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Abstract

Large language models (LLMs) such as ChatGPT have seen widespread adoption
due to their ability to follow user instructions well. Developing these LLMs
involves a complex yet poorly understood workflow requiring training with human
feedback. Replicating and understanding this instruction-following process faces
three major challenges: the high cost of data collection, the lack of trustworthy
evaluation, and the absence of reference method implementations. We address these
challenges with AlpacaFarm, a simulator that enables research and development
for learning from feedback at a low cost. First, we design LLM prompts to
simulate human feedback that are 45x cheaper than crowd-workers and display
high agreement with humans. Second, we propose an automatic evaluation and
validate it against human instructions obtained on real-world interactions. Third, we
contribute reference implementations for several methods (PPO, best-of-n, expert
iteration, and more) that learn from pairwise feedback. Finally, as an end-to-end
validation of AlpacaFarm, we train and evaluate eleven models on 10k pairs of
real human feedback and show that the rankings of models trained in AlpacaFarm
match the rankings of models trained on human data. As a demonstration of the
research possible in AlpacaFarm, we find that methods that use a reward model
can substantially improve over supervised fine-tuning and that our reference PPO
implementation leads to a +10% improvement in win-rate against Davinci003. We
release AlpacaFarm at https://github.com/tatsu-lab/alpaca_farm.

1 Introduction

Large language models (LLMs) [10, 13, 48] have demonstrated unprecedented capabilities in follow-
ing diverse and open-ended instructions [49, 5, 40]. These achievements have often been attributed to
the fine-tuning of pretrained LLMs using human feedback, but this process remains poorly understood
due to the lack of published information on the training methods from LLM vendors. For example, it
was recently revealed that only the Davinci003 model in the instruct series of OpenAI models used
reinforcement learning (RL) with the PPO algorithm [47], leading some to question the importance of
RL in the training process. Understanding and improving these methods requires open and transparent
replications of the training process, but this remains challenging due to the cost and complexity
associated with methods that learn from human feedback.

Our goal is to facilitate research and development on instruction following models and methods that
learn from human feedback. We identify three main challenges: the high cost of data annotation, the
lack of automated evaluation for model development, and the absence of validated implementations
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Figure 1: AlpacaFarm is a simulation sandbox that enables fast and cheap experimentation on methods
that learn from human feedback. It simulates human feedback with API LLMs, provides a validated
evaluation protocol, and offers a suite of reference method implementations. Researchers can iterate
on model development and transfer their methods to training on human data to maximize performance.

of existing methods. To address these three challenges, we introduce AlpacaFarm (Figure 1), a
simulation sandbox that enables experimentation at a low cost. Using AlpacaFarm, researchers
can rapidly iterate on method development in simulation and transfer these insights to build high-
performance systems with actual human feedback.

For the first challenge of data annotation costs, AlpacaFarm simulates human annotators with API
LLMs that are faster and lower cost. To collect simulated feedback data, we design prompts for API
LLMs (e.g. GPT-4) that enable us to simulate human pairwise comparisons at a cost that is 45x
cheaper than crowd-workers, and tune these prompts to faithfully capture many aspects of human
annotators, such as their quality judgments, inter-annotator variability, and stylistic preferences.

For the second challenge of automated evaluation, we design an automatic evaluation protocol
that aims to quantify system performance on simple but realistic real-world human instructions.
Improving evaluations of open-ended instruction following has been challenging due to the cost
and non-replicability of human evaluation, the lack of real human interaction data, and the diversity
of natural human instructions. To address this, we use instructions from user interactions (Alpaca
Demo [69]) as a reference for simple but real human interactions and show that we can combine
existing evaluation datasets to mimic this evaluation. Quantitative evaluations of system rankings on
our evaluation data show a high correlation with system rankings on the Alpaca Demo instructions.

For the third challenge of missing reference implementations, we implement and test several popular
learning algorithms including PPO [62], expert iteration [2], and Quark [42], and release reference
implementations. We show that, among the methods we studied, PPO with a surrogate reward
model is the most effective training-time method in our leaderboard, improving the win-rate against
Davinci003 of an instruction fine-tuned LLaMA 7B model from 44% to 55%. Other baselines that
have been validated on simpler tasks fall short in comparison, highlighting the importance of testing
these algorithms in a real instruction-following setting.

As an end-to-end evaluation of the AlpacaFarm, we compare eleven methods trained and evaluated
in AlpacaFarm with the same methods trained and evaluated on actual human feedback. We show
that the method rankings obtained from developing on AlpacaFarm closely agree with the method
rankings obtained from training on actual human data (Spearman correlation of 0.98) and that the
best method in AlpacaFarm leads to substantial gains with human feedback. Finally, we find that
AlpacaFarm can replicate qualitative behaviors of human feedback such as over-optimization of the
reward model, suggesting that AlpacaFarm serves as an effective way for researchers to rapidly study
and develop methods that learn from human feedback.
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2 Background & problem statement

To begin, we introduce the instruction following task and the pairwise-comparison-based human
feedback setting that we study. With this background, we formally define the goals of developing a
low-cost simulator for studying instruction following and learning from human feedback.

2.1 Learning to follow instructions

In the instruction following task [49, 6, 76, 40], we are presented with user instructions x ∈ X (e.g.
“Tell me something about Alpacas”), and our goal is to develop a model pθ that generates high-quality
responses y ∼ pθ(y | x) as judged by an unobserved human reward function R : X × Y → R.

While there are a rich set of methods that learn from human feedback to directly optimize R
(see Appendix A), in this work we focus on the setting of learning from pairwise feedback (LPF)
due to its central role in recent instruction-following LLMs [49]. The starting point of this process
is a model that is fine-tuned on instruction-following demonstrations (x, y), which we denote as
pSFT
θ (y | x). The LPF process then involves taking pairs of samples from pSFT

θ , querying humans for
which sample within each pair is better, and learning from this pairwise feedback. Since all methods
start from the SFT base, we use pθ for notational simplicity.

Learning from pairwise feedback (LPF). More formally, we define the pairwise feedback dataset
as Dpairwise = {(x(j), y

(j)
0 , y

(j)
1 , z(j))}j . In this notation, a human annotator rates two candidate

responses y0, y1 ∼ pθ(y | x) for the instruction x. These binary ratings z ∈ {0, 1} are assumed
to be generated according to their unobserved reward R and z indicates a (potentially stochastic)
comparison for the better response yz , where R(x, yz) > R(x, y1−z).

Many algorithms have been proposed to learn on Dpairwise. Some algorithms like RLHF [18, 49]
learn a surrogate reward function as the learning signal and some operate more directly on Dpairwise.
We defer the discussion of different learning algorithms to Section 3.4.

Pairwise evaluation. Once instruction-following models are trained, researchers need to evaluate
these models. One common approach for evaluating models is pairwise model evaluation [15, 22, 7],
which performs pairwise comparisons on outputs generated by the model pθ and a reference model
pref. Concretely, we collect pairwise preference for two models ({(x(j), y

(j)
θ , y

(j)
ref , z

(j))}j), which
is aggregated by computing the average win-rate – the percentage of times pθ is preferred to pref.
Researchers can then compare LPF models by their win-rates against the same reference model.

2.2 Problem statement

The goal of AlpacaFarm is to provide three key components that enable rapid research and develop-
ment of instruction following models: low-cost pairwise feedback generators, automated evaluations
for methods development, and reference implementations for comparison and modification. With
these three components, researchers can develop new methods in simulation and transfer these
insights to build high-performance systems on actual human feedback.

For pairwise feedback, we substitute human preference judgements zhuman ∼ phuman(z | x, y0, y1)
with a simulated preference zsim ∼ psim(z | x, y0, y1) using API LLMs. Our goal is to construct a
psim that is both low-cost and faithfully captures different aspects of human preference feedback, such
as quality judgments, inter-annotator agreement rates, and stylistic preferences.

For evaluations, we evaluate system outputs using the pairwise preference simulator and identify
evaluation datasets that reflect natural human-LLM interactions. The goal for our evaluations is to
ensure that system rankings on the new evaluation dataset closely match both human rankings and
rankings on instructions from real usage of the Alpaca Demo.

For reference methods, we develop and evaluate six LPF methods. Our goal will be to provide simple
and working implementations that provide substantial improvements on both simulated and human
feedback data. This will allow researchers to build upon and compare to competitive baselines in a
complex instruction-following environment.
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AlpacaFarm combines these three components into a simulation framework for learning from pairwise
feedback. We evaluate the complete system by an end-to-end workflow of developing methods in
simulation and transferring the insights to the real world.

Concretely, we will run each method M on the simulated preferences (called Msim) and evaluate
with simulated rankings psim. In parallel, we will run M on human preferences (called Mhuman) and
evaluate with human rankings phuman. We consider AlpacaFarm to be successful if the simulated
method rankings correlate well with the human method rankings. The rest of this work will present the
details of the pairwise feedback and evaluation design (Section 3), evaluate these designs (Section 4),
and analyze the different reference methods we implemented in the AlpacaFarm (Section 5).

3 Constructing the AlpacaFarm

In this section, we detail how we construct the AlpacaFarm. In Section 4, we then validate our design
choices by comparing the LPF workflow with human feedback and evaluation.

3.1 Instruction following data

Before defining the details of how we simulate pairwise feedback, we must first specify a large and
diverse set of instructions x upon which we can build the rest of AlpacaFarm. We opt to use the
Alpaca data [69] as a starting point due to its large size (52k (x, y) examples) and the non-trivial
instruction following capabilities of models trained on this data.

We repurpose the Alpaca data into splits suitable for learning from human feedback by following a
similar splitting ratio as [49]. We created four splits (42k in total), leaving 10k for the future:

• Supervised finetuning (SFT) split: 10k data for fine-tuning the base instruction-following LLM
used in subsequent steps.

• Pairwise preference (PREF) split: 10k instructions on which we collect pairwise feedback data.
• Unlabeled split: 20k unlabeled instructions used in algorithms such as PPO.
• Validation split: 2k data for development and tuning.

3.2 Designing simulated pairwise preference psim

We now describe the design of our simulated annotator for pairwise preferences. Our core proposal
is to design the simulator psim(z | x, y0, y1) by prompting OpenAI API LLMs. While using LLMs as
a proxy for annotators has become increasingly popular [15, 39], using LLMs as part of a simulation
environment poses major additional challenges. Our simulated preferences psim must not only have a
high agreement with human preferences phuman, it must also capture other qualitative aspects of human
feedback such as inter- and intra-annotator inconsistencies. Intuitively, the noise and variability in
pairwise feedback are key parts of the challenge in the LPF problem and we find that ignoring these
factors leads to a simulator that diverges substantially from real-world behavior (Section 4.3).

Basic GPT-4 prompt design. To start with, we design prompts by providing an annotation guideline,
feeding in-context examples, and leveraging batch generation to save on costs. As a first baseline, we
query GPT-4 with a single prompt (denoted as pGPT-4

sim ) and we find pGPT-4
sim has a high agreement rate

with human annotators (65%; see results in Section 4.3). However, we find that this simple baseline
of pGPT-4

sim fails to capture the variability in human annotation and can lead to qualitatively different
results for method development, especially for reward over-optimization (Section 4.3).

Simulating human variability. To more completely emulate human annotators, we modify the
basic simulated annotator design to capture annotator variability in two ways. First, we emulate inter-
annotator variability in the simulated pairwise preference psim by mimicking a pool of annotators. We
design different annotators by querying different API LLMs and varying the prompts with different
formats, batch sizes, and in-context examples. In the end, we created 13 simulated annotators which
we describe fully in Appendix D. Second, we emulate intra-annotator variability by directly injecting
random noise and flipping the simulated preference 25% of the time.

With these ingredients, we come up with a simulated preference pann
sim that meets our requirement of

agreement and variability. Overall, annotating 1000 outputs using simulated preference only costs $6,
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which is 50x cheaper than human annotation. In Section 4, we collect actual human preference and
quantitatively verify the agreement and variability of our simulated preference.

3.3 Designing an automatic evaluation

For researchers to develop LPF methods in the AlpacaFarm, we want to support them with an
automatic evaluation so they can quickly iterate while reliably comparing methods. To replace the
usual human evaluation, there are two challenges. First, how do we quantify the quality of different
models? Second, what instructions can we use that are representative of human interactions?

Evaluation protocol. To quantify the quality of an LLM pθ, we measure the win-rate of that LLM
against a reference model, i.e, the expected number of times that the output from pθ is preferred
to the output of a reference model pref on the same instruction x. The benefits of using simulated
win-rates are that it provides a metric that is easy to understand, is comparable across methods, and
can reuse the routine we built for pairwise feedback. We use the 13 simulated annotators described
in Section 3.2 without injecting the additional noise (as adding uniform noise does not change model
rankings) and denote this preference simulator as peval

sim . For the reference model, we use Davinci003
as it is a well-studied system that performs similarly to the models we fine-tune.

Evaluation data. Instruction following requires diverse coverage over realistic interactions. To
build an appropriate evaluation protocol, we combine several open-source evaluation datasets and use
real-world interactions with a demo instruction-following LM (Alpaca Demo [69]) as guidance for
constructing our data combination. Due to privacy concerns, we do not directly release the demo data
and opt to use it to guide how we combine existing open evaluation datasets.

Our final evaluation set consists of 805 instructions, which includes 252 instructions from the self-
instruct test set [75], 188 from the Open Assistant (OASST) evtest setaluation, 129 from Anthropics’
helpful test set [6], 80 from Vicuna test set [80, 17], and 156 from Koala test set [22]. In ??, we show
example instructions from our evaluation set (Table 7) and their root verb distribution(Figure 13),
which shows the diverse coverage of our data. We find that aggregating across datasets is important
for automatic evaluation to match real-world interactions, as discussed in Section 4.4.

3.4 Reference methods in AlpacaFarm

Finally, AlpacaFarm defines a collection of validated LPF methods for instruction following. We
describe those methods in detail in Appendix B but provide a brief overview here. In all LPF methods
that follow, we begin by first performing an initial fine-tuning step on supervised data of instructions
and outputs.We begin by describing two simple baselines that directly operate on pairwise feedback.

• Binary FeedME. Binary FeedME [47] continues supervised fine-tuning on the preferred output in
each pairwise comparison.

• Binary reward conditioning. Reward conditioning [28, 36, 30] is a simple scheme that incor-
porates learning from negative examples; a token denoting whether the output was preferred is
prepended before fine-tuning, and the positive token is used to condition at inference time.

Many LPF methods do not directly operate on pairwise feedback data, but instead first construct a
surrogate reward model by fine-tuning a classifier from the SFT base using pairwise feedback. The
following LPF methods maximize the continuous-valued reward defined by the logits of this classifier.

• Best-of-n sampling. Best-of-n (or re-ranking) [67, 5, 23, 9] is a simple but effective inference-time
method that draws n i.i.d. responses from the SFT model and returns the response with the highest
surrogate reward. Unless stated otherwise we use n = 1024 in our experiments.

• Expert iteration. Expert iteration [2, 64, 74] is the natural training-time extension of best-of-n: it
first generates according to best-of-n on new instructions and then fine-tunes on the best outputs.

• Proximal Policy Optimization (PPO). PPO [26, 62] is a reinforcement learning algorithm that
maximizes surrogate reward, subject to a KL penalty keeping parameters near SFT initialization.

• Quark. We use the top-quantile variant of Quark [42] which bins sequences by reward and trains
on the best bin, along with adding KL and entropy regularization.
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Figure 2: The ranking of methods trained and
evaluated in AlpacaFarm matches that of methods
trained and evaluated in the human-based pipeline.
Each blue point represents one method M (e.g.
PPO). The x-axis shows the simulated evaluation
(win-rates measured by peval

sim ) on methods trained
in simulation Msim. The y-axis shows human eval-
uation (win-rates measured by phuman) on methods
trained with human feedback Mhuman. Gray points
show models that we did not train, so their x and
y values only differ in the evaluation (simulated vs
human). Without those points, we have R2 = 0.83
and a Spearman Correlation of 0.94.

4 Validating the AlpacaFarm simulator

With the simulator and methods defined, we now evaluate AlpacaFarm. As our main result, in
Section 4.2 we analyze the correlation between the final rankings of methods in both the simulated
LPF workflow and human-based LPF. Afterward, we will analyze more specifically whether our
pairwise feedback accurately mimics human pairwise feedback (Section 4.3) and whether rankings
on our evaluation data match rankings on the Alpaca Demo data (Section 4.4).

4.1 Experimental details

Models. As baseline and starting point for LPF methods, we fine-tuned LLaMA 7B on the 10k SFT
split. We take SFT 10k as starting point for all LPF methods and collect the simulated preference
pann

sim and human preference phuman from SFT 10k’s outputs (with temp=1.0) on the 10k instruction
PREF split. Then, for each of the six reference LPF methods M :

• We trained and tuned M on simulated preferences pann
sim, evaluating the resulting model Msim against

the Davinci003 reference with the simulated evaluator peval
sim .

• We trained a few models M on human preferences across hyperparameter ranges identified in
simulation, evaluating the resulting model Mhuman against Davinci003 with humans phuman.

In addition to the six methods, we also evaluate existing instruction-following and base models:
GPT-4 (gpt-4-0314), ChatGPT (gpt-3.5-turbo-0301), Davinci001 (text-davinci-001), LLaMA 7B [72],
and Alpaca 7B [69]. Alpaca 7B is a LLaMA 7B model finetuned on all data splits, denoted SFT 52k.
For these models, we measure both the simulated win-rate peval

sim and human win-rate phuman.

At inference time, for all systems except best-of-n, we sample with temp=0.7 and set the maximum
number of tokens to be 300. For best-of-n sampling, we found a higher temperature to be helpful in
encouraging output diversity, and so we rerank samples from SFT 10k with temp=1.0. We provide
more thorough experimental details and hyperparameters for all methods in Appendix C.

Human annotation. We collected reference human annotation by showing crowd-workers two
potential outputs y0 or y1 for a given instruction x and asked them to select the index z ∈ {0, 1} of
their preferred output. Annotators are recruited from Amazon Mechanical Turk using a qualification
test of 25 questions. Out of an initial pool of 34 annotators, we selected the 16 whose agreement rate
was higher than 70% with the author’s annotations. We paid the annotators a median hourly rate of
$21, leading to a one-time $3000 cost of annotating our PREF split and a recurring $242 cost for
evaluating a single model on the 805 evaluation instructions. See Appendix E for additional details.

4.2 End-to-end validation of AlpacaFarm

We now analyze the correlation between rankings in simulation and on human data. Figure 2 shows the
win-rate of methods in AlpacaFarm (x-axis) with the win-rate from the human-based pipeline (y-axis).
We see that the rankings have a Spearman correlation of 0.98, which suggests that AlpacaFarm faith-
fully captures the rankings among different LPF methods. This enables researchers to develop models
at low-cost in AlpacaFarm and transfer insights to train models on real-world human interactions.
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Figure 4: Human and AlpacaFarm preferences result in over-optimization, while a naive single-prompt
GPT-4 simulator does not. Left: training and evaluation with human preferences . Middle: training
and evaluation with AlpacaFarm preferences , . Right: training and evaluation with single-prompt
GPT-4 preferences . The x-axis measures the average surrogate rewards on the eval set.

Inspecting these results more closely, we point out the two rank mismatches. The first comparison is
SFT10k against SFT52k, where human annotators preferred SFT10k (44.3% vs 40.7%) while the
simulator had the opposite preference (36.7% vs 39.2%, Table 1). The other mismatch is ChatGPT
against PPO, where human annotators preferred PPO (55.1% vs 52.9%) unlike the simulator (46.8%
vs 61.4%). In both cases, these are not major mistakes, as we do not expect SFT52k to be much
worse than SFT10k or for a 7B LLaMA model to substantially outperform ChatGPT.

4.3 Validating the pairwise preferences component

Having demonstrated that AlpacaFarm succeeds at the end-to-end validation of methods rankings, we
now take a closer look at our pairwise preferences, showing that they agree with human annotators
and replicate important qualitative features of model training. For additional details see appendix D.

Simulated annotators match human agreement. We begin by computing agreement levels
between our simulated annotator and a majority vote of 3 human annotators, comparing this to the
agreement level of a held-out human annotator, as shown in Figure 3. We find that our evaluator peval

sim
( ) has a 65% agreement rate with the human majority vote, which is similar to the held-out human
agreement rate at 66% ( ). At the same time, peval

sim is 25× cheaper ($300 → $12 per 1000 examples).
The training time annotator pann

sim ( ) has lower agreement due to label flip noise but this does not
mean that pann

sim is less faithful to human annotations, since this noise is unbiased and both annotators
(pann

sim, peval
sim ) represent the same underlying preference function.

Figure 3 also shows that we identified single prompts performing even better than peval
sim , with one

prompts achieving 68% agreement. While this high agreement level is impressive, we do not use single
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Figure 5: Correlation plot of simulated win-
rates computed on AlpacaFarm’s evaluation
versus that on real-world interactions with the
Alpaca Demo.

prompts for AlpacaFarm, as single prompts do not replicate the inter-annotator variability important
for a simulator. Instead, randomizing over different annotators and injecting additional noise is needed
to match the distributional features and learning dynamics of human data, which we discuss next.

Simulated annotators replicate overoptimization. We now show that modeling annotator vari-
ability in the simulated annotator (pann

sim) is necessary to capture important qualitative features of
LPF model training. To do so, we compare the behavior of three of the best-performing models
trained under pann

sim with those trained using the single GPT-4 prompt pGPT-4
sim , which has higher human

agreement but little annotator variability.

Figure 4 shows the learning dynamics of these models for pairwise feedback by phuman (left), pann
sim

(middle), and pGPT-4
sim (right) as the PPO iteration count and rerank sample counts for best-of-n and

expert iteration are increased. For both the human and AlpacaFarm preferences, models that more
effectively optimize the surrogate reward (x-axis) improve in win-rate (y-axis) up until a point, where
overoptimization of the reward occurs and win-rates decrease. In contrast, simple GPT-4 feedback
shows no overoptimization, leading to the false conclusion that the LPF methods can be optimized
for much longer than is actually the case. For example, Figure 4 right shows best-of-1024 to be much
better than PPO, which disagrees strongly with the results on human data.

Noted in prior work [21], overoptimization is the result of the proxy reward model R̂ϕ being an
imperfect estimate of the true reward R. We hypothesize that the strong overoptimization seen for
human annotators is partly due to the (inter- and intra-) variability of their annotations, which degrades
the quality of the reward model. To test this hypothesis, we measured the variance of each of the three
annotators by calculating the average error of a held-out annotation to the majority vote over 3 random
draws. At 0.26 for peval

sim and 0.43 for pann
sim, AlpacaFarm is close to the human variance of 0.35; in con-

trast, the GPT-4 annotator has a much lower variance at 0.1. Finally, in Appendix F.1 we ablate the Al-
pacaFarm design more finely and find that the added label noise provides the majority of the benefit for
inducing overoptimization. Appendix D contains further analyses of bias and variability of annotators.

4.4 Validating the evaluation protocol

Finally, we test our evaluation data that combines existing open-source evaluation datasets. While we
have observed that this dataset is diverse (see Figure 13), it is unclear whether it evaluates performance
for any type of real-world human usage. To resolve this, we measure method-level correlations against
a set of real user interactions recorded on the Alpaca Demo [69]. We manually went through the
interactions and identified 200 instructions that do not contain any personal identifying information,
toxic or unsafe questions, and those that refer to the chatbot directly (e.g. “who are you developed
by?”). The terms of use for the demo do not allow us to publicly release this data, but we use this
data to evaluate the proposed evaluation set.

We use the 11 systems displayed in Figure 2, with the LPF methods trained in simulation, and evaluate
them using peval

sim . Figure 5 plots the simulated win-rates on the Demo instructions against those on the
AlpacaFarm evaluation data. The two win-rates are strongly correlated (r2 = 0.97), indicating that
AlpacaFarm evaluation data can serve as a proxy for evaluating methods on simple demo interactions.
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Table 1: AlpacaFarm evaluation results on baseline and LHF methods. For methods without a *, the
left column shows win-rates when we train and evaluate in simulation, while the right column shows
win-rates when we train and evaluate with human feedback. For models with a *, those are not trained
by us so the left and right columns respectively show simulated and human evaluation. Win-rates
are computed against Davinci003. We did not evaluate Quark and Binary Reward Conditioning
for human evaluation because they underperformed in development. † ChatGPT and GPT-4 were
prompted for responses shorter than 1000 characters to have length comparable to other methods.

Method Simulated Win-rate (%) Human Win-rate (%)

GPT-4*† 79.0± 1.4 69.8± 1.6
ChatGPT*† 61.4± 1.7 52.9± 1.7
PPO 46.8± 1.8 55.1± 1.7
Best-of-1024 45.0± 1.7 50.7± 1.8
Expert Iteration 41.9± 1.7 45.7± 1.7
SFT 52k 39.2± 1.7 40.7± 1.7
SFT 10k 36.7± 1.7 44.3± 1.7
Binary FeedME 36.6± 1.7 37.9± 1.7
Quark 35.6± 1.7 -
Binary Reward Conditioning 32.4± 1.6 -
Davinci001* 24.4± 1.5 32.5± 1.6
LLaMA 7B* 11.3± 1.1 6.5± 0.9

5 Benchmarking reference methods on the AlpacaFarm

We now study the performance of reference methods in AlpacaFarm. Table 1 contains the details of
the main evaluation results (presented in Figure 2). In the rest of this section, we discuss our findings
from these results, demonstrating that the conclusions we reach using human feedback could have
been derived using AlpacaFarm at a substantially lower cost. See Appendix C for experimental details.

5.1 Comparing LPF methods

Supervised fine-tuning is highly effective. Table 1 shows that the SFT is effective and provides
the majority of gains. SFT brings the base LLaMA model up from a simulator win-rate of 11% to
37% and a human win-rate of 7% to 44%. However, we observe no gain from SFT 10k to SFT 52k.

PPO tops the LPF leaderboard. Among the LPF methods we study, PPO performs the best in both
the simulator (47%) and on human data (55%). Notably, with a win-rate of 55%, the PPO trained with
human feedback was preferred to ChatGPT by our annotators for single-turn instruction-following.
This surprising result is likely because ChatGPT was prompted for responses shorter than 1000 charac-
ters and both crowd-workers and simulators annotators preferred longer responses (see appendix D.2).
For example, in AlapcaEval [35] (slightly different simulated annotator) we show that the uncon-
strained ChatGPT achieves 89% win-rate, much higher than the 44% win-rate for the PPO model.

Best-of-n is simple and competitive. Best-of-n sampling outperforms all LPF methods besides
PPO. The performance best-of-n sampling points to the useful learning signals captured by the
reward model and helps us understand how training-time LPF methods benefit from a reward model.

Expert Iteration and Quark lag behind. Even though expert iteration trains with best-of-n outputs,
it trails best-of-n with a 3-6% win-rate gap in both simulated and human feedback workflows. This
result suggests that acquiring the improvement from best-of-n sampling is not straightforward and
points to why more complex learning algorithms like PPO might be useful. For Quark, although the
rewards of samples improve during training, the resulting models did not outperform the SFT baseline.

Methods that directly learn from pairwise feedback do not perform well. We observe that
binary reward conditioning and binary FeedME do not improve over the SFT 10k baseline. This
result suggests that learning a surrogate reward model may be an important ingredient to LPF.

In appendix F.3 we analyze the outputs of different models. We find a major difference is that LPF
methods produce longer outputs in both human and simulated feedback.
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5.2 Using AlpacaFarm to train models directly for human deployment

A natural question is whether models trained in AlpacaFarm can directly perform well on human
evaluation Table 2 shows that AlpacaFarm can be repurposed for this goal by using simulated
annotators that maximize agreement rather than match human variability, i.e., using preferences
from the single low-variance GPT-4 annotator pGPT-4

sim rather than our noisy annotators pann
sim.

Table 2: Model transfer results.

Method Human Win-rate (%)

PPOhuman 55%
Best-of-16human 51%
PPOGPT-4

sim 50%
SFT 10k 44%
PPOann

sim 43%

Table 2 compares the best model PPOann
sim trained on pann

sim
with a similar model PPOGPT-4

sim trained on the GPT-4
annotator. We find that PPOann

sim only achieves 43%
win-rate, while PPOGPT-4

sim achieves 50% win-rate. As
context, we show win-rates of the initial SFT, the human
PPO PPOhuman, and the best non-PPO human method
Best-of-16human. Overall, training in AlpacaFarm can
provide good models for deployment, but still suffers a
5% performance gap relative to real human annotations.

6 Limitations

Validation. Section 4 validates the use of AlpacaFarm, but there are nevertheless some limitations
with the validation setting. First, the instructions we considered (even those from the real world-demo
in section 4.4) are relatively simple and single-turn. Second, all models we fine-tuned use a LLaMA
7B as starting point. Finally, Human validation is based on feedback from 13 crowd-workers, which
may not reflect broader human preferences and seem to have biases such as preferences for longer
outputs as highlighted in appendix D.2. Although we do not expect the previous limitations to
significantly affect the usefulness of AlpacaFarm, we encourage users to be vigilant when using any
simulator and hope to further validate AlpacaFarm as more datasets and base models become available.

Assumption of an oracle LLM. AlpacaFarm assumes that we can access an oracle LLM, much
more powerful than the investigated models, that can be used to approximate human feedback. While
this may be true in research settings, it is not always the case in practice. We believe that investigating
the use of the same model for the simulator and for learning is a promising direction for future work.

AlpacaFarm for fine-grained development. Section 4 shows that AlpacaFarm is effective for
model selection and can replicate important behaviors such as over-optimization. We have neverthe-
less found that suitable hyperparameters for learning algorithms can be different for training with sim-
ulated feedback compared to human feedback. For example, due to changes in the scale of values of
the surrogate reward model, the range of suitable KL regularization coefficients for RLHF is different.

Simulated annotators. A key component of AlpacaFarm is the simulated annotators. In section 4.3
and appendix D we showed that our annotators have high agreement with human annotators and
exhibit similar biases, such as preferences for longer outputs and lists. There are nevertheless some
biases that are specific to simulated annotators. For example, we found that simulated annotators
prefer the first outputs shown in the prompt and outputs that come from the same model as the
simulator. Although we controlled for those biases by randomizing the order of output in the prompt,
and using the same training data for all considered methods, there may be other biases that we have
not identified. For better automatic annotators and further analysis refer to AlpacaEval [35].

7 Related works and outlook

The idea of building a simulator is closely related to recent efforts in automatic model evaluations [16,
55, 15, 53, 37] and constitutional AI [8]. However, our work crucially differs in our goal of building
a simulator, which requires us to mimic distributional properties such as inter-annotator disagreement.
We discuss these differences and the broader context of our work in Appendix A.

We showed that AlpacaFarm substantially lowers the cost and iteration time for developing methods
that learn with pairwise feedback. AlpacaFarm provides a blueprint for constructing simulators for
AI research that requires human supervision, and we view it as an exciting opportunity to expand
this simulation approach to data from other domains and alternative forms of human feedback.
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[23] Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds,
Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving alignment
of dialogue agents via targeted human judgements. arXiv preprint arXiv:2209.14375, 2022.

[24] Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazare, and Jason Weston. Learning from
dialogue after deployment: Feed yourself, chatbot! arXiv preprint arXiv:1901.05415, 2019.

[25] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris
Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, et al. Unity: A general platform
for intelligent agents. arXiv preprint arXiv:1809.02627, 2018.

[26] S. Kakade, Y. W. Teh, and S. Roweis. An alternate objective function for Markovian fields. In
International Conference on Machine Learning (ICML), 2002.

[27] Saketh Reddy Karra, Son Nguyen, and Theja Tulabandhula. Ai personification: Estimating the
personality of language models. arXiv preprint arXiv:2204.12000, 2022.

[28] N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher. CTRL: A Conditional
Transformer Language Model for Controllable Generation. arXiv preprint arXiv:1909.05858,
2019.

[29] Samuel Kiegeland and Julia Kreutzer. Revisiting the weaknesses of reinforcement learning for
neural machine translation. arXiv preprint arXiv:2106.08942, 2021.

12



[30] Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Bhalerao, Christopher L Buckley, Ja-
son Phang, Samuel R Bowman, and Ethan Perez. Pretraining language models with human
preferences. arXiv preprint arXiv:2302.08582, 2023.

[31] Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and Stefan Riezler. Can neural machine
translation be improved with user feedback? arXiv preprint arXiv:1804.05958, 2018.

[32] Tsz Kin Lam, Julia Kreutzer, and Stefan Riezler. A reinforcement learning approach to
interactive-predictive neural machine translation. arXiv preprint arXiv:1805.01553, 2018.

[33] Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter
Abbeel, Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models
using human feedback. arXiv preprint arXiv:2302.12192, 2023.

[34] Jiwei Li, Alexander H Miller, Sumit Chopra, Marc’Aurelio Ranzato, and Jason Weston. Dia-
logue learning with human-in-the-loop. arXiv preprint arXiv:1611.09823, 2016.

[35] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

[36] H Liu, C Sferrazza, and P Abbeel. Chain of hindsight aligns language models with feedback.
arXiv preprint arXiv:2302.02676, 2023.

[37] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

[38] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

[39] Yang Liu, Dan Iter, Xu Yichong, Wang Shuohang, Xu Ruochen, and Chenguang Zhu. G-eval:
Nlg evaluation using gpt-4 with better human alignmentg. arXiv preprint arXiv:2303.16634,
2023.

[40] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou,
Quoc V Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for
effective instruction tuning. arXiv preprint arXiv:2301.13688, 2023.

[41] X. Lu, S. Welleck, J. Hessel, L. Jiang, L. Qin, P. West, P. Ammanabrolu, and Y. Choi. Quark:
Controllable text generation with reinforced unlearning. In Advances in Neural Information
Processing Systems, 2022.

[42] Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj
Ammanabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced unlearning.
Advances in neural information processing systems, 35:27591–27609, 2022.

[43] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

[44] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task gener-
alization via natural language crowdsourcing instructions. arXiv preprint arXiv:2104.08773,
2021.

[45] Khanh Nguyen, Hal Daumé III, and Jordan Boyd-Graber. Reinforcement learning for bandit
neural machine translation with simulated human feedback. arXiv preprint arXiv:1707.07402,
2017.

[46] OpenAI. Introducing chatgpt.

[47] OpenAI. Model index for researchers.

[48] OpenAI. Gpt-4 technical report, 2023.

13

https://github.com/tatsu-lab/alpaca_eval


[49] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022.

[50] Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv
preprint arXiv:2304.03442, 2023.

[51] Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Social simulacra: Creating populated prototypes for social computing
systems. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and
Technology, pages 1–18, 2022.

[52] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
summarization. arXiv preprint arXiv:1705.04304, 2017.

[53] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

[54] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.
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A Related work

Instruction following. There have been an number of works studying instruction following as a
cross-task generalization across a pool of NLP tasks [44, 77, 58, 4, 76]. Our work focuses on a recent
trend in instruction following methods which increasingly focus on real world human interaction
patterns [49, 6], rather than collections of existing NLP benchmarks. For example, InstructGPT was
developed on user instructions submitted to OpenAI API [49]. Our work builds upon these works by
attempting to bridge the gap between the ease of development and evaluation of traditional academic
benchmarks and the more complex algorithms and real-world settings of recent works on instruction
following.

Simulating human feedback. Constitutional AI [7] simulates human feedback with AI feedback
for model development to improve harmlessness and helpfulness. AlpacaFarm, on the other hand,
simulates human feedback with API LLMs so that simulated experiments reflect the outcomes of
experiments performed with real human feedback. Due to the difference in goals, the construction
and usage of the feedback simulator are different in the two settings. For example, AlpacaFarm’s
simulator perturbs LLM preferences with bit-flip label noise to mimic the noisiness of human
annotation, whereas Constitutional AI’s simulator doesn’t inject extra noise.

The evaluation aspects of our work are related to a growing line of work on simulating human
annotation for evaluation [15, 56, 15, 54, 38, 39]. Our core evaluation and feedback mechanism makes
use of the same underlying ideas, but our work is distinguished by a focus on using pairwise feedback
for training, as well as careful validation beyond per-example agreement metrics. AlpacaFarm shows
that LLM feedback can capture method-level correlations as well as qualitatively important features
of human annotation for phenomena such as overoptimization.

Our goal of emulating human annotators also connects to work on simulating humans with LMs
based on personas [51, 50, 1, 3], as well as works that simulate human behavior in the context of
cognitive science, social science, and economics [73, 27]. Our work complements these works by
showing that simulated LLM annotators can replicate many of the qualitative features of training on
pairwise human feedback.

More broadly, building a simulator environment to enable low-cost experimentation is common in the
field of reinforcement learning and robotics [12, 71, 70, 68, 19, 25, 20]. Our work shares the same
underlying motivations, but instead of simulating physical systems, AlpacaFarm simulates human
preference feedback.

Methods for learning from feedback. To hold annotation cost constant across learning methods,
we have focused only on methods that learn from pairwise feedback in this work. However, there exist
methods in the literature other than those explored in AlpacaFarm that can incorporate alternative
sources of feedback such as natural language [78, 34, 24, 63, 59, 14, 60, 43], numeric ratings [47, 33],
or execution traces [14]. We view extensions of AlpacaFarm to these settings as exciting future work.

We have included a set of RL algorithms in our study that optimize the surrogate reward, but this set
is by no means comprehensive. RL research applied to NLP has a long history [79, 66, 29, 52, 45,
32, 31, 57, 65], and we expect future work in this direction to benefit from the ideas and artifacts in
AlpacaFarm.
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B Reference LPF methods on AlpacaFarm

We provide a more thorough description of the methods in AlpacaFarm along with the custom
modifications we make. For more on hyper-parameter tuning, experiment details, and further
ablations, please see Appendix C.

Our methods fall into two categories based on whether they fit a surrogate reward model as part of
the learning process. In addition, to those methods which are trained in AlpacaFarm, we also include
well-known baseline methods from the OpenAI API.

API baseline methods. In both the human and the simulated feedback workflows, we evaluate the
following methods from the OpenAI API: GPT-4, ChatGPT, Davinci001, and implicitly Davinci003,
which is the baseline model we compare every model with. Outputs from all these models are
sampled at temperature 0.7 and with top-p 1.0. For the text models, we use the same prompt as all
other reference methods in AlpacaFarm. For both chat models (ChatGPT and Davinci003), we had
to change prompts for two reasons. First, those models require prompts in a chat format, which is
different from the text format. Second, we found that those models generated sequences that were
much longer than the rest of our models, which were trained to output sequences of less than 300
tokens. We thus ask in the system prompt for a response that is shorter than 1000 and 500 characters
respectively for ChatGPT and GPT-4, which we found to give shorter answers while working similarly
to a raw prompt that does not mention the length.

B.1 Methods that directly learn from pairwise feedback

Binary FeedME. FeedME is a method proposed by OpenAI [47] that incorporates human feedback
with supervised fine-tuning on model generations that are rated 7/7 by human labelers. We adapt
this approach to the pairwise feedback setting and call this baseline binary FeedME. This approach
fine-tunes the SFT model on the chosen response in each preference pair with supervised learning.

Binary Reward Conditioning. Motivated by controllable generation through conditioning [28, 36,
30, 22], we propose binary reward conditioning, a baseline method that fine-tunes the SFT model
with the feedback data Dpairwise by conditioning instances with either a positive or negative control
token. Specifically, for each instance (x, y0, y1, z) ∈ Dpairwise, the string concatenation of instruction
x and response yz denoted as [x, yz] is prepended with the positive token and used in supervised
fine-tuning (similarly [x, y1−z] is prepended with the negative token). This process creates a modified
demonstration dataset that is double the size of Dpairwise. At test time, we draw samples from the
fine-tuned model conditioned on the positive token.

B.2 Methods that optimize a surrogate reward function

We now describe methods that incorporate feedback by first building a surrogate reward model with
pairwise feedback data. To start, we describe the step of training the surrogate reward model.

To train a parameterized surrogate R̂ϕ, one can maximize the log-likelihood of the preferences z
under the Bradley-Terry model [11]

maximizeϕ
∑
j

logP (z(j) | x(j), y
(j)
0 , y

(j)
1 ) =

∑
j

log
exp(R̂ϕ(x

(j), y
(j)
z ))

exp(R̂ϕ(x(j), y
(j)
0 )) + exp(R̂ϕ(x(j), y

(j)
1 ))

.

(1)

Once the surrogate reward model is trained, both training and inference algorithms can optimize
against the reward model rather than query pairwise feedback. While this can be a powerful approach,
we will see that it can also lead to over-optimization [21] where models learn to exploit the reward
model rather than achieve high true reward. We now describe 4 methods that leverage the surrogate
reward model.

Best-of-n Sampling. Best-of-n sampling (or re-ranking) [67, 5, 23, 9] is a common inference-time
method that aims to improve the generation quality. Given an input x, the method returns the response
with the highest surrogate reward value among n i.i.d. responses drawn from the SFT model. While
simple to implement and useful as a baseline, this approach incurs high inference costs.
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Expert Iteration. Expert iteration [2, 64, 74] is a technique that has recently been used to train
language models. We adapt this approach in AlpacaFarm as a two-step method. In the first step, we
perform best-of-n sampling and store the generated samples. In the second step, we fine-tune pSFT on
these samples with supervised learning. While prior work applies expert iteration for multiple rounds
by performing best-of-n sampling again for intermediate models, we focus on performing a single
round. In Appendix C, we include our preliminary study of multi-round expert iteration.

Proximal Policy Optimization. Proximal Policy Optimization [PPO; 26, 62] is a popular RL
algorithm that has been recently used to develop InstructGPT [49] and ChatGPT [46]. When applied
to fine-tune LMs with RLHF, PPO maximizes the following KL-regularized objective w.r.t. model
parameters θ

Ex∼p(x), y∼pθ(y|x)

[
R̂ϕ(x, y)− β log

pθ(y | x)
pSFT(y | x)

]
, (2)

where p(x) is an unlabeled instruction distribution, pθ(y | x) is fine-tuned from the pSFT model, and
β ∈ R is a regularization coefficient. Each step of PPO alternates between drawing samples from
the current policy and performing gradient updates based on the pool of samples with importance
sampling and clipping.

Quark. Quark is inspired by reward conditioning and has been shown to be effective for controllable
generation tasks. Like binary reward conditioning, Quark on train sequences with prepended control
tokens. Unlike binary reward conditioning, Quark bins model samples into multiple groups based on
the reward value, adds KL and entropy regularization, and repeats the entire process across multiple
rounds.

In our preliminary analysis, we find the top-quantile variant reported in [41], i.e., only training on the
best reward group, to perform the better than the all-quantiles variant which trains on all groups.
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C Details on methods implementation and hyperparameters

For all hyperparameters and code see https://github.com/tatsu-lab/alpaca_farm

C.1 PPO

We follow an existing PPO implementation for fine-tuning language models,2 but also introduce
modifications. First, off-the-shelf PPO implementations for language model fine-tuning tend to
normalize the estimated advantage for each minibatch. We found this led to training instabilities for
small minibatch sizes and instead normalize the advantage across the entire batch of rollouts obtained
for each PPO step. Second, we initialize the value model from the reward model as opposed to the
SFT model, following more recent documented practice [49] (the authors did not release code). Our
preliminary experiments showed that initializing from reward worked much better than initializing
from SFT for maximizing the surrogate reward.

We tuned hyperparameters to improve training stability and reduce convergence time so that experi-
ments can reliably finish with relatively tight compute budgets. In the end, we settled on a batch size
of 512 for each PPO step, which consisted of 2 epochs of gradient steps each performed with a batch
of 256 rollouts. We used a peak learning rate of 10−5 which decayed to 0 throughout training. We
clipped the gradient by Euclidean norm with a threshold of 1. We trained for 10 full passes over the
unlabeled set, which amounts to 390 PPO steps. Performance typically peaked very early on during
training (see Figure 4). We set λ and γ both to 1 for generalized advantage estimation [61]. We used
a fixed KL regularizer coefficient as opposed to an adaptive one. We tuned the coefficient value for
both simulated and human PPO, and settled with 0.02 for human PPO, and 0.002 for simulated PPO.
We note that suitable values for the KL regularizer coefficient depend on the early stopping criteria
and the scale of surrogate reward values.

C.2 Quark

We re-implement Quark for our needs and make several modifications. First, the original Quark
formulation accumulates rollouts during training and stores them in a pool that consistently grows. We
found this led to overhead that increased during training (since after each rollout batch is generated,
the pool is expanded and rollouts in the pool are re-sorted by their reward values). To operate under a
reasonable compute budget, we discard previous rollouts once a new batch of rollouts is generated.
In other words, the pool is reset once rollout is performed. This modification made the compute cost
constant throughout training and thus more predictable overall. Second, we found that training on
rollouts of more bins led to worse efficiency for reward optimization, and thus opted to train only on
rollouts of the top-scoring bin (best-quantile variant in the original paper [42]). Preliminary ablations
on a simple sentiment task showed that any potential loss in perplexity for the best-quantile variant
can be compensated by turning up the KL regularizer. Lastly, we found the entropy penalty used
in the original Quark formulation to give no benefit for working with instruction following. Small
entropy penalty terms were enough to cause big degradations in text generation quality in terms of
fluency.

For the official run with reported results, we used a KL regularizer coefficient of 0.05, a peak learning
rate of 3× 10−6 which decayed to 0 throughout training. Each Quark step had batch size 512 for
rollout, and 2 epochs of gradients updates each with batch size 256. We clipped the gradient by
Euclidean norm with a threshold of 1. We trained for 10 full passes over the unlabeled set, which
amounts to 390 Quark steps.

2https://github.com/openai/lm-human-preferences
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D Pairwise preference simulation

D.1 Details about simulated annotators

For all our simulated annotators we used OpenAI API to generate outputs. We first discuss below the
overall design choices for all our simulators below, and then discuss our annotator pool below in more
detail. For all the actual prompts we used refer to https://github.com/tatsu-lab/alpaca_
farm.

Randomized order. For each annotator, we randomize the ordering between the two outputs to
annotate, i.e., we randomly choose which output is the first and which is the second. We found
randomization to be important given that the first output is often preferred by simulated annotators.

Prompts with and without inputs. Following the Alpaca dataset [69] and self-instruct framework
[75] some instructions have associated inputs, while others do not. For each annotator, we thus write
two corresponding prompts, one for instructions with inputs and one for instructions without inputs.
Both prompts are essentially the same but in-context examples differ in the presence of the input.

Batching for GPT4. When adding in-context examples, prompts can become relatively long, which
leads to high-cost and waiting time when using GPT-4 as a simulator. To decrease cost and increase
annotation speed, we amortize the cost of in-context examples by providing a batch of instruction-
output pairs to annotate at once by GPT-4. For our simulated annotator we use a maximum batch size
of 5 but found during development that we could fit batch size up to 20 in the context window without
significantly decreasing performance. To improve performance when using batching, we found it
useful to provide a few in-context examples in a batched format and to index every component of an
annotation (instruction, input, output, . . . ).

Improving parsing for ChatGPT. Overall we found ChatGPT to be much more sensitive and
harder to use as a simulator. In particular, we found it to be more sensitive to the prompt format
and to often fail to generate annotations that could be parsed, e.g., by responding “Neither is better,
this depends on personal preferences” despite being explicitly instructed to choose a preference. We
found two tricks to be effective to make ChatGPT’s more parsable. First, we add a negative bias to
tokens such as “Neither” and “Both” and a positive bias to the tokens that we hoped to match. We
found the aforementioned biasing of tokens to work well but it can be problematic when using Chain
of Thought reasoning. A second trick that we found to be effective is to ask ChatGPT to generate a
JSON object that contains a string field with a short explanation (Chain of Thought) and a boolean
field that indicates whether the first output was preferred.

Now that we have discussed the overall design choices for our simulated annotators, we discuss in
more detail the prompts and parameters for each of our annotators.

AlpacaFarm’s evaluation annotators peval
sim . To try to match the bias and variance of human

annotators, we use a pool of 13 simulated annotators that were developed at different stages of the
project. In particular, we use the following sources of variations:

• Models. Five of the annotators are powered by GPT-4, four by ChatGPT, and four by
Davinci003. The difference between different annotators for the same model is mostly the
prompt.

• In-context examples. Prompts for the same models use different numbers of in-context
examples.

• Prompt format. We use different prompt formats between and for the same model. For
example different batch sizes and different formats of outputs (JSON vs raw text).

• Preferences. Two of the GPT4 annotators are explicitly prompted to prefer sequences that
are respectively long and short.

• Sampling. For each annotator in the pool, we use a sampling temperature of 1.0 with top p
also 1.0. The high temperature means that we have variability that arises from sampling.
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Annotator: Human pref Trainer pann
sim Evaluator peval

sim GPT4 pGPT4
sim

Model: Human pref Simulated psim GPT4 ChatGPT Davinci003
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Figure 6: Our simulated annotators achieve relatively
low bias with human annotators and match human vari-
ance. The y-axis shows the estimated bias, i.e., the error
between the majority vote of 4 simulated annotators and
the majority vote of 4 human annotators. The x-axis
shows the estimated variance, i.e., the error between a
held-out annotation and the majority vote of the other
three annotators. The bias of humans is by definition
0, and variance is shown with a blue line. Grey points
are all the annotators in our simulated pool, the green
point shows the resulting pool of annotators (which we
use for evaluation), the orange point shows the same
simulated pool with additional noise (which we use for
training), the blue point the average human annotator,
and the red point shows a single low variance GPT-4
annotator we analyze.

AlpacaFarm’s training annotators pann
sim . Our simulated annotators for training are the same as the

evaluation annotators peval
sim except that we flip the output with 0.25 probability. We implement this by

taking a mixture between peval
sim and an independent Bernoulli random variable with probability 0.5.

This means that we only need to label half of the outputs for training, which makes it 2× faster and
cheaper.

GPT4. For the GPT4 annotator pGPT-4
sim we use a prompt with batch size five that corresponds to

one of the prompts from our simulated pool of annotators. For pGPT-4
sim we use temperature 0, i.e.,

deterministic annotations.

D.2 Additional results

We now provide additional results for understanding our pairwise annotators. For more results and
code for generating plots see https://github.com/tatsu-lab/alpaca_eval.

Our pool of annotators has low bias and matches human variance. Figure 6 shows the estimated
bias (y-axis) and variance (x-axis) of simulated evaluators. We see that single evaluators have a
smaller variance (less than 0.2) than humans (blue line, 0.34). This lack of variability makes emulating
it with a proxy reward very easy and leads to unrealistic over-optimization properties in the simulator,
as seen in Figure 4. Using a pool of annotators (green point) for evaluation and additionally adding
noise (orange) during training gives an estimated variance significantly closer to humans (blue line
0.35). We hypothesize that this is necessary for the simulator to show a similar over-optimization
behavior as humans. Concerning the bias, we find that our simulated annotators for evaluation peval

sim
and training ptrain

sim both have low bias values (0.38 and 0.35) on par with one of our best GPT-4
annotators (0.33).

Variability in a pool of annotators mostly comes from the underlying model. In Figure 7 we
show the pairwise agreement between all annotators in our pool and all other annotators including
the majority vote of humans (first column) and single humans (second column). The desired high
variance corresponds to low values on the diagonal (annotators disagree with themselves) and low
bias corresponds to high values in the first column (high agreement with the mode of humans). As
in Figure 6, we see that our pool of annotators peval

sim has low bias and high variance. Figure 7 also
shows that the largest source of variability between annotators comes from the underlying model, as
illustrated by the clusters that arise from GPT4, ChatGPT and Davinci003 annotators.
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Figure 7: The largest source of variability between annotators comes from the underlying model.
Every cell of the heatmap shows the agreement between two annotators (x- and y- axis).

30 40 50 60 70
Preference for lists (%)

25 50 75
Preference for longer outputs (%)

Figure 8: Humans and our simulated annotators prefer outputs that are longer and have lists.

Humans and simulated annotators prefer longer outputs that contain lists. One natural question
is whether simulated and human annotators have biases towards different type of outputs, which
would cause models in both frameworks to be qualitatively different. We identify two stylistic
features, the length and the presence of lists, for which humans have a strong preference and analyze
whether simulated annotators match those preferences. We found that humans prefer longer outputs
62% of the time, while our simulated annotators prefer those 64% of the time. Similarly, humans
prefer outputs with lists 69% of the time, while our simulated annotators prefer those 63% of the
time. This shows that our simulated annotators match well the stylistic preferences of humans, which
suggests that models trained in our sandbox are optimizing similar preferences as those trained with
human feedback and they will likely exhibit similar behaviors.
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E Details on human data collection

Qualification. We conducted the qualification of our annotators based on 25 qualification examples.
The qualification examples were generated but an OPT 6B model that was studied in the earlier
development phase of this project. The five student authors of this paper annotated a shared set of
pairwise preferences. From the shared set, we selected 25 questions where the majority of the authors
reached an agreement on the correct annotation. We then use these questions as a qualification test
and selected the top 16 annotators whose agreement is the highest with the authors. We paid the
annotators the same price for the qualification round as we did for the main qualification.

During the annotation process, we also compare each annotator’s preference to that of GPT-4. We
identified one annotator whose agreement is around 50% with GPT-4, which is a clear outlier from
other annotators. Therefore, we discontinued working with this annotator during the annotation
project and removed their annotation.

Annotation guideline. We display our annotation guideline in Figure 9 and annotation interface in
Figure 10. In our annotation process, we find that there are pairs that only differ in punctations or
have minimal edit distance and we instruct the annotators to select a response as slightly better/worse
if the difference between the pairs is marginal. As a result, around 18% of the collected preference
selected the slightly better options. In our LPF experiments, we binarize the preference and treated
the slightly better options the same as the normal preference labels. However, we release the more
fine-grained labels as resources and leave the study to future work.
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Hi! We are a group of researchers working on Artificial Intelligence (AI). In this task, we will ask you to help us rate an AI model's responses to instructions.

In the area below, you will first read:

1. An instruction we give to the AI system.
2. An input that is provided along with the instruction. This is an optional input and not all instructions will have inputs.
3. Two responses from the AI system

Your task is to decide which response is better. There are several dimensions that you can think along. Consider the following questions:

1. Is the response helpful? For example, if the instruction asked for a recipe for healthy food, and the response is a useful recipe, then we can consider it helpful.
2. Is the response language natural? For example, AI responses are often repetitive, which is not natural.
3. Is the response factual/accurate? AI responses often make up new information. For example, if the response claims that Donald Trump is the current U.S.

president, then you should consider it inaccurate.
4. Based on your aesthetics, which one do you prefer? For example, you might prefer one poem over another poem.
5. And so on ... ultimately, you should decide which response is better based on your judgment and based on your own preference.

There are four options for you to choose from:

1. Response 1 is betterResponse 1 is better: If you think response 1 has an advantage, then choose this option.
2. Response 1 is slightly betterResponse 1 is slightly better: Response 1 is very marginally better than response 2 and the difference is small.
3. Response 2 is slightly betterResponse 2 is slightly better: Response 2 is very marginally better than response 1 and the difference is small.
4. Response 2 is betterResponse 2 is better: If you think response 2 has an advantage, then choose this option.

There are cases where the difference between the two responses is not clear. In this case, you can choose the second or the third option. However, in general, we ask
you to choose those options as few as possible.

Annotation ExamplesAnnotation Examples

To help you understand the annotation task, we provide two examples below.

Example 1Example 1

InstructionInstruction: Paraphrase the following question: "What is the capital of France?" InputInput: Response 1Response 1: The capital of France is Paris. Response 2Response 2: Can you tell me the
name of the city that serves as the capital of France?

In this example, response 2 paraphrases the question as asked by the instruction. In contrast, response 1 does not follow instruction as it answers the question
instead. Therefore, we should choose Response 2 is betterResponse 2 is better.

Example 2Example 2

InstructionInstruction: Change the first verb to a synonym InputInput: I love surfing Response 1Response 1: I hate surfing Response 2Response 2: and am planning on going surfing tomorrow morning.

In this example, Neither output is correct. Output (a) tries to follow more closely the instruction as it changes the first verb of the sentence. Therefore, we should
choose Response 1 is betterResponse 1 is better.

Example 3Example 3

InstructionInstruction: Change the first verb to a synonym InputInput: I love surfing Response 1Response 1: I hate surfing Response 2Response 2: I don't like surfing

In this example, neither output is correct and the responses are very similar. In such a case, you can choose either Response 1 is slightly betterResponse 1 is slightly better or Response 2 isResponse 2 is
slightly betterslightly better. However, in general we ask you to choose those options as few as possibleas few as possible .

Payment structurePayment structure

In general, we aim to pay crowd workers $15/hour on average. Our current estimate is that it will usually not take you more than a minute to compare each pair of
responses on average. Therefore, we currently pay $0.25 per pair of responses.

QualificationQualification

In the qualification round, you will need to compare 24 pairs of responses and we pay $6 for this part. We also allocate 2 minutes for you to read the annotation
guideline, for which we pay $0.50. In total, we pay $6.50 for the qualification round.

Main HITMain HIT

In total, we have around 20K pairs to annotate and we plan to spread the annotation over 2 weeks. In each HIT after the qualification round, you can work on 15 pairs
of responses. We pay $3.75 for each HIT.

Figure 9: Our annotation guideline.
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Hi test22. Not your MTurk id? Logout

Your annotation progress for this HIT:  0/6 completed.

Sample 1 of 6.
Lets you skip forward (all samples still need to be marked): → Next sample.

Returns you back to the next un-marked sample to mark:  Go to next un-marked sample.

Annotation Guidelines

Instruction
Tell me about self driving cars

Input

AI Response 1
Self driving cars are vehicles that are capable of detecting their surroundings 
and navigating without any input from a human driver. They use a variety of 
sensors, such as cameras, radar, and lidar, to detect objects in their 
environment and use advanced algorithms to make decisions about how to maneuver 
around them. Self driving cars are becoming increasingly popular and are being 
used in a variety of applications, such as ride-hailing services and autonomous 
delivery services.

AI Response 2
Self driving cars are cars that are equipped with sensors, cameras, and 
software, which allows them to navigate without the need for a driver. Self 
driving cars are able to monitor their environment and navigate without the 
assistance of a driver. Self driving cars use a combination of technologies 
such as GPS, radar, lidar, and computer vision to detect their environment and 
avoid obstacles. They are also able to update their maps and adjust their 
routes to account for variables such as traffic and construction.

The main benefit of self driving cars is their ability to reduce crashes and 
save lives. Autonomous vehicles have the potential to save up to 30,000 lives 
annually. They are also more energy efficient than traditional vehicles, as 
they do not require a driver who has to maintain a minimum speed. Autonomous 
vehicles also create new opportunities for increased mobility, allowing those 
who are unable to drive to get around.

Rating
Response 1 is better.

Response 1 is only slightly better. (only pick this if it's truly close)

Response 2 is only slightly better. (only pick this if it's truly close)

Response 2 is better.

Optional explanation (never required): for cases where rating is near random.

Submit

Figure 10: Our annotation interface.
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F Additional results

F.1 Label noise ablations for simulated annotators
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Figure 11: Label noise is the most crucial ingredient for inducing overoptimization.

In this section, we ablate the different components of pann
sim that add variability along two axes: ran-

domizing across different simulated annotators, and adding label noise. To ablate the randomization
across different annotators, we compare to the simple GPT-4 prompt pGPT-4

sim with added label noise.
To ablate the label noise, we compare to peval

sim , which is pann
sim without the label noise. We train reward

models on these preference distributions and compare the performance of best-of-n sampling.

Figure 11 shows the results of the ablation, demonstrating clearly that added label noise provides
the majority of the overoptimization effect. In particular, the two options that do not add label noise,
pGPT-4

sim and peval
sim , keep increasing win-rates with more samples. This result suggests that modeling

intra-annotator variability via label noise may be an important component to understanding learning
from human preference data. The exact ratio of 25% label noise was chosen to be the smallest
considered ratio that induced overoptimization out of the ones we considered (0,17%,25%,35%), as
shown in fig. 12.

Figure 12: 25% label flipping is the smallest ratio we tested that induced over-optimization. The
y-axis shows the simulated win-rate. The x-axis shows the number n of samples used in best-of-n
sampling, which is proportional to the output’s average reward. Each curve shows a reward model
trained on samples with different label flipping ratios (0%, 17.5%, 25%, 35%). We see that over-
optimization seems to be approximately monotonic with respect to the label-flipping ratio.
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Table 3: Comparing system output before and after training with PPO, we observe that outputs often
become longer and contain more lists.

Instruction: What are the five most common causes of stress among people?
SFT10K: The five
most common causes
of stress among peo-
ple are work, money,
relationships, health,
and family.

PPO: The five most common causes of stress among people are: 1. Pres-
sure at work: Whether it is due to tight deadlines, high expectations, or an
overwhelming workload, pressure at work can be a major source of stress.
2. Money problems: Financial issues can be a significant source of stress,
from not being able to make ends meet to struggling with debt. 3. Un-
healthy lifestyle: Poor diet, lack of exercise, and sleep deprivation can all
contribute to stress. 4. Unhappiness at home: Problems in relationships,
conflicts with family members, and other domestic issues can be a major
source of stress. 5. Uncertainty: Excessive worry and anxiety about the
future, health issues, or other unknowns can be a major cause of stress.

F.2 Understanding computational cost

While we have focused primarily on the performance of the final model, the computational cost of
these methods is an important consideration. We provide time estimates for training on our specific
implementation and compute environment (a single 8×A100 machine). While these timings are
specific to our experiments, we believe these insights may be useful in understanding the cost of
learning from pairwise feedback.

To begin with, supervised fine-tuning and methods that directly adapt supervised fine-tuning like
Binary Reward Conditioning and Binary FeedME are generally fast, taking less than an hour for 10k
instructions. Best-of-n sampling incurs no training cost but instead suffers a substantial inference
time cost. The optimal n for best-of-n was around 16, which (in principle) translates into an increased
cost of 16x for batched inference.

In our experiments, Expert Iteration works best when training on the outputs of best-of-16 sampling,
which involves substantial amounts of compute to perform best-of-16 sampling on the unlabeled split.
Concretely, this sampling process takes around 4 hours on the 20k unlabeled split and the subsequent
fine-tuning takes less than an hour. We observe that PPO performance peaks on both human data
and in simulation after 40-80 steps, which translates to less than 2 hours of compute time on the full
machine.

F.3 Analysis of model outputs

PPO and best-of-n reranking both demonstrate substantial gains with both AlpacaFarm’s simulated
feedback and human feedback. While the changes to the win-rate are clear, it is less clear what
changes to the model lead to these improvements – are the gains driven by improvements to factuality
or reasoning, or are they driven by stylistic differences? We now focus on an analysis of the outputs
of these systems to understand what factors contribute to the improvement in their win-rates.

We find a major difference in the length distributions of the outputs, with outputs becoming increas-
ingly longer after applying LPF methods in both human and simulated feedback. For example, the
average length of SFT 10k outputs is 278 characters. Best-of-16 increases the average length to 570
characters and applying PPO increases it to 637 tokens. In Table 3, we show a qualitative example of
how PPO training changes the output for an evaluation instruction. This is not surprising given that
humans and simulated annotators prefer longer outputs as discussed in appendix D.2.

In Table 6, we futher show three example outputs from SFT 10k, PPOhuman, and PPOsim. In Table 4
and Table 5, we show the average length of model outputs of various systems in the number of
characters, which qualitatively illustrates this phenomenon. While longer responses indeed lead to
better human preference, we continue to see hallucinations in the output (e.g. in the example question
about Berlin) and it is not clear to us whether our LPF models improve on the more critical aspects
such as faithfulness, knowledge, etc.
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Table 4: Average length of the model outputs of
baselines and LPF models trained with human
preferences. We observe that LPF training gen-
erally leads to longer outputs.

Model Number of characters

GPT-4 504.4
ChatGPT 333.4
Davinci001 286.3
SFT 52K 383.2
SFT 10K 277.5
LLaMA 7B 950.5
PPO 200 steps 495.6
PPO 80 steps 623.7
PPO 40 steps 683.1
Best-of-128 680.0
Best-of-16 565.2
Best-of-4 478.7
ExpIter-128 524.7
ExpIter-16 458.3
ExpIter-4 422.1
FeedMe 371.4

Table 5: Average length of the model outputs
of baselines and LPF models trained with simu-
lated preferences. We observe that LPF training
generally leads to longer outputs

Model Number of characters

GPT-4 504.4
ChatGPT 333.4
Davinci001 286.3
SFT 52K 383.2
SFT 10K 277.5
LLaMA 7B 950.5
PPO 80 steps 863.4
PPO 20 steps 637.7
Best-of-128 704.7
Best-of-16 570.5
Best-of-4 483.3
ExpIter-128 527.5
ExpIter-16 458.3
ExpIter-4 407.4
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Table 6: Comparing system output before and after training with PPO, we observe that outputs often
become longer. Example showing output from PPO-tuned models trained with the human preference
phuman and with the simulated preference pann

sim.
What do you think about ChatGPT?
SFT 10k: I think ChatGPT is a promising technology that has the potential to revolutionize the way
we interact with computers. It has the ability to generate natural language text quickly and accurately,
which can be used for many different applications. I think it’s an exciting technology that we’ll
continue to see more and more uses for in the future.
PPOHuman: I think ChatGPT is a fascinating development in natural language processing. It is an
artificial intelligence system that is able to generate human-like text, allowing it to converse with
humans on a variety of topics. It is able to learn from large datasets and improve its performance
over time, allowing it to produce text with increasing accuracy and sophistication. I think it has a lot
of potential applications, from natural language processing and machine translation, to automated
customer service and natural language processing. It is an incredible step forward in AI technology,
and I look forward to seeing what new developments come out of it in the future.
PPOsim: I think ChatGPT is a really cool technology that can generate natural language text based on
an input. It allows for users to quickly generate text responses without needing to write code or create
a custom natural language processor. It also is very good at understanding context and can generate
text based on context and prompts. I think it has a lot of potential applications, such as automated
customer service, natural language processing, and text generation. I think it’s pretty amazing how
quickly the technology is advancing and it’s really cool to see what’s possible with AI and machine
learning. I’m really excited to see what the future holds for ChatGPT and other AI technologies.
Who made Berlin?
SFT 10k: The city of Berlin was made by the German people.
PPOhuman: The city of Berlin was made by various people over the course of its history. It was first
established as a medieval trading post in the 12th century, and subsequently built up by a variety of
different rulers. The city was heavily damaged during the Thirty Years’ War, but was rebuilt and
expanded by the Hohenzollern dynasty in the 17th and 18th centuries. During the 19th century, Berlin
became the capital of the German Empire, and was significantly expanded and modernized under
the leadership of Mayor Otto von Bismarck. The city was also divided into East and West sectors
following World War II, with each sector being ruled by separate Cold War-era governments.
PPOsim: The city of Berlin was made by various people over the centuries. The earliest known
inhabitants of the area were the Tubal and Jabal tribes, who arrived in the region around 2300 BC.
These tribes were later replaced by Celtic tribes, who founded the city of Berlin in the 1st century BC.
The city was then conquered by the Romans in the 1st century AD and was renamed as ’Berlinium’.
During the late Middle Ages, Berlin became an important city in the Holy Roman Empire and was
ruled by various princes and electors. In the 17th century, Berlin gained its current shape under the
rule of Prince-Elector Frederick William I, who established the city’s defensive ring of bastions and
set up the first permanent settlements outside the city walls. In the 18th and 19th centuries, Berlin
experienced a cultural and economic boom, becoming the capital of the Kingdom of Prussia in 1701
and the seat of the German Empire in 1871. The city was also the site of many historical events,
including the foundation of the Weimar Republic in 1919 and the fall of the Berlin Wall in 1989.
Today, Berlin is a bustling city with a population of over 3.7 million people, making it the third-largest
city in Germany.
How many black holes are known to exist at the time?
SFT 10k: Nearly 100 million black holes are known to exist at the time.
PPOhuman: At the time, there are believed to be several million black holes in the universe. This number
is constantly increasing as astronomers discover more and more black holes through observation and
study. Most black holes are found at the centers of many different galaxies, and are thought to be
formed when the most massive stars in the galaxy run out of nuclear fuel and explode in a supernova.
The resulting core of the star is so densely packed that nothing, not even light, can escape its powerful
gravitational pull, giving it the name "black hole".
PPOsim: At the time of this writing, there are over 1000 known black holes in the universe.
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Discuss the causes of the Great Depression
Make a list of desirable Skills for software engineers to add to LinkedIn.
Are there any free SAST tools out there?
I’m trying to teach myself to have nicer handwriting. Can you help?
What if Turing had not cracked the Enigma code during World War II?
Take MLK speech “I had a dream” but turn it into a top 100 rap song
What are some toys I can buy my kids for imaginative play?
Hi, I have a question about MFCC (mel frequency cepstral coefficients).
Are they the same thing as a MEL-spectogram, or is there a difference?

Table 7: Example instructions in AlpacaFarm’s evaluation data.
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Figure 14: Breakdowns of the 52k Alpaca training instructions.

G Additional Analysis on Training and Evaluation Instructions

We show in table 7 examples from the Alpaca evaluation data, showcasing their diversity. We plot
in Figure 14 and Figure 15 the breakdowns of the Alpaca training instruction distribution and the
AlpacaFarm evaluation instruction distribution respectively. In the inner wheel, we plot the root verb
distribution of the instructions and in the outer wheel, we plot the direct subject distribution. We find
that both the training distribution and the evaluation distribution cover a diverse range of instructions
and the distributions match at a high level.
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Figure 15: Breakdowns of 805 AlpacaFarm evaluation instructions.
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