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Abstract

Encoding models have been used to assess how the human brain represents con-
cepts in language and vision. While language and vision rely on similar concept
representations, current encoding models are typically trained and tested on brain
responses to each modality in isolation. Recent advances in multimodal pretraining
have produced transformers that can extract aligned representations of concepts
in language and vision. In this work, we used representations from multimodal
transformers to train encoding models that can transfer across fMRI responses to
stories and movies. We found that encoding models trained on brain responses to
one modality can successfully predict brain responses to the other modality, partic-
ularly in cortical regions that represent conceptual meaning. Further analysis of
these encoding models revealed shared semantic dimensions that underlie concept
representations in language and vision. Comparing encoding models trained using
representations from multimodal and unimodal transformers, we found that multi-
modal transformers learn more aligned representations of concepts in language and
vision. Our results demonstrate how multimodal transformers can provide insights
into the brain’s capacity for multimodal processing.

1 Introduction

Encoding models predict brain responses from quantitative features of the stimuli that elicited them
[1]. In recent years, fitting encoding models to data from functional magnetic resonance imaging
(fMRI) experiments has become a powerful approach for understanding information processing in the
brain. While many studies have shown that encoding models achieve good performance when trained
and tested on brain responses to a single stimulus modality, such as language [2–9] or vision [10–15],
the human brain is remarkable in its ability to integrate information across multiple modalities. There
is growing evidence that this capacity for multimodal processing is supported by aligned cortical
representations of the same concepts in different modalities—for instance, hearing “a dog is chasing
a cat” and seeing a dog chasing a cat may elicit similar patterns of brain activity [16–21].

In this work, we investigated the alignment between language and visual representations in the
brain by training encoding models on fMRI responses to one modality and testing them on fMRI
responses to the other modality. Encoding models that successfully transfer across modalities can
provide insights into how the two modalities are related [20]. Although previous work has compared
language and vision encoding models, human annotations were required to map language and visual
stimuli into a shared semantic space [20]. To our knowledge, cross-modality transfer has yet to be
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Figure 1: Cross-modality encoding model transfer. (a) Multimodal transformers were used
to extract features of story and movie stimuli. Language encoding models were fit (using
L2-regularized linear regression) to predict story fMRI responses from story stimuli; vision
encoding models were fit to predict movie fMRI responses from movie stimuli. (b) As the
language and vision encoding models share a representational space, language encoding models
could be used to predict fMRI responses to movie stimuli, and vision encoding models to predict
fMRI responses to story stimuli. Encoding model performance was quantified by the linear
correlation between the predicted and the actual response time-courses in each voxel.

demonstrated using encoding models trained on stimulus-computable features that capture the rich
connections between language and vision.

One way to extract aligned features of language and visual stimuli is using transformer models
trained on multimodal objectives like image-text matching [22–28]. Recent studies have shown that
multimodal transformers can model brain responses to language and visual stimuli [29], often outper-
forming unimodal transformers [30–32], suggesting that multimodal training enables transformers to
learn brain-like representations. However, these studies do not assess whether representations from
multimodal transformers can be used to train encoding models that transfer across modalities. Since
multimodal transformers are trained to process paired language and visual inputs, the representations
learned for a concept in language could be correlated with the representations learned for that concept
in vision. This alignment between language and visual representations in multimodal transformers
could facilitate the transfer of encoding models across modalities, which relies on the alignment
between language and visual representations in the brain.

To test this, we used the BridgeTower [28] multimodal transformer to model fMRI responses to
naturalistic stories [9] and movies [12]. We separately obtained quantitative features of story and
movie stimuli by extracting latent representations from BridgeTower. We estimated language encoding
models using story features and story fMRI responses, and vision encoding models using movie
features and movie fMRI responses (Figure 1a). We evaluated how well the language encoding
models can predict movie fMRI responses from movie features (story ! movie) and how well
the vision encoding models can predict story fMRI responses from story features (movie ! story)
(Figure 1b). We compared this to how well the language encoding models can predict story fMRI
responses from story features (story ! story) and how well the vision encoding models can predict
movie fMRI responses from movie features (movie ! movie).

We found that encoding models trained on brain responses to one modality could accurately predict
brain responses to the other modality. In many brain regions outside of sensory and motor cortex,
story ! movie performance approached movie ! movie performance, suggesting that these
regions encode highly similar representations of concepts in language and vision. To assess these
representations, we performed principal components analysis on the encoding model weights and
identified semantic dimensions that are shared between concept representations in language and
vision. Finally, we found that cross-modality performance was higher for features extracted from
multimodal transformers than for linearly aligned features extracted from unimodal transformers.
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Our results characterize how concepts in language and vision are aligned in the brain and demonstrate
that multimodal transformers can learn representations that reflect this alignment.

2 Multimodal transformers

Multimodal transformers are trained on paired language and visual data to perform self-supervised
tasks such as image-text matching. Typically, these models are used to extract representations of
paired language and visual input for downstream tasks such as visual question answering. However,
since multimodal training objectives may impose some degree of alignment between language and
visual tokens for the same concept, these models could also be used to extract aligned representations
of language and visual input in isolation. For instance, latent representations extracted from the
sentence “a dog is chasing a cat” may be correlated with latent representations extracted from a
picture of a dog chasing a cat.

2.1 Feature extraction

In this study, we extracted stimulus features using a pretrained BridgeTower model [28]. BridgeTower
is a vision-language transformer trained on image-caption pairs from the Conceptual Captions
[33], SBU Captions [34], MS COCO Captions [35], and Visual Genome [36] datasets. For each
image-caption pair, the caption is processed using a language encoder initialized with pretrained
RoBERTa parameters [37] while the image is processed using a vision encoder initialized with
pretrained ViT parameters [38]. The early layers of BridgeTower process language and visual tokens
independently, while the later layers of BridgeTower are cross-modal layers that process language
and visual tokens together. Results are shown for the BridgeTower-Base model; corresponding results
for the BridgeTower-Large model are shown in Appendix F.

We used BridgeTower to extract features from the story (Section 3.1) and movie (Section 3.2) stimuli
that were used in the fMRI experiments. Each story and movie stimulus was separately processed
using BridgeTower by running forward passes with input from the corresponding modality. Hidden
representations were extracted from each layer of BridgeTower as the inputs were processed.

For stories, segments of transcripts were provided to the model without accompanying visual inputs.
A feature vector was obtained for every word by padding the target word with a context of 20 words
both before and after. For movies, single frames were provided to the model without accompanying
language inputs. Movies were presented at 15 frames per second, and a feature vector was obtained
for every 2-second segment by averaging latent representations across the 30 corresponding frames.
Feature extraction was done on a node with 10 Intel Xeon Platinum 8180 CPUs and an Nvidia Quadro
RTX 6000 GPU.

2.2 Feature alignment

Transformers compute representations for each layer by attending to different combinations of the
input tokens. While multimodal training tasks may require models to align language and visual tokens
for the same concept, the nature of this alignment depends on the type of attention mechanism used
to combine language and visual tokens [39]. BridgeTower uses a co-attention mechanism wherein
language and visual tokens are passed through different projection matrices, and query vectors from
each modality are only scored against key vectors from the other modality. As a consequence, the
language and visual feature spaces extracted from each layer of BridgeTower may differ up to a linear
transformation.

To correct for these potential transformations, we used the Flickr30K dataset [40]—which consists
of paired captions and images—to estimate linear transformation matrices that explicitly align the
language and visual feature spaces extracted from BridgeTower. We first used BridgeTower to
separately extract language features of each caption and visual features of each image. We then used
L2-regularized linear regression to estimate image ! caption matrices that predict each language
feature from the visual features, and caption ! image matrices that predict each visual feature from
the language features. We evaluated the matrices by measuring how well they align language and
visual features for held out samples from the Flickr30K dataset, and found that the matrices achieved
significant alignment of language and visual features (Appendix C).
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Before using the language encoding model to predict movie fMRI responses, we first used the
image ! caption matrix to project the movie features into the language feature space. Similarly,
before using the vision encoding model to predict story fMRI responses, we first used the caption !
image matrix to project the story features into the visual feature space.

To show that this explicit feature alignment is only necessary for certain attention mechanisms, we
repeated our analyses using a KD-VLP [24] vision-language transformer (Appendix G). KD-VLP
uses a merged attention mechanism wherein language and visual tokens are passed through the same
projection matrices and query vectors are scored against all key vectors, making explicit feature
alignment unnecessary.

3 fMRI experiments

We analyzed publicly available fMRI data from five subjects (2 female, 3 male) who participated in a
story listening experiment and a movie watching experiment [20]. Previous studies have modeled the
story fMRI data as a function of the story stimuli [9, 4, 41] and the movie fMRI data as a function of
the movie stimuli [12]. Blood-oxygen level dependent (BOLD) brain signals were recorded using
gradient-echo EPI on a a 3T Siemens TIM Trio scanner at the UC Berkeley Brain Imaging Center
with a 32-channel volume coil, TR = 2.0045 seconds, TE = 31 ms, flip angle = 70 degrees, voxel
size = 2.24 ⇥ 2.24 ⇥ 4.1 mm (slice thickness = 3.5 mm with 18 percent slice gap), matrix size =
100 ⇥ 100, and 30 axial slices. All experiments and subject compensation were approved by the
UC Berkeley Committee for the Protection of Human Subjects. Further details about the data are
provided in Appendix A.

3.1 Story experiment

Stimuli for the story experiment consisted of 10 naturally spoken narrative stories from The Moth
Radio Hour totaling just over 2 hours [9]. The stories were presented over Sensimetrics S14
headphones. Subjects were instructed to listen to the stories with their eyes closed. Each story was
played during a single fMRI scan.

3.2 Movie experiment

Stimuli for the movie experiment consisted of 12 videos totaling 2 hours [12, 14]. Each video was
made by concatenating a sequence of 10-20 s clips from movies drawn from the Apple QuickTime
HD gallery and YouTube. The videos were presented at 15 frames per second. The videos originally
contained dialogue and music, but were presented silently to the subjects. Subjects were instructed to
fixate on a dot at the center of the screen. Each video was played during a single fMRI scan.

4 Voxelwise encoding models

Our study builds upon the voxelwise modeling framework used in many previous fMRI studies [1].
Voxelwise encoding models learn a mapping from stimuli to the brain responses that they elicit in
each individual subject [9]. Brain images recorded at times t = 1...T are given by y(t) 2 Rm where
m is the number of voxels in the cerebral cortex. Responses for one subject are represented by the
response matrices Ystory 2 RTstory⇥m and Ymovie 2 RTmovie⇥m.

The story and movie features were resampled to the fMRI acquisition times using a Lanczos filter.
To account for the hemodynamic response, a finite impulse response model with 4 delays (2, 4, 6,
and 8 seconds) was applied to the downsampled features. This resulted in the delayed stimulus
matrices Xstory 2 RTstory⇥4k and Xmovie 2 RTmovie⇥4k where k = 768 is the dimensionality of
the BridgeTower features.

We modeled the mapping between stimulus features and brain responses with a linear model Y = X�.
Each column of � represents a voxel’s linear weights on the 4k delayed features. The weights �
were estimated using L2-regularized linear regression. Regularization parameters were independently
selected for each voxel using 50 iterations of a cross-validation procedure.

Voxelwise modeling was done on a workstation with an Intel Core i9-7900X CPU. Further details
about voxelwise modeling are provided in Appendix B.
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4.1 Evaluation

Voxelwise encoding models were evaluated by predicting the response matrices Ytest from the
stimulus matrices Xtest for stimuli that were excluded from model estimation. Prediction performance
for each voxel was quantified by the linear correlation between the predicted and the actual response
time-courses [9, 4, 6, 2].

To quantify source ! target performance from a source modality to a target modality, we estimated
encoding models using all source scans and evaluated prediction performance on each target scan. We
averaged linear correlations across the target scans to obtain a score rsource!target for each voxel. A
high rsource!target score indicates that a voxel’s tuning for concepts in the target modality is aligned
with its tuning for concepts in the source modality.

We compared this cross-modality performance against the within-modality performance of an en-
coding model trained on the target modality. To quantify target ! target performance, we held
out each target scan, estimated encoding models using the remaining target scans, and evaluated
prediction performance on the held out target scan. We averaged linear correlations across the held
out target scans to obtain a score rtarget!target for each voxel.

Many previous studies evaluated encoding models on averaged responses to a single test stimulus
[9, 42, 4]. Here we evaluated encoding models on single repetition responses to many test stimuli,
as our stimuli vary in semantic content. While our evaluation produces less biased estimates of
cross-modality and within-modality performance, the correlation values will be lower than previously
reported results due to the lower signal-to-noise ratio of single repetition response data.

We separately identified voxels with statistically significant story ! story and movie ! movie
within-modality scores. We computed null distributions of the within-modality scores using a
blockwise permutation test to account for autocorrelation in the voxel responses (Appendix C).

4.2 Layer selection

Separate encoding models were trained using stimulus features extracted from each layer of
BridgeTower. We summarized performance across layers by estimating the best layer for each
voxel using a bootstrap procedure. For each test scan, we estimated the best layer for each voxel
based on mean prediction performance across the remaining test scans. We then used the selected
layer for each voxel to compute prediction performance for that voxel on the held out test scan. We
used this procedure for all analyses unless noted otherwise.

5 Results

We separately estimated language and vision encoding models for each subject. We used these models
to compute rstory!movie, rmovie!story , rstory!story , and rmovie!movie scores for each voxel.

5.1 Cross-modality performance

Cross-modality performance was visualized by projecting rstory!movie and rmovie!story scores
for each voxel in one subject onto a flattened cortical surface (Figure 2a; see Appendix E for other
subjects; see Appendix F for BridgeTower-Large model results and Appendix G for KD-VLP model
results). We found positive rstory!movie and rmovie!story scores in many parietal, temporal, and
frontal regions, which have previously been shown to represent the meaning of concepts in language
[9] and vision [12]. The high story ! movie scores and positive (albeit lower) movie ! story
scores suggest that these voxels have similar tuning for the same concepts across modalities [20].

Conversely, we found negative rstory!movie and rmovie!story scores in visual cortex. Previous
studies have reported that the tuning to perceptual information in visual cortex may be inverted
during conceptual processing in the absence of perception [43, 44]. If there is systematically inverted
tuning between language and vision, it should be possible to first estimate which voxels would have
negative cross-modality scores using separate validation data, and then multiply their weights by �1
before computing rstory!movie and rmovie!story on test data. We performed this correction using a
bootstrap procedure across the test scans. For each test scan, we estimated which voxels have inverted
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Figure 2: Cross-modality prediction performance. Encoding models estimated on brain re-
sponses to one modality were evaluated on brain responses to the other modality. Cross-modality
performance is measured by the linear correlation (r) between predicted and actual responses.
(a) rstory!movie and rmovie!story scores for each voxel in one subject are displayed on the
subject’s cortical surface. A voxel appears red if its score is positive, blue if its score is negative,
and white if its score is zero. White outlines show regions of interest (ROIs) identified using
separate localizer data. AC and VC denote auditory cortex and visual cortex. rstory!movie

and rmovie!story scores were positive in regions that have previously been found to represent
the meaning of concepts in language and vision, but negative in visual cortex. (b) Prediction
performance for each layer of BridgeTower. Negative scores were corrected by using held
out data to fit a one-parameter model for each voxel that predicts whether the encoding model
weights should be negated before computing transfer performance. Scores were averaged across
voxels and then across subjects to provide unbiased albeit conservatively low summaries of
model performance. Error bars indicate standard error of the mean across subjects.

tuning based on the mean prediction performance across the remaining test scans. We then multiplied
the weights of these voxels by �1 before computing prediction performance on the held out test scan.

Figure 2b shows story ! movie and movie ! story performance across cortex before and after
this correction. We summarized performance for each layer of BridgeTower by averaging the linear
correlations across all cortical voxels and subjects. Averaging across cortical voxels is an unbiased
way to compare different encoding models [4], but it produces conservatively low correlation values
since many cortical voxels are not involved in processing language or vision. Across layers, the
correction significantly improved story ! movie performance (one-sided paired t-test; p < 0.05,
t(4) = 7.5295, rcorrected = 0.0230, runcorrected = 0.0053) and movie ! story performance
(one-sided paired t-test; p < 0.05, t(4) = 6.6356, rcorrected = 0.0097, runcorrected = 0.0031),
providing evidence for systematically inverted tuning for the same concepts across modalities.

5.2 Comparing cross-modality and within-modality performance

While the previous analysis identified voxels with similar tuning for concepts in language and vision,
it did not characterize the extent of this cross-modal similarity. To do this, we next compared
cross-modality performance to within-modality performance for each voxel (Figure 3a).

To quantify the amount of information that the language encoding model learns about tuning for
movies, we divided rstory!movie by rmovie!movie for each voxel. If the movie responses in a voxel
are well-predicted by the vision encoding model but poorly predicted by the language encoding
model, this value should be low. Conversely, if the movie responses are predicted about as well
using both the vision and language encoding models, then this value should be close to 1. In visual
cortex, which represents structural features of visual stimuli [14], the language encoding model
performed much worse than the vision encoding model at predicting movie responses. In significantly
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Figure 3: Comparing cross-modality and within-modality prediction performance. Cross-
modality scores were compared against within-modality scores in voxels with statistically
significant within-modality scores. (a) Cross-modality scores and within-modality scores for
each voxel in one subject are projected onto the subject’s flattened cortical surface. A voxel
appears dark if its cross-modality score is much lower than its within-modality score, and
bright if its cross-modality score approaches its within-modality score. Only well-predicted
voxels under the within-modality model (q(FDR) < 0.05, one-sided permutation test) are
shown. (b) Histograms compare cross-modality scores to within-modality scores. For movie
responses, rstory!movie scores were much lower than rmovie!movie scores near visual cortex
but approached rmovie!movie scores in other regions. For story responses, rmovie!story scores
were generally much lower than rstory!story scores across cortex.

predicted voxels outside of visual cortex, which represent the meaning of visual stimuli [45, 12, 20],
the language encoding model often approached the performance of the vision encoding model (Figure
3b).

Similarly, to quantify the amount of information that the vision encoding model learns about tuning
for stories, we divided rmovie!story by rstory!story for each voxel. In auditory cortex, which
represents acoustic and articulatory features of language stimuli [42], the vision encoding model
performed much worse than the language encoding model at predicting story responses. In some
significantly predicted voxels outside of auditory cortex, which have been shown to represent the
meaning of language stimuli [42, 9], the vision encoding model performed relatively better, but still
did not approach the performance of the language encoding model (Figure 3b).

These results suggest that visual tuning can often be estimated solely based on how a voxel responds
to stories, while it is much harder to estimate language tuning solely based on how a voxel responds
to movies [46]. One potential confound that could contribute to this asymmetry is that the story
stimuli contain both concrete concepts (such as places) and abstract concepts (such as emotions)
while the movie stimuli mostly contain concrete concepts. Another potential confound is that the
story stimuli contain information at a longer timescale than the movie stimuli, which consist only of
10-20 second clips. To isolate whether the asymmetry in Figure 3 is driven by differences between
language and visual representations in the brain, future work could use story and movie stimuli that
are matched in terms of semantics and timescale coverage.

5.3 Encoding model principal components

The earlier analyses showed that encoding models can readily transfer across modalities, at least in the
direction from language to vision. But what kind of information is it that these cross-modal models
are capturing? To understand the semantic dimensions that underlie the shared tuning for concepts in
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Figure 4: Encoding model principal components. Principal components analysis identified the
first 10 principal components (PCs) of language encoding model weights. (a) Each caption in
Flickr30k was projected onto language PC 1. This PC distinguishes captions that refer to people
and social interactions—which are represented in inferior parietal cortex, precuneus, temporal
cortex, and frontal cortex—from places and objects—which are represented in superior parietal
cortex and middle frontal cortex. (b) Each image in Flickr30k was projected onto language
PC 1. Here language PC 1 distinguishes images of people—which are represented in EBA,
OFA, FFA, inferior parietal cortex, precuneus, temporal cortex, and frontal cortex—from images
of places—which are represented in superior parietal cortex and middle frontal cortex. (c) In
voxels that were well predicted by both the language and the vision encoding models (red on
inset flatmap), projections of language and vision encoding model weights were significantly
correlated (*) for several language PCs, indicating semantic dimensions that are shared between
language and visual representations. (d) In voxels that were well predicted by only the language
or the vision encoding models (blue on the inset flatmap), projections of language and vision
encoding model weights were not significantly correlated for any language PCs. For all results,
error bars indicate standard error of the mean across subjects.

language and vision, we next examined the principal components of the language encoding model
weights. We first determined the 10,000 best predicted voxels in each subject using a bootstrap
procedure (Appendix C). We next averaged the encoding model weights across the 4 delays for each
feature to remove temporal information. We finally applied principal components analysis to the
averaged encoding model weights, producing 768 orthogonal principal components (PCs) that are
ordered by the amount of variance they explain across the voxels. We projected stimulus features
onto each PC to interpret the semantic dimension that the PC captures, and we projected encoding
model weights onto each PC to assess how the corresponding semantic dimension is represented
across cortex. We estimated encoding models using layer 8 of BridgeTower, which has the highest
average performance across cortex, and did not correct for negative cross-modality scores.

Projecting Flickr30k caption features onto the first PC of the language encoding model weights
(language PC 1), we found that phrases with positive language PC 1 projections tend to refer to people
and social interactions, while phrases with negative language PC 1 projections tend to refer to places
and objects (Figure 4a). Projecting the language encoding model weights onto language PC 1, we
found that voxels with positive projections were mostly located in inferior parietal cortex, precuneus,
temporal cortex, and regions of frontal cortex; voxels with negative projections were mostly located
in superior parietal cortex and middle frontal cortex. These findings are consistent with previous
studies that mapped how different concepts in language are represented across cortex [9, 41].

Since our previous results show that many voxels have shared tuning for concepts in language and
vision, the semantic dimensions captured by the language PCs may also underlie the space of visual
representations. Projecting Flickr30k image features onto language PC 1, we found that images with
positive language PC 1 projections tend to contain people, while images with negative language
PC 1 projections tend to contain places such as natural scenes (Figure 4b). Projecting the vision
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encoding model weights onto language PC 1, we found similar patterns to the language encoding
model projections outside of visual cortex. However, we additionally found voxels with positive
projections in visual cortex regions known to represent faces (OFA, FFA) and body parts (EBA) in
vision. These results suggest that the semantic dimension captured by language PC 1 is partially
shared between language and visual representations.

We next quantified the degree to which each of the top 10 language PCs is shared between lan-
guage and visual representations. For each PC, we spatially correlated the projections of the
language and the vision encoding model weights. We separately computed spatial correlations
across multimodal voxels that were well predicted by both the language and vision encoding mod-
els—operationalized as the 10,000 voxels with the highest min(rstory!story, rmovie!movie)—as
well as across unimodal voxels that were well predicted by either the language or vision en-
coding model but not both—operationalized as the 10,000 remaining voxels with the highest
max(rstory!story, rmovie!movie). The spatial correlations quantify how similarly each popula-
tion of voxels represents each semantic dimension in language and vision.

We tested the significance of these correlations using a blockwise permutation test (Appendix C).
For multimodal voxels (Figure 4c), the projections of the language and the vision encoding model
weights were significantly correlated for language PCs 1, 3, and 5 (q(FDR) < 0.05; see Appendix D
for further analyses). For unimodal voxels (Figure 4d), the projections of the language and the vision
encoding model weights were not significantly correlated for any of the language PCs.

5.4 Comparing transfer performance using multimodal and unimodal transformers

Finally, we isolated the effects of multimodal training on cross-modality performance. To provide a
unimodal baseline, we estimated language encoding models using RoBERTa [37] and vision encoding
models using ViT [38]. Since these unimodal transformers were used to initialize BridgeTower, they
provide a baseline for how well language and visual features are aligned prior to multimodal training.

To perform cross-modal transfer with features from the unimodal transformers, we first estimated
linear alignment matrices (Section 2.2) on the Flickr30k dataset. We estimated image ! caption
matrices that predict each RoBERTa language feature from the ViT visual features, and caption !
image matrices that predict each ViT visual feature from the RoBERTa language features. We then
used these alignment matrices to evaluate how well a RoBERTa language encoding model can predict
movie fMRI responses using ViT movie features, and how well a ViT vision encoding model can
predict story fMRI responses using RoBERTa story features.

Across cortex, we found that multimodal features led to significantly higher story ! movie
performance (one-sided paired t-test; p < 0.05, t(4) = 2.1377, rmultimodal = 0.0230, runimodal =
0.0219) and movie ! story performance (one-sided paired t-test; p < 0.05, t(4) = 5.3746,
rmultimodal = 0.0097, runimodal = 0.0074) than unimodal features (Figure 5a). In particular,
multimodal features led to higher story ! movie performance outside of visual cortex, and higher
movie ! story performance outside of auditory cortex (Figure 5b). These results suggest that
multimodal training objectives induce the BridgeTower model to learn more complex connections
between language and visual representations than a simple linear alignment between modalities.

To isolate the impact of any kind of training on transfer performance, we compared cross-modality
performance for a trained BridgeTower model to cross-modality performance for a randomly initial-
ized BridgeTower model. We found that the trained model substantially outperformed the randomly
initialized model (Appendix H).

6 Discussion

Our study demonstrates that encoding models trained on brain responses to language or visual stimuli
can be used to predict brain responses to stimuli in the other modality, indicating similar conceptual
representations of language and visual stimuli in the brain [21, 20]. Our analyses identified the
regions in which these representations are aligned, as well as the semantic dimensions underlying this
alignment. Notably, however, while tuning for concepts in language and vision is positively correlated
in most regions outside of visual cortex, it is negatively correlated in visual cortex. Understanding
the nature of this inverted tuning is an important direction for future work that could provide deeper
insights into the relationship between language and vision [43, 44].
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Figure 5: Transfer performance using features from multimodal and unimodal transformers.
Cross-modality scores were compared between multimodal encoding models that extract features
using BridgeTower and unimodal encoding models that extract features using RoBERTa and
ViT. (a) The difference between the multimodal score and the unimodal score for each voxel
in one subject is projected on the subject’s flattened cortical surface. A voxel appears red if it
is better predicted by multimodal features, blue if it is better predicted by unimodal features,
white if it is well predicted by both, and black if it is well predicted by neither. (b) Histograms
compare multimodal scores to unimodal scores. For story ! movie transfer, multimodal
features outperform unimodal features in regions outside of visual cortex.

To estimate the cross-modal encoding models, we used the BridgeTower multimodal transformer to
extract features of the story and movie stimuli. The successful transfer performance demonstrates
that multimodal transformers learn aligned representations of language and visual input. Moreover,
stimulus features extracted from multimodal transformers led to better cross-modality performance
than linearly aligned stimulus features extracted from unimodal transformers, suggesting that multi-
modal training tasks enable BridgeTower to learn connections between language and visual concepts
that go beyond a simple linear alignment between unimodal representations.

One limitation of our study is the size of the fMRI dataset. Many naturalistic neuroimaging ex-
periments collect a large amount of brain data from a small number of subjects, which allows for
the replication of the effects in each individual subject [12, 8, 9, 47, 48]. While our results are
consistent across subjects (Appendix E), it would be ideal to replicate these effects in a larger and
more diverse population. A second limitation of our study is that the story and movie stimuli are not
matched in terms of semantics and timescale coverage, which could lead to asymmetries between
story ! movie and movie ! story performance. Finally, a third limitation of our study is that
there may be relevant stimulus features that are not captured by current multimodal transformers. This
could lead us to underestimate the degree of multimodality in the brain. As future multimodal trans-
formers learn to extract increasingly relevant features from story and movie stimuli, new experiments
similar to our study might reveal additional brain regions with shared tuning across modalities.
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