
A Discussions1

In this paper, we present PointGPT, an innovative extension of the GPT framework to point clouds.2

Our scalable approach allows for learning high-capacity models that generalize well, achieving3

state-of-the-art performance on various downstream tasks. However, there are still some aspects that4

need to be improved. (I) Although dense self-attention is deliberately chosen for its domain-agnostic5

nature and widespread utilization in various domains, its quadratic computational complexity poses6

memory and computational challenges when pre-training or fine-tuning PointGPT on large-scale point7

clouds. (II) The hybrid datasets collected for PointGPT are significantly smaller in scale compared8

to those in NLP (2; 5) and image processing (15; 8) domains, thereby imposing limitations on the9

training of larger models. In the future, we aim to further explore the performance boundaries of10

PointGPT and extend its application to a wider range of downstream tasks.11

B Model Architecture12

Following previous studies (14; 10), our original PointGPT model employs the ViT-S configuration13

(15) for the extractor module, enabling the intuitive comparison with these prior methods. The model14

architecture details of PointGPT-S can be found in Table 1(a). Building upon the PointGPT-S model,15

two higher-capacity models, PointGPT-B and PointGPT-L, are introduced by scaling the extractor to16

the ViT-B and ViT-L configurations, respectively. The detailed model architectures of PointGPT-B17

and PointGPT-L are presented in Table 1(b) and Table 1(c).18

C Datasets19

C.1 Unlabeled Hybrid Dataset20

Our unlabeled hybrid dataset contains approximately 300K point clouds in total, with each point21

cloud containing 1024 points. The unlabeled hybrid dataset is constructed by aggregating point clouds22

from seven existing point cloud datasets. These datasets can be classified into three categories based23

on their sources: clean object datasets that acquire point clouds from clean 3D models, comprising24

ModelNet40 (13), PartNet (9), and ShapeNet (3); indoor datasets that extract point clouds from25

real-world indoor scans, including S3DIS (1), ScanObjectNN (12), and SUN RGB-D (11); and26

outdoor dataset Semantic3D (6) that extracts point clouds from real-world outdoor scans. For each27

dataset, we only utilize the point clouds in the training split for model pre-training.28

ModelNet40: The ModelNet40 dataset consists of 12,311 meshed computer-aided design (CAD)29

models, spanning 40 categories, of which 80% are designated for training and the remaining are30

designated for testing. For integration into the hybrid datasets, we uniformly sample 1024 points31

from each model in the ModelNet40 dataset.32

PartNet: The PartNet dataset collects 573,585 part instances across 26,671 3D models, covering 2433

distinct object categories. Each 3D object within the PartNet dataset is annotated with fine-grained,34

instance-level, and hierarchical 3D part information. As part of our data collection process, these 3D35

models are downsampled into 1024 points and incorporated into our hybrid datasets.36

ShapeNet: The ShapeNet dataset encompasses a wide range of 55 common object categories,37

comprising more than 50,000 distinct 3D models. Following Point-MAE (10), we partition the38

ShapeNet dataset into separate training and validation sets. Subsequently, we downsample the point39

clouds from the ShapeNet dataset and incorporate them into our hybrid datasets.40

S3DIS: The S3DIS dataset contains five large-scale indoor areas situated within three distinct41

buildings. These indoor scans span a total area of 6020 square meters and encompass an extensive42

collection of over 215 million points with ground-truth semantic annotations. The point clouds within43

the dataset are further divided into 272 rooms and annotated with 13 semantic elements, with an44

additional label assigned for clutter. To incorporate S3DIS into the hybrid datasets and obtain labels45

for post-pre-training, we extract instance-level point clouds based on their corresponding semantic46

annotations and retain only those point clouds that exceed a minimum threshold of 1024 points.47

ScanObjectNN: The ScanObjectNN dataset encompasses approximately 15,000 objects, classified48

into 15 distinct categories, with a total of 2902 unique object instances. To enhance the diversity of49
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Table 1: Architecture details of PointGPT-S, PointGPT-B, and PointGPT-L models. The extractor in
PointGPT-S is configured based on the ViT-S (15), which is in line with prior methods (14; 16; 10).
The extractor modules in PointGPT-B and PointGPT-L are scaled to ViT-B and ViT-L, respectively.

(a) Architecture details of PointGPT-S.

Stage PointGPT-S Output Size

Data ShapeNet 1024 × 3

Sequencer Partition(64, 32)
PointNet(128, 256, 512, 384)

64 × 384

Extractor
[

MHA(384)
MLP(1536)

]
× 12 64 × 384

Generator
[

MHA(384)
MLP(1536)

]
× 4 64 × 384

Head MLP(96)
Reshape

64 × 32 × 3

(b) Architecture details of PointGPT-B.

Stage PointGPT-B Output Size

Data UnlabeledHybrid 1024 × 3

Sequencer Partition(64, 32)
PointNet(128, 256, 512, 1024, 768)

64 × 768

Extractor
[

MHA(768)
MLP(3072)

]
× 12 64 × 768

Generator
[

MHA(768)
MLP(3072)

]
× 4 64 × 768

Head MLP(96)
Reshape

64 × 32 × 3

(c) Architecture details of PointGPT-L.

Stage PointGPT-L Output Size

Data UnlabeledHybrid 1024 × 3

Sequencer Partition(64, 32)
PointNet(128, 256, 512, 1024, 1024)

64 × 1024

Extractor
[

MHA(1024)
MLP(4096)

]
× 24 64 × 1024

Generator
[

MHA(1024)
MLP(4096)

]
× 4 64 × 1024

Head MLP(96)
Reshape

64 × 32 × 3
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Table 2: Components of the unlabeled hybrid dataset. The hybrid pre-training
dataset is constructed by collecting point clouds from multiple diverse point
cloud datasets.

Dataset Size Source

ModelNet40 12311 Clean 3D Models
PartNet 26671 Clean 3D Models
ShapeNet 52470 Clean 3D Models
S3DIS 8947 Indoor
ScanObjectNN 100390 Indoor
SUN RGB-D 19061 Indoor
Semantic3D 62807 Outdoor

UnlabeledHybrid 282657 Multi-source

our hybrid datasets, we incorporate three variants: OBJ_ONLY , OBJ_BG, and PB_T50_RS.50

The OBJ_ONLY variant exclusively comprises ground truth segmented objects, while OBJ_BG51

includes objects with their nearby backgrounds. Lastly, the PB_T50_RS variant introduces pertur-52

bations to simulate scenarios where bounding boxes may either over- or under-cover objects, or even53

result in object splitting.54

SUN RGB-D: The SUN RGB-D dataset comprises a collection of 10,335 RGB-D images, captured55

using four distinct sensors, and annotated with both 2D and 3D bounding boxes. These RGB-D56

images are subsequently transformed into 3D point clouds (4). From the ground-truth 3D bounding57

boxes, we extract instance-level point clouds and retain those with a point count exceeding 1024. In58

the post-pre-training stage, the resulting point clouds are annotated with semantic labels derived from59

the bounding boxes, encompassing 10 object categories.60

Semantic3D: The Semantic3D dataset comprises a vast collection of scanned outdoor scenes,61

containing over 3 billion points. It consists of 15 scenes designated for training and an additional 1562

scenes for testing. To partition the outdoor scans, we employ a voxelization process, utilizing voxel63

dimensions of [0.8 × 0.8 × 0.8]. Following this step, only the resulting point clouds with a point64

count exceeding 1024 are retained.65

C.2 Labeled Hybrid Dataset66

The labeled hybrid dataset is constructed based on the unlabeled hybrid dataset, excluding the67

Semantic3D dataset due to the absence of semantic annotations for the generated point clouds,68

obtaining a total of 219,850 point clouds. The semantic labels are obtained by aligning the semantic69

labels of the collected point clouds, covering 87 categories.70

D Implementation Details71

Our PointGPT models are pre-trained and post-pre-trained with a batch size of 128 for 300 epochs.72

We employ the AdamW optimizer (7) with an initial learning rate of 1e − 3 and a weight decay73

of 0.05. The learning rate is linearly scaled based on the total batch size using the formula lr =74

base_lr × batch_size/256. Additionally, we apply the cosine learning rate schedule to gradually75

decay the learning rate over epochs. The specific settings for pre-training and post-pre-training are76

presented in Table 3. Remarkably, we successfully train the PointGPT-L model using merely two77

Nvidia GeForce RTX 3090 graphics cards.78

E Ablation Studies on Post-pre-training79

The effect of the post-pre-training stage is analyzed in Table 4, the post-pre-training stage significantly80

improves the classification accuracy of PointGPT models on the real-world ScanObjectNN dataset,81

but marginally enhances the classification accuracy on the ModelNet40 dataset and the mIoU on the82

ShapeNetPart dataset. Further analyses for each dataset are presented below:83
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Table 3: Implementation details for the pre-training and post-pre-training stages.

(a) Pre-training setting.

Config Value
optimizer AdamW
base learning rate 0.002
weight decay 0.05
batch size 128
learning rate schedule cosine decay
warmup epoch 10
epoch 300
augmentation scale and translate
mask ratio 0.7

(b) Post-pre-training setting.

Config Value
optimizer AdamW
base learning rate 0.002
weight decay 0.05
batch size 128
learning rate schedule cosine decay
warmup epoch 10
epoch 300
dropout 0.5
drop path 0.3

Table 4: Ablation studies on post-pre-training stage. We report the fine-tuned classification accuracy
on ScanObjectNN, ModelNet40 datasets, and the mIoU across all classes (Cls.) and all instances
(Inst.) on the ShapeNetPart dataset. All results are expressed as percentages.

Methods ScanObjectNN ModelNet40 ShapeNetPart
OBJ_BG OBJ_ONLYPB_T50_RS 1k P 8k P Cls.mloU Inst.mloU

without post-pre-training
PointGPT-B 93.6 92.5 89.6 94.2 94.4 84.5 86.4
PointGPT-L 95.7 94.1 91.1 94.5 94.7 84.7 86.5

with post-pre-training
PointGPT-B 95.8 (+2.2) 95.2 (+2.7) 91.9 (+2.3) 94.4 (+0.2)94.6 (+0.2)84.5 (+0.0)86.5 (+0.1)
PointGPT-L 97.2 (+1.5) 96.6 (+2.5) 93.4 (+2.3) 94.7 (+0.2)94.9 (+0.2)84.8 (+0.1)86.6 (+0.1)

ScanObjectNN: The partial visibility of objects in the ScanObjectNN dataset, particularly when84

permutation is introduced, poses a significant challenge. We find that this challenge can be effectively85

mitigated by performing post-pre-training on the unlabeled hybrid dataset. The unlabeled hybrid86

dataset aligns the semantic labels across different datasets, which allows the clean and complete 3D87

object models to provide valuable guidance for learning on the ScanObjectNN dataset.88

ModelNet40: The ModelNet40 dataset exhibits a long-tail distribution, which is further emphasized89

when it is included in the unlabeled hybrid dataset. Only approximately half of the categories in the90

ModelNet40 dataset are shared with other datasets. Therefore, the post-pre-training of the model91

does not lead to significant improvements in classification accuracy on the ModelNet40 dataset.92

ShapeNetPart: The main reason we analyze that limits the performance improvement of post-pre-93

training on part segmentation tasks is due to (I) the limited capacity of the unlabeled hybrid dataset94

and (II) the inherent disparities between classification tasks and segmentation tasks, which pose95

obstacles in leveraging the acquired knowledge from post-pre-training to enhance the performance of96

the model on the ShapeNetPart dataset.97

F Pre-training Results98

Fig. 1 presents the qualitative results of our auto-regressive generation tasks, showcasing the99

effectiveness of our approach. Specifically, our method proficiently predicts subsequent point patches100

and accurately generates the original point cloud. The generation results verify the low information101

density of point clouds, such that our method is able to accurately predict patches even in cases where102

the point cloud is extensively masked with a high proportion. Additionally, the results suggest the103

feasibility of organizing point clouds in a predefined geometric order, offering a novel perspective for104

pre-training transformer models in point clouds.105
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Input Generation Input InputGeneration GenerationInput Generation Input InputGeneration Generation

Figure 1: Generation examples on ShapeNet validation set. The original input (i.e., ground truth)
and generation result of each group is shown from left to right.
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