Beam Tree Recursive Cells

Anonymous

Abstract

We propose Beam Tree Recursive Cell (or BT-
Cell) - a backpropagation-friendly framework to
extend Recursive Neural Networks (RvNNs) with
beam search for latent structure induction. We fur-
ther extend this framework by proposing a relax-
ation of the hard top-k operators in beam search
for better propagation of gradient signals. We
evaluate our proposed models in different out-of-
distribution splits in both synthetic and realistic
data. Our experiments show that BT-Cell achieves
near-perfect performance on several challenging
structure-sensitive synthetic tasks like ListOps
and logical inference while maintaining compa-
rable performance in realistic data against other
RvNN-based models. Additionally, we identify a
previously unknown failure case for neural mod-
els in generalization to unseen number of argu-
ments in ListOps. The code is in the supplemen-
tary and will be made available online.

1. Introduction

In the space of sequence encoders, Recursive Neural Net-
works (RvNNs) can be said to lie somewhere in-between
Recurrent Neural Networks (RNNs) and Transformers in
terms of flexibility. While vanilla Transformers show phe-
nomenal performance and efficient scalability on a variety
of tasks, they can often struggle in length generalization and
systematicity in syntax-sensitive tasks (Tran et al., 2018;
Shen et al., 2019a; Lakretz et al., 2021; Csordas et al., 2022).
RvNN-based models, on the other hand, can often excel on
some of the latter kind of tasks (Shen et al., 2019a; Chowd-
hury & Caragea, 2021; Liu et al., 2021; Bogin et al., 2021)
making them worthy of further study although they may
suffer from limited scalability in their current formulations.

Given an input text, RvNNs (Pollack, 1990; Socher et al.,
2010) are designed to build up the representation of the

“Equal contribution 'Anonymous Affiliation. Correspondence
to: Anonymous <Anonymous>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1

whole text by recursively building up the representations of
their constituents starting from the most elementary repre-
sentations (tokens) in a bottom-up fashion. As such, RvINNs
can model the hierarchical part-whole structures underly-
ing texts. However, originally RvNNs required access to
pre-defined hierarchical constituency-tree structures. Sev-
eral works (Socher et al., 2011; Havrylov et al., 2019; Choi
et al., 2018; Maillard et al., 2019; Chowdhury & Caragea,
2021) introduced latent-tree RvNNs that sought to move
beyond this limitation by making RvNNs able to learn to
automatically determine the structure of composition from
any arbitrary downstream task objective.

Among these approaches, Gumbel-Tree models (Choi et al.,
2018) are particularly attractive for their simplicity. How-
ever, they not only suffer from biased gradients (due to the
use of Straight-Through Estimation (STE)), but they also
perform poorly on synthetic tasks like ListOps (Nangia &
Bowman, 2018) that were specifically designed to diagnose
the capacity of neural models for automatically inducing
underlying hierarchical structures. To tackle these issues,
we propose the Beam Tree Cell (BT-Cell) framework that
incorporates beam-search on RvNNs replacing the Gumbel
Softmax in Gumbel-Tree models. Instead of greedily select-
ing the highest scored sub-tree representations like Gumbel-
Tree models, BT-Cell chooses and maintains top-k highest
scored sub-tree representations. We show that BT-Cell out-
performs Gumbel-Tree models in challenging structure sen-
sitive tasks by several folds. For example, in ListOps, when
testing for samples of length 900-1000, BT-Cell increases
the performance of a comparable Gumbel-Tree model from
37.9% to 86.7% (see: Table 1). We further extend BT-Cell
by replacing its non-differentiable top-k operators with a
novel operator called OneSoft Top-K. Our proposed op-
erator, combined with BT-Cell, achieves a new state-of-
the-art in length generalization and depth-generalization in
structure-sensitive synthetic tasks like ListOps and performs
comparably in realistic data against other strong models.

A few recently proposed latent-tree models simulating
RvNNs including LSTM-RL (reinforcement learning)
(Havrylov et al., 2019), Ordered Memory (OM) (Shen et al.,
2019a) and Continuous RvNNs (CRvNNSs) (Chowdhury &
Caragea, 2021) are also strong contenders to BT-Cell on
synthetic data. However, unlike BT-Cell, LSTM-RL relies
on expensive reinforcement learning and several sophisti-

Beam Tree Recursive Cells

cated techniques to stabilize training. Moreover, compared
to OM and CRvVNN, one distinct advantage of BT-Cell is
that it not just provides the final sequence encoding (rep-
resenting the whole input text) but also the intermediate
constituent representations at different levels of hierarchy
(representations of all nodes of the underlying induced trees).
Such tree-structured node representations can be useful as
inputs to further downstream modules like a Transformer
(Vaswani et al., 2017) or Graph Neural Network (Scarselli
et al., 2009) in a full end-to-end setting.1 While CYK-based
RvNNs (Maillard et al., 2019) are also promising and simi-
larly can provide multiple span representations they tend to
be much more expensive than BT-Cell (see §5.3).

As a further contribution, we also identify a previously
unknown failure case for even the best performing neural
models when it comes to argument generalization in ListOps
(Nangia & Bowman, 2018)—opening up a new challenge
for future research.

2. Preliminaries

Problem Formulation: Similar to Choi et al. (2018),
throughout this paper, we explore the use of RvNNSs as a sen-
tence encoder. Formally, given a sequence of token embed-
dings X = (e1, e, ..., e,) (Where X € R™ % ¢; € R%,
and d. is the embedding size), the task of a sentence en-
coding function & : IR™*% — IR is to encode the whole
sequence of vectors into a single vector o = £(X’) (where
o € R% and dy, is the size of the encoded vector). We can
use a sentence encoder for sentence-pair comparison tasks
like logical inference or for text classification.

2.1. RNNs and RvNNs

A core component of both RNNs and RvNNs is a recursive
cell R. In our contexts, R takes as arguments two vectors
(a1 € R%1 and ay € IR%2) and returns a single vector
v = R(a1,a2). R: R%1 x R%2 — R%. In our settings,
we generally set d,, = do, = d,, = dp. Given a sequence
X, both RNNs and RvNNs sequentially process it through
a recursive application of the cell function. For a concrete
example, consider a sequence of token embeddings such
as (244 x 4 4 3) (assume the symbols 2, 4, + etc. repre-
sent transformations of corresponding embedding vectors
e IR%). Given any such sequence, RNNs can only follow
a fixed left-to-right order of composition. For the particular
aforementioned sequence, an RNN-like application of the

!There are several works that have used intermediate span repre-
sentations for better compositional generalization in generalization
tasks (Liu et al., 2020; Herzig & Berant, 2021; Bogin et al., 2021;
Liu et al., 2021; Mao et al., 2021). We keep it as a future task to
explore whether the span representations returned by BT-Cell can
be used in relevant ways.

cell function can be expressed as:
o = R(R(R(R(R(R(R(h0,2),+),4), x),4),+),3) (1)

Here h0 is some input-independent initial state (“initial
hidden state”) set in the model. In contrast to RNNs, RvNNs
can compose the sequence in more flexible orders. For
example, one way (among many) that RvNNs could apply
the cell function is as follows:

0= R(R(R(R(2,+), R(R(4, x),4)),+),3) (2)

Thus, RvNNs can be considered as a generalization of RNNs
where a strict left-to-right order of composition is not any-
more enforced. As we can see, by these strategies of recur-
sively reducing two vectors into a single vector, both RNNs
and RvNNs can implement the sentence encoding function
in the form of £. Moreover, the form of application of cell
function exhibited by RNNs and RvNNs can also be said
to reflect a tree-structure. For any application of the cell
function in the form v = R(aq, az), v can be treated as the
representation of the immediate parent node of child nodes
a1 and a in an underlying tree.

In Eqn. 2, we find that RvNNSs can align the order of com-
position to PEMDAS whereas RNNs cannot. Nevertheless,
RNNSs can still learn to simulate RvINNs by modeling tree-
structures implicitly in their hidden state dimensions (Bow-
man et al., 2015b). For example, RNNs can learn to hold off
the information related to “24"" until “4 x 4” is processed.
Their abilities to handle tree-structures is analogous to how
we can use pushdown automation in a recurrent manner
through an infinite stack to detect tree-structured grammar.
Still, RNNs can struggle to effectively learn to appropriately
organize information in practice for large sequences. Spe-
cial inductive biases can be incorporated to enhance their
abilities to handle their internal memory structures (Shen
et al., 2019b;a). However, even then, memories remain
bounded in practice and there is a limit to what depth of
nested structures they can model.

More direct approaches to RvNNSs, in contrast, can alleviate
the above problems and mitigate the need of sophisticated
memory operations to arrange information corresponding to
a tree-structure because they can directly compose accord-
ing to the underlying structure (Eqn. 2). However, in the
case of RvNNs, we have the problem of first determining
the underlying structure to even start composition. One ap-
proach to handle the issue can be to train a separate parser
to induce a tree structure from sequences using gold tree
parses. Then we can use the trained parser in RvNNs. How-
ever, this is not ideal. Not all tasks or languages would come
with gold trees for training a parser and a parser trained in
one domain may not translate well to another. A potentially
better approach is to jointly learn both the cell function and
structure induction from a downstream objective. We focus

Beam Tree Recursive Cells

on this latter approach. Below we discuss one framework
for this approach.

2.2. Easy-First Parsing and Gumbel Tree Models

Here we describe an adaptation (Choi et al., 2018) of easy-
first parsing (Goldberg & Elhadad, 2010) for RvNN-based
sentence-encoding. The algorithm relies on a scorer func-
tion score : R — IR' that scores parsing decisions.
Particularly, if we have v = R(a1,as2), then score(v)
represents the plausibility of a; and as belonging to the
same immediate parent constituent. Similar to (Choi et al.,
2018), we keep the scorer as a simple linear transformation:
score(v) = Wy,v (where W, € R and v € R™).

Recursive Loop: In this algorithm, at every iteration
in a recursive loop, given a sequence of hidden states
(h1,ha,...,hy,) we consider all possible immediate can-
didate parent compositions taking the current states as chil-
dren: (R(hy,ha), R(ha,h3),..., R(hy_1,hy)).> We then
score each of the candidates with the score function and
greedily select the highest scoring candidate (i.e. we commit
to the “easiest” decision first). For the sake of illustration,
assume score(R(h;, hi11)) > score(R(h;, hjy1)) Vj €
{1,2,...,n}. Thus, following the algorithm the parent can-
didate R(h;, h;y1) can be chosen. The parent representa-
tion R(h;, h;y1) would then replace its immediate children
h; and h;41. Thus, the resulting sequence will become:
(hl, ey hq',_17 R(hz, hi+1)a hi+2, ey hn) Like thiS, the
sequence will be iteratively reduced to a single element rep-
resenting the final sentence encoding. The full algorithm is
presented in the Appendix (see Algorithm 1).

One issue here is to decide how to choose the highest scor-
ing candidate. One way to do it is to simply use an argmax
operator but it will not be differentiable. Gumbel-Tree mod-
els (Choi et al., 2018) address this by using Straight Through
Estimation (STE) (Bengio et al., 2013) with Gumbel Soft-
max (Jang et al., 2017; Maddison et al., 2017) instead of
argmax. However, STE is known to cause high bias in gra-
dient estimation. Moreover, as it was previously discovered
(Nangia & Bowman, 2018), and as we independently verify,
STE Gumbel-based strategies perform poorly when tested in
structure-sensitive tasks. Instead, to overcome these issues,
we propose an alternative of extending argmax with a top-k
operator under a beam search strategy.

3. Beam Tree Cell

Motivation: Gumbel-Tree models, as described, are rela-
tively fast and simple but they are fundamentally based on a
greedy algorithm for a task where the greedy solution is not

2We focus only on the class of binary projective tree struc-
tures. Thus all the candidates are compositions of two contiguous
elements.

guaranteed to be optimal. On the other hand, adaptation of
dynamic programming-based CYK-models (Maillard et al.,
2019) leads to high computational complexity (see §5.3). A
“middle way” between the two extremes is then to simply
extend Gumbel-Tree models with beam-search to make it
less greedy while still being less costly than CYK-parsers.
Moreover, using beam-search also provides additional op-
portunity to recover from local errors whereas a greedy
single-path approach (like Gumbel Tree models) will be
stuck with any errors made. All these factors motivate the
framework of Beam Tree Cells (BT-Cell).

Implementation: The beam search extension to Gumbel-
Tree models is straight-forward and similar to standard beam
search. The method is described more precisely in Ap-
pendix A.1 and Algorithm 2. In summary, in BT-Cell, given
a beam size k, we maintain a maximum of k£ hypotheses
(or beams) at each recursion. In any given iteration, each
beam constitutes a sequence of hidden states representing a
particular path of composition and an associated score for
that beam based on the addition of log-softmaxed outputs
of the score function (as defined in §2.2) over each chosen
composition for that sequence. At the end of the recursion,
we will have k sentence encodings ((01, 09, . .., 0) where
0; € R%) and their corresponding scores ((s1, S2, - - . , Sk)
where s; €]Rl). The final sequence encoding can be then

exp(s;)-0;

Lk
.represented as: .Ei:l (72521 cap(s) .
ing the expectation over the k sequence encodings.

>. This aims at comput-

3.1. Top k Variants

As in standard beam search, BT-Cell requires two top-k op-
erators. The first top-k replaces the straight-through Gumbel
Softmax (simulating top-1) in Gumbel-Tree models. How-
ever, selecting and maintaining k possible choices for every
beam in every iteration leads to an exponential increase in
the number of total beams. Thus, a second top-k operator
is used for pruning the beams to maintain only a maximum
of k£ beams at the end of each iteration. Here, we focus on
variations of the second top-k operator that is involved in
truncating beams:

Plain Top-%: The simplest variant is just the vanilla top-%
operator. However, the vanilla top-k operator is discrete
and non-differentiable preventing gradient propagation to
non-selected paths. Despite that, this can still work for
the following reasons: (1) gradients can still pass through
the final top k£ beams and scores. The scorer function can
thus learn to increase the scores of better beams and lower
the scores of the worse ones among the final k£ beams; (2)
a rich enough cell function can be robust to local errors
in the structure and learn to adjust for it by organizing in-
formation better in its hidden states. We believe that as a
combination of these two factors, plain BT-Cell even with
non-differentiable top-k operators can learn to perform well

Beam Tree Recursive Cells

Scores

Beam Sequences \

OneSoft
TopK

~

/ Beam Sequences Scores

Beam Sequence 1

g Beam Sequence 1 | -0.1

2 Beam Sequence 2 | -0.2

|
Beam Sequence 2 |

-0.1

-0.2
COTTENETES
COCTENETES
& _/

Beam Sequence 3
*+)

Beam Sequence 4

(& >

Figure 1. Visualization of Top-k OneSoft selection from m = 4 beams to top £ = 3 beams. (+) represents interpolation.

for structure-sensitive tasks (as we will empirically observe).

OneSoft Top-k: While non-differentiable top-k operators
can work, they still can be a bottleneck because gradient
signals will be received only for £ beams in a space of
exponential possibilities. To address this issue, we consider
if we can make the truncation or deletion of beams “softer”.
To that end, we develop a new Top-k operator that we call
OneSoft Top-k. We motivate and describe it below.

As a concrete case, assume we have m beams (sequences
and their corresponding scores). The target for a top-k oper-
ator is to keep only the top scoring k beams (where &k < m).
Ideally we want to keep the beam representations “sharp”
and avoid washed out representations owing to interpolation
(weighted vector averaging) of distinct paths (Drozdov et al.,
2020). This can be achieved by plain top-k. However, it
prevents propagation of gradient signals through the bottom
m — k beams. Another line of approach is to create a soft
permutation matrix P € IR™*™ through a differentiable
sorting algorithm such that P;; represents the probability of
the i*" beam being the j*" highest scoring beam. P can then
be used to softly select the top k beams. However, running
differentiable sorting in a recursive loop can significantly in-
crease computation overheads and also create more “washed
out” representations leading to higher error accumulation
(also see §5.1 and §5.3). We tackle all these challenges by
instead proposing OneSoft as a simple hybrid strategy to
approach top-k selection. We provide a formal description
of our proposed strategy below and a visualization of the
process in Figure 1.

Assume we have m beams consisting of m sequences:
H = (Hi,...,Hm) (H; € R™ % where n is the se-
quence length) and m corresponding scalar scores: S =
(81, ..., 8m). First, we simply use the plain top-k operator
to discretely select the top k — 1 beams (instead of k). This
allows us to keep the most promising beams “sharp”:

ide = topk(S, K =k —1), Top={(Hi s:)]|i€ idz}

3

Second, for the k" beam we instead perform a softmax-
based marginalization of the bottom m— (k—1) beams. This
allows us to still propagate gradients through the bottom
scoring beams (unlike in the pure plain top-k operator):

B={(Hi,si) | (@ ¢ide) A(i € {1,2,...,m}} @4

Z = Z exp(s))
(H,s)eB
o= ¥ (exp<8>H> 3 <6wp<8>s>
(H,s)eB Z (H,5)eB z
(6)

Here B represents the bottom scoring m — (k — 1) beams
and S P represents the softmax-based marginalization. Fi-
nally, we add the SP to the top k — 1 discretely selected
beams to get the final set of k beams: Top U {SP}. Thus,
we get to achieve a “middle way” between plain top-k and
differentiable sorting: partially getting the benefit of sharp
representations of the former through discrete top £ — 1
selection, and partially getting the benefit of gradient propa-
gation of the latter through soft-selection of the k' beam.
In practice, we switch to plain top-k during inference. This
makes tree extraction convenient during inference if needed.

4. Experiments and Results

We present the main models below. Hyperparameters and
other architectural details are in Appendix F.

1. RecurrentGRC: RecurrentGRC is an RNN implemented
with the Gated Recursive Cell (GRC) (Shen et al., 2019a)
as the cell function (see Appendix B for description of
GRO). 2. GoldTreeGRC: GoldTreeGRC is a GRC-based
RVNN with gold tree structures. 3. GumbelTreeGRC: This
is the same as GumbelTreeLSTM (Choi et al., 2018) but
with GRC instead of LSTM. 4. CYK-GRC: This is the
CYK-based model proposed by Maillard et al. (2019) but
with GRC. 5. Ordered Memory (OM): This is a memory-

Beam Tree Recursive Cells

Model near-11D Length Gen. Argument Gen. LRA
(Lengths) <1000 200-300 500-600 900-1000 | 100-1000 100-1000 | 2000
(Arguments) <5 <5 <5 <5 10 15 10
With gold trees

GoldTreeGRC ‘ 99.95 99.88 99.85 100 80.5 79 78.1
Baselines without gold trees

RecurrentGRC 84.05 33.85 20.2 15.1 37.35 30.10 20.7
GumbelTreeGRC 74.89 47.6 43.85 37.9 51.35 50.5 46.1
CYK-GRC 97.87 93.75 — — 60.75 42.45 —
Ordered Memory 99.88 99.55 92.7 76.9 84.15 75.05 80.1
CRvNN{} 99.63 98.5111 97.9511 96.7819 — — —
CRVNN 98.86 95.89 93.15 89.4 57.8 24.35 45.1
Ours

BT-GRC 99.39 96.15 92.55 86.7 771 63.7 67.3
BT-GRC + OneSoft | 99.92 99.5 99 97.2 76.05 67.9 71.8

Table 1. Accuracy on ListOps. } indicates results from (Chowdhury & Caragea, 2021). For our models we report the median of 3 runs.
Our models were trained on lengths < 100, depth < 20, and arguments < 5. We bold the best results and underline the second-best
among models that do not use gold trees. Subscript represents standard deviation. As an example, 90; = 90 £ 0.1

augmented RNN simulating certain classes of RvNN func-
tions as proposed by (Shen et al., 2019a). OM also uses
GRC. 6. CRVNN: CRvNN is a variant of RvNN with a con-
tinuous relaxation over its structural operations as proposed
by (Chowdhury & Caragea, 2021). CRvVNN also uses GRC.
7. BT-GRC: BT-Cell with GRC cell and plain top-k. 8.
BT-GRC + OneSoft: BT-GRC with OneSoft top-k.

For experiments with BT-Cell models, we set beam size as
5 as a practical choice (neither too big nor too small).

4.1. ListOps Length Generalization Results

Dataset Settings: ListOps (Nangia & Bowman, 2018) is
a challenging synthetic task that requires solving of nested
mathematical operations over lists of arguments. We present
our results on ListOps in Table 1. To test for length-
generalization performance, we train the models only on
sequences with < 100 lengths (we filter the rest) and test on
splits of much larger lengths (eg. 200 — 300 or 900 — 1000)
taken from (Havrylov et al., 2019). “Near-IID” is the orig-
inal test set of ListOps (it is “near” IID and not fully 11D
because a percentage of the split has > 100 length sequences
whereas such lengths are absent in the training split).

Results: RecurrentGRC: As discussed before in §2.1,
RNNs have to model tree structures implicitly in their
bounded hidden states and thus can struggle generalizing
to unseen structural depths. This is reflected in the sharp
degradation in its length generalization performance. Gum-
belTreeGRCs: Consistent with prior work (Nangia &
Bowman, 2018), Gumbel-Tree models fail to perform well
in this task; likely, due to their biased gradient estimation.
CYK-GRC: CYK-GRC shows some promise to length gen-
eralization but it was too slow to run in higher lengths. Or-

dered Memory (OM): Here, we find that OM struggles to
generalize to higher unseen lengths. OM’s reliance on soft
sequential updates in a nested loop can lead to higher error
accumulation over larger unseen lengths or depths. CRvNN:
Consistent with Chowdhury & Caragea (2021), CRvNN per-
forms relatively well at higher lengths. BT-GRC: Here, we
find a massive boost over Gumbel-tree baselines even when
using the base model. In the 900-1000 length generalization
split, BT-GRC increases the performance of GumbelTree-
GRC from 37.9% to 86.7% - by incorporating beam search
with plain top-k. BT-GRC+OneSoft: As discussed in
§3.1, BT-GRC+OneSoft counteracts the bottleneck of gra-
dient propagation being limited through only k£ beams and
achieves near perfect length generalization as we can ob-
serve from Table 1.

4.2. ListOps Argument Generalization Results

Dataset Settings: While length generalization (Havrylov
et al., 2019; Chowdhury & Caragea, 2021) and depth gen-
eralization (Csordas et al., 2022) have been tested before
for ListOps, the performance on argument generalization is
yet to be considered. In this paper, we ask what would hap-
pen if we increase the number of arguments in the test set
beyond the maximum number encountered during training.
The training set of the original ListOps data only has < 5
arguments for each operator. To test for argument general-
ization we created two new splits - one with 10 arguments
per operator and another with 15 arguments per operator.
In addition, we also consider the test set of ListOps from
Long Range Arena (LRA) dataset (Tay et al., 2021) which
serves as a check for both length generalization (it has se-
quences of length 2000) and argument generalization (it has

Beam Tree Recursive Cells

Model SSTS IMDB MNLI

1ID Con. OOD Count. OOD | M MM LenM LenMM NegM NegMM
RecurrentGRC 521915 748628 827219 7123 7144 4925 49524 4936 5016
GurnbelTreeGRC 51.678‘3 70.6321 81.975 71.27 71-26 57.517 59.612 50.520 51.820
Ordered Memory 52.302.7 76.985.8 83.687.8 72.53 732 56.533 57.131 50.97 51.713
CRVNN 51.7511 77.8015 85.383.5 72.24 T72.65 6244 63.347 52.86 53.84
Ours
BT-GRC 52.324.7 | 75.0729 82.8623 71.62 72.31 64.7¢ 66.45 53.737 54.843
BT-GRC + OneSoft 51.927,2 75.6821 84.7711 71.71 71492 65.613 66.79 53.22 54.25

Table 2. Mean accuracy and standard deviaton on SSTS5, IMDB, and MNLI. Con. represents Contrast set and Count. represents
Countefactuals. Our models were run 3 times on different seeds. Subscript represents standard deviation. As an example, 90; = 90 + 0.1

10 arguments) simultaneously>. The results are in Table 1.

Results: Interestingly, we find that all the models do not
perform well (< 90%) on argument generalization. How-
ever, with the exception of Ordered Memory (OM), BT-Cell
models perform much better than any other models (includ-
ing otherwise strong contenders like CRVNN). Interestingly,
OM performs quite well in this split. Some potential reasons
could be the following; First, we know OM’s performance
is not simply due to better parsing because it even surpasses
GoldTreeGRC at times. Second, we also know OM’s per-
formance is not just due to a better recursive cell, since its
cell (GRC) is shared by many other models that do not per-
form as well. This may suggest that the memory-augmented
RNN style setup in OM is more amenable for argument
generalization. Note that Transformer-based architectures
tend to get < 40% on LRA test set for ListOps (Tay et al.,
2021) despite training on in-distribution data whereas we
can still generalize to a performance ranging in between
70-80% by using RvNN-based models trained on data with
much limited sequence lengths and fewer arguments.

4.3. Semantic Analysis (SST and IMDB) Results

Dataset Settings: SST5 (Socher et al., 2013) and IMDB
(Maas et al.,, 2011) are natural language classification
datasets (for sentiment classification). For IMDB, to fo-
cus on OOD performance, we also test our models on the
contrast set (Con.) from (Gardner et al., 2020) and the coun-
terfactual test set (Count.) from (Kaushik et al., 2020). We
present our results on these datasets in Table 2.

Results: The results in these natural language tasks are
rather mixed. There are, however, some interesting high-
lights. CRvNN and OM do particularly well in the OOD
splits (contrast set and counterfactual split) of IMDB, corre-
lating with their better OOD generalization in synthetic data.
BT-GRC + OneSoft remains competitive in those splits with
OM and CRvVNN and is better than any other models be-
sides CRvNN and OM. STE Gumbel-based models tend to

3Note that the LRA test set is in-domain for the LRA training
set and thus, does not test for argument generalization originally

perform particularly worse on IMDB.

4.4. Natural Language Inference Experiments

Dataset Settings: We ran our models on MNLI (Williams
et al., 2018) which is a natural language inference task. We
tested our models on the development set of MNLI and used
a randomly sampled subset of 10, 000 data points from the
original training set as the development set. Our training
setup is different from (Chowdhury & Caragea, 2021) and
other prior latent tree models which combine SNLI (Bow-
man et al., 2015a) and MNLI training sets (we do not add
SNLI data). We filter sequences > 150 from the training
set for efficiency. We also test our models in various stress
tests (Naik et al., 2018). We report the results in Table 2. In
the table, M denotes matched development set (used as test
set) of MNLI. MM denotes mismatched development set
(used as test set) of MNLI. LenM denotes length matched
stress set from (Naik et al., 2018). LenMM denotes length
mismatched stress set from (Naik et al., 2018). NegM de-
notes negation matched stress set from (Naik et al., 2018).
NegMM denotes negation mismatched stress set from (Naik
etal., 2018). Len M/Len MM stress sets add to the length of
the premise by adding tautologies. Neg M/Neg MM stress
sets add tautologies containing “not” terms which can bias
the model to falsely predict contradictions.

Results: The results in Table 2 show that BT-GRC models
perform comparably with the other models in the standard
matched/mismatched sets (M and MM). However, they out-
perform all the other models on length matched/mismatched
stress test (Len M and Len MM). Also, BT-GRC mod-
els tend to do better than the other models in negation
matched/mismatched test sets (Neg M and Neg MM). Over-
all BT-Cell shows better robustness to stress tests.

5. Analysis

5.1. Analysis of Neighbor Models

We also analyze some other models that are similar to BT-
GRC in Table 3 as a form of ablation and show that BT-GRC

Beam Tree Recursive Cells

Model near-11D Length Gen. Argument Gen. LRA
(Lengths) < 1000 200-300 500-600 900-1000 | 100-1000 100-1000 | 2000
(Arguments) <5 <5 <5 <5 10 15 10
Alternative models in the Vicinity of BT-GRC

BT-LSTM 94.1 85.1 83.5 78.8 67.9 44.3 57.9
BSRP-GRC 70.3 42.4 33.2 26.3 40.2 35.8 29.7
MC-GumbelTreeGRC | 89.3 36.8 28.2 25.1 39.5 34 30.1
BT-GRC+SOFT 69 44 37.1 29.4 39.5 38.6 31.6
Robustness of OneSoft Top-K to lower Beam Size (size 2)

BT-GRC 94.18 68.2 56.85 50.2 64.45 56.95 55.85
BT-GRC + OneSoft 99.69 97.55 95.40 91 75.75 62 66.1

Table 3. Accuracy of different models on ListOps (same setting as in Table 1). We report the median of 3 runs.

is still superior to them. We describe these models below
and discuss their performance on ListOps:

BT-LSTM: This is just BT-Cell with an LSTM cell (Hochre-
iter & Schmidhuber, 1997) instead of GRC. In Table 3, We
find that BT-LSTM can still perform moderately well (show-
ing the robustness of BT-Cell as a framework) but worse
than what it can do with GRC. This is consistent with prior
works showing superiority of GRC as a cell function (Shen
et al., 2019a; Chowdhury & Caragea, 2021)

BSRP-GRC: This is an implementation of Beam Shift Re-
duce Parser (Maillard & Clark, 2018) with a GRC cell.
Similar to us, this approach applies beam search but to a
shift-reduce parsing model as elaborated in Appendix C.
Surprisingly, despite using a similar framework to BT-Cell,
BSRPC-GRC performs quite poorly in Table 3. We sus-
pect this is because of the limited gradient signals from its
top-k operators coupled with the high recurrent depth for
backpropagation (twice the sequence length) encountered
in BSRP-GRC compared to that in BT-Cell (the recurrent
depth is the tree depth). Moreover, BSRP-GRC, unlike BT-
Cell, also lacks the global competition among all parent
compositions when making shift/reduce choices.

MC-GambelTreeGRC: Here we propose a Monte Carlo
approach towards Gumbel Tree GRC. This model runs
k gumbel-tree models with shared parameters in parallel.
Since the models are stochastic, they can sample different
latent structures. In the end we can average the final k
sentence encodings treating this as a Monte-Carlo approx-
imation. We set £ = 5 to be comparable with BT-Cell.
MC-GumbelTreeGRC is similar to BT-Cell because it can
model different structural interpretations. However, it fails
to do as effectively as BT-Cell in ListOps. We suspect this is
because beam-search based structure selection allows more
competition between structure candidates when using top-k
for truncation and thus enables better structure induction.

BT-GRC+SOFT: This model incorporates another potential
alternative to OneSoft within BT-GRC. It uses a differen-

tiable sorting algorithm, SOFT Top-k, that was previously
used in beam search for language generation (Xie et al.,
2020), to implement the top-k operator replacing OneSoft.
However, it performs poorly. Its poor performance supports
our prior conjecture (§3.1) that using a soft permutation
matrix in all recursive iterations is not ideal because of in-
creased chances of error accumulation and more “washing
out” through weighted averaging of distinct beams.

5.2. OneSoft Top-k with Lower Beam

We motivated (§3.1) the proposal of OneSoft top-k to specif-
ically counteract the bottleneck of gradient propagation be-
ing limited through only & beams in the base BT-Cell model
(with plain top-k). While we validate this bottleneck through
our experiments in Table 1 for beam size 5, the bottleneck
should be even worse when k (beam size) is low (e.g., 2).
Based on our motivation, OneSoft should perform much
better than plain top-k when beam size is low. We perform
experiments with beam size 2 on ListOps to understand if
that is true and show the results in Table 3. As we can see,
OneSoft indeed performs much better than plain top-k with
lower beam size of 2 where BT-GRC gets only 50.2% in
the 900-1000 split of ListOps, and BT-GRC+OneSoft gets
91%. As we would expect beam size 5 (from Table 1) still
outperforms beam size 2 in a comparable setting.

5.3. Efficiency Analysis

Settings: In Table 4, we compare the empirical performance
of various models in terms of time and memory. We train
each model on ListOps splits of different sequence lengths
(200-250, 500-600, and 900-1000). Each split contains 100
samples. Batch size is set as 1. Other hyperparameters are
same as those used for ListOps. For CRvNN, we show the
worst case performance (without early halt).

Discussion: RecurrentGRC and GumbelTreeGRC can be
relatively efficient in terms of both runtime and memory
consumption. BSRP-GRC and OM, being recurrent models,
can be highly efficient in terms of memory but their com-

Beam Tree Recursive Cells

Sequence Lengths

Model 200 — 250 500 — 600 900 — 1000

Time Memory | Time Memory | Time Memory
RecurrentGRC 0.2min 0.02GB | 0.5 min 0.02GB | 1.3 min 0.03 GB
GumbelTreeGRC 0.5min 0.35GB | 2.1 min 1.95GB | 3.5 min 5.45 GB
CYK-GRC 9.3min 32.4GB | OOM OOM OOM OOM
BSRP-GRC 2.3min 0.06 GB | 6.1 min 0.19GB | 10.5min 0.42 GB
Ordered Memory 8.0min 0.09GB | 20.6 min 0.21GB | 38.2min 0.35GB
CRVNN 1.5min 1.57GB | 4.3 min 12.2GB | 8.0 min 42.79 GB
MC-GumbelTreeGRC | 1.1 min 1.71 GB | 2.4 min 9.85GB | 4.3 min 27.33 GB
BT-GRC 1.1min 1.71GB | 2.6 min 9.82GB | 5.1 min 27.27GB
BT-GRC + OneSoft 1.4min 2.74GB | 4.0 min 15.5GB | 7.1 min 42.95 GB
BT-GRC + SOFT 51min 2.67GB | 126 min 154GB | 23.1min 42.78 GB

Table 4. Empirical time and memory consumption for various models on an RTX A6000. Ran on 100 ListOps data with batch size 1

plex recurrent operations make them slow. CYK-GRC is the
worst in terms of efficiency because of its expensive chart-
based operation. CRvNN is faster than OM/BSRP-GRC
but its memory consumption can scale worse than BT-GRC
because of Transformer-like attention matrices for neigh-
bor retrieval. MC-GumbelTreeGRC is similar to a batched
version of GumbelTreeGRC. BT-GRC performs similarly
to MC-GumbelTreeGRC showing that the cost of BT-GRC
is similar to increasing batch size of GumbelTreeGRC. BT-
GRC + OneSoft perform similarly to CRvNN. BT-GRC +
SOFT is much slower due to using a more expensive optimal
transport based differentiable sorting mechanism (SOFT top-
k) in every iteration. This shows another advantage of using
OneSoft over other more sophisticated alternatives.

5.4. Additional Analysis and Experiments

Heuristics Tree Models: We analyze heuristics-based tree
models (Random tree, balanced tree) in Appendix D.4.

Synthetic Logical Inference: We present our results on a
challenging synthetic logical inference task (Bowman et al.,
2015b) in Appendix D.3. We find that most variants of
BT-Cell can perform on par with prior SOTA models.

Depth Generalization: We also run experiments to test
depth-generalization performance on ListOps (Appendix
D.1). We find that BT-Cell can easily generalize to much
higher depths and it does so more stably than OM.

Transformers: We experiment briefly with Neural Data
Routers (Csordas et al., 2022) which is a Transformer-based
model proven to do well in tasks like ListOps. However,
we find that Neural Data Routers (NDRs), despite their
careful inductive biases, still struggle with sample efficiency
and length generalization compared to strong RvNN-based
models. We discuss more in Appendix D.2.

Parse Tree Analysis: We analyze parsed trees and score
distributions in Appendix D.5.

6. Related Works

Goldberg & Elhadad (2010) proposed the easy-first algo-
rithm for dependency parsing. Ma et al. (2013) extended
it with beam search for parsing tasks. Choi et al. (2018)
integrated easy-first-parsing with an RvNN. Similar to us,
Maillard & Clark (2018) used beam search to extend shift-
reduce parsing whereas Drozdov et al. (2020) used beam
search to extend CYK-based algorithms. However, BT-Cell-
based models achieve higher accuracy than the former style
of models (e.g., BSRP-GRC) and are computationally more
efficient than the latter style of models (e.g., CYK-GRC).
Similar to us, Collobert et al. (2019) also use beam search
in an end-to-end fashion during training but in the context
of sequence generation. However, none of the above ap-
proaches explored beyond hard top-k operators in beam
search. One exception is Xie et al. (2020) where a differen-
tiable top-k operator is used in beam search for language
generation but as we show in §5.1 it does not work as well.
We provide an extended related work survey in Appendix E.

7. Conclusion

We present BT-Cell as an intuitive way to extend RvNN that
is nevertheless highly competitive with more sophisticated
models like Ordered Memory (OM) and CRvNN. Infact,
BT-Cell is the only model that gets moderate performance
in argument generalization while also excelling in length
generalization in ListOps. It also shows more robustness in
MNLI, and overall it is much faster than OM or CYK-GRC.
The ideal future direction would be to focus on argument
generalization and systematicity while maintaining compu-
tational efficiency. We also aim for added flexibility for
handling more relaxed structures like non-projective trees or
directed acyclic graphs as well as richer classes of languages
(DuSell & Chiang, 2022; Del’etang et al., 2022). Another
direction to explore would be to linearize the recursion (Gu
et al., 2022) to make these models more scalable.

Beam Tree Recursive Cells

References

Adams, R. P. and Zemel, R. S. Fast differentiable sorting
and ranking. In ArXiv, 2011. URL https://arxiv.
org/abs/1106.1925.

Bengio, Y., Léonard, N., and Courville, A. C. Estimating
or propagating gradients through stochastic neurons for
conditional computation. CoRR, abs/1308.3432, 2013.
URL http://arxiv.org/abs/1308.3432.

Blondel, M., Teboul, O., Berthet, Q., and Djolonga, J. Fast
differentiable sorting and ranking. In III, H. D. and Singh,
A. (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 950-959. PMLR, 13—
18 Jul 2020. URL https://proceedings.mlr.
press/v119/blondel20a.html.

Bogin, B., Subramanian, S., Gardner, M., and Berant, J.
Latent compositional representations improve systematic
generalization in grounded question answering. Transac-
tions of the Association for Computational Linguistics, 9:
195-210, 2021. doi: 10.1162/tacl_a_00361. URL https:
//aclanthology.org/2021.tacl-1.12.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D.
A large annotated corpus for learning natural language
inference. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, pp. 632—
642, Lisbon, Portugal, September 2015a. Association for
Computational Linguistics. doi: 10.18653/v1/D15-1075.
URL https://aclanthology.org/D15-1075.

Bowman, S. R., Manning, C. D., and Potts, C. Tree-
structured composition in neural networks without tree-
structured architectures. In Proceedings of the 2015th In-
ternational Conference on Cognitive Computation: Inte-
grating Neural and Symbolic Approaches - Volume 1583,
COCO’15, pp. 37-42, Aachen, DEU, 2015b. CEUR-
WS.org.

Bowman, S. R., Gauthier, J., Rastogi, A., Gupta, R., Man-
ning, C. D., and Potts, C. A fast unified model for parsing
and sentence understanding. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1466—1477,
Berlin, Germany, August 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P16-1139. URL
https://aclanthology.org/P16-11309.

Choi, J., Yoo, K. M., and Lee, S. Learning to compose
task-specific tree structures. In Mcllraith, S. A. and
Weinberger, K. Q. (eds.), Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium

on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pp. 5094-5101. AAAI Press, 2018. URL
https://www.aaail.org/ocs/index.php/
AAATI/AAATIL18/paper/view/16682.

Chowdhury, J. R. and Caragea, C. Modeling hierar-
chical structures with continuous recursive neural net-
works. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 1975-1988. PMLR, 18-24 Jul
2021. URL https://proceedings.mlr.press/
v139/chowdhury2la.html.

Collobert, R., Hannun, A., and Synnaeve, G. A
fully differentiable beam search decoder. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pp. 1341-1350. PMLR, 09-15 Jun 2019.
URL https://proceedings.mlr.press/v97/
collobertl9a.html.

Csordas, R., Irie, K., and Schmidhuber, J. The neural data
router: Adaptive control flow in transformers improves
systematic generalization. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=KBQP4A_J1K.

Cuturi, M., Teboul, O., and Vert, J.-P. Differentiable
ranking and sorting using optimal transport. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F,
Fox, E., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
d8c24ca8f23c562a5600876caza550ce-Paper.
pdf.

Del’etang, G., Ruoss, A., Grau-Moya, J., Genewein, T.,
Wenliang, L. K., Catt, E., Hutter, M., Legg, S., and Ortega,
P. A. Neural networks and the chomsky hierarchy. ArXiv,
abs/2207.02098, 2022.

Drozdov, A., Verga, P., Yadav, M., Iyyer, M., and Mc-
Callum, A. Unsupervised latent tree induction with
deep inside-outside recursive auto-encoders. In Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 1129-1141, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1116. URL https:
//aclanthology.org/N19-1116.

https://arxiv.org/abs/1106.1925
https://arxiv.org/abs/1106.1925
http://arxiv.org/abs/1308.3432
https://proceedings.mlr.press/v119/blondel20a.html
https://proceedings.mlr.press/v119/blondel20a.html
https://aclanthology.org/2021.tacl-1.12
https://aclanthology.org/2021.tacl-1.12
https://aclanthology.org/D15-1075
https://aclanthology.org/P16-1139
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16682
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16682
https://proceedings.mlr.press/v139/chowdhury21a.html
https://proceedings.mlr.press/v139/chowdhury21a.html
https://proceedings.mlr.press/v97/collobert19a.html
https://proceedings.mlr.press/v97/collobert19a.html
https://openreview.net/forum?id=KBQP4A_J1K
https://openreview.net/forum?id=KBQP4A_J1K
https://proceedings.neurips.cc/paper/2019/file/d8c24ca8f23c562a5600876ca2a550ce-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d8c24ca8f23c562a5600876ca2a550ce-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d8c24ca8f23c562a5600876ca2a550ce-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d8c24ca8f23c562a5600876ca2a550ce-Paper.pdf
https://aclanthology.org/N19-1116
https://aclanthology.org/N19-1116

Beam Tree Recursive Cells

Drozdov, A., Rongali, S., Chen, Y.-P., O’Gorman, T., Iyyer,
M., and McCallum, A. Unsupervised parsing with S-
DIORA: Single tree encoding for deep inside-outside
recursive autoencoders. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 4832-4845, Online, November
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.392. URL https://
aclanthology.org/2020.emnlp-main.392.

DuSell, B. and Chiang, D. Learning context-free lan-
guages with nondeterministic stack RNNs. In Proceed-
ings of the 24th Conference on Computational Natu-
ral Language Learning, pp. 507-519, Online, Novem-
ber 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.conll-1.41. URL https://
aclanthology.org/2020.conll-1.41.

DuSell, B. and Chiang, D. Learning hierarchical struc-
tures with differentiable nondeterministic stacks. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=5LXw_QplBiF.

Fei, H., Ren, Y., and Ji, D. Retrofitting structure-aware
transformer language model for end tasks. In Pro-
ceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 2151—
2161, Online, November 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.emnlp-main.

168. URL https://aclanthology.org/2020.

emnlp-main.168.

Gardner, M., Artzi, Y., Basmov, V., Berant, J., Bogin,
B., Chen, S., Dasigi, P, Dua, D., Elazar, Y., Got-
tumukkala, A., Gupta, N., Hajishirzi, H., Ilharco, G.,
Khashabi, D., Lin, K., Liu, J., Liu, N. F., Mulcaire,
P, Ning, Q., Singh, S., Smith, N. A., Subramanian,
S., Tsarfaty, R., Wallace, E., Zhang, A., and Zhou, B.
Evaluating models’ local decision boundaries via con-
trast sets. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pp. 1307-1323, On-
line, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.

117. URL https://aclanthology.org/2020.

findings-emnlp.117.

Goldberg, Y. and Elhadad, M. An efficient algorithm for
easy-first non-directional dependency parsing. In Human
Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics, pp. 742-750, Los Angeles,
California, June 2010. Association for Computational
Linguistics. URL https://aclanthology.org/
N10-1115.

Gu, A., Goel, K., and Re, C.

Grefenstette, E., Hermann, K. M., Suleyman, M., and Blun-

som, P. Learning to transduce with unbounded mem-
ory. In Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 2,
NIPS’15, pp. 1828-1836, Cambridge, MA, USA, 2015.
MIT Press.

Grover, A., Wang, E., Zweig, A., and Ermon, S. Stochastic

optimization of sorting networks via continuous relax-
ations. In International Conference on Learning Rep-
resentations, 2019. URL https://openreview.
net/forum?id=HleSS3CcKX.

Efficiently modeling
long sequences with structured state spaces. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=uYLFozlvl1AC.

Havrylov, S., Kruszewski, G., and Joulin, A. Coopera-

tive learning of disjoint syntax and semantics. In Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 1118-1128, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1115. URL https:
//aclanthology.org/N19-1115.

Hendrycks, D. and Gimpel, K. Bridging nonlinearities and

stochastic regularizers with gaussian error linear units.
ArXiv, abs/1606.08415, 2016. URL http://arxiv.
org/abs/1606.08415.

Herzig, J. and Berant, J. Span-based semantic parsing for

compositional generalization. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pp.- 908-921, Online, August 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
acl-long.74. URL https://aclanthology.org/
2021.acl-1long.74.

Hochreiter, S. and Schmidhuber, J. Long short-term mem-

ory. Neural Comput., 9(8):1735-1780, November 1997.
ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.
URL https://doi.org/10.1162/neco.1997.
9.8.1735.

Hu, X., Mi, H., Wen, Z., Wang, Y., Su, Y., Zheng, J., and

de Melo, G. R2D2: Recursive transformer based on differ-
entiable tree for interpretable hierarchical language mod-
eling. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 4897-4908, Online,

https://aclanthology.org/2020.emnlp-main.392
https://aclanthology.org/2020.emnlp-main.392
https://aclanthology.org/2020.conll-1.41
https://aclanthology.org/2020.conll-1.41
https://openreview.net/forum?id=5LXw_QplBiF
https://openreview.net/forum?id=5LXw_QplBiF
https://aclanthology.org/2020.emnlp-main.168
https://aclanthology.org/2020.emnlp-main.168
https://aclanthology.org/2020.findings-emnlp.117
https://aclanthology.org/2020.findings-emnlp.117
https://aclanthology.org/N10-1115
https://aclanthology.org/N10-1115
https://openreview.net/forum?id=H1eSS3CcKX
https://openreview.net/forum?id=H1eSS3CcKX
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://aclanthology.org/N19-1115
https://aclanthology.org/N19-1115
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://aclanthology.org/2021.acl-long.74
https://aclanthology.org/2021.acl-long.74
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Beam Tree Recursive Cells

August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.379. URL https:
//aclanthology.org/2021.acl-long.379.

Iyyer, M., Manjunatha, V., Boyd-Graber, J., and Daumé III,
H. Deep unordered composition rivals syntactic methods
for text classification. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp.
1681-1691, Beijing, China, July 2015. Association for
Computational Linguistics. doi: 10.3115/v1/P15-1162.
URL https://aclanthology.org/P15-1162.

Jang, E., Gu, S., and Poole, B. Categorical reparame-
terization with gumbel-softmax. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=rkE3y85ee.

Kaushik, D., Hovy, E., and Lipton, Z. Learning the dif-
ference that makes a difference with counterfactually-
augmented data. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=SklgsONFvr.

Kool, W., Van Hoof, H., and Welling, M. Stochastic
beams and where to find them: The Gumbel-top-k
trick for sampling sequences without replacement. In
Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 3499-3508. PMLR, 09-15 Jun 2019.
URL https://proceedings.mlr.press/v97/
kooll9a.html.

Lakretz, Y., Desbordes, T., Hupkes, D., and Dehaene,
S. Causal transformers perform below chance on re-
cursive nested constructions, unlike humans. ArXiv,
abs/2110.07240, 2021.

Le, P. and Zuidema, W. The forest convolutional net-

work: Compositional distributional semantics with a
neural chart and without binarization. In Proceedings
of the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 1155-1164, Lisbon, Por-
tugal, September 2015. Association for Computational
Linguistics. doi: 10.18653/v1/D15-1137. URL https:
//aclanthology.org/D15-1137.

Liu, C., An, S., Lin, Z., Liu, Q., Chen, B., Lou, J.-
G., Wen, L., Zheng, N., and Zhang, D. Learn-
ing algebraic recombination for compositional gener-
alization. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pp. 1129-
1144, Online, August 2021. Association for Computa-

tional Linguistics. doi: 10.18653/v1/2021.findings-acl.
97. URL https://aclanthology.org/2021.
findings—-acl.97.

Liu, Q., An, S., Lou, J.-G., Chen, B., Lin, Z., Gao, Y., Zhou,
B., Zheng, N., and Zhang, D. Compositional generaliza-
tion by learning analytical expressions. In Proceedings
of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS’20, Red Hook, NY, USA,
2020. Curran Associates Inc. ISBN 9781713829546.

Ma, J., Zhu, J., Xiao, T., and Yang, N. Easy-first POS
tagging and dependency parsing with beam search. In
Proceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short
Papers), pp. 110-114, Sofia, Bulgaria, August 2013. As-
sociation for Computational Linguistics. URL https:
//aclanthology.org/P13-2020.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng,
A. Y., and Potts, C. Learning word vectors for sentiment
analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies, pp. 142-150, Portland, Ore-
gon, USA, June 2011. Association for Computational
Linguistics. URL https://aclanthology.org/
P11-1015.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete ran-
dom variables. In International Conference on Learning
Representations, 2017. URL https://openreview.
net/forum?id=S1jE5L5gl.

Maillard, J. and Clark, S. Latent tree learning with differen-
tiable parsers: Shift-reduce parsing and chart parsing. In
Proceedings of the Workshop on the Relevance of Linguis-
tic Structure in Neural Architectures for NLP, pp. 13—18,
Melbourne, Australia, July 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/W18-2903. URL
https://aclanthology.org/W18-2903.

Maillard, J., Clark, S., and Yogatama, D. Jointly learning
sentence embeddings and syntax with unsupervised tree-
Istms. Natural Language Engineering, 25(4):433-449,
2019. doi: 10.1017/S1351324919000184.

Mao, J., Shi, F. H., Wu, J., Levy, R. P., and Tenenbaum,
J. B. Grammar-based grounded lexicon learning. In
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/
forum?id=iI6nkEZkO1.

Munkhdalai, T. and Yu, H. Neural tree indexers for text
understanding. In Proceedings of the 15th Conference

https://aclanthology.org/2021.acl-long.379
https://aclanthology.org/2021.acl-long.379
https://aclanthology.org/P15-1162
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://proceedings.mlr.press/v97/kool19a.html
https://proceedings.mlr.press/v97/kool19a.html
https://aclanthology.org/D15-1137
https://aclanthology.org/D15-1137
https://aclanthology.org/2021.findings-acl.97
https://aclanthology.org/2021.findings-acl.97
https://aclanthology.org/P13-2020
https://aclanthology.org/P13-2020
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://aclanthology.org/W18-2903
https://openreview.net/forum?id=iI6nkEZkOl
https://openreview.net/forum?id=iI6nkEZkOl

Beam Tree Recursive Cells

of the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pp. 11-21,
Valencia, Spain, April 2017. Association for Computa-

tional Linguistics. URL https://aclanthology.

org/E17-1002.

Naik, A., Ravichander, A., Sadeh, N., Rose, C., and Neu-
big, G. Stress test evaluation for natural language in-
ference. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pp. 2340-2353,
Santa Fe, New Mexico, USA, August 2018. Associ-
ation for Computational Linguistics. URL https:
//www.aclweb.org/anthology/C18-1198.

Nangia, N. and Bowman, S. ListOps: A diagnostic dataset
for latent tree learning. In Proceedings of the 2018
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Student Re-
search Workshop, pp. 92-99, New Orleans, Louisiana,
USA, June 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/N18-4013. URL https:
//aclanthology.org/N18-4013.

Nguyen, X.-P., Joty, S., Hoi, S., and Socher, R. Tree-
structured attention with hierarchical accumulation. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
1d=HJIxKS5pEYvr.

Petersen, F., Borgelt, C., Kuehne, H., and Deussen, O. Dif-
ferentiable sorting networks for scalable sorting and rank-
ing supervision. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 8546—8555. PMLR, 18-24 Jul
2021. URL https://proceedings.mlr.press/
v139/petersen2la.html.

Petersen, F., Borgelt, C., Kuehne, H., and Deussen,
O. Monotonic differentiable sorting networks. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=IcUWShptD7d.

Pollack, J. B. Recursive distributed representations. Artifi-
cial Intelligence, 46(1):77 — 105, 1990. ISSN 0004-3702.
doi: https://doi.org/10.1016/0004-3702(90)90005-K.
URL http://www.sciencedirect.com/
science/article/pii/000437029090005K.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M.,
and Monfardini, G. The graph neural network model.
Trans. Neur. Netw., 20(1):61-80, jan 2009. ISSN 1045-
9227. doi: 10.1109/TNN.2008.2005605. URL https:
//doi.org/10.1109/TNN.2008.2005605.

Shen, Y., Tan, S., Hosseini, A., Lin, Z., Sordoni, A., and
Courville, A. C. Ordered memory. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems 32, pp. 5037-5048. Curran As-
sociates, Inc., 2019a. URL http://papers.nips.
cc/paper/8748-ordered-memory .pdf.

Shen, Y., Tan, S., Sordoni, A., and Courville, A. Ordered
neurons: Integrating tree structures into recurrent neural
networks. In International Conference on Learning Rep-
resentations, 2019b. URL https://openreview.
net/forum?id=B116giR5F7.

Shen, Y., Tay, Y., Zheng, C., Bahri, D., Metzler, D., and
Courville, A. StructFormer: Joint unsupervised induction
of dependency and constituency structure from masked
language modeling. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp.
7196-7209, Online, August 2021. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.acl-long.
559. URL https://aclanthology.org/2021.
acl-long.559.

Shi, H., Zhou, H., Chen, J., and Li, L. On tree-based neural
sentence modeling. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pp. 4631-4641, Brussels, Belgium, October-
November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1492. URL https:
//aclanthology.org/D18-1492.

Socher, R., Manning, C. D., and Ng, A. Y. Learning con-
tinuous phrase representations and syntactic parsing with
recursive neural networks. In In Proceedings of the NIPS-
2010 Deep Learning and Unsupervised Feature Learning
Workshop, 2010.

Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and
Manning, C. D. Semi-supervised recursive autoencoders
for predicting sentiment distributions. In Proceedings of
the 2011 Conference on Empirical Methods in Natural
Language Processing, pp. 151-161, Edinburgh, Scot-
land, UK., July 2011. Association for Computational
Linguistics. URL https://aclanthology.org/
D11-1014.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D, Ng, A., and Potts, C. Recursive deep models
for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pp. 1631-
1642, Seattle, Washington, USA, October 2013. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/D13-1170.

https://aclanthology.org/E17-1002
https://aclanthology.org/E17-1002
https://www.aclweb.org/anthology/C18-1198
https://www.aclweb.org/anthology/C18-1198
https://aclanthology.org/N18-4013
https://aclanthology.org/N18-4013
https://openreview.net/forum?id=HJxK5pEYvr
https://openreview.net/forum?id=HJxK5pEYvr
https://proceedings.mlr.press/v139/petersen21a.html
https://proceedings.mlr.press/v139/petersen21a.html
https://openreview.net/forum?id=IcUWShptD7d
https://openreview.net/forum?id=IcUWShptD7d
http://www.sciencedirect.com/science/article/pii/000437029090005K
http://www.sciencedirect.com/science/article/pii/000437029090005K
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
http://papers.nips.cc/paper/8748-ordered-memory.pdf
http://papers.nips.cc/paper/8748-ordered-memory.pdf
https://openreview.net/forum?id=B1l6qiR5F7
https://openreview.net/forum?id=B1l6qiR5F7
https://aclanthology.org/2021.acl-long.559
https://aclanthology.org/2021.acl-long.559
https://aclanthology.org/D18-1492
https://aclanthology.org/D18-1492
https://aclanthology.org/D11-1014
https://aclanthology.org/D11-1014
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

Beam Tree Recursive Cells

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P, Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena : A benchmark for efficient transformers. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=gVyeW-grC2k.

Tran, K., Bisazza, A., and Monz, C. The importance of be-
ing recurrent for modeling hierarchical structure. In Pro-
ceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 4731-4736, Brus-
sels, Belgium, October-November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/D18-1503.
URL https://aclanthology.org/D18-1503.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. Attention is all you need. In Guyon, 1., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053clc4a845aa-Paper.
pdf.

Wang, Y., Lee, H.-Y., and Chen, Y.-N. Tree transformer:
Integrating tree structures into self-attention. In Pro-
ceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pp. 1061-1070, Hong Kong, China,
November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-1098. URL https:
//aclanthology.org/D19-1098.

Williams, A., Nangia, N., and Bowman, S. A broad-
coverage challenge corpus for sentence understanding
through inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 1112-1122. As-
sociation for Computational Linguistics, 2018. URL
http://aclweb.org/anthology/N18-1101.

Xie, Y., Dai, H.,, Chen, M., Dai, B., Zhao, T., Zha,
H., Wei, W., and Pfister, T. Differentiable top-k
with optimal transport. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 20520-20531. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
ec24a54d62ce57ba93a531b460fa8dl8-Paper.
pdf.

Yogatama, D., Blunsom, P., Dyer, C., Grefenstette, E., and
Ling, W. Learning to compose words into sentences
with reinforcement learning. In International Conference
on Learning Representations, 2017. URL https://
openreview.net/forum?id=Skvggggxe.

Zhang, A., Tay, Y., Shen, Y., Chan, A., and ZHANG,
S. Self-instantiated recurrent units with dynamic
soft recursion. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 6503-6514. Curran Associates,
Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
3341f6£f048384ec73a7ba2e77d2db48b—-Paper.
pdf.

https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://aclanthology.org/D18-1503
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/D19-1098
https://aclanthology.org/D19-1098
http://aclweb.org/anthology/N18-1101
https://proceedings.neurips.cc/paper/2020/file/ec24a54d62ce57ba93a531b460fa8d18-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ec24a54d62ce57ba93a531b460fa8d18-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ec24a54d62ce57ba93a531b460fa8d18-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ec24a54d62ce57ba93a531b460fa8d18-Paper.pdf
https://openreview.net/forum?id=Skvgqgqxe
https://openreview.net/forum?id=Skvgqgqxe
https://proceedings.neurips.cc/paper/2021/file/3341f6f048384ec73a7ba2e77d2db48b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/3341f6f048384ec73a7ba2e77d2db48b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/3341f6f048384ec73a7ba2e77d2db48b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/3341f6f048384ec73a7ba2e77d2db48b-Paper.pdf

Beam Tree Recursive Cells

Algorithm 1 Easy First Composition

Input: data X = [x1, 29,2p]
while True do
if len(X) == 1 then
return X [0]
end if
if len(X) == 2 then
return cell(X[0], X[1])
end if
Childreny, Childreng < X[: len(X) — 1], X[1]
Parents < [cell(childy,, childg) for childy, childg in zip(Childreny,, Childreng)
Scores < [scorer(parent) for parent in Parents]
index < argmax(Scores)
X[index] < Parents[index]
Delete X [index + 1]
end while

A. Pseudocodes

We present the pseudocode of the easy first composition in Algorithm 1 and the pseudocode of BT-cell in Algorithm 2. Note
that the algorithms are written as they are for the sake of illustration: in practice, many of the nested loops are made parallel
through batched operations in GPU.

A.1. Beam Tree Cell Algorithm

Here, we briefly describe the algorithm of BT-cell (Algorithm 2) in words. In BT-Cell, instead of maintaining a single
sequence per sample, we maintain some k (initially 1) number of sequences and their corresponding scores (initialized
to 0). k is a hyperparameter defining the beam size. Each sequence (henceforth, interchangeably referred to as “beam’)
is a hypothesis representing a particular sequence of choices of parents. Thus, each beam represents a different path of
composition (for visualization see Figure 1). At any moment the score represents the log-probability for its corresponding
beam. Now, we describe the steps in each iteration in the recursion of BT-Cell. Step 1: similar to gumbel-tree models, we
create all candidate parent compositions for each of the k beams. Step 2: we score the candidates with the score function
(defined in §2.2). Step 3: we choose top-k highest scoring candidates. We treat the top-k choices as mutually exclusive.
Thus, each of the k beams encounters &k branching choices, and are updated into k distinct beams (similar to before, the
children are replaced by the chosen parent). Thus, we get k£ x k beams. Step 4: we update the beam scores. The sub-steps
involved in the update are described next. Step 4.1: we apply a log-softmax to the scores of the latest candidates to put
the scores into the log-probability space. Step 4.2: we add the log-softmaxed scores of the latest chosen candidate to the
existing beam score for the corresponding beam where the candidate is chosen. As a result, we will have k& x k beam scores.
Step 5: we truncate the k£ x k beams and beam scores into k£ beams and their corresponding k scores to prevent exponential
increase of the number of beams. For that, we again simply use a top-k operator to keep only the highest scored beams.

At the end of the recursion, instead of a single item representing the sequence-encoding, we will have k& beams of items with
their k scores. At this point, to get a single item, we do a weighted summation with the softmaxed scores as the weights as
described in §3.

B. Gated Recursive Cell (GRC)

The Gated Recursive Cell (GRC) was originally introduced by (Shen et al., 2019a) drawing inspiration from the Transformer’s
feed-forward networks. In our implementation, we use the same variant of GRC as was used in (Chowdhury & Caragea,
2021) where a GELU (Hendrycks & Gimpel, 2016) activation function was used. We present the equations of GRC here:

Zi
hi| ceit | childicyy
G = WQ GeLU <W1 Childright + b1 + bQ (7)

Beam Tree Recursive Cells

Algorithm 2 Beam Tree Cell
Input: data X = [, 29, ...z,], k (beam size)
BeamX + [X]
BeamScores < [0]
while True do
if len(BeamX[0]) == 1 then
BeamX «+ [beam|0] for beamn in BeamX]
break
end if
if len(BeamX[0]) == 2 then
BeamX < [cell(beam[0], beam/[1]) for beam in Beam X
break
end if
NewBeamX <+ |]
NewBeamScores < ||

for Beam,BeamScore in zip(BeamX, BeamScores) do
Parents + [cell(beam[i], beam[i + 1]) for i in range(0, len(beam) — 1)]
Scores < log o softmax([scorer(parent) for parent in Parents))
Indices + topk(Scores, k)

for i in range(K) do
newBeam <« deepcopy(Beam)
newBeam[Indices[i]] + Parents[Indices]i)]
Delete newBeam|[Indices|i] + 1]
NewBeamX .append(newBeam)
newScore <— BeamScore + Scores[indices]i)]
newBeamScores.append(newScore)
end for
end for
Indices « topk(newBeamScores, k)
BeamScores < [newBeamScores]i] for ¢ in Indices]
BeamX < [newBeamX]|i| for ¢ in Indices]
end while
BeamScores < Softmax(BeamScores)
Return sum([score * X for score, X in zip(BeanScores, BeamX)])

0; = LN(U(ZZ) ® Childleft + O'(hz) O) Childm‘ght + O'(Ci) O) uz) (8)

o is sigmoid; o; is the parent composition € R *'; child)e py, childyign; € R™XE; Wiell € Reet*Zdn;) ¢ Rbectt 1
Wy € R Xdeett: p ¢ IR, We use this same GRC function for any recursive model (including our implementation of
Ordered Memory) that constitutes GRC.

C. BSRP-GRC Details

For the decisions about whether to shift or reduce, we use a scorer function similar to that used in (Chowdhury & Caragea,
2021). Where (Chowdhury & Caragea, 2021) use the decision function on concatenation of local hidden states (n-gram
window), we use the decision function on the concatenation of last two items in the stack and the next item in the queue. The
output is a scalar sigmoid activated logit score s. We then treat log(s) as the score for reducing in that step, and log(1 — s)
as the score for shifting in that step. The scores are manipulated appropriately for edge cases (when there are no next item to
shift, or when there are no two items in the stack to reduce). Besides that, we use the familiar beam search strategy over
standard shift-reduce parsing. Finally the beams of final states are merged through the weighted summation of the states
based on the softmaxed scores of each beam similar to BT-Cell models as described in §3.

Beam Tree Recursive Cells

Model DG Length Gen. Argument Gen. | LRA
(Lengths) <100 | 200-300 500-600 900-1k | 100-1k 100-1k | 2K
(Arguments) <5 <5 <5 <5 10 15 <10
(Depths) 8-10 <20 <20 <20 <10 <10 <10
With gold trees

GoldTreeGRC [99.95 [99.95 99.9 99.8 [7695 77.1 | 74.55
Baselines without gold trees

CYK-GRC 99.45 | 99.0 — — 67.8 35.15 | —
Ordered Memory 99.95 | 99.8 99.25 96.4 79.95 7755 | 77
CRVNN 99.9 99.4 99.45 98.9 65.7 43.4 65.1
Ours

BT-GRC 99.95 | 99.95 99.95 99.9 75.35 72.05 68.1
BT-GRC + OneSoft | 99.9 99.6 98.1 97.1 78.1 71.25 75.45

Table 5. Accuracy on ListOps-DG. We report the median of 3 runs except in the last block where we report the mean/std of 10 runs
as mentioned. Our models were trained on lengths < 100, depth < 6, and arguments < 5. We bold the best results and underline the
second-best among models that do not use gold trees.

Model DG Length Gen. Argument Gen. LRA
(Lengths) <100 200-300 500-600 900-1k 100-1k 100-1k 2K
(Arguments) <5 <5 <5 <5 10 15 <10
(Depths) 8-10 <20 <20 <20 <10 <10 <10
Stability Test: Mean/Std with 10 runs. Beam size 5 for BI-GRC

Ordered Memory | 99.9406 | 97.5832 78.785197 61.85291 | 77.6630 69.03107 | 67.35125
BT-GRC 99.8415 | 99.585.8 98.821 97.8539 73.8257 66.21107 | 66.975102

Table 6. Accuracy on ListOps-DG (Stability test). We report the mean and standard deviation of of 10, Our models were trained on
lengths < 100, depth < 6, and arguments < 5. Subscript represents standard deviation. As an example, 90; = 90 £ 0.1

D. Additional Experiments and Analysis
D.1. ListOps-DG Experiment

Dataset Settings: The length generalization experiments in ListOps do not give us an exact perspective in depth gener-
alization* capacities. So there is a question of how models will perform in unseen depths. To check for this, we create
a new ListOps split which we call “ListOps-DG”. For this split, we create 100, 000 training data with arguments < 5,
lengths < 100, and depths < 6. We create 2000 development data with arguments < 5, lengths < 100, and depths 7. We
create 2000 test data with arguments < 5, lengths < 100, and depths 8-10. In addition, we also still tested on the same
length-generalization splits (which now simultaneously have much higher depths too: < 20), argument generalization splits,
and LRA. The results are presented in Table 5. We only evaluate the models that were promising (> 90% in near IID
settings) in the original ListOps split. We report the median of 3 runs for each model (except in the last block of the table).

Results: Interestingly, we find that base BT-GRC, CRvNN, and Ordered Memory now does much better in length
generalization compared to the original listops split. We think this is because of the increased data (the training data in
the original ListOps is ~ 75000 after filtering data of length > 100 whereas here we generated 100, 000 training data).
However, while the median of 3 runs in Ordered Memory is decent, we found one run to have very poor length generalization
performance. To investigate more deeply if Ordered Memory has a particular stability issue, we ran Ordered Memory for 10
times with diferent seeds, and we find that it frequently fails to learn to generalize over length. As a baseline, we also ran
BT-GRC similarly for 10 runs and found it to be much more stable. We report the mean and standard deviation of 10 runs
of Ordered Memory and BT-GRC in Table 6. As can be seen, the mean of BT-GRC is much higher than that of Ordered
Memory in length generalization splits.

By depth, we simply mean the maximum number of nested operators in a given sequence in case of ListOps

Beam Tree Recursive Cells

Model DG1 Length Gen. Argument Gen. LRA
(Lengths) <50 200-300 500-600 900-1000 | 100-1000 100-1000 | 2000
(Arguments) <5 <5 <5 <5 10 15 <10
(Depths) 8-10 <20 <20 <20 <10 <10 <10
After Training on ListOps-DG1

NDR (layer 24) | 96.7 48.9 32.85 22.1 65.65 64.6 42.6
NDR (layer 48) | 91.75 | 34.60 24.05 19.7 54.65 52.45 39.95
Model DG2 Length Gen. Argument Gen. LRA
(Lengths) <100 | 200-300 500-600 900-1000 | 100-1000 100-1000 | 2000
(Arguments) <5 <5 <5 <5 10 15 <10
(Depths) 8-10 <20 <20 <20 <10 <10 <10
After Training on ListOps-DG?2

NDR (layer 24) | 95.6 44.15 30.7 20.3 67.85 58.05 46
NDR (layer 48) | 92.65 | 38.6 29.15 22.1 73.1 64.4 50.4

Table 7. Accuracy on ListOps-DG1 and ListOps-DG2. We report the max of 3 runs. In ListOps-DG1, NDR was trained on lengths < 50,
depth < 6, and arguments < 5. In ListOps-DG1, NDR was trained on lengths < 100, depth < 6, and arguments < 5. Lyaers denote the
layers used during inference.

D.2. NDR Experiments

Dataset Settings: Neural Data Routers (NDR) is a Transformer-based model that was shown to perform well in algorithmic
tasks including Listops (Csordas et al., 2022). We tried some experiments with it too. We found NDR to be struggling in the
original ListOps splits or the ListOps-DG split. We noticed that in the paper (Csordas et al., 2022), NDR was trained in a
much larger sample size (~ 10 times more data than in ListOps-DG) and also on lower sequence lengths (~ 50). To better
check for the capabilities of NDR, we created two new ListOps split - DG1 and DG2. In DG1, we set the sequence length to
10-50 in training, development, and testing set. We created 1 million data for training, and 2000 data for development and
testing. Other parameters (number of arguments, depths etc.) are same as in ListOps-DG split. Split DG2 is the same as
ListOps-DG split in terms of data-generation parameters (i.e it includes length sizes < 100) but with much larger sample
size for the training split (again, 1 million samples same as DG1). We present the results in Table 7.

Results: We find that even when we focus on the best of 3 runs in the table, although NDR generalizes to slightly higher
depths (8-10 from < 6) (as reported in (Csordas et al., 2022)), it still struggles with splits with orders of magnitude higher
depths, lengths, and unseen arguments. Following the suggestions of (Csordas et al., 2022), we also increase the number of
layers during inference (eg. upto 48) to handle higher depth sequences but that did not help substantially. Thus, even after
experiencing more data, NDR generalizes worse than Ordered Memory, CRVNN, or BT-GRC. Moreover, NDR requires
some prior estimation of the true computation depth of the task for its hyperparameter setup unlike the other latent-tree
models.

D.3. Synthetic Logical Inference Results

Dataset Settings: We also consider the synthetic testbed for detecting logical relations between sequence pairs as provided
by (Bowman et al., 2015b). Following (Tran et al., 2018), we train the models on sequences with < 6 operators and test on
data with greater number of operators (here, we check for cases with > 8 operators) to check for capacity to generalize to
unseen number of operators. Similar to (Shen et al., 2019a; Chowdhury & Caragea, 2021), we also train the model on the
systematicity split C'. In this split we remove any sequence matching the pattern *(and(notx))* from the training set and
put them in the test set to check for systematic generalization.

Results: In Table 8, in terms of operation generalization, our proposed BT-Cell models perform similarly to prior SOTA
models like Ordered Memory (OM) and CRvNN while approximating GoldTreeGRC for both beam sizes. In terms of
systematicity (split C), OM and BT-GRC perform similarly (both above 94%) and much better than the other models.
Surprisingly, however, OneSoft extension also hurt systematicity in this context. CYK-GRC shows promise in operator
generalization but shows poor systematicity as well. Gumbel-GRC performs better than RecurrentGRC but still far from
SOTA which is not unexpected given its poor results in ListOps.

Beam Tree Recursive Cells

Model Number of Operations

8 9 10 11 12 C
With gold trees
GoldTreeGRC 97.14, 96.52 95.29 5 94.219.9 93.677.7 974116
Baselines without gold trees
Transformer* 52 51 51 51 48 51
Universal Transformer* | 52 51 51 51 48 51
ON-LSTM* 87 85 81 78 75 60
Self-IRU} 95 93 92 90 88 —
RecurrentGRC 93.04¢ 90.434.9 88.484 86.575.58 80.581 5 83.175.1
GumbelTreeGRC 93.4614 91.8919 90.3322 88.4318 85.7024 89.3429
CYK-GRC 96.622.3 96.0746 94.6711 93.443 8 92.549 3 77.0827
CRvNN 96.93.7 95.992 5 94.512.9 94.4856 92.7315 89.7955
Ordered Memory 97516 96.741.4 94.95 93.92.2 93.366.2 94.887
Ours
BT-GRC 96.831 95.992 4 95.042 3 94.293 5 93.362.4 94.1714
BT-GRC + OneSoft 97.031.4 96.49:1.9 95.4345 94.2165 93.391.5 | 78.0443

Table 8. Mean accuracy and standard deviaton on the Logical Inference for > 8 number of operations after training on samples with
< 6 operations. We also report results of the systematicity split C. We bold the best results and underline the second-best for all models
without gold trees. * indicates that the results were taken from (Shen et al., 2019a) and { indicates results from (Zhang et al., 2021). Our
models were run 3 times on different seeds. Subscript represents standard deviation. As an example, 90; = 90 £ 0.1

Model near-1ID Length Gen. Argument Gen. LRA
(Lengths) < 1000 200-300 500-600 900-1000 | 100-1000 100-1000 | 2000
(Arguments) <5 <5 <5 <5 10 15 10
RandomTreeGRC | 70.56 48.70 45.35 37.53 54.8 55.6 49.8
BalancedTreeGRC | 59.4 44.85 43.35 35.70 45.88 45.25 41.95

Table 9. Accuracy of different models on ListOps (same setting as in Table 1). We report the median of 3 runs.

D.4. Heuristics Tree Models

We consider two heuristics-based tree model - RandomTreeGRC (uses random tree strcutures) and BalancedTreeCell
(follows a balanaced binary tree structure (Shi et al., 2018)). We run them on ListOps and show the results in Table 9. As we
would expect the heuristics-based model perform very poorly. We also run them on natural language data and show the
results in Table 10. It performs relatively more competitively against other models in realistic data but they still generally
fall behind the OM, CRvNN, and BT-Cell.

D.5. Parse Tree Analysis

In this section, we analyze the induced structures of BT-Cell models. Note, however, although induced structures can
provide some insights to the model, we can draw limited conclusions from them. First, if we take a stance similar to (Choi
et al., 2018) in considering it suitable to allow different kinds of structures to be induced as appropriate for a specific task
then it’s not clear how structures should be evaluated by themselves (besides just the donwstream task evaluations). Second,
the extracted structures may not completely reflect what the models may implicitly induce because the recursive cell can
override some of the parser decisions (given how there is evidence that even simple RNNs (Bowman et al., 2015b) can
implicitly model different tree structures within its hidden states to an extent even when its explicit structure always conform
to the left-to-right order of composition). Third, even if the extracted structure perfectly reflects what the model induces,
another side of the story is the recursive cell itself and how it utilizes the structure for language understanding. This part of
the story can still remain unclear because of the blackbox-nature of neural nets. Nevertheless, extractive structures may still
provide some rough idea of the inner workings of BT-Cell variants.

In Table 11, we show the parsed structures of some iconic sentences by BT-GRC after it is trained on MNLI. We report all
beams and their corresponding scores. Note, although beam search ensures that the sequence of parsing actions for each

Beam Tree Recursive Cells

Model SSTS IMDB MNLI

11D Con. Count. M MM LenM LenMM NegM NegMM
RandomTreeGRC 517812 749314 823893 7223 7235 61423 62323 5173 5277
BalancedTreeGRC | 52.356.2 | 74.9320 83.6115 71.15 71.4; 59s 60.75 50.24 50.4¢

Table 10. Mean accuracy and standard deviaton on SST5, IMDB, and MNLI. Con. represents Contrast set and Count. represents
Countefactuals. Our models were run 3 times on different seeds. Subscript represents standard deviation. As an example, 90, = 90 = 0.1

Score \ Parsed Structures

BT-GRC (beam size 5)
0.42 ((i (did not)) (((like a) (single minute)) ((of this) film)))
0.40 ((((did not)) ((like a) (single minute))) ((of this) film))
0.20 (@i (did not)) (((like a) ((single minute) of)) (this film)))
0.40 ((i (shot an)) ((elephant in) (my pajamas)))
0.21 ((@ shot) (an elephant)) ((in my) pajamas))
0.19 (((shot) (an elephant)) (in (my pajamas)))
0.19 ((i shot) ((an elephant) ((in my) pajamas)))
0.40 ((john saw) ((a man) (with binoculars)))
0.40 ((GGohn saw) (a man)) (with binoculars))
0.20 ((john (saw a)) ((man with) binoculars))
0.61 (((roger (dodger is)) (one (of the))) (((most compelling) (variations of)) (this theme)))
0.40 (((roger (dodger is)) ((one (of the)) (most compelling))) ((variations of) (this theme)))
BT-GRC (beam size 2)
0.50 ((i ((did not) like)) (((a single) minute) ((of this) film)))
0.50 (@ (((did not) like) (a single))) ((minute of) (this film)))
0.50 ((i (shot an)) ((elephant in) (my pajamas)))
0.50 ((i ((shot an) elephant)) ((in my) pajamas))
0,51 ((john (saw a)) ((man with) binoculars))
0.49 (john (((saw a) man) (with binoculars)))
1.0 ((roger ((dodger is) one)) ((((of the) most) (compelling variations)) ((of this) theme)))

Table 11. Parsed Structures of BT-GRC trained on MNLI. Each block represents different beams.

beam is unique, different sequences of parsing action can still lead to the same structure. Thus, some beams end up being
duplicates. In such cases, for the sake of more concise presentation, we collapse the duplicates into a single beam and add
up their corresponding scores. This is why we can note in Table 11 that we sometimes have fewer induced structures than
the beam size.

At a rough glance, we can see that the different induced structures roughly correspond to human intuitions. One interesting
appeal for beam search is that it can more explicitly account for ambiguous interpretations corresponding to ambiguous
structures. For example, “i shot an elephant in my pajamas” is ambiguous with respect to whether it is the elephant who is
in the shooter’s pajamas, or if it is the shooter who is in the pajamas. The induced structure (beam size 5 model in Table 11)
(((i shot) (an elephant)) ((in my) pajamas)) corresponds better to the latter interpretation whereas ((i shot) ((an elephant)
((in my) pajamas))) corresponds better to the former interpretation (because “an elephant” is first composed with “in my
pajamas”).

Similar to above, “john saw a man with binoculars” is also ambiguous. Its interpretation is ambiguous with respect to
whether it is John who is seeing through binoculars, or whether it is the man who just possesses the binoculars. Here,
again, we can find (beam size 5 model in Table 11) that the induced structure (((john saw) (a man)) (with binoculars)
corresponds better to the former interpretation whereas ((john saw) ((a man) (with binoculars))) corresponds better to the
latter. Generally, we find the score distributions to have a high entropy. A future consideration would be whether we should
add an auxiliary objective to minimize entropy.

In Table 12, we show the parsed structures of the same sentences by BT-GRC+OneSoft after it is trained on MNLI. Most of
the points above applies here for OneSoft as well. Interestingly, OneSoft seems to have a relatively lower entropy distribution
- that is most evident in beam size 2.

Beam Tree Recursive Cells

Score \ Parsed Structures
BT-GRC + OneSoft (beam size 5)
0.42 (((did) (not like)) (((a single) minute) ((of this) film)))
0.20 ((((i did) not) ((like a) single)) ((minute of) (this film)))
0.19 ((((i did) (not like)) ((a single) minute)) ((of this) film))
0.19 ((((did not)) ((like a) single)) ((minute of) (this film)))
0.41 (((shot) an) ((elephant in) (my pajamas)))
0.21 (((shot) (an elephant)) ((in my) pajamas))
0.19 (@ (shot an)) ((elephant in) (my pajamas)))
0.19 ((((i shot) an) (elephant in)) (my pajamas))
0.21 ((john (saw a)) ((man with) binoculars))
0.20 | (((john saw) (a man)) (with binoculars))
0.20 ((ohn saw) ((a man) (with binoculars)))
0.19 ((john ((saw a) man)) (with binoculars))
0.40 (((roger dodger) (is one)) ((((of the) most) (compelling variations)) ((of this) theme)))
0.21 (((roger (dodger is)) ((one of) the)) (((most compelling) variations) ((of this) theme)))
0.20 ((((roger dodger) (is one)) ((of the) most)) ((compelling variations) ((of this) theme)))
0.19 ((roger (dodger is)) ((((one of) the) ((most compelling) variations)) ((of this) theme)))
BT-GRC + OneSoft (beam size 2)
0.57 ((i ((did not) like)) (((a single) minute) ((of this) film)))
0.43 (@i ((did not) like)) (((a single) (minute of)) (this film)))
0.54 ((i ((shot an) elephant)) ((in my) pajamas))
0.46 ((i (shot an)) ((elephant in) (my pajamas)))
0.55 ((john (saw a)) ((man with) binoculars))
0.45 ((ohn ((saw a) man)) (with binoculars))
0.53 ((roger ((dodger is) one)) ((((of the) most) (compelling variations)) ((of this) theme)))
0.47 (((roger ((dodger is) one)) ((of the) most)) ((compelling variations) ((of this) theme)))

Table 12. Parsed Structures of BT-GRC + OneSoft trained on MNLI. Each block represents different beams.

We found the structures induced by BT-Cell variants after training on SST5 or IMDB to be more ill-formed. This may
indicate that sentiment classification does not provide a strong enough signal for parsing or rather, exact induction of
structures are not as necessary (Iyyer et al., 2015). We show the parsings of these models after training on IMDB and SST
datasets in a text file included in the supplementary.

E. Extended Related Works

Initially RvNN (Pollack, 1990; Socher et al., 2010) was used with user-annotated tree-structured data. Some explored use
of heuristic trees such as balanced trees for RvNN-like settings (Munkhdalai & Yu, 2017; Shi et al., 2018). In due time,
several approaches were introduced for dynamically inducing structures from data for RvNN-style processing. This includes
the greedy easy-first framework using children-reconstruction loss (Socher et al., 2011) or gumbel softmax (Choi et al.,
2018), RL-based frameworks (Havrylov et al., 2019), CYK-based framework (Le & Zuidema, 2015; Maillard et al., 2019;
Drozdov et al., 2019; Hu et al., 2021), shift-reduce parsing or memory-augmented or stack-augmented RNN frameworks
(Grefenstette et al., 2015; Bowman et al., 2016; Yogatama et al., 2017; Maillard & Clark, 2018; Shen et al., 2019a; DuSell &
Chiang, 2020; 2022), and soft-recursion-based frameworks (Chowdhury & Caragea, 2021; Zhang et al., 2021). Besides
RvNN:Ss, other approaches range from adding information-ordering biases to hidden states in RNNs (Shen et al., 2019b) or
even adding additional structural or recursive constraints to Transformers (Wang et al., 2019; Nguyen et al., 2020; Fei et al.,
2020; Shen et al., 2021; Csordas et al., 2022).

There are multiple versions of differentiable top-k operators or sorting functions (Adams & Zemel, 2011; Grover et al., 2019;
Cuturi et al., 2019; Xie et al., 2020; Blondel et al., 2020; Petersen et al., 2021; 2022). We leave a more exhaustive analysis
of them as future work. However, note that many of them would suffer from the same systematic issues as SOFT top-k (Xie
et al., 2020) - that is they can significantly slow down the model and they can lead to “washed out” representations.

Beam Tree Recursive Cells

F. Hyperparameters

For all recursive/recurrent models, we use a linear layer followed by layer normalization for initial leaf transformation
before starting the recursive loop (similar to (Shen et al., 2019a; Chowdhury & Caragea, 2021)). Overall we use the same
boilerplate classifier architecture for classification and the same boilerplate sentnece-pair siamese architecture for logical
inference as (Chowdhury & Caragea, 2021) over our different encoders. In practice, for BT-Cell, we use a stochastic top-k
through gumbel perturbation similar to Kool et al. (2019). However, we find deterministic selection to work similarly. In our
implementation of CRvNN, we ignore some extraneous elements from CRvVNN such as transition features and halt penalty
which were deemed to have little effect during ablation in Chowdhury & Caragea (2021).

In terms of the optimizer, hidden size, and other hyperparameters besides dropout, we use the same ones as used by
(Chowdhury & Caragea, 2021) for all models for corresponding datasets; for number of memory slots and other ordered
memory specific parameters we use the same ones as used by (Shen et al., 2019a). For BSRP-Cell we use a beam size of 8
(we also tried with 5 but results were similar or slightly worse). We use a dropout rate of 0.1 for logical inference for all
models (tuned on the validation set using grid search among [0.1, 0.2, 0.3, 0.4] with 5 epochs per run using BalancedTreeCell
for GRC-based models and GumbelTreeLSTM for LSTM based models). We use dropouts in the same places as used in
(Chowdhury & Caragea, 2021). We then use the same chosen dropouts for ListOps. We tune the dropouts for SST in the same
way (but with a maximum epoch of 20 per trial) on SST5 using RecurrentGRC for GRC-models, and Gumbel-Tree-LSTM
for LSTM models. After tuning, for GRC-based models in SSTS, we found a dropout rate of 0.4 for input/output dropout
layers, and 0.2 for the dropout layer in the cell function. We found a dropout of 0.3 for LSTM-based models in SSTS5. and
We share the hyperparameters of SSTS with IMDB. For MNLI, we used similar settings as Chowdhury & Caragea (2021).

For NDR experiments, we use the same hyperparameters as used for ListOps by (Csordds et al., 2022). The hyperparameters
will also be available in code.

All codes are run in a single RTX A6000 GPU.

