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Abstract

The implicit bias towards solutions with favorable properties is believed to a key
reason why neural networks trained by gradient-based optimization can generalize
well. While the implicit bias of gradient flow has been widely studied for homoge-
neous neural networks (including ReLU and leaky ReLLU networks), the implicit
bias of gradient descent is currently only understood for smooth neural networks.
Therefore, implicit bias in non-smooth neural networks trained by gradient de-
scent remains an open question. In this paper, we aim to answer this question
by studying the implicit bias of gradient descent for training two-layer fully con-
nected (leaky) ReLU neural networks. We showed that when the training data are
nearly-orthogonal, for leaky ReL.U activation function, gradient descent will find
a network with a stable rank that converges to 1, whereas for ReLU activation
function, gradient descent will find a neural network with a stable rank that is upper
bounded by a constant. Additionally, we conducted experiments to validate these
theoretical findings.

1 Introduction

Neural networks have achieved remarkable success in a variety of applications, such as image and
speech recognition, natural language processing, and many others. Recent studies have revealed that
the effectiveness of neural networks is attributed to their implicit bias towards particular solutions
which enjoy favorable properties. Understanding how this bias is affected by factors such as network
architecture, optimization algorithms and data used for training, has become an active research area
in the field of deep learning theory.

The literature on the implicit bias in neural networks has expanded rapidly in recent years (Vardi,
2022)), with numerous studies shedding light on the implicit bias of gradient flow (GF) with a wide
range of neural network architecture, including deep linear networks (J1 and Telgarsky), 20182020
Gunasekar et al.| [2018)), homogeneous networks (Lyu and Lil 2019; [Vardi et al.| |2022a) and more
specific cases (Chizat and Bachl 20205 Lyu et al., [2021} [Frei et al.| 2022b}, |Safran et al., [2022)). The
implicit bias of gradient descent (GD), on the other hand, is better understood for linear predictors
(Soudry et al., 2018) and smoothed neural networks (Lyu and Lil 2019; |Frei et al.,[2022b)). Therefore,
an open question still remains:

What is the implicit bias of leaky ReLU and ReLU networks trained by gradient descent?

In this paper, we will answer this question by investigating gradient descent for both two-layer leaky
ReLU and ReLU neural networks on specific training data, where {x;}}_; are nearly-orthogonal
(Frei et al.| 2022b), that is, ||x;[|3 > Cnmaxy; |(x;, xx)| with a constant C.

Our main results are summarized as follows:
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* For two-layer leaky ReLU networks trained by GD, we demonstrate that the neuron activation
pattern reaches a stable state beyond a specific time threshold and provide rigorous proof of the
convergence of the stable rank of the weight matrix to 1, matching the results of [Fre1 et al.| (2022b)
regarding gradient flow. Additionally, we conduct a convergence rate analysis of the training loss
related to the extent of orthogonality in the training data. Notably, when the training data exhibit
mutual orthogonality, we establish a convergence rate of O(¢~ 1), where # is the number of gradient
descent iterations. This convergence rate improves upon the O(til/ 2) rate provided in [Frei et al.
(2022b)) for the case of a two-layer smoothed leaky ReLU network trained using gradient descent.

* For two-layer ReLU networks trained by GD, we proved that the stable rank of weight matrix can
be upper bounded by a constant. Moreover, we present an illustrative example using completely
orthogonal training data, showing that the stable rank of the weight matrix converges to a value
approximately equal to 2. This finding suggests that ReLU networks possess superior learning
ability compared to leaky ReLU networks. To the best of our knowledge, this is the first implicit bias
result for two-layer ReLU networks trained by gradient descent beyond the Karush—Kuhn—Tucker
(KKT) point

2 Related Work

Implicit bias in neural networks. Recent years have witnessed significant progress on implicit
bias in neural networks trained by gradient flow (GF).|Lyu and Li|(2019) and Ji and Telgarsky| (2020)
demonstrated that homogeneous neural networks trained with exponentially-tailed classification losses
converge in direction to the KKT point of a maximum-margin problem. [Lyu et al.|(2021) studied
the implicit bias in two-layer leaky ReLU networks trained on linearly separable and symmetric
data, showing that GF converges to a linear classifier maximizing the ¢ margin. [Frei et al.|(2022b))
showed that two-layer leaky ReLU networks trained by GF on nearly-orthogonal data produce a
{2-max-margin solution with a linear decision boundary and rank at most two. Other works studying
the implicit bias of classification using GF in nonlinear two-layer networks include |Chizat and
Bach| (2020); [Phuong and Lampert| (2021)); Sarussi et al.| (2021); |Safran et al.| (2022)); [Vardi et al.
(2022alb)); [Timor et al.|(2023)). Although implicit bias in neural networks trained by GF has been
extensively studied, research on implicit bias in networks trained by gradient descent (GD) remains
limited. [Lyu and Li|(2019) examined smoothed homogeneous neural network trained by GD with
exponentially-tailed losses and proved a convergence to KKT points of a max-margin problem. [Frei
et al.| (2022b) studied two-layer smoothed leaky ReL.U trained by GD and revealed the implicit bias
towards low-rank networks. Other works studying implicit bias towards rank minimization include |Ji
and Telgarsky| (2018},12020); Timor et al.[(2023); |Arora et al.| (2019)); Razin and Cohen| (2020); |L1
et al.| (2021)). Lastly, |Vardi (2022) provided a comprehensive literature survey on implicit bias.

Benign overfitting and double descent in neural networks. A parallel line of research aims to
understand the benign overfitting phenomenon (Bartlett et al.,|2020) of neural networks by considering
a variety of models. For example, |Allen-Zhu and Li| (2020); Jelassi and Li (2022); |Shen et al.| (2022);
Cao et al.|(2022)); Kou et al.|(2023)) studied the generalization performance of two-layer convolutional
networks on patch-based data models. Several other papers studied high-dimensional mixture models
(Chatterji and Longl 20215 Wang and Thrampoulidis, 2022} |Cao et al., 2021} [Frei et al., 2022al).
Another thread of work Belkin et al.| (2020); Hastie et al.| (2022); Wu and Xul (2020); Mei1 and
Montanari| (2019); [Liao et al.| (2020) focuses on understanding the double descent phenomenon first
empirically observed by [Belkin et al.|(2019).

3 Preliminaries

In this section, we introduce the notation, fully connected neural networks, the gradient descent-based
training algorithm, and a signal-noise decomposition technique.

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters
to denote scalars, vectors, and matrices respectively. For a vector v = (vy, - -, vd)T, we denote by

V]2 :== (Z?Zl v?)l/Q its £2 norm. For a matrix A € R™*", we use ||A| ¢ to denote its Frobenius

norm and || A ||z its spectral norm. We use sign(z) as the function that is 1 when z > 0 and —1
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otherwise. For a vector v € R?, we use [v]; € R to denote the i-th component of the vector. For
two sequence {ay} and {by }, we denote a, = O(by,) if |ax| < C|by| for some absolute constant C,
denote ay, = Q(bg) if by = O(ay), and denote ap, = O(by) if ar, = O(bx) and ap, = Q(by). We also
denote ay, = o(by) if lim |a/bx| = 0.

Two-layer fully connected neural newtork. We consider a two-layer neural network described
as follows: its first layer consists of m positive neurons and m negative neurons; its second layer
parameters are fixed as +1/m and —1/m respectively for positive and negative neurons. Then the
network can be written as f(W,x) = F1(W41,x) — F_1(W_1,x), where the partial network
function of positive and negative neurons, i.e., .11 (W41,x), F_1(W_1,x), are defined as:

m

Fi(W%) = 3 o({w;,%)) G.1)

r=1

for j € {£1}. Here, o(2) represents the activation function. For ReLU, o(z) = max{0, z}, and
for leaky ReLU, o(2) = max{vyz,z}, where v € (0,1). W, € R™*4 is the collection of model
weights associated with Fj, and w; . € R denotes the weight vector for the r-th neuron in W ;. We
use W to denote the collection of all model weights.

Gradient Descent. Instead of considering the gradient flow (GF) that commonly studied in prior
work on implicit bias, we use gradient descent (GD) to optimize the empirical loss on the training
data

Ls(W) = 3" by f(W.x1),
i=1

where £(z) = log(1 + exp(—=z)) is the logistic loss, and S = {(x;,y;)}}, is the training data set.
The gradient descent update rule of each neuron in the two-layer neural network can be written as

Wit = wil) =V, Ls (W) = wil) = L3700 o/ (wlf) x)) - jyixi (B2)
i=1

forall j € {£1} and r € [m], where we introduce a shorthand notation E;(t) =y - F(W® x;)]

and assume the derivative of the ReLU activation function at 0 is o/(0) = 1 without loss of generality.

We initialize the gradient descent by Gaussian initialization, where all the entries of W (®) are sampled

from i.i.d. Gaussian distributions A (0, 03) with o3 being the variance.

4 Main Results

In this section, we present our main theoretical results. For training data S = {(x;,y;)}1~; C
RY x {£1}, let Rpin = min; [|X;|2, Rmax = max; ||X;||l2, p = max;zx |(x;, Xx)|, and suppose
R = Ruax/Rmin is at most an absolute constant.

Theorem 4.1 (Leaky ReLU Networks). For two-layer neural network defined in (3.I)) with leaky
ReLU activation o(z) = max{yz,z},7 € (0,1). Assume the training data satisfy R2, >
CR%y~*np for some sufficiently large constant C. For any 6 € (0,1), if the learning rate
n < (CRZ,./nm)~! and the initialization scale 09 < (CRmaxy/ log(mn/é))_l, then with
probability at least 1 — & over the random initialization of gradient descent, the trained network
satisfies:

* The ¢5 norm of each neuron increases to infinity at a logarithmic rate: ||W§f7) l2 = ©(log(t)) for all
j € {£1} andr € [m].

» Throughout the gradient descent trajectory, the stable rank of the weights Wj(»t) forall j € {£1}
satisfies,
: (®)2 ®2 —
Jm [FWE /W5l =1,

with a convergence rate of O(1/ log(t)).
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» The empirical risk under the logistic loss converges to zero at the following rate:

Ls(W®) = O(t~(=er  Rulupm)/(Ley Ry fpm) )

)

where c is a constant.

Remark 4.2. In Theorem {.T] we show that when using the leaky ReLU activation function on
nearly orthogonal training data, gradient descent asymptotically finds a network with a stable rank of
‘W; equal to 1. Additionally, we provide a convergence rate for the training loss, which depends on
the level of orthogonality in the training data. The more orthogonal the training data is, the faster
convergence rate we can achieve. Specifically, when the training data is completely orthogonal
(p = 0), we attain an O(¢~!) convergence rate. Furthermore, we analyze the rate of weight norm
increase and the convergence rate of the stable rank for gradient descent, both of which exhibit a
logarithmic order.

Theorem 4.3 (ReLU Networks). For two-layer neural network defined in (3.I)) with ReLU activation
o(z) = max{0, z}. Assume the training data satisfy R2, > CR?np for some sufficiently large
constant C. For any 6 € (0,1), if the neural network width m > C'log(n/d), learning rate
n < (CRZ,./nm)~" and initialization scale o9 < (C'Rmax+/log(mn/9)) ', then with probability
at least 1 — § over the random initialization of gradient descent, the trained network satisfies:

» Throughout the gradient descent trajectory, the stable rank of the weights W](-t) forall j € {£1}
satisfies,

. t t
tim sup [ W15/ [W | < c.

where c is a constant.

* The empirical risk under the logistic loss converges to zero at the following rate:
LS(W(t)) -0 (t701 (17czR;}i)pn)/(l%»cQR:n?npn)) ,
where ¢, ¢ are constants.

Remark 4.4. For ReL.U networks, we provide an example in the appendix concerning fully orthogo-
nal training data and prove that the activation pattern during training depends solely on the initial
activation state. Specifically, when training a two-layer ReLLU network with gradient descent using
such data, the stable rank of the network’s weight matrix W ; eventually converges to approximately
2. It is worth noting that this stable rank value is higher than the stable rank achieved by leaky ReLU
networks, which is 1.

Comparison with previous work. One notable related work is [Lyu et al.[| (2021}, which also
investigates the implicit bias of two-layer leaky ReLU networks. The main distinction between our
work and|Lyu et al.[(2021]) is the optimization method employed. We utilize gradient descent, whereas
they utilize gradient flow. Additionally, our assumption is that the training data is nearly-orthogonal,
while they assume the training data is symmetric. Our findings are more closely related to the
work by [Frei et al.| (2022b)), which investigates both gradient flow and gradient decent. In both our
study and [Frei et al.| (2022b), we examine two-layer neural networks with leaky ReL.U activations.
However, they focus on networks trained via gradient flow, while we investigate networks trained
using gradient descent. For the gradient descent approach, |[Frei et al.| (2022b) provide a constant
stable rank upper bound for smoothed leaky ReLU. In contrast, we prove that the stable rank of
leaky ReLU networks converges to 1, aligning with the implicit bias of gradient flow proved in [Frei
et al.| (2022b). Furthermore, they presented an O(t_l/ 2) convergence rate for the empirical loss,
whereas our convergence rate is dependent on the level of orthogonality and becomes O(t~1) when
the training data is completely orthogonal. It is worth noting that|Lyu et al.| (2021)); [Frei et al.| (2022b)
demonstrated that neural networks trained by gradient flow converge to a Karush-Kuhn-Tucker (KKT)
point of the max-margin problem. We do not have such a result and have only proven that gradient
descent can find a neural network with a low stable rank.
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5 Overview of Proof Techniques

In this section, we discuss the key techniques we invent in our proofs to analyze the implicit bias of
ReLU and leaky ReLU networks.

5.1 Refined Analysis of Decomposition Coefficient

Signal-noise decomposition, a technique initially introduced by |Cao et al.|(2022), is used to analyze the
learning dynamics of two-layer convolutional networks. This method decomposes the convolutional
filters into a linear combination of initial filters, signal vectors, and noise vectors, converting the
neural network learning into a dynamical system of coefficients derived from the decomposition. In
this work, we extend the signal-noise decomposition to data-correlated decomposition to facilitate
the analysis of the training dynamic for two-layer fully connected neural networks.

(®)

Definition 5.1 (Data-correlated Decomposition). Let w: ., j € {£1}, r € [m] be the weights of

J,r’
first-layer neurons at the ¢-th iteration of gradient descent. There exist unique coefficients p§ 7) . such
that
(O) + Zﬂ% xilla? X (5.1
By defining ﬁgtl = p; 7), ; ]l(pgfl’i >0), Byi = pgtl i ﬂ(p§t2 ; <0), can be further written as
0 - _
w) )‘f’Z/)j I3 X’+Zp§t3~z [l%ill5 2 - % (5.2)

As an extension of the signal-noise decomposition first proposed in|Cao et al.|(2022) for analyzing
two-layer convolutional networks, data-correlated decomposition defined in Definition [5.1] can be
used to analyze two-layer fully-connected network, where the normalization factors ||x;||, > are

introduced to ensure that p( ) < (t) x;). This is also inspired by previous works by |Lyu and Li
(2019); |[Frei et al.|(2022b)), Wthh demonstrate that W converges to a KKT point of the max-margin

problem. This implies that w / ||w ||2 can be expressed as a linear combination of the training

data {x;}?_,, with the coefﬁc1ent Ai correspondlng to szz in our analysis. With the help of such

decomposition techniques, one can reduce the study of neural network training process to a careful
—(t)

7’17

assessment of the coefficients p; p(t) throughout training. This technique does not rely on
the strictly increasing and smoothness propemes of the activation function and will serve as the

foundation for our analysis. Let us first investigate the update rule of the coefficient pg 2, i pgfz e

Lemma 5.2. The coefficients pg 3 i p( ) deﬁned in Definition satisfy the following iterative
equations:

ﬁ§ 721’ ,050,)1 =0, (5.3)
P =P = = 00 (W) xi)) - il - 1w = ), (5.4
t+1) _ (¢ n /(t) (t) —

pTD =0l o (W) - il L = ), (55

forallr € [m], j € {£1} and i € [n].

To study implicit bias, the first main challenge is to generalize the decomposition coefficient analysis
to infinite time. The signal-noise decomposition used in|Cao et al.| (2022); [Kou et al.|(2023) require
early stopping with threshold 7™ to facilitate their analysis. They only provided upper bounds of
4log(T™*) for p pj i |p t) ;| (See Proposition 5.3 in Cao et al.| (2022), Proposition 5.2 in |Kou et al.

(2023)), and then carrled out a two-stage analysis. To obtain upper bounds for p(- ) | Bﬁ-t,)« l.|, they

757507

used an upper bound for |€;(t)| and directly plugged it into (5.4) and (5.5)) to demonstrate that ﬁ(t)

75752
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and | p(75 ;| would not exceed 4 log(7™), which is a fixed value related to the early stopping threshold.

Therefore dealing with infinite time requires new techniques. To overcome this difficulty, we propose
a refined analysis of decomposition coefficients which generalizes (Cao et al.|(2022)’s technique. We
first give the following key lemma.

Lemma 5.3. For non-negative real number sequence {z;}$2 satisfying
Cyexp(—xy) < wpy1 — o < Corexp(—ay), (5.6)
it holds that

log(exp(—xo) + Cy - t) < 2y < log(exp(—zg) + Caexp(Cy) - t). 5.7

We can establish the relationship between (5.4), (53.5) and inequality (5.6) if we are able to express

52 ; and | Bgtlz‘ To achieve this, we can first approximate Egt) using
(t

the margin y; f(W®) x;) and then approximate Fj(W; ),
approximation is given as follows:

e t)| using coefficients

x;) using the coefficients p(t) .. The

75Ty

0 = Oexp(~y: f (W, x:))) = O (exp (7 (WU x) = B (W x)),  (58)
1 m
F (Wi i) = — 3ol <3 ( Z ) mmp), (5.9)
r=1 i #i r=1

From (5.9), one can see that we need to decouple Egt) from | pgfl,i, |(" # 7). In order to accomplish

(®)

this, we also prove the following lemma, which demonstrates that the ratio between >, |p i il

and )" | pﬁ,i, |(" # i) will maintain a constant order throughout the training process. Here, we
present the lemma for leaky ReL.U networks.

Lemma 5.4 (leaky ReLU automatic balance). For two-layer leaky ReLU network defined in (3.1)),

for any £ > 0, we have
t
Sl = e Z Pl (5.10)
r=1

forany j € {£1} and r,7" € [m], where c is a constant.

By Lemma([5.4] we can approximate the neural network output using equation (5.9). This approxima-
tion expresses the output F; (W§t)7 x;) as a sum of the coefficients pgtzz

1£ R pn
W ) ~ LRl 55 511
m r=1

By combining (5.4), (5.3), (5.8), and (5.11)), we obtain the following relationship:

L, 1L |13 1+ ey’ Ron

— > oy |_52|Pj,m‘|:@< o )'eXP p— Z| Pjri

r=1 r=1
2 -2

This relationship aligns with the form of (5.6)), if we set z; = w > |pj 7.:|- Thus, we
can directly apply Lemma-to gain 1ns1ghts into the logarithmic rate of increase for the average
magnitudes of the coefficients -1 - S |pj7m-|. This analysis provides a deeper understanding of the
dynamics and convergence properties of the coefficient magnitudes during the training process. In
the case of ReLU networks, we have the following lemma that provides automatic balance:
Lemma 5.5 (ReLU automatic balance). For two-layer ReLU network defined in (3.1)), there exists a
constant c such that for any ¢ > 0, we have

t
0= el s

forany j € {£1},r € Si(o) ={rem]: (w@(,?)r,xz> >0}, 1’ € [m]and i,i’ € [n].
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The automatic balance lemma guarantees that the magnitudes of coefficients related to the neurons of
class y;, which are activated by x; during initialization, dominate those of other classes. With the
help of Lemma we can get the following approximation for the margin y; f (W(t), X;):

14+ cR:2
) ~ C IIllIlpn Z (t) .. (5.12)

Yi, T,
m Yi,7,

F (WD, x,) — F (W)

—yir X
TESEO)

By combining (5.4)), (3.3), (5.8) and (5.12)), we obtain the following relationship:
(0)|

t+1 t nllxill31S; 1+ eR2 pn t
S Il = 3 Il =0 (TEEE ) e (- PR ST o),
res® res® res(©

licR;?npn Z

()
pee res® py ri- Therefore, we

which precisely matches the form of (3.6)) by setting x; =

can directly apply Lemma and obtain the logarithmic increasing rate of |py r ;| forr € S; (0)
which provides further insig ts into the behavior of the coefficients.

5.2 Analysis of Activation Pattern

One notable previous work (Frei et al.,[2022b) provided a constant upper bound for stable rank of
two-layer smoothed leaky ReLU networks trained by gradient descent and an O(t’l/ 2) convergence
rate for training loss in their Theorem 4.2. To achieve better stable rank bound and better convergence
rate, we characterize the activation pattern of leaky ReLLU network neurons after certain threshold
time 7" in the following lemma.

Lemma 5.6 (leaky ReL.U activation pattern). Let T’ = Cn~'nmR_2 . For two-layer leaky ReLU
network defined in (3.1, for any ¢ > T, it holds that

sign(<w§f27xi>) = JYi,

forany j € {£1} and r € [m].

Lemma 5.6)indicates that the activation pattern will not change after time 7. Given Lemma[5.6] we

can get o (<W]( 7)n, i) = v forj # y; and o/ ((w 3(7), ;) = 1 for j = y;. Plugging this into (5.4)
and (5.5) can give the following useful lemma.

Lemma 5.7. Let T be defined in Lemmal5.6] For ¢ > T, it holds that

—(t) —(T) _ =) —(T) T T
Pyiri = Pysri = Pyier i = Pyt I’B(—tg)ﬁ,ri _B(—y)i,rz p(fzﬁ,r i BE?}iﬁ”ﬂ’
p;(gl)r 7 ﬁél ?r’ 7 = (B(,t:)gi’,,‘/ i (,1;) T/ i /77

forany i € [n] and r, ' € [m].
This lemma reveals that beyond a certain time threshold 7', the increase in pgtz ; 18 consistent across
neurons within the same positive or negative class. However, for neurons belonging to the oppose

class, this increment in p(-t) is scaled by a factor equivalent to the slope of the leaky Rel.U function

7,70
~. From this and (5.1)), we can demonstrate that ||wj(t3 ] r/ || (r # r') can be upper bounded by a
constant, leading to the following inequalities:

t t t t t
W13 < mlwih 13 + mOulw |2 + mCa, [W3 > mllw |13 — mCs w2 — mCi.

Considering that ||w ||2 = O(logt), the stable rank of W( ) naturally converges to a value of
1. As for the convergence rate analysis, by applying the actlvatlon pattern to (3.4) and (5.3)), and
using Lemma [5.3] agam we can achieve a more fine-grained ana1y51s to obtain a more precise

l—cy™ Rmmpn
= Ty 2R 2 pn

minP

approximation of pj i/ log(t). This leads to y; f (WO x;) > log(t) for sufficiently

large t. Consequently, this results in an O(t_(l_c“fszminp”)/ (1+ev"*R.5.pn)) convergence rate for
the training loss, which is faster than O(til/ 2) as demonstrated by Theorem 4.2 in (Frei et al.,[2022b),
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Figure 1: Stable ranks and training loss for different leaky ReLU slopes  across multiple runs. A
slope of 1 corresponds to linear activation, while a slope of 0 corresponds to ReLU activation. Each
line represents the mean stable rank or training loss for a given leaky ReLU slope, while the shaded
regions indicate the variability of the values (+3 times the standard deviation) across the 5 runs.

if the training data is nearly orthogonal enough. For ReLU networks, we can partially characterize
the activation pattern as illustrated in the following lemma.

Lemma 5.8. (ReLU activation pattern) For two-layer ReLU network defined in (3.1, for any i € [n]
and r € S’i(o) ={rem]: <w§??r,xi) > 0}, we have

Sigﬂ((W?(j?’r, Xl>) = Sign(<W§2’)T, X2>) =1,

for any ¢ > 0, or in other words, SZ-(O) C Si(t) ={re[m]: (Wg(fi),r,xi} > 0}.

Lemma [5.8] suggests that once the neuron of class y; is activated by x; during initialization, it
will continue to remain activated throughout the training process. Leveraging such an activation

pattern, |Si(o)| = O(m), and p(t) = O(logt), we can establish a lower bound for ||W§-t)H2 as

Yi,ryt
Q(\/.m'n 1og(t)). This matches the trivial upper bound of ||W§-t) || of order ©(y/mnlog(t)), thus
providing us with a constant upper bound for the stable rank for ReLU networks. The convergence

rate analysis of the training loss also utilizes this activation pattern and |SZ-(O)| = O(m) to ensure that

the margin satisfies y; f(W® x;) = Q(pfj)NL r e Si(o). As a result, as time ¢ goes to infinity, the

ratio y; f (W), x;)/ log(t) has no correlation with the width m.

6 Experiments

In this section, we present simulations of both synthetic and real data to back up our theoretical
analysis in the previous section.

Synthetic-data experiments. Here we generate a synthetic mixture of Gaussian data as follows:

Let ;1 € R? be a fixed vector representing the signal contained in each data point. Each data point
(x,y) with predictor x € R? and label y € {—1,1} is generated from a distribution D, which we
specify as follows:

1. The label y is generated as a Rademacher random variable, i.e. Ply = 1] = Ply = —1] = 1/2.

2. A noise vector ¢ is generated from the Gaussian distribution A/ (0, agld). And x is assigned as
y - u + & where p is a fixed feature vector.

Specifically, we set training data size n = 10,d = 784 and train the NN with stochastic gradient
descent with batch size 64 and learning rate 0.1 for 50 epochs. We set p to be a feature randomly
drawn from N(0,107*I,). We then generate the noise vector £ from the Gaussian distribution
N(0, JZQ)I) with fixed standard deviation o}, = 1. We train the FNN model defined in Section With
ReLU (or leaky-RelU) activation function and width m = 100. As we can infer from Figure[I} the
stable rank will decrease faster for larger leaky ReLLU slopes and have a smaller value when epoch
t — 00.
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Figure 2: Stable ranks and test errors for different weight variances across multiple runs (ReLU
Activation Function). Each line represents the mean stable rank or test accuracy for a given weight
variance, while the shaded regions indicate the variability of the values (£3 times the standard
deviation) across the 5 runs.
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Figure 3: Stable ranks and test errors for different weight variances across multiple runs (leaky-ReLLU
Activation Function with slope 0.1). Each line represents the mean stable rank or test accuracy for a
given weight variance, while the shaded regions indicate the variability of the values (£3 times the
standard deviation) across the 5 runs.

Real-data experiments on MNIST dataset. Here we train a two-layer feed-forward neural
network defined in Section El with ReLU (or leaky-ReLU) functions. The number of widths is
set as m = 1000. We use the Gaussian initialization and consider different weight variance
oo € {0.00001,0.00005,0.0001,0.0005,0.001}. We train the NN with stochastic gradient de-
scent with batch size 64 and learning rate 0.1 for 10 epochs. As we can infer from Figures[2]and[3]
the stable rank of ReLLU or leaky ReLU networks will largely depend on the initialization and the
training time. When initialization is sufficiently small, the stable rank will quickly decrease to a small
value compared to its initialization values.

7 Conclusion and Future Work

This paper employs a data-correlated decomposition technique to examine the implicit bias of two-
layer ReLU and Leaky ReL.U networks trained using gradient descent. By analyzing the training
dynamics, we provide precise characterizations of the weight matrix stable rank limits for both ReLU
and Leaky ReLU cases, demonstrating that both scenarios will yield a network with a low stable
rank. Additionally, we present an empirical analysis of the convergence rate of the loss function. A
crucial direction for future research is to explore the directional convergence of the weight matrix in
neural networks trained via gradient descent. It would be valuable to investigate whether the weight
matrix eventually converges to a Karush-Kuhn-Tucker (KKT) point of the max-margin problem.
Furthermore, it is important to extend our analysis to fully understand the neuron activation patterns
in the case of ReLU activations. Specifically, we can explore whether certain neurons continuously
switch their activation states an infinite number of times throughout the training process or if the
activation patterns stabilize after surpassing a certain threshold.
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A Preliminary Lemmas

In this section, we present some pivotal lemmas that illustrate some important properties of the
data and neural network parameters at their random initialization and provide the update rule of
coefficients from data-correlated decomposition.

Now turning to network initialization, the following lemma studies the inner product between a

randomly initialized neural network neuron wg»or) (j € {£1} and r € [m]) and the training data. The
calculations characterize how the neural network at initialization randomly captures the information
in training data.

Lemma A.1. Suppose that d = Q(log(mn/¢)), m = Q(log(1/9)). Then with probability at least

1-3,
o3d/2 < w3 < 303d/2,
(w2 x;)| < /2log(8mn/6) - 59 Rinax

forallr € [m],j € {£1} and i € [n].

Proof of LemmalA.1} First of all, the initial weights wﬁ? ~ N (0, 00I). By Bernstein’s inequality,
with probability at least 1 — 6/(4m) we have

w13 — o5d| = O(03 - /dlog(8m/6)).

Therefore, if we set appropriately d = Q(log(m/4)), we have with probability at least 1 — 6/2, for
all j € {1} and r € [m],
05d/2 < [[wji) |3 < 3otd/2.

Under definition, we have ||X;||2 < Ruax for all ¢ € [n]. It is clear that for each j,r, (Wfﬁ, u)isa

Gaussian random variable with mean zero and variance o¢||x;||3. Therefore, by Gaussian tail bound
and union bound, with probability at least 1 — §/2,

(Wi, ;)| < \/210g(8mn/6) - 00 R

Jr

O

Next, we denote SZ-(O) as {r € [m] : <w§??r,xi> > 0}. We give a lower bound of |S§O)| in the
following two lemmas.

Lemma A.2. Suppose that 6 > 0 and m > 50log(2n/d). Then with probability at least 1 — 9,

0.4m < |S”| < 0.6m, Vi € [n].

Proof of LemmalA.2] Note that \Si(o)\ =" ]l[(wg(,??mxi) > 0] and P((wg(,??r,xﬁ >0)=1/2,

r=1

then by Hoeffding’s inequality, with probability at least 1 — & /n, we have

5i7 1] _  [log(2n/5)
m 20 — 2m

Therefore, as long as m > 501og(2n/4), by applying union bound, with probability at least 1 — 4,
we have
0.4m < |S”| < 0.6m, Vi € [n].

O

Now we give the update rule of coefficients from data-correlated decomposition. We will begin
by analyzing the coefficients in the data-correlated decomposition in Definition[5.1} The following
lemma presents an iterative expression for the coefficients.

12
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Lemma A.3. (Restatement of Lemma The coefficients ﬁgtiz, B§-t3i defined in Definition
satisfy the following iterative equations:

0
p§7)1’p§021 =0,
—(t+1 t n t t .
P == L () xa)) il s = ),
(t+1) _ (¥ noop ) o \Y 1 1[2 . o
pJ’r‘Z pjrz + nm gl o (<WJ,T7X’L>) ||XZ||2 ]l(yz ])a

forallr € [m],j € {£1} andi € [n].

Proof of Lemma[AZ3] First, we iterate the gradient descent update rule (3.2)) ¢ times and get

wi = ?—%ZZW”%>MM

s=0 i=1

(®

Jsrst?

n
t
7,r ijri HXZH ? - X

Therefore, we have the unique representation

According to the definition of p we have

(t) n s s
’”:_anE'() o (i) - i3 - i

Now with the notation pg 7)"1 = pgtiz ]l(pgi)az > 0), Bﬁ?v : p§t7)n i ]l(pgt)i < 0) and the fact
01 <0, we get
— t _ n /(s) (s) .
i =~ Zé 2o (i) xi)) - xill3 - 2w = ), (A1)
p® = LNTE o w x)) - il Ly = —j
o= Zﬁ (w5 i)) - Ixill3 - 1ys = —9). (A2)
Writing out the iterative versions of (A.T)) and (A.2)) completes the proof. 0O
B Coefficient Analysis of Leaky ReLU

In this section, we establish a series of results on the data-correlated decomposition for two-layer
leaky ReLU network defined as

FOW® x) = FH(WSF%, x) — F,I(W(_t)l,x)

m m

= Y o) - S el ), (B.1)

r=1 r=1
o(z) = max{vyz,z},v € (0,1).
The results in Section[B] [C|and [D]are based on Lemma[A.T] which hold with high probability. Denote

by Eprelim the event that LemmalA.1]in Sectlon.holds (for a given 4, we see P(Eprelim) > 1 — ).
For simplicity and clarity, we state all the results in Section (B l |§| and|§| conditional on Eprelim-

Denote ﬁ = max; j, r{‘< 327Xz>‘} Rmax - maxze HX2H2s min — minie[n] ||XiH2a p =
max;, |(X;, X)| and suppose R = Ruax/Rmin 1S at most an absolute constant. Here we list

13
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the exact conditions for 7, ¢, Rmin, Rmax, P required by the proofs in this section.

50 < 7(CRumax/10g(mn/3)) ", (B.2)
< (CR: . /nm) ", (B.3)
R2 > Cr~*R%np, (B.4)

min

where C'is a large enough constant. By Lemma we can upper bound 3 by 24/log(12mn/9) -
00Rmax- Then, by (B.2) and (B-4), it is straightforward to verify the following inequality:

8 < ey, (B.5)
YR Enp <c, (B.6)
_4RmmR2np <e, (B.7)

where c is a sufficiently small constant.

Suppose the conditions listed in (B:2) and hold, we claim that for any ¢ > 0 the following
property holds.

Lemma B.1. Under the same conditions as Theorem@ for any ¢ > 0, we have that

mew >cw?Z|pf>” V4, € {£1},Vi, i € [n], (B.8)

r=1

where ¢; is a constant.

To prove Lemma@, we divide it into two lemmas, each addressing a specific case: 0 < ¢t < T3
(Lemma ) when the logit \£§t>| =0(1),
than constant order. Here, T3 = C'n~ nmRmix, and C’ is a constant. For each case, we apply
different techniques to establish the proof.

Lemma B.2 (0 < ¢ < T}). Under the same conditions as Theorem@ forany 0 <t < Ty =
C'n~'nmRZ2_, where (' is a constant, we have that

max:?

\p% il > czfy|pj il i, j e {X1},Vr,r" € [m],Vi,i' € [n], (B.9)

where ¢ is a constant.

Proof of Lemma[B.2] In this lemma, we first show that (B:8) hold for ¢t < Ty = C'n~*nmR2,
where C’ = ©(1) is a constant. Recall from Lemma[A.3] that

| _ n .
A — 50 L O o (W ) - a3 Ly = ),

nm Wi *
n t t .
D = pl) o (Wi xa)) - [l - Ly = ),
we can get
P i b =0, (B.10)
and
2
_(t+1) _ _(¢) n 2 _ —(t) NRax
Py rii —py“rz+%' HX1||2 —py“rz+m’ (B.11)
(t+1) (t) NR? ax
P 1< 100, 1+ Ll < (o), | |+ Toma B.12)
Therefore, we have maxjm{pjm, |p§til|} = O(1) for any + < T; and hence

maxi{FH(Wi%, x;), F_1 (W(_t)l, x;)} = O(1) for any ¢ < Tj. Thus there exists a positive constant
¢ such that |€;(t)| > ¢forany t < Ty. And it follows for any j € {£1},r € [m],i € [n] that

1 cyn
i 2 L6 xal3 2 1o+ T a3 Y0 <t < T,

lp Ip]MH
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Pjri
On the other hand, by m, (B11)) and m, we have for any j' € {£1},7" € [m],7 € [n] that

2
m,vogtgn. (B.14)
nm

NO<t<T. (B.13)

| _]/ 7/ 1/| >~
Dividing (B:T4) by (B.13), we can get for any 7, j’ € {1}, 7,7 € [m],i,i" € [n] that

,y mll’l |

IJMI_ Py il

max

which indicates that the first bullet holds for time ¢ < T} as long as ¢y < ¢R%2. R-2 O]

min max-*

Lemma B.3 (¢t > T}). Let T be defined in Lemma[B.2] Under the same conditions as Theorem .1}
for any ¢ > T, we have that

ST = ey 3 108, 1V, € {£1}, V0,0 € [n), (B.15)

r=1 r=1
where ¢3 = @(1) is a constant. Moreover, we also have the following increasing rate estimation of
oyl 105, il

t)
e ‘P( i,y

L1 og (1+ vl ese?” ,t>’

. L xm (D) 1 ynllxil|3cee” D8
EZT 1Pyri 2 Co log (1+ 2cse “t,

t _ i (v+1)8
e B ‘P(—;”z‘ > ¢ ' log (1 + M 't)’

where c4, cs5, cg are constants.

Proof of Lemma[B-3] We prove this lemma by induction. By Lemma[B.2] we know that (B-T3)) holds
for time ¢ = T} as long as c3 < c,. Suppose that there exists ¢ > 7} such that (B.15) holds for all
time 0 < t <t — 1. We aim to prove that they also hold for t = ¢. Forany 0 < ¢t < t — 1, we have

yT"

S\H

Fyi (Wé), Xl) =

Y
S\H

2.

S vl

Z( WX +Zp§iir,i,|xi/|22~<xi/,xi>)
/=1

o (B.16)
Z E Z ('O?Stz)m - Z |p7jL ri’ |Rm1np> ﬂ
i #£i
- z_: ylm—%:( z;pyl,m) Roip— 0

1—7 2 'R2 pn o~
S L S
r=1
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where the first inequality is by o(z) > z; the second equality is by (5.1); the third inequality is
by triangle inequality and the definition of 3, p, R,,in; the fourth inequality is by the induction
hypothesis (B:13). Besides, for any 0 < ¢ < t — 1, we also have the following upper bound of

F, (WY x,):

1 m
Fy, (Wéti)axi) = m Z (<W;(,tl)r7xz'>)

r=1
1 « -
SR D 9L (RIS SV IR
r=1 i'=1
1 m
SEZ (pyz,rl+z|pyl71|R;i2np+6>
r=1 i #i
Lo (B.17)
:mz<pyum+z|py,rz/ mlnp+ﬁ)
r=1 i £
flzn: U iz ® \p-2,.5
m Py;,ri m Py rit | LeminP
r=1 i i r=1
1+~ 203 1Rmmp (t) 48
- m — yu'f'l ?

where the first inequality is by triangle inequality and the definition of 3, p, Ry ; the second
inequality is by the induction hypothesis (B:13). On the other hand, for any 0 < ¢ < ¢, we can give

following upper and lower bounds for F_, (W(_tz/, x;) by applying similar arguments like

and (B17):

t v - t
Fly (W xi) > 3wl )
r=1
7 — ~
2 E Z (P Yi Tyt Z ‘p(—tzli,r,i’|Rmian - B);
r=1 e
1+ _2(3_1R;112n n m
> MY BoipP) §7 0~ 48, (B.18)
m r=1
and
1 m
Fo, (WY x) < EZ <p i 1 ] mmp+5)
r=1 e
1 m
t
<D [0 0+ o (S el R) +0(9)
r=1 i £
kel 1 &
t
- Zp bt 3 () 5
) r=1
1= 'R ) = )
- - 1 P it B, (B.19)

where the second inequality is by a property of leaky ReLU function that o(a + b) < o(a) +
o(b),Ya,b € R.
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484 Next, we can bound M;(t)\ for0<t<t-—1:

A

1
- ® -\ _ o -
1+ exp{F 1(Wyw 7x1) F*yi (W Xz)}

—Yi’

< exp{—F, .(w<t> xi) 4+ F_y .(W(j; .x;)}

1 - c 1 RIIlll’lp _3071R1;11211pn) %
< o { LTS § g, TS Tk 5 2,
r=1

(B.20)

485 where the second inequality is by (B:16) and (B-19). And
141
1
T 1 exp{F, (W xi) — FLy (WO x)}
1

1+v—2¢;*R-2 pn m 1+v—2¢; 'R n
o [P ) I )

—2,~1p— —2,~1p—
> 1 exp{ 197 % Rgon - P(yt,)m n (L +7" % Rygpn) ZP(—t;Mz v+ 1)5},
m r=1 m r=1
(B.21)
86 where the first inequality is by (B:I7) and (B:I8); the last inequality is by 1/(1 + exp(z)) >
87 exp(—z)/2if z > 0. By (B.20), we can get for 0 < ¢t < t — 1 that

1 =72 'R2 pn <
|£:(t)| < exp{ _ Y “C3 minP" Zp; iy + 2ﬁ} (B.22)
m 2P
1—y3c¢;'R2 -
O] < exp {’V( T S 26} (B.23)
r=1

s By B2 andvpl” <o) || <y7*p) . we can getfor 0 <t <1 that

1 201 + 77 2c3 ' R2pn) = ¢
/s L _ 3 “lmin @ 1 B.24
€71 = 5 exp - ;pw,, (v+1)B¢, (B.24)

¢ 1 vy 1+7*2071R;ﬂ2npn UL
|€;(f)| > exp{( I = E ) p(—fz;i,r,i —(y+1)B
r=1
1 (1 +'Y 203 lRmmpn
Ziexp po Zp_yhm (v+1)B ;. (B.25)
r=1

s By (5.4), (3.3) and o’ € [v, 1], we have for 0 <t < t — 1 that

t+1 t n t
ot < Pyl 1601 Il

t+1 t t

I VA R )
(B.26)

(t+1) o g’(t . 12

|p—y177’2|—|p—y17’z|+nm |z | Hxl||2>

t4+1) t) n /(t
|p(—y1,m| > |P(—yt ral ¥ 129] - 1%, 2.
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490

491

492

493
494

495

496

497

499

500

By plugging (B:22), (B-24), (B-23) and (B-23) into (B.26)), we have for 0 < t < ¢ — 1 that

t+1 ¢ 77||sz2 2 -y 'Rifon <= @
Zﬂym < Zﬂéﬁm . = Solb (B.27)

r=1
nIIX'H%eQﬂ (1 =y 35 R2 pn)
Z ‘p—y,;,r,z r, 1 Zn + €Xp - 3 mln Z | —yl T, z
r=1
(B.28)
m m 12— (v+1)B —2,-1p-2 m
() WHX ll5e 2(1 +9 %5 R j,pn) ¢
yl,rz Z y“rz - m + €xXp - m T Zpg(;l),r,z )
r=1 r=1 r=1
(B.29)
Zm:‘ L omlixlBem 0 e 2(1+7’205135ﬂ2npn)§:| o
’O_Z/i:"'vl _yz 5Ty 7/ 2n Xp ,ym —Yi, Ty :
r=1 r=1
(B.30)
By applying Lemma[H.I|to (B.27) and taking
1=y R O~ )
Tt = m Yi,T,00
r=1
we can get for 0 < ¢ < t that
1 — 120,028 N2 28
150, et (14 Ml o (b))
m R nm nm
r=1 (B.31)

nl|xil[3cse® »
nm ’

< ch log (1 +

where ¢; := 1 — v 2¢c; ' R% pn and the last inequality is by n < (CR2,,./nm)~" and C is a
sufficiently large constant.

By applying Lemma[H:1]to (B-28) and taking

(1 =y Peg ' Ry2 pn) -
= WG k) S
r=1

we can get for 0 < ¢ < t that

m 12 28 112 2B
xi||3cse x;||3cse
LS50 <t (1 Ul o (ol
i nm nm
. (B.32)
<5y log (1 + ynllxillacse™ ~t>,
nm

where ¢5 := 1 — vy 3¢c; ' R_2 pn and the last inequality is by n < (CRZ2,,. /nm)~"' and C is a

sufficiently large constant.
By applying Lemma[H.2]to (B:29) and taking

2(1+7y 25 'Ryl pn) s~ (1)

Tt = Yi,rye)
m r=1
we can get
12¢e— (V1B
ynllx:ll3cee
m Zpyl,m > (2¢5) ' log ( 42l ’Hznm -t>, (B.33)
where cg 1= 1+ 77261;1R;inpn.
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502

503

504

505
506

507
508
509

510

511

512

By applying Lemma[H.2]to (B:30) and taking

2(1+7"c5 ' Ryfpn) i (1)
min | v |

Tty =

—yi,myil
mm r=1
we can get
x;||2eqe— (VDB
Wl e e (1 RS e
where ¢cg := 1+ fy*QCglRI;inpn.

In order to apply Lemma[H.4] (requiring b > a), we loosen the bounds in (B231), (B-32), (B:33) and
as follows:

1 m R2 23 .
72/)2(;)”_04 N 110g<1+777maxc56.t>,v0§t§157 (B.35)
m Rl nm

R2 - 28 -
( <erlylog (14 MHmax®C 7 4 v <t <7 (B.36)
y 7,4 4
iy nm
1 R2 —(y+1)B ~
L pif)m > (2e0) M ytog (14 M0 ) vose<h Ba)
m r=1 ' im
R2 —(v+1)8 ~

7Z| ph il = (2¢6) My log (1 T tmin®6C -t),VOStSL (B.38)

iy nm

where (B33) is by Bernoulli’s inequality that 1+~ ~'z < (14-z)Y " for every real number 0 < r < 1
and z > —1; (B:37) is by Bernoulli’s inequality that 1 + v > (1 + x)? for every real number
0<r<landz > —1.IfR2, cee”OtB > yR2  c5e?P, we have

206 Cq
ZI Piril 2 %leﬁ?r,i/l- (B39)
r=1

r=1
If R2. coe” (D8 < yR2  c5e??, by Lemma we have

) 1 5m (t)
HllIl{ Z? =1 py“r 0 m r=1 ‘p—yi,r,i

t
max{ Zr 1P yll rz”%z:;nll (—L/Ti/|}

Lo (14 Mmcee 1y

> 72(2c6) ey
log (1+ 7”%7;6 )
cae— (DB
2o o1, og (14 Mt 0 )
> 7%(2¢6)" ca - TR coc?P
log (1 + = T )

log(1 + R 2¢cge=(rtDBCY)
log(1 + yese28CY)

Z 72(266)_164 .

Therefore, we can get for 0 < ¢ < t that

ST =% > 108, Vg € {21}, V4,1 € [n], (B.40)

r=1 r=1

as long as

log(1 2cce— (VDB
cs < (2¢6)” 104-min{1, og(l + R~"cqe C)}

log(1 + yese2PCY)
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513

514

515

517

518

519

521

522
523

524

525

526

This condition holds under the following conditions:

1 1
Y 303 1Rm1npn 2 - C4,Cs Z 5786 S
log(1 4+ R—2e~ (DB }

= — 1 1
C3 6 mln{ ) log(l +762BC/)
This implies that induction hypothesis (B-13) holds for ¢ = . O

Lemma B.4 (Implication of Lemma|[B.T). Under the same condition as Theorem[4.1] if (B-8) hold
for time t, then we have that

7

N W

|pjrz|>cfy ‘p] r! 'L"

where ¢; is the same constant as defined in Lemma [B.1}

Proof of Lemma[B4] By o’ € [v,1], (5.4) and (3.3), we have
P55 2 160 4 16 (il 5 € {139 € [m], Vi € [,

7575
t+1 t ) .
PSP 1o+ = O] i3, V5 € {1,V € [m), Vi € [n].
Thus, we have
yllxil3 o
> 2 N ) g e {£1),Vr € [m), Vi €
11 > 2 ;uua {1}, r € [m]. Vi € [n],
77||Xz|| /(t) )
ol < - Z\z‘\v € {£1},Vr € [m],Vi € [n].
s=1
Therefore, ) il > ’y|pj . ;| forany j,j" € {£1},r',r € [m] and i € [n], and hence
mlpjril =
m (B.41)
t t
DIyl 2 m’ylﬂ}?w,m
r=1
Plugging (B.41)) back into completes the proof. O
Lemma B.5. Let T} be defined in Lemma|[B.2] Every neuron will never change its activation pattern

after time 77, that is,
. ¢ . T
sign((w!),x;)) = sign((w{",x;)),
forany t > Ty, j € {£1} and r € [m]. Moreover, it holds that

sign((wi'), %)) = jys, (B.42)
foranyt > Ty, j € {£1} and r € [m].

Proof of Lemma(B3] For j = y; and t > 0, we have Bﬁtf«i =0, and so

t
(wit) xi) = (Wi, x +Z@ xrlly? - (e, i)
i'=1
0
= <W§72’ )P pj i T ij r,i |Xz’||2 (X, Xg)
i £
_(t t _
; );l - Z ‘p§,7)",i"Rmi2np - 5

i
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527
528

529

530

532

533

534

535

536

538

539
540
541
542

543

—(t —1—(t -2
> ) e ) Ry pn - 8

= (1_7 G llenpn)ﬁ;?’z_ﬁ7

—4, 1(t)

where the first inequality is by triangle inequality; the second inequality is by | pj i | <~ Pyy ri
from Lemma[B.Jland Lemma[B.4
By (B:13), we have for ¢ > T} that
5t % — C'YR%, R (B.43)
Yi,ryt = min* “max"* .

nm

Therefore, by (B3), (B-6) and (B243)), we know that

(1= e RyZpn) - Byl > 8,97 € [m)i € [n].

§t),x>)—1forany7'6[ l,i€nl,j =
For j # y; and any ¢t > 0, wehaveﬁ(t) =0, and so

Jorst

and thus sign({(w

t 0
(Wi xi) = (W x;) +me,||xz|| - (Xir, %)

§t21+zp]rz’ |Xi'||2_2'<xi’7xi>

)
Stz i + Z |p] T, z/|Rm1np + ﬂ
)
< Bgtzz - 162 ! ;tz llenpn - ﬁ
= (1 - 62 1Rm1npn)p(t 7ﬂﬂ

7,70

Where the first inequality is by triangle inequality; the second inequality is by \p(,t) S <

7,7y’ —
o |p(t | from Lemma and Lemma
By @, we have

p® > DT o pe e (B.44)
=y, nm

Therefore, by (B.3), (B-6) and (B-44), we know that

=yt B2 ) - 1o | > 8.9 € [ml,i € [nl,

Yi, 0

and thus sign((ww x;)) = —1 for j # y;, which completes the proof. O

7,77

C Stable Rank of Leaky ReLLU Network

In this section, we consider the properties of stable rank of the weight matrix W(*) found by gradient
descent at time ¢, defined as |[W®)||2./|[W(")|3, the square of the ratio of the Frobenius norm to

the spectral norm of W), Given Lemma|B.5| we have following coefficient update rule for ¢ > T}
where T is defined in Lemma[B.2}

7(t+1) = 7(t) . L . El(t) . 112 C 1
py“?“l pyi,r,z + nm | 1 | ||Xl||27 ( . )
1) — 0 O 512
B*yi%i nyi,r,i nm |€z | HXZH?, (C.2)
where
160 = !

1+ exp{F,, (W x;) — F_,, (WY x))}

—Yi’
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545

546

547

548

549

550

551

552

553

554

555

556

557

558

Based on (C.I)) and (C.2), we first introduce the following helpful lemmas.
Lemma C.1. Let T} be defined in Lemma For any r,7’ € [m], i € [n] and ¢t < T7,

—(t —(t
D5 =)l <1

=i,y 7—y i

<c.

Proof of Lemma|C.1] By (B.14), we can get
nR
nm

o0, < PmaxTh

!
7,751 = C )
for t < T;. Notice that

—(t —(t —(t
5~ 200 < max{lp) 1L )

—p® I <max{]p® |, |pt"

—Y;,Ty1 yi,r'yi —Yi Tt

'L|}7

yi,r’,

which completes the proof.

Lemma C.2. Let T be defined in Lemma For any r,7" € [m], i € [n] and t > T},

—(t) | < C/ |p (t) (t) ‘ < C/

|pyi77"1 py i —y;,r,t 7—ylr i

Proof of Lemma|[C.2} By (C.I) and (C.2), we can get for any r € [m], i € [n] and ¢ > T} that

T n t
pg(/l),rz = pé,,l) + Z |£l( )| |XZ||27

s=T1
0 t—1
(t) (T1) e ') 1112
Py = Py, T 1671 - (13-
0Ty Yi,T,t nm
S:Tl
Since 70 50 ossess the same increment and p(*) ®) ossess the same increment
Pyi,rir Py, T/Zp B—yi,r,i’g—ymﬂ»ip ’
we have

—(t — (T
py(h),rl p;.b),r i pg(h,lr)l pél,la") i)

p(t) _ p( ) — p(Tl) _ p(Tl)

S—yird Doy’ Deyerd Seyrt il
Notice that

(Tv) —(Ty) | | (T1)

i, =y,

which completes the proof.

Now we are ready to prove the second bullet of Theorem [4.1]

max{[py, ;= Py il 10T = p T ) < maX{IP% J1p™ y <,

(C.3)

Lemma C.3. Throughout the gradient descent trajectory, the stable rank of the weights W ; satisfies,

W1 :
im =1,Vj € {£1},
t=oo W13

with a decreasing rate of O(1/log(t)).
Proof of Lemma By Definition[5.1} we have

WS?)“ +ij 7,1 |X’L||2 "X

(t)

N
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559 We first show that ||v§t3H2 = O(logt).
o ) ’
t t _
MB(E:A”-MAJ-M)

t t
(00 0% Nxillz2 + 57 o8 o\ il 2 lseir |3 (s, %)

|

i=1 171!
n
(® )2 -4
2 Z(pjrz max Z|p]r1 Rminp
i=1 i

Z Rm ( Rszlncl Y 4’n’p)z(p§f2’z)
i=1

= O(nR;2 log*(t)),

max

560 where the second last inequality is by triangle inequality; the last inequality is by |p§t21\ <

561 - PJ | from Lemma and Lemma

s62 By the definition of vj(-’t,),, we have

2
t t t t
IV =13 = }jéh|&m §j¢ilum2xi
2
2
t t _
= 2}@& A0, ) Il ? -
i=1 2

t t <Xi,Xi’>
ijrl p]rz ||XH 2+ijrl er z)(p§7)‘z p;Zz)ﬁ

£ EHEE
S (C) anln (O/)2 2lenp
S (C) nerZn’

s63  where the first inequality is by Lemma[C.I]and Lemma[C.2]

s64 Now, we are ready to estimate the stable rank of W (). On the one hand, for ||Wj(-t) ||%, we have

t t
W2 = E]W”M

_ Z ”w(o) + V(t) H2

0 t 0 t
fzmw“m+w9m+%§bﬁb

0 t t 0 t t t
<§mw“m (VSN2 + v = v 1122 + 2w (v 2 + v = vll2)
_ 9 ) _ (t)
= m|vi 3+ Elw 2+ w2 ) 11v4 112

0 t t
(me 13+ 13" nﬂ@+w%ﬂmwj—%ﬁﬁ

< m|v 12 + mCy[Ivi 2 +mCe.

se5 where the first inequality is by triangle inequality and Cauchy inequality; the last inequality is by
se6  Lemma|C.I] Lemma|C.2]and taking

Cy = 3(coVd + C'v/nR

Iﬂln)
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02—2(00\/>+C\FR

Iﬂln) N

567 On the other hand, for HWQ) |2, we have

2 _ (0)
W = max [Wx -+ V{7x|3

max IW%12 + 1|V i9x13 + 2<w<0)x,v<f>x>
xeSd-1

t)
e o JT’ +Z JT’ Z JT’ JT’X>

= max

)
1

o Vi \? o Via \? © Vi 0 _Via
J> Js Js J

E Z <ij’ 0) > + Z <ij> 0) > + Z <Wj,r> 0) > ' <Vj,r7 ®)
r v 1”2 T ||Vj,1||2 T ||Vj,1||2 v vy, 12

>Z<§f3,|V“ > SOOIEERD ILVHTE

s

> mve ||2+QZHV s - < 0y ”"(%i” >+Z<v§.fg_v§f;, 5)}' >2
i 2 r 2
—Zn i3 - an o (Ivillz + V55 = viid )
> m|viI3 - (Zznv“) Vil + 1w ) - vl
(Z|\w<°>||2+||w o= vile)

D12 — mCs)|vi [l — mCy

> v

(t)||2

ses where the first inequality is by taking x = v(t) 1/ ||v the second inequality is by Cauchy

se9 inequality; the third inequality by breaking V( ) down into v 1 + v(f) §t) and then expanding the

570 first term as well as applying triangle mequallty to the last term; the fourth inequality is by Cauchy
571 inequality; the last inequality is by Lemma|C.1} Lemma[C.2]and taking

Cs = 1.500Vd + 3C"\/nR_ 1},
Cy = 1.502d + 3C"aoVdv/nR_}..

572 By leverage the upper bound of \|W§t> |% as well as the lower bound of HWE” |2, we can get

t t t
W2 _ VA1 + Calvilla + Co
t — t t .
W13 = Vi3 = Csllvill - C

J,1

573 Since ||W§t)||%/|\W§t) 13 >1, ||Vj(ti||2 = O(logt) and C1, Cs, C3, Cy are constants, it follow that

W
= [W2
574 and

HW(“IIQ _ (G4 Cy)lvyalle +(Co + Ca)
WOz T VIR - Gslvile - ¢
Ci+Cs

— t
vl
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575

576

577
578

580

581

582

583

584

585
586

587
588

589
590
591

592
593
594
595

(lelen + ooVd)
(t) H2

v,
B @(\/ﬁRmm + aox/ﬁ) _ @(1 + Uo\/d/anax>
VR log (t) log(t) ’
which completes the proof. O

D Loss Convergence of Leaky ReLU Network

Given Lemma@ about the activation pattern after time 77, we can now establish a new lemma that
will aid us in proving the convergence rate later.

Lemma D.1. Let T} be defined in Lemma|[B.3] For ¢ > T1, it holds that

—(t — —(t
Prori = Poci = Pyt = Py

(t) _ (T 1) _ (M)
B_yz T, p—y“rz B_yz i p_yurl i’
t T
pﬁ(h),rz pz(h,l?“)z = (|B_y r z| - |P(,1;/1 r i|)/’7a

forany ¢ € [n] and r, 7" € [m)].

Proof of Lemma (D1} By Lemma [B.3|about the activation pattern after time 7}, we can get

_(t+1 _(t n t

Pél m) P;(h),m- to 1691 - %12, (D.1)
t+1) — 0 O g2

B—yi,r,z’ Z—yi,ri nm |€L | HX1”2’ (D2)

for t > T7. Recursively using (D.I) and (D-2) ¢ — T} times, we can get

t—1
—(t) —(T1) _ nlxill3 /(s)
pyzﬂ"@ - pyi,r,z’ - nm Z |£z |7

s=T1
ylxill3 = e
(t (Tl) — Rl /(s
FZAE Bl TZAsi o XT: [
s=T
This indicates that for different , " € [m], pz(/tz)r ; pl(thr) ; and p; )T, i p; 17,), are the same, whereas
~( B(f; . J=1 ng;l)r ;)| and p(fl), ; pg 17) i are the same, which completes the proof. O

By leveraging Lemma[B.3]and Lemma|[D.T} we can now give an upper bound for the convergence
rate.

Lemma D.2. Let 7" be defined in Lemma[B.3] For leaky ReLU neural network defined in (3.1)), for
any t > T, we have

n eCi 2 —1,.-2p—2 i
c X; 1+ 1+c R~ pn o Ty 2R_2 pn

where ¢; is the same constant as Lemma [B.T]and ¢, C; are constants. This indicates that the training
loss will converge with rate O(t~%) where a = (1 — e 'R 2 pn) /(L4 7'y 2R pn) is a
positive constant.

Proof of Lemma([D.2] To establish an upper bound for Lg (W®), we need to first determine a

lower bound for the margin y; f(W®) x;). To facilitate improved convergence rate analysis, we

will initially present a more precise analysis for the increasing rate of p( )T ;» which takes into

account the activation pattern after 7; given in Lemma|[B-5] Given the actlvatlon pattern outlined in
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596

Lemma we can provide the following refined upper bound for Fy, (W@(,?, x;) and lower bound

s97 for F_ (W(_f; VX))
B (W) = 1 3 ol )

r=1

SED R

=§Li[ i+ 30, ol G x)
r=1 i'=1

<Y A SR+
= r=14'#4

< 1 +c7 vm 2R2pn > (t L+ B, (D.3)

598
599

where the second equality is by Lemma[B.3} the third equality is by (5.I); the second last inequality
is by triangle inequality; the last inequality is by Lemma[B.I] And

t 1 “ t
Fly (W xi) = — 3 o((wl), xi))
r=1
YN ®
o E Zl< 7y“T,X‘>
"Y m
= E Z |:< _%ar’ + Z p—yl 7y’ ||Xi'||2_2 ' <Xi’7xi>
r=1 i'=1
"Y m t ,_Y
2 E —Yi,TyL Z Z |p—y,,r i’ mmp ’Yﬁ
:1 r=14'#i
L+ e 'y ?Ry2n) <
> e ) >l — B, (D.4)

m

600

—Yi,Ts%
r=1

where the second equality is by Lemma B3} the third equality is by (5.I); the second last inequality

s01 is by triangle inequality; the last inequality is by Lemma[B.1] By (D.3) and (D.4), we can obtain the

602 following margin upper bound:

yi f(WH x;)

:Fyi(wywxi)_F*yi(W y-vxi)
1+¢p 2Rmmp v+ ety Rmmpn) ¢
= Z yzaT’L - m Z‘ (7)y“r7, (7—1_1)6
r=1
1+cy 7’2Rminpn t o Y(1 + ey QRmmpn . t e
= D Py = Pyi) + = LS 0l = 16
r=1 r=1
1+c 'y 2R pn | (1+ C’IW‘QR;inpn) T
+ i - SIS+ (r+ 18
r=1 r=1
=C;
L4+ (1 + 'y 2R pn) & (T
SpCA R o e
r=1
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s03 where the last equality is by Lemma|[D.I] Here

Ci <(y+ 1O A+ 'y 2R Epn) + (v + 1)

604 by (C3) and thus can be seen as a constant. Then, it follows that

10| = 1
! 1+ exp{y; f(W® x;)}
1
= 14~2)(14c; 'y—2R_2 m 1
1+exp{< PO i) S (o0, = pl2)) + i

m Yi,Tyt py“rz
r=1

L (1+9*) A+ 'y 2R pn) ~=~, (1) (1)

605 where the last inequality is by 1/(1 + exp(z)) > exp(—=z)/2 if z > 0. By the (5.4) and the above
06 lower bound for M/i(t) |, we can get

m
(t+1) (Th)
D (P = Pyiiva)
r=1
m

(o0 ) ) MlbilBe® (1420 T PR S5 0 )
D e T : DS NEIBL S

m m yza""l py“'rz

r=1

(D.5)
1_—2p—2
607 By applying Lemmaand taking z; = (ty” )(Hcm RininPm) S 1(p;i+r7;1) p;Tlr)z) we can

608 get the following increasing rate of p( ) ;fort > Ty:

T
S 08— e

r=1

v

m e 1+ e O+ 9L+ ey 2B )
(920 + ¢ 2R ) 2nm

(D.6)
00 Now we are ready to provide a refined lower bound for the margin y; f(W ("), x;). By taking into

10 account the activation pattern after 7} and conducting similar analysis as (D-3) and (D-4), we can
obtain for ¢t > T7:

o

61

1-— c_l'y’er;iann ULIG
Fyi (Wl(/ti)’xi) > ! m pi/i)mi -5
r=1
—1 -9 —2 m
t y(1 —cy vy *R_ i,pn) t
F*yi (W(—])J7 ) S ! m (—g;i,'r',i + ’Vﬁ
r=1

612 Therefore, we have the following margin lower bound

v f(WH, x;)
- Fyi (Wyi’ Xi) - F—Zli (W—ymxi)

1—ci 'y 2R 2~ 1 Y(L—ci 'Y 2R i) <~ ()

m Yi,Tyt
r=1 r=1
(1 =" 2R2 pn) &, @ T (1 — ey 'y 2R2 pn) & T
= : m — Z( ;i),r,i - pg(/i,lr),i) + ! i Z y“r z ( yli),r,i|)
r=1 r=1
(1= ;" 2Ripn) ~= 1) (1= 0_17*2R7 Pn) o~ | (T
+ 1 - min Z p:f/hlr))i + 1 - min Z |p£gjl),r7l| _ (,Y + l)ﬂ
r=1 r=1
=

i
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613

614
615

616

617

618

619

620
621
622
623

624
625
626

14+ (1 — 7'y 2R pn) & T
- Garliog ) S50, )+

r=1

Lm0 e () (L e PR ) :
1 - 08 + : (t - Tl) + Cia
1 + ey 2R pn 2nm

where the last inequality is by (D.6). Here
Il < C'(1L+ ) (L = ey 'y 2Ry G om) + (v + 1)

by (C3) and thus can be seen as a constant. Correspondingly, we can get the following for the
increasing rate of training loss:

Ls(W®)
%Zf(yif(w(t),xi))

i=1

= % Zlog (1+exp(— yi (W, xi)))

i=1

% ZGXP ( - yif(w(t)a Xz))
i=1

IN

<0 (T R g (MR 0 )
Ton = 1+ 'y 2R 2 pn 2nm
1—c; 'y 2R72 pn

—_c' n —_C. _ _ _ 711"“
<< ) <1+ nlxill3e=“ (1 ++3) (1 + ¢ 'y 2Ry2pn) .(t—T)> e

no= 2nm
— Ot~ (e PRy /(e y R o))
which completes the proof. O

E Coefficient Analysis of ReLLU

In this section, we discuss the stable rank of two-layer ReLU neural network, which is defined as

W, x) = F 1 (Wyi,x) = F i (W, x),

x) = = 3 o({wsrx), =D

where 0(z) = max{0, z} is ReLU activation function.

These results are based on the conclusions in Section[A] which hold with high probability. Denote by
&/ elim the event that all the results in Section|Alhold (for a given §, we see P(E] ;) > 1 —20 by a
union bound). For simplicity and clarity, we state all the results in this and the following sections

conditional on &/ ;.-

(0)

Denote 3 = maxs jr {‘< Wi, raXzH} Rpax = maX;en HXZH27 min = minie[n] ||XiH27 p =
max;g, |(X;, X)| and suppose R = Rpax/Rmin is at most an absolute constant. Here we list
the exact conditions for 7, ¢, Rmin, Rmax, p required by the proofs in this section:

00 < (CRuax\/log(mn/3)) ", (E:2)
s < (CRp e /nm) Y, (E.3)
R, > CR*np, (E4)
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644

645

646

647

648

649

where C' is a large enough constant. By Lemma we can upper bound 3 by 24/log(12mn/0) -
00Rmax- Then, by (B.2) and (B-4), it is straightforward to verify the following inequality:

B<c, (E.5)
R2np <c, (E.6)
R.2 R*np <, (E.7)

where c is a sufficiently small constant.

We first introduce the following lemma which characterizes the increasing rate of coefficients pg»tz i
Lemma E.1. For two-layer ReLU neural network defined in (E.IJ), under the same condition as

)

TheoremH the decomposition coefficients p; ;. ; satisfy following properties:

—(t)
.py ri =

cl\p] 7| forany r € SZ-(O), r" €[m],j € {£1}and i, i € [n],

2nm?2

. ﬁg)”>0210g <1+ -t) foranyrESi(O) and i € [n],

0
21| >\||x1||2 26
m

. Py(f)m < c3log (1 + t) forany r € S{” and i € [n],

where c1, co, c3 are constants. And the following activation pattern is also observed: Si(o) C Si(t)
where Si(t) ={rem]: (wé?,r, x;) > 0}, that is, the on-diagonal neuron activated at initialization

will remain activated throughout the training.

Proof of Lemma|E.I} We first show that the first bullet and SZ.(O) C Si(t) hold for t < T}, =
Cn~'nmR_2, where C = ©O(1) is a constant. Now we prove this by induction. When ¢ = 0,

the two hypotheses hold naturally. Suppose that there exists time t < T such that the two hypotheses
hold for all time ¢t < ¢t — 1. We aim to prove they also hold for ¢ = ¢. Recall from Lemma that

Pt = P o 6o (wi) i) - Il - D = ),

p]’l"b 7,7, nm j’l’"
1) — 0 T O ® |21 (ys = —i
D = g0 0o (wlf) i) - il L = =),
we can get
_ _ UL
ALY <P i3 <7 + e ES)
nm nm
R?
(t+1) < (t) < (®) THimax
o5 ijml+ xills < lojf) 1+ = (E9)
Therefore, maX]m{P]”,Ip]t?J} = O(1) for any ¢t < 77 and hence

maxi{FH(WSr%,xi),F,l(W(t)l,xl)} = O(1) for any t < T;. Thus there exists a posi-
tive constant ¢ such that |£;(t)| > cfor any t < T;. By induction hypothesis, we have Si(o) - Si(t)
forall 0 <t <t — 1 and hence a’((wg(ﬁ),r, x;)) = 1forall 0 <t <t — 1. And it follows that for
re S1-(0)

_(t+1 _(t n t _(t

P = P+ L1 ol 2 S0 Il vO < < T,
D t R?

A0 > g > Bt (E10)
v nm nm

On the other hand, by (E-8) and (E-9), we have

N 2 2
—(t) ana,x (f) anax anaxt
it = nm LJ" i’ | < nm | ]T il = nm (E.11)
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es0 Dividing (E-I0) by (E-TT)), we can get

Pooni - R,

0, > vre S, je{x1},i,i € n], (E.12)
'Dj,T’,i’ max

es1  which indicates that the first bullet holds for time ¢ = ¢ as long as ¢; < (cR2,;,)/R2 .. Forr € Si(o),

mln
652  we have

n
. 7 B
<wéi)7r,xi> = <Wz(;??v"’xi> + Z pg(/i),r,i’Hxi/HZ 2. (xir, %)

= <W’E/(L)?T, ﬁg)rz +Zpyu7‘l |Xi’||2_2 : <Xi’axi>
i £
P = D10 | B
';ﬁ’b
R2 —~

—(t —(t —

pz(h)v'f' i Z n;ax p;E/i),r,i : Rm12np
’i'#i min

RYax @
Z (1 - CR%linp ) py“’rl 2 07
653 where the second inequality is by (E:I2). This implies that SZ-(O) - Si(t) holds for time ¢ = ¢, which
654 completes the induction. By then, we have already proved that the first bullet and S’i(o) - Si(t) hold
655 fort <71y =Cn~ 1nmRrnaLX

656 Next, we will prove by induction that the three bullets as well as SZ-(O) - Si(t) hold for any time ¢ > 0.
657 The second and third bullets are obvious at ¢ = 0 as all the coefficients are zero. Suppose there exists

ess ¢ such that the three bullets as well as Si(o) - Si(t) hold for all time 0 < ¢ < t — 1. We aim to prove
659 that they also hold for t = ¢. We first prove that the second and third bullets hold for ¢ = t. To prove
es0 this, we first provide more precise upper and lower bounds for \ﬂg(t) |. For lower bound, we have

1
1+exp {F, i(Wg(,i),Xi) -, (W(jg); %)}
1
=z 0
1+ exp {F (W, ,xi)}
B 1
1+ exp{L Y, g0 (Wil xi)}

t
) =

(E.13)

661 and

S twitexi) = D0 (i) 7+ D ol (o)

rESi(t) ES(t> e
<D Pyt 2o D lpyu B + 181718
rest reS“) Gl
_(t _(t t
S Z pl(hz?“l (0 Z p?(ll)r 4 mmpn + |Sz( )| : 5
res® |S res“’)
15| (#) (t) ®
= EO) Z ﬁyhrl (0) Z py7 T4 mlnpn + ‘Sz ‘ 6
1S; | res® S | res®
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662
663

664

665

666
667

668

669

1+ Rpipn/e) S 0 +180] 8, (E.14)
'I”GSEO)

where the first inequality is by triangle inequality; the second inequality is by the first induction

hypothes1s that pg)” > cl|py | forr € S(O) and 0 < ¢ < ¢ — 1 and hence |py . o <
m D e 5© p;i{r’i, the third inequality is by
(¢ n n
Py = Z 6] (wy ) x)) - 3 < Z 1] - il
nm
_(t n
Puoni = Z 61 T3,
and hence ﬁ;t) ﬁz(f?)r Ve Si(t) \ S,L-(O),r € Si(o) for 0 < ¢t < t — 1; the last inequality is
by |Si(t)| <m< c’|Si( | and ¢’ can be taken as 2.5 by Lemma By plugging back into
, We can get
1
t
671 2 ¢/(14+R_2 pn/cy) (t) |s“>|
Lt exp { “0Hban/o) 57l + 58]
1
z ¢/ (1+R-2 pn/ecy) (t) (E.15)
Lt exp { St AL S o B+ |
1 (14 R} ~
. 2€Xp{ (14 Ry upn/c) 3 - B},VO <t<To1
" 7‘6550)
For upper bound of |€;(t) |, we first bound F, (Wyl), x;) — F_y, (W(_tgh ,X;) as follows:
t
Fyi (Wg)v xi) - F—yi, (W(—L, ) Xi)
1 t
Zm( Z y"T’L Z Z|pszil|Rm1np |SZ()|B> Z(B+Z|p_y7 TZ' mmp)
TESi(t) Sl(t) i #i i i
S L 151" S0 pe2 25
= Z pyi’r,i - B m‘S(O)‘ Z pyi,r,i minPT — (O)| Z py“rz mlnpn_
restt PR T pes© res(®
1 (1) _(t)
Z E Z Pyiri — |S(0)| Z pyl,rz mlnpn - 26
res® res®
1 0 _2REpn N~
2 m Z pyi’r7i o cm Z pyi,r,i o 2ﬁ
rest? rest®
1 —2¢R 2 pn/cy —(t)
= m Z pyi-,""y’i - 2ﬁ7
resgo)
where the first inequality is by
1
Fyq‘, (Wg(;tz),xl) = a Z <wg(;t)raxl>
res®
1 _
= 3 (W) + 2+ D i x0)
rest i#
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1
= m( Z p?(/f;)’rl Z ley“’fl mlnp |S | )7

res® res(t i'#i

t 0 t _
(wlh), o) = (w0 g +ZP<LM|xﬂ||22-<xiuxi>

0 ¢ -
=(w (—33,7“’ +B(—tz; mJFZP(z, r,i’HXi’H22'<Xi’aXi>
/751
t
<B+Z‘p(2qlr7/ rmnp’
/751
671 and hence
t 1 - t 1 Ui ¢
Pl (WY, x) = — S a(wl), x)) < =3 (B4 210", o lBakp):  (E16)

r=1 r=1 )

672 the second inequality is by the first induction hypothesis that ﬁ?(f)m | p;?’r, s pyq,m >

¢ ¢ ¢
673 Cl|p(—7);7;,r’,i" and hence |p?(ﬁ)7r,,i/| < m 2763(0) ,Dyl s |p(_3h7r,,i,|

674 forr € Si(o) and 0 < t < { — 1; the third inequality is by \SZ( | < m; the fourth inequality is by
o5 m < ¢ |S¢(0)|- Therefore,

>
1 —(t)
S s Zeres® Puini

/(t) 1
16 = @ ®
1+exp{Fi(Wyi 7Xi)_F (W*y ’ )}
< exp { = By (W, x0) + Py (WY, 1))

1-2¢R 2 ~
<exp{— ¢ RoinPrt/ 1 3 pg)w—l—25},‘70<t<t—1.
m T

TESEO)

676 By the induction hypothesis, we know that SZ-(O) - Si(t) forall 0 < t < t — 1 and hence
o7 o' ((wi,,x;)) = Lforallr € S and 0 < ¢ < 7 — 1. By (E.I3) and (E.I6), it follows that
678 forallOStS?—l

(0) 2 -8 / -2
—(t+1) 77|Si ||| xi]|5e 1+ Rminpn/cl) —(%)
Z "/HT i Z Z yl,r i 2nm ’ eXp B m Z pyi)ni ’

’I‘ES,EO) TGSEO) TGSEO)
(E.17)
(0) 228 )
—(t+1) @, S lllxallze 1—2¢R, §pn/ci )
D Pynd S 2 Pyomit T e |~ me 2 Puraf
res® res® res®
(E.18)

/ -2
679 By applying Lemma|H.2{to (EI7) and taking z; = W Yores©® ﬁz(,i)m we can get

-2 (0) -8
5 m (L + Ripinpr/ea)nlS; " |l1xillze 7
D Py 2 U+ R 2pnjer) log <1+ S t), Vo<t <t

TES(O)
(E.19)
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I p—2 .
es0 By applying Lemma to (ET18) and taking z; = w > res© ﬁz(/?ni’ we can get for
681 any 0 <t < t that
(1= 2¢'R,f pn/e)n|S{” | [xi[3¢*

7(,‘) m 1 <
og |1+

(1 = 2¢Ry2 pn/ey)n| S || 3e 2‘*) ‘t)

ex
P ( nm?2

m

_ 0
21— 2¢ Ryfpn/e)nl S lIxil3¢*”
nm? ’

1—2¢R2 pn/c log (1 *

(E.20)
82 where the last inequality is by n < (CR2,./nm)~!, C is a large enough constant and hence
ess (1 — 2 R-2 pn/en)n|S'?|||x;]2e2® /nm? < log2. Since 5\°) € S\ forall0 <t <7—1and
e84 hence a’((wz(ﬁ),r, x;)) = 1forall r € Sl-(o) and 0 <t <t — 1, we have

t—1

t n ~

i = LS Il VO < £ < .
0

685 Accordingly, it holds that

pg!i);'f’bip?(;i)r 17v’r T ES(O) V0<t<t

ess Applying this to and (E.20), we can get

/ 1 —? (0) . _ﬁ
ﬁg(f)rz Z m Ol 10g (1 + ( + lenpn/cl)’ré‘sz H|XZH2€ . t)
' ¢(1+ Rygn/e)]s;”| 2nm
1 (1 —2 © i|13e4 s
SO N (S8 = LT LT S R
d(1+R_;.pn/c1) 2nm?

0

S0 m tog (14 2022 R pn/eomS lilze””

M -2 R /e)s(”) nm? |
/ 2(1 - 2¢R 0l S 132 -
< /)1og(1+< ¢ Rogurm/e1)nl S|l t>,VO<t<t’

—aC v, pn/a nm
(E.21)
687 By taking
1 d
Coy —

— , C3 = — )
1+ Rm?npn/cl) (1- ZC’Rm?npn/cl)

ess the above inequalities indicates that the second and third bullets hold at time ¢ = t. For the first
689 bullet, it is only necessary to consider the situation where ¢t > 77 = Cn~ nmRrnax In order to
s90 apply Lemma[H.4| (requiring b > a), we loosen the bounds in (E:2T) as follows:

P> ealog (1+77Rmm t>,VO§t§t~, (E22)
i Snm

6nR2 _
Pl < eslog 1—1—77‘“7“‘-15 NO<t<T (E.23)
Yi Snm

eo1  where we use 0.4m < \Si(o)| < 0.6m.
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ss2 By applying Lemmato (E22)) and (E23)), we can get for any 4,i’ € [n],r € Si(o), r’ e Si(,o) and
eo3 17 <t <t that

—=(t) log

nRye
pyl,r,i > Cj L+ 5nm t)

Pysrie € log (14 i p)

5nm

1Og 1 + anax Tl)

co
2 =
C3 log ( lndx T1>
2
., log (1 +0.2Ce" ﬁRmm)

% log (1 + 1.2Ce%R§naX) '

o4 Notice that Si(,o) C S’i(,t) forall 0 <t <t — 1 and hence 0’(<w§?7r,xi/>) =1forallr € Si(,o) and
65 0<t< t— 1, we have

t—1

_n /(s) (s) 2
P il = = Y] ((w i) - il
s=0
t—1
< LN ka3, Vj € {£1},7" € [m],i’ € [n],
nm
s=0
77 t—1
,t / 0 .
Par i = == 107 a3, v’ e 5.4 € [n),
s=0

696 and hence | p; T/ 2/| ﬁ;) it for 0 < t < t. Therefore, as long as

ez log <1 +0.2Ce™ ﬁRfmn)

1 < =

% log (141206 R2,, )

s97 the first bullet hold for time ¢ = ¢. This condition holds as long as
d =25,
ZC’cl_lR;lfnpn <05 = ¢3>0.37c3<5,
log (14 0.2Ce PR2 ;)

min

~ 14log (1+ 1.2Ce?P R2

max)

e98 Finally, we verify that Si(o) - Si(;). Forr € Si(o), we have

(Wi, %) = (Wi x; +pr Icirl[5% - (i, %)
/=1
t t _
= (Wi x0) B+ D Az - (i, i)

/7571

> A

pyl)rl - Z |py rz"Rmmp

)

(& -2 (%)
= p;i)»rvi - (Rminpn/cl)pl(/i)mi’

= (1 - Rr;l?npn/cl) : ﬁg(;i)ﬂ‘,i >0,
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where the second inequality is by | py rirl < p(t) ./c1. This implies that Si(o) C Si(t) holds for time

Yi Tyt
t= t, which completes the induction. O

Next, we show that |p i, ;+| will be much smaller than |ﬁéi{r/7 ;| as the training goes on.
Lemma E.2. There exists time 75 and constant ¢ such that for any time ¢t > T

(®)

‘Byiv’,‘yill — Clenpn|py1 r’ 7,|

where r € [m],r’ € Si(o) and 4,4 € [n] satisfying —y; = yyr.

Proof of Lemma[EZ2] First, we will prove by induction that for r € [m],r’ € SZ-(O) and i,7" € [n]
satisfying —y; = vy, it holds that
PO 1 <BH+1+ Rmmpn|py aller. (E.24)

yrz

This result holds naturally when ¢t = 0 since all the coefficients are zero. Suppose that there
exists time ¢ such that the induction hypothesis (E-24) holds for all time ¢ < ¢ — 1. We aim to

prove that (E24) also holds for ¢ = . In the following analysis, two cases will be considered:

t—1 t—1)
|py“r 2’| > B + Zk;ﬁz/ |p(y,,rl)c‘||xk”2 p and |p?(lu7“ 7/| < ﬂ + Zk;ﬁll ‘Pyl rk||| k||2 p.

For if |py ’ 2,| > B4 D i |pyt7 r1,1|||xk||52p, then by the decomposition (3.1)) we have

(t—1 —
(Wi D i) = (wi0, i) + pT 0+ 57 o0 e 152 (e i)

ki’
i—1)
<pD 4843 o ikl 2 < 0.
k#i!
and hence
t) /(-1 T =
P = A G W ) xR =

Therefore, by induction hypothesis @ attime t = ¢ — 1, we have

pD =N < B+ 1+ R el Vil fer < B+ 1+ B2 pnlpl /e

1) (t-1) —2 .
For 1f|py il S B+ ps |py1,rk|||xk||2 p, by the first bullet in Lemma we have
t— - t—1)
P01 < B+ 3 1o illxels p/en < B[R Vil Ry on e, (E.25)
k#i!
and thus
N Do (w0 x0)) - a2
D == 4 LT o (wl Y xe)) - o 3
R2
< p:(yt Tll)/ 4 Ttmax
nm

< ﬂ +1+ ‘pg(;t)r ,i‘Rr;iann/Ch

where the last inequality is by (E23) and n < (CR2,,, / nm)~! with a sufficiently large constant C'.
This demonstrates that 1nequahty (E-Z4) holds for t = t, thereby completing the induction process.
By Lemma we know that there exists time 7’ such that

P = ea(B+ 1) R2 /on,
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for any time ¢ > T". Taking T = 7’ and ¢ = 2/¢;, we have
(t)

(t) |

‘p | < /8 + 1 + Rm]npn|py /i |/C1 < 2Rm1npn|py ,r! 'L|/Cl - Can]nIyn“V)y7 r' i

yi,T,e

which completes the proof.

Given Lemma [E.2] the following corollary can be directly obtained.

Corollary E.3. There exists time 75 and constant ¢ such that for any time ¢t > T3

P I < eR 2 pnlpl) i1 e € [m], 1" € S i.i € [n] with — y; = yy.

Ty i’

F Stable Rank of ReLU Network

In this section, we consider the properties of stable rank of the wematrix W found by gradient

descent at time ¢, defined as |[W®)||2./||[W®)||2. Given Lemma
update rule for any ¢ > 0,4 € [n] and r € Si(o)

L we have following coefficient

(F.1)

t+1 —_(t n t
Pt = Py o 161 il
where
0] = ! .
L exp{ Fy, (Wi i) = Foy (W) i)}
Now we are ready to prove the first bullet of Theorem [.3]

Lemma F.1. For two-layer ReLLU neural network defined in (E.I)), under the same condition as

Theorem the stable rank of W§t> satisfies the following property:

L
1m sup W
oo [Wi3

where C' = O(1) is a constant.

Proof of LemmalF71] By decomposition (3.1]), we have

X1
(t) (0) (t) -2 _ | - t - .
Wj,’r ijrz |X1|| cXi = |:P§,271||X1H227"' 7p‘§‘ﬂ)ﬂ7n”XnH22:| ' : )
XTL
and
t
munm Py L%l
) al* <\mn -~p“nxw2 !
w _w© — Pj2111X1ll2 Pj22lX1ll2 .2nl1Xnll2 :
J J . :
(t) — (t) -2 (t) ' -2 Xn
Pjm,1 ||X1||2 Pj,m,2||xl Il  Pim, n|| Xnll3 \7/—’
A
Let a;(t) " be the i-th column of A;. It follows that

(W — W% = Tr(AXXTA])

()

n

(Z D ai(t) Txix i (t))

1=11=1
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_ Z Z x;, Xy ) - Tr(ay(t) Tagy (1))

i=11¢=1
- Z ]| - Tr(ay (¢ )+ > (i xir) - Tr(ai(t) Ta (t))
i#£i!
<anaxZTr(ai(t ) +p > | Tr(a(t) Tau(t))],
=1 i#£i!

734 and

Tr(ai(t)—ra’i(t)) = Z([al(t)]r)z Z(p] rszZ||2 Z pj r'L rn?n < Cmern(lOg(t))27

r=1 r=1
m

| Tr(ay (1) Tay (1)) < Y [[ai( | = Z 1050305 il 2 i 15> < CmR s, (log())?.

735 Accordingly, we have

W =W |5 < CmnR2 Rt (log (1)) + Cmin®pR,if, (log(1))?
- CmnRilamem(l + Rmaxnp) (log( ))
< C'mnR2, R_{ (log(t))>.

max min

736 On the other hand, we will give an lower bound for ||W(-t) - W§0) Il2-

0 0
W W, = max (W -~ Wy,

IW — WEOXT(XXT) 11,
> XXX L
1AL,

T IXTXXT) L,y

737 We first provide a lower bound for ||A;1,||2. Note that

Sl UII ill2?
Atln—

Z;L 1 pj m, 1||XZ||2

738 we need to bound >, pj o Hxl||2 ,7 € [m]. By Corollary , there exists time 7" such that for

739 anyt>T, |py rirl < cRmmpnpy iy Vi E 559 and Vi’ € [n] with y;; = —y;. Therefore, we have
740 fort > T that

Zzp,m x

S (Sl 5 A l?)

r=11:=1 r=1 “i€S; i€S_j

- Z Z'Dyurzn 1”2 + Z Zﬁ_y 7"Z||XZH2

i€S; r=1 ieS_;r=1
(t)

=D 3D I TNUIID D SPCI
i€S; r=1 i€S_jr=1

> 7(75 72 m|S—J ‘ CRmmpn 7(t) R—Z
Z Z Py; i Rax — EA Z S(0)| Z Py, rittmin

J 1€S; ]

€55 res(® res®
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> Z Z 7&77’2 r:lix_m|87j‘ CRmmRmaxpn Z Z

i€5) reg(® |51 - minges, |S | i€8; reg®

S5 Y A

ZGSJ TES(O)
741 where the second inequality is by Corollary [E.3|and hence

D | <ceR2 pnpz(!z pr iy VT € [m] Vi, i€ [n]),

Sy
CRminpn .
) il S EGT D Py sV € [m] Vi € [n)],
|53 res®
PO )< Z CRmmp" 3 Vr € [m],Vi € [n]
nyi,rl - | S py7,r17 )
i€S; | S<0)

742 the last inequality is by

m ‘ S*J | ClenR?naxp
5] - minzes, S

1S

<c CRmmR?naxpn ' S
|55

<

DN | =

743 Then, we have for ¢ > T that

ALz = Z(Zpﬁti,zn xilly )

r=1

Y

30 1||x222/f’

r=11i=1

> ST S A,

z€S7 e s<°>

> aas’ J 't +
Zf log (1
> C’Rmixvmn log(t)

anm )
2c'nm

—=(t)

Pyi,ri

R-2

max

(F.2)

744 where the second inequality is is by (E2); the third inequality is by the second bullet of Lemma[E.]

745 For | X T (XX T)~!1,|2, we have

IXT(XXT) 71,12 = /1] (XXT) - 1XXT (XXT)!
17 (XXT)-11

[1n]l2
T/ Amin (XXT)

746 By the Gershgorin circle theorem, we know that A, (XX ) lies within at least one of the Gershgorin
747 discs D((XX )y, R;),i € [n] where D((XX "), R;) is a closed disc centered at (XX ");; =
748 ||x]|3 with radius R; = Y7, (XX " )iwr| = D504, [(%6, %ir)|. Assume Apin (XX 1) lies within

729 D((XX ), R;), then we can get following lower bound for Ay, (XX T):

AIlfliIl(}()(T) > ||XZ||§ - Z ‘<XZ7X1 >| > Rmm np = (1 - len )R2

IIlll'l —_
i

38

> RIZIIIH/2'



750

751

752

754

755

757
758

759

761
762
763

764

765

Therefore, we have
It _ V20

XXX 11, < .
IXT(XXT) Ml S ——tes < 1

Accordingly,
Al o CR,2, /mnlog(t) _
W(t) - W(O) || - > e =c” 2 min 1 t).
| J ll2 = XT(XXT)"11,[2 — Tn/Rmin C" Ry %y Ruinv/min log(t)

Therefore, we have for ¢t > T that

IW" =Wl C'mnR2, Bty (log(1)* _ C'RS

||W§_t) _ W§_0) H% - C”2manamem(1Og(t)) C//QR?mn»
which completes the proof. -

Next, we will provide an example of training data satisfying the condition in Theorem [4.3]and prove
that the stable rank of Wﬁ-t) trained by gradient descent using such data will converge to 2 + o(1).

We first provide the following lemma about the increasing rate of coefficients p(»t)

J,rse”
Lemma F.2. If training data x4, - - - , X,, are mutually orthogonal, the activation pattern after time
T = Cn~'R_2 /nm is determined by the activation pattern at initialization, that is,
< Z>ZO’ <y7"7 Z>207
0
< i><07 < 1(,/)7“’ i><07
<W7y1 r ’L> < 07 <W7y r i> Z 07
<W*U . 1> <0, <W7y r i> <0,
for any time ¢ > T'. Besides, pgtz,l satisfy the following properties:
pg)m._o vt >0, if (w'") x;) <0,
t . t
p(yl)M = py M, Vit > T, if (w (_?)lexl) >0,
0
tl;m py ”/logt*m/|5()|, if (wi/),x;) > 0.

Proof of Lemma(F2] Part 1. For if <W(_02’ x;) < 0, we first prove by induction that

P =0, (wx) = (W% x,) < 0,9 > 0. (3)

g 3o

The result is obvious at ¢ = 0 as all the coefficients are zero. Suppose that there exists t such that
(F3) holds for all time 0 < ¢ < ¢ — 1. We aim to prove that (F3) also holds for ¢ = ¢. Recall that by

(4), (5-3) and with (F3) at time ¢ — 1, we have

t _(t-1 n t—1 t—1 _(t—1
P = P = %-fﬁ Do (i) - Il 1 = ) = B =0,
® (1) D o D WY |12 - Ly = — i) = oD =
Bj,f‘l BJT,L +— nm K’L U(<W],r 7x7«>) HXZHQ ]l(yl ]) B]T"L 0.
By (3.1)) and the orthogonality of training data, we can get
7 0 0 7 0
(Wil xi) = (w2, x) +me/ i3 - (xirs ) = (wiod i) + ol = (Wi xi) < 0.

Therefore, (F3)) holds at time t, which completes the induction.
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For if <WJ(OT) ,X;) > 0and j = y;, we will next prove by induction that

o >0, w x> (wi x) > 0, > 0. (F4)

The result is natural at ¢ = 0. Suppose that there exists t such that (F4} (F4) hold for all time 0 < ¢ < t—1.
By (5.4) and (F4) at time  — 1, we have

e _(t—1 t—1 i—1
p§21 :/’;,r,i)ﬁL%'W;( AR E: >P§m) =20

and hence the orthogonality of training data, we can get

(w® x) = (w9 %)+ o = (w® x,) > 0.

IR g gri o R =
Therefore, (F4) hold at time ¢, which completes the induction.

For if (w ; ) x;) > 0and j = —y;, we first show that under the same condition as Theorem [4.3|it
holds that
pM < —(wl x,).

—7,7,1 Jﬂ’
Since T = Cn~'R2 /nm, we have max; . l{\pj 7il} = O(1) for t <T'. Therefore, we know that
F+1(Wsri, x;), F_1 (W(_)l, x;) = O(1). Thus there exists a positive constant ¢ such that él(t) >c

for all ¢ € [n]. Here we use the method of proof by contradiction. Assume p(T)Z_ > —(w ;O) X;).

Since p(T) < Bit) for 0 < ¢ < T which can be seen from (3.3)), we have p(t) > 7<w§)or),xi> for

allt < T Then we can get

(wioxi) = (w'x) 4 pll) >0V < T

JT7

Therefore, by the non-negativeness of <w§t2, x;) and (3:3), we can get

2
cnix;
6] = 16+ L) e > 1o, + el

Sy 4,7 24,
and hence

cn X _
01> AT s j3m2 > o0 5

j ri min =
which is a contradiction. Therefore, Bﬁ)i < —(wg?r),xﬁ. By (53), we have B;ti < pD <

=4,
—<W;?T),Xi> for t > T'. Therefore,

<W(t),xz> (w © x;) + p(t) <0,vt>T.

7T J7“7

Plugging this into (3.3)) gives us

pt+D)

—,® O e e 12 = ) >
i Bjﬂ”i—’—’nm El U(<W X'L>) ||X71H2 Bjyr’ZWVt—T'

3
This completes the proof of the first half of the lemma about the activation pattern as well as the first

two properties of p(t)

75Ty

Part 2. Now we will show that

tl;m py“”/logt*m/w | (E5)

40



786 if (wg(,?r, x;) > 0. By the activation pattern, we can get

P =i 6Ol W20, for (wil xi) > 0,

Pyri =0, V20, for (Wi x0) <0, (E6)
: .

,(—tzji,r i B(—U)L,T i’ vt >0, for <W(*Z)l/i’i’ Xi> 20,

0 20 o ) <0,

787 Given this activation pattern, we can get for ¢ > 0 that

1 — 1 & ‘
Fyi (Wz(/i)7xl) - F_yi (W(jg/ﬂxl) = E ZU(<W1/,,T7X1>) - E ZO(<W£LL7T,X1>)
r=1 r=1
1
< ) (wilx)
TGSEO)
1 0 ()
= 2 Wi x) 70
TESi(O)
S — > Bt b,
TGSEO)
788 and
1 & 1 & :
Fy (Wi xi) = Foy (WE i) = 3o (wiidx) = -3 o((wl), oxi))
r=1 r=1
1
> LS (il %)
TESEO)
=L S (w0, + 50,0
m Yi,rr Yi Tyl
T'ES(O)
1 —®
> = > Pyomi—
reSiD)

789 Therefore, we can get following upper and lower bounds for |€;(t) |

1
169 < exp < - S+ 25>,w >0,

T'ESFO)

) > L exp<_ S A0, -5 >,w20.

res®
790 And it follows that

1 _+1) 1 o) 77||Xz'H562B

E Z pyirr7i S E Z pyirr7i + nm ' Z py.“’rz t > 0
res{? rest® TES(O)

1 _+1) 1 o) nlxi|3e" 1 ()

L e by gt T (L g
rest? rest? rest®
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By leveraging Lemma[H.T|as well as Lemma[H.2]and taking
1 (1)
e = E Z Py;riis
’I‘ESEO)

we can get

1 (12028 112,28 2 N2,—p
— E p?(;i)}r’i < log (1 + nllxiflze exp (UHXZH26 ) .t) <log (1 + M ~t),
m (0) nm nm nm
reS;

1 S(t n|xi]|3e”"
oy > Py > log <1+2ln|fn-t :
res®

Therefore, we have
1
lim — Z ﬁ;i)’r’i/logt =1.

t—ocom
resj[”

Since ﬁ?(f)” = 7;(;?,#,1‘ forany r #r € Si(o), we have
iy ) _ (0)
tlizﬁlopyi’r’i/logt - m/|S7, |7
which completes the proof. O

Lemma F.3. For two-layer ReLU neural network defined in (E-I)), there exists mutually orthogonal
data x1, - - - , X,, such that stable rank of W§t> will converge to 2 + o(1).

Proof of LemmalF3] By (5.1, we have

n
t 0 t _
wi) = w3l il i
1=1

—y(®
=V

(t)

Given the definition of v} ., we have the following representation of v and V;t).

J.r? Jr
X1
t t - t _ )
vin = (o Il ol Ixall®] - | 2 ]
Xn
t — t —
POl Al [
(t) _
Vj - . :
t - t -
P Iallz® e o xally ] e
Assume 7 is an even number and X1, - - - , X, /2 are with label +1 while x(,, /241, - - , X, are with

label —1. And we take x1, - ,X, as ey, - ,e,. Given Lemma W§t) = W;O) + Vét) and
such selection of training data, we have

W(t)
lim —+ = [Avx (n/2)s Omx(n/2)] * Ins Onx(a—n)] = [Amx (n/2) Omx (d—(n/2))]
00 logt m n b) m n ) n n m n b) m n )
wY
Jim gt [0 % (n/2)s Brux (n/2)] - Tns Onx (d=n)] = [Omx(n/2)> Bmx (n/2)> Onx (d—n)],

t
lim w = Amx(”/Q) 0m><(n/2) Onx(dfn)

t—00 10gt 0m><(n/2) Bmx(n/Q) Onx(d—n)
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go4 where
r 0
1w 1 x1) > 0] 1w 1 X0/2) > 0] m/| 51|
Amx(n/2) = : : -diag 5 ;
W, x1) > 0] 1w, %0 /2) > 0] m/|S|
=Cinx(n/2)
B 0
1w 1 X(y241) > 0] 1w | %) >0 m /1S 41l
B.ix(n/2) = : : -diag :
0 0
1w X2 1) = 0] 1w . %n) > 0] m/|SY]
::Dnzx(n/Z)
gos Then, we can get the stable rank limits as follows:
WS (A3
1m 3
oo (W2 (1AL
i IWOIE B2
1m (t B 3
e w )z B3
o IWOS AR+ B
t=oo [WO[F  (max{[|Allz, |Bl|2})?
gos Since x; = ey, - ,X, = €,, We can get
0 0
1w, x;) > 0] = 1[[w{’)]; > 0].

807
808

809
810

811

812
813

Therefore, the entries of matrix C and matrix D can be regarded as i.i.d. random variables taking O
or 1 with equal probability. For ||A||r and ||B||r, we have

m ’I’L/2
0 0
1A% =37 1w'? 0 > 0 - (m/1S))2,
r=1 =1

BIZ2=5" Y 1w, ] >0 (m/s7)2.

r=1i=(n/2)+1

By Lemma we have with probability at least 1 — § that 0.4m < |Si(0)| < 0.6m. By Hoeffding’s
inequality, we have with probability at least 1 — 26 that

n/2

n/2
AL 02| < | mlos(2/9) 01y < , [ 625mn log(2/9)
Al 5 2 /S| < | TGS )+ < Sos2/0)
m = mlog(2/0 = 625mn log(2/6)
’||B||%— ST m/18)? < % S (m/ISO) 3—2/
i=(n/2)+1 i=(n/2)+1

Next, we estimate ||A ||, and |[B]2. Let A = A + E[A] and B = B + E[B]. Assume G be the
m x (n/2) matrix with all entries equal to 1/2. Then,

m/| 8" m/1S(0) ) 41
E[A] = G - diag ,EB] = G - diag :
m/|S%] m/|S5”)]
=a :=b
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814
815

816

And the entries of matrix A and matrix B are independent, mean zero, sub-gaussian random variables.
By Lemma[H.3] we have with probability at least 1 — § that

IAll> < § (Vim -+ Vi + 1og2/9).
IBllo < & (vin+ vt + iow(2/5)).

stz where C' is a constant. Let 1) denote the row vector with k entries equal to 1. Then for E[A] and

8

=

8

819

820

821

822

E[B], we have
[E[A]ll2 = max [|Gdiag(a)x||
x€S %~
= max f||1 1z diag(a)x||2
xe5% 71
= max @|1%diag(a)x|
xesE 1 2
= max @|aTX|
XGS%71 2
_ vilals
2 i
" Vbl
m
EB]|, = Y10l
By triangle inequality, we have
C
1All2 = ICll2 — | Allz = (vVmla]l2)/2 5 (Vm+vn++/1og(2/9)),
C
1All2 < ICll2 + | Allz < (vVmlal) /2+§(\ﬁ+f+\/10g 2/9)),
C
IBll2 = [ICl|2 — |Bll2 = (vVm]b]l2)/ 2= 5 (Vim + vn+ Vlog(2/9)),
C
B2 < [|Cll2 + [Bl2 < (Vml[bl2)/2 + = 5 (Vm+ Vit /log(2/9)).

Notice that ||a||2 =

JAIG _  mlal3/2+ /625mnlog(2/3)/32
A5~ (vimllalla/2 = § (vim + v + V10g(2/2)) )
JAIR o mlal3/2— /625mnlog(2/3)/32
IAIZ = (Vmllallz/2 + (Vi + Vi + vIog2/9))”
IBI3 .  mibl3/2+ /625mnlog(2/5)/32
IBIE = (vmllbll2/2 = § (vim + v + v/10g(2/9)))’
IBI3 .  mibl3/2 - /625mnlog(2/6)/32
IBIE = (Vmllblla/2+ S (Vi + via + Viog2/0)))”

This leads to

t
W9z Al

im = =2+ 0(1),
e iwiz 1Al

t
o IWSNE _IBIE
oo (W2 B3
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O(n) and ||b||3 = ©(n), then with probability at least 1 — 25, we have

=2+o0(1),

- 0(1)7

=2+ o0(1),

—o(1).



s2a  For W) we have the following lower bound

IAIE+IBIE m(|lall3 + [[b]13)/2 — \/625mnlog(2/5)/8
(max{[[All2, [IBll2})* ™ (y/m max{||all2, [|bll2}/2 + S (vm + Vi + /10g(2/5)))”
o1y Nalls + [bli3
> 2= o) Gracllall, bl )2

Z % - 0(1)7

s24 where the third inequality is by (5/3)v/n < |lall2 < (5/2)y/n and (5/3)v/n < ||bll2 < (5/2)v/n
e2s dueto 0.4m < [SV| < 0.6m. And

IAIE+IBIE m(||all3 + [[b3)/2 + /625mnlog(2/9)/8
(max{[|All2, [Bll2})* = (\/mmax{||a]l2, [[b]2}/2 — S (vm + vi + /10g(2/3)))”
< (24 0(1)- a3 + [1b][3

(max{]|al[2, [[bl|2})?
<9+o0(1),

s2s  where the third inequality is by (5/3)v/n < |lall2 < (5/2)y/n and (5/3)v/n < ||bll2 < (5/2)v/n
g2z due to 0.4m < |S¢(O)‘ < 0.6m. Therefore,

W% A% + [BIf%
lim = € [16/9 —o(1),9 + o(1)].
oo [WIF (max{[|Allz, [B]l2})?

828 O

s29 G Loss Convergence of ReLLU Network

830 We have the following convergence rate of the loss function.
83t Lemma G.1. For ReLU neural network defined in (E:I)), for any ¢ > 1, we have

28 M (O) ||~ .[12,—B _M
e S llxillze 2 :
Lo(W®)y < 2 (1 4 e TTel2® -t) (ter LRET P
S( ) =n Z 2nm2 )
i=
g2 where c; is the same constant defined in Lemmaand ¢’ is a constant such that m < ¢/ |Si(0) |, Vi e
833 [n]. This indicates that the training loss will converge with rate O(t~%) where o = ¢/~ 2(1 — ¢; (1 +
ssa )R 2 pn)/(1+ c ' R,2 pn) is a positive constant.

835 Proof of Lemma @] To establish an upper bound for Ls(W (")), we need to first determine a lower

gss  bound for the margin y; f (W), x;). Thls can be accomphshed by leveraging the increasing rate of

Pq(J)” ()

yif(w(t)7 Xi)
= F, (W, x;) — F_, (W) x,)

—Yi?

and the constant lower bound for p, .,/ | p;. r .| givenin Lemma as follows:

1 t
=z E Z <Wz(/l)rv > F—yz (W(—Zjb )
TESEM
1 t
= E Z |: + Z p Ty’ ||X2 ||2 <Xi’axi>:| - F_ (W(,?)J y )
TGSEO) =1
OB PGNEES DB BN TR APRES 3) pRCNE =T
~m yu’“ i py1 T3/ mmp ,yl r Z/ mmp
7“6550) r ES(U) ) r=14'#4
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842
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844

845
846

847

848

849

850
851

1 — o 'Ry pn — o 'Ryt pnm /|5 ®) Es
> Z Yi Tyi ( m + 1)6

m

T‘ESEO)

1—¢i ' (14+¢)R 2 pn )
m Z Yi, T 2p
reSfo)

_ _ (0) (0) -8
co(1— e (14 ) R2 pn)|S; | n]S; 7 llIx:llze
min 4 1 (1 trre MNP RULE t) -2
- og(l+ o2 B
0 _
2nm?2

—1 —2
> 1- €1 (1 + C/>Rminpn
(1 + e ' Ryom)

log (1 n : t) — 28, (G.1)
where the first inequality is by the activation pattern SZ-(O) - Si(t) given in Lemma the
second inequality is by triangle inequality and (E.I6); the third inequality is due to pyi’m >
crlpil) ;| trom Lemma[E-I]and hence |57 - [o{?), | < e ' 32, g pi0) 0 1SS 10, o] <

Yi i’ Yi,Ty4? —Yi Ty’
et D e 5© pé?’m; the fourth inequality is by |Si(0)| <m</¢ \Si(o) |; the second last inequality

is by the second bullet of Lemma the last inequality is by m < c’\Si(O)\ and taking co as

m from the proof of Lemma Having obtained a lower bound for the margin, we

can now use it to derive an upper bound for the loss function as follows:

Lo(W®) = L 30y, 50w 00, x))
=1

— % Z log (1+exp (— yi f(W®, x,)))
i=1

IN

% ZQXP ( - yif(W(t)a Xl))
i=1

IN

1 n 1_ —1 1 / R—2 S(O) 12,—8
LS gy (- A 0 D n () SOl
n =1 0/2(1 + Rminpn/cl) 2nm2

0 _ 1—cy t(+eHRZ pn

jz (1+ 1S5 lIxil|3e " t)—<
2
n 2nm

1=

- o(t—c’”(l—cfl<1+c’)R;i,pn>/<1+c;1R;im))
)

where the first inequality is by log(1 + z) < z; the second inequality is by (G.I). This completes the
proof. O

H Auxiliary Lemmas

Lemma H.1. Let {z;}{°, be an non-negative sequence satisfying the following inequality:
Tiy1 — X S C- efxt,Vt Z 0

then we have
z; < log(e™ + Ce - 1).

Proof of Lemmal[H.1| Given the inequality z;41 — x; < C'-e~ " forall t > 0, we want to prove that
zp < log(e®™ 4 Ce® - T) for T > 0. We start by manipulating the inequality as follows:

Tt

T —xe < C-e”

= zp1—x. < C- e Tt tC (using x4y instead of z¢)
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865

— T (24 —ay) < Ce© (multiplying both sides by e*+1).

Summing the inequality from¢ =0tot =T — 1, we get:

T-1

Z €T (zyyq —ay) < Ce - T
t=0

Since e” is a monotone increasing function, we can approximate the above sum with an integral:

T
/ e“dr < Ce® - T.

0

Evaluating the integral, we get:

erT — e < e - T.

Rearranging the inequality, we get:

e"T < %0 4 Ce® - T.

Taking the natural logarithm of both sides, we get:
zp < log(e* 4+ Ce - T).

Therefore, we have shown that z1 < log(e®® + Ce€ . T), as required. O

Lemma H.2. Let {z:}{°, be an sequence satisfying the following inequality:
Tep1 —xe > C-e”* V¥Vt >0

then we have
x¢ > log(e™ + C - t).

Proof of Lemma|H.2} Given the inequality ;41 —z; > C'-e~** forall t > 0, we want to prove that
xr > log(e® + C - T) for T > 0. We start by manipulating the inequality as follows:

Tt

Tip1 — T > Cre”
= "(vpp1— ) 2C (multiplying both sides by e™*).

Summing the inequality from¢ =0tot =T — 1, we get:

T-1
et (Zlft+1 - l't) Z C-T.
t=0

Since e” is a monotone increasing function, we can approximate the above sum with an integral:

zT
/ e“de >C-T.

Zo
Evaluating the integral, we get:

e*T —e" >C-T.

Rearranging the inequality, we get:

T >e" +C-T.

47



866

867

868
869

870
871

872

873

874
875

876
877

878
879
880
881
882

883

884
885
886
887

888
889
890
891
892
893
894
895

Taking the natural logarithm of both sides, we get:
xp > log(e®™ +C - T).

Therefore, we have shown that 1 > log(e®® + C - T'), as required. O

Lemma H.3 (Theorem 4.4.5 in|Vershynin| (2018)). Let A be an m x n random matrix whose entries
a;; are independent, mean zero, sub-gaussian random variables. Then for any ¢ > 0 we have

IAll2 < CK(Vm +vn +1)

with probability at least 1 — 2 exp(—t?). Here K = max; ; ||a;;|| 4, where || - || 4, is the sub-gaussian
norm.
Lemma H.4. Fort > s > 0, we have

log(1 +at) _ log(l+ as)

log(1+bt) ~ log(1+bs)’

ifb > a > 0.

Proof of LemmalH.4} Let f(t) = log(1 + at)/log(1 + bt), and we want to prove that f’(¢) > 0 for
all t > 0. To find the derivative of f(t), we use the quotient rule:

(log(1 + bt)) <L (log(1 + at)) — (log(1 + at)) 4 (log(1 + bt))
(log(1 + bt))?
~ (log(1 +bt)) g7 — (log(1 + at)) =2
(log(1 + bt))?
_a(14bt)log(1 4+ bt) — b(1 + at) log(1 + at)
B (14 at)(1+ bt)(log(1 + bt))?

f't) =

Next, we define the function g(t) = (3 +t) log(1 + bt) — (£ + t) log(1 + at), and we aim to show
that ¢/ (¢t) > O for all ¢ > 0. We start by computing the derivative of g(¢):

g'(t) = log(1 + bt) — log(1 + at).

Since b > a and ¢ > 0, we have 1 + bt > 1 + at, which implies that log(1 + bt) > log(1 + at).
Therefore, we have ¢'(¢) > 0 for all ¢ > 0. Note that g(0) = 0, we then have g(¢) > 0 for all ¢ > 0.
Therefore, we have a(1 + bt) log(1 + bt) — b(1 + at)log(1 + at) > 0 for all t > 0, which in turn
implies that f’(¢) > 0 for all ¢ > 0. Thus, we have shown that f(¢) is increasing for ¢ > 0 and hence
f(t) > f(s), which completes the proof. O

I Additional Experiments

In this section, we conduct additional experiments on the MINIST dataset. Our focus is the train-
ing of a two-layer feed-forward neural network, as discussed in Section [3] utilizing either ReLU
or leaky-ReLU activation functions. We examine different widths, specifically choosing from
{10, 50, 100, 500, 1000}.

The network initialization process follows a Gaussian distribution, with a variance of oy = 0.00001.
Training is executed using stochastic gradient descent, a batch size of 64, and a learning rate of 0.1,
for a total of 10 epochs. As discerned from Figures 4 and 5] the stable rank of networks utilizing
either ReLU or leaky ReLLU is weakly influenced by the width. For an exceedingly small width such
as 10, the weight matrix is low rank with a correspondingly small stable rank. However, this also
results in low test accuracy as the network cannot effectively learn all necessary features. As the
width increases, the test accuracy and final stable rank will increase. However, for sufficiently large
widths, an increase in width no longer corresponds to stable rank or test accuracy increases.
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Figure 4: Stable ranks and test errors for different width across multiple runs (ReLU Activation
Function). Each line represents the mean stable rank or test error for a given weight variance, while
the shaded regions indicate the variability of the values (+3 times the standard deviation) across the 5
runs.
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Figure 5: Stable ranks and test errors for different width across multiple runs (leaky-ReLLU Activation
Function). Each line represents the mean stable rank or test error for a given weight variance, while
the shaded regions indicate the variability of the values (+3 times the standard deviation) across the 5
runs.
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