0 + CeC · T ), as required.857

Lemma H.2. Let {xt}∞t=0 be an sequence satisfying the following inequality:858

xt+1 − xt ≥ C · e−xt ,∀ t ≥ 0

then we have859

xt ≥ log(ex0 + C · t).

Proof of Lemma H.2. Given the inequality xt+1 − xt ≥ C · e−xt for all t ≥ 0, we want to prove that860

xT ≥ log(ex0 + C · T ) for T ≥ 0. We start by manipulating the inequality as follows:861

xt+1 − xt ≥ C · e−xt

=⇒ ext(xt+1 − xt) ≥ C (multiplying both sides by ext ).

Summing the inequality from t = 0 to t = T − 1, we get:862

T−1∑
t=0

ext(xt+1 − xt) ≥ C · T.

Since ex is a monotone increasing function, we can approximate the above sum with an integral:863 ∫ xT

x0

exdx ≥ C · T.

Evaluating the integral, we get:864

exT − ex0 ≥ C · T.

Rearranging the inequality, we get:865

exT ≥ ex0 + C · T.
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Taking the natural logarithm of both sides, we get:866

xT ≥ log(ex0 + C · T ).

Therefore, we have shown that xT ≥ log(ex0 + C · T ), as required.867

Lemma H.3 (Theorem 4.4.5 in Vershynin (2018)). Let A be an m× n random matrix whose entries868

aij are independent, mean zero, sub-gaussian random variables. Then for any t > 0 we have869

∥A∥2 ≤ CK(
√
m+

√
n+ t)

with probability at least 1− 2 exp(−t2). Here K = maxi,j ∥aij∥ϕ2 where ∥ · ∥ϕ2 is the sub-gaussian870

norm.871

Lemma H.4. For t ≥ s > 0, we have872

log(1 + at)

log(1 + bt)
≥ log(1 + as)

log(1 + bs)
,

if b > a > 0.873

Proof of Lemma H.4. Let f(t) = log(1 + at)/ log(1 + bt), and we want to prove that f ′(t) > 0 for874

all t > 0. To find the derivative of f(t), we use the quotient rule:875

f ′(t) =
(log(1 + bt)) d

dt (log(1 + at))− (log(1 + at)) d
dt (log(1 + bt))

(log(1 + bt))2

=
(log(1 + bt)) a

1+at − (log(1 + at)) b
1+bt

(log(1 + bt))2

=
a(1 + bt) log(1 + bt)− b(1 + at) log(1 + at)

(1 + at)(1 + bt)(log(1 + bt))2
.

Next, we define the function g(t) =
(
1
b + t

)
log(1 + bt)−

(
1
a + t

)
log(1 + at), and we aim to show876

that g′(t) > 0 for all t > 0. We start by computing the derivative of g(t):877

g′(t) = log(1 + bt)− log(1 + at).

Since b > a and t > 0, we have 1 + bt > 1 + at, which implies that log(1 + bt) > log(1 + at).878

Therefore, we have g′(t) > 0 for all t > 0. Note that g(0) = 0, we then have g(t) > 0 for all t > 0.879

Therefore, we have a(1 + bt) log(1 + bt)− b(1 + at) log(1 + at) > 0 for all t > 0, which in turn880

implies that f ′(t) > 0 for all t > 0. Thus, we have shown that f(t) is increasing for t > 0 and hence881

f(t) > f(s), which completes the proof.882

I Additional Experiments883

In this section, we conduct additional experiments on the MINIST dataset. Our focus is the train-884

ing of a two-layer feed-forward neural network, as discussed in Section 3, utilizing either ReLU885

or leaky-ReLU activation functions. We examine different widths, specifically choosing from886

{10, 50, 100, 500, 1000}.887

The network initialization process follows a Gaussian distribution, with a variance of σ0 = 0.00001.888

Training is executed using stochastic gradient descent, a batch size of 64, and a learning rate of 0.1,889

for a total of 10 epochs. As discerned from Figures 4 and 5, the stable rank of networks utilizing890

either ReLU or leaky ReLU is weakly influenced by the width. For an exceedingly small width such891

as 10, the weight matrix is low rank with a correspondingly small stable rank. However, this also892

results in low test accuracy as the network cannot effectively learn all necessary features. As the893

width increases, the test accuracy and final stable rank will increase. However, for sufficiently large894

widths, an increase in width no longer corresponds to stable rank or test accuracy increases.895
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Figure 4: Stable ranks and test errors for different width across multiple runs (ReLU Activation
Function). Each line represents the mean stable rank or test error for a given weight variance, while
the shaded regions indicate the variability of the values (±3 times the standard deviation) across the 5
runs.
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Figure 5: Stable ranks and test errors for different width across multiple runs (leaky-ReLU Activation
Function). Each line represents the mean stable rank or test error for a given weight variance, while
the shaded regions indicate the variability of the values (±3 times the standard deviation) across the 5
runs.
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