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Abstract

Whittle index policy is a heuristic to the intractable restless multi-armed bandits1

(RMAB) problem. Although it is provably asymptotically optimal, finding Whittle2

indices remains difficult. In this paper, we present Neural-Q-Whittle, a Whittle3

index based Q-learning algorithm for RMAB with neural network function approx-4

imation, which is an example of nonlinear two-timescale stochastic approximation5

with Q-function values updated on a faster timescale and Whittle indices on a slower6

timescale. Despite the empirical success of deep Q-learning, the non-asymptotic7

convergence rate of Neural-Q-Whittle, which couples neural networks with8

two-timescale Q-learning largely remains unclear. This paper provides a finite-time9

analysis of Neural-Q-Whittle, where data are generated from a Markov chain,10

and Q-function is approximated by a ReLU neural network. Our analysis leverages11

a Lyapunov drift approach to capture the evolution of two coupled parameters,12

and the nonlinearity in value function approximation further requires us to charac-13

terize the approximation error. Combing these provide Neural-Q-Whittle with14

O(1/k2/3) convergence rate, where k is the number of iterations.15

1 Introduction16

We consider the restless multi-armed bandits (RMAB) problem [55], where the decision maker17

(DM) repeatedly activates K out of N arms at each decision epoch. Each arm is described by a18

Markov decision process (MDP) [44], and evolves stochastically according to two different transition19

kernels, depending on whether the arm is activated or not. Rewards are generated with each transition.20

Although RMAB has been widely used to study constrained sequential decision making problems21

[5, 37, 12, 60, 28, 35, 34], it is notoriously intractable due to the explosion of state space [43]. A22

celebrated heuristic is the Whittle index policy [55], which computes the Whittle index for each arm23

given its current state as the cost to pull the arm. Whittle index policy then activates the K highest24

indexed arms at each decision epoch, and is provably asymptotically optimal [53].25

However, the computation of Whittle index requires full knowledge of the underlying MDP associated26

with each arm, which is often unavailable in practice. To this end, many recent efforts have focused27

on learning Whittle indices for making decisions in an online manner. First, model-free reinforcement28

learning (RL) solutions have been proposed [10, 23, 52, 8, 27, 56, 3], among which [3] developed29

a Whittle index based Q-learning algorithm, which we call Q-Whittle for ease of exposition, and30

provided the first-ever rigorous asymptotic analysis. However, Q-Whittle suffers from slow conver-31

gence since it only updates the Whittle index of a specific state when that state is visited. In addition,32

Q-Whittle needs to store the Q-function values for all state-action pairs, which limits its applicability33

only to problems with small state space. Second, deep RL methods have been leveraged to predict34
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Whittle indices via training neural networks [39, 40]. Though these methods are capable of dealing35

with large state space, there is no asymptotic or finite-time performance guarantee. Furthermore,36

training neural networks requires to tuning hyper-parameters. This introduces an additional layer of37

complexity to predict Whittle indices. Third, to address aforementioned deficiencies, [57] proposed38

Q-Whittle-LFA by coupling Q-Whittle with linear function approximation and provided a finite-39

time convergence analysis. One key limitation of Q-Whittle-LFA is the unrealistic assumption that40

all data used in Q-Whittle-LFA are sampled i.i.d. from a fixed stationary distribution.41

To tackle the aforementioned limitations and inspired by the empirical success of deep Q-learning in42

numerous applications, we develop Neural-Q-Whittle, a Whittle index based Q-learning algorithm43

with neural network function approximation under Markovian observations. Like [3, 57], the updates44

of Q-function values and Whittle indices form a two-timescale stochastic approximation (2TSA) with45

the former operating on a faster timescale and the later on a slower timescale. Unlike [3, 57], our46

Neural-Q-Whittle uses a deep neural network with the ReLU activation function to approximate47

the Q-function. However, Q-learning with neural network function approximation can in general48

diverge [2], and the theoretical convergence of Q-learning with neural network function approximation49

has been limited to special cases such as fitted Q-iteration with i.i.d. observations [22], which fails to50

capture the practical setting of Q-learning with neural network function approximation.51

In this paper, we study the non-asymptotic convergence of Neural-Q-Whittle with data generated52

from a Markov decision process. Compared with recent theoretical works for Q-learning with neural53

network function approximation [13, 22, 58], our Neural-Q-Whittle involves a two-timescale54

update between two coupled parameters, i.e., Q-function values and Whittle indices. This renders55

existing finite-time analysis in [13, 22, 58] not applicable to our Neural-Q-Whittle due to the56

fact that [13, 22, 58] only contains a single-timescale update on Q-function values. Furthermore,57

[13, 22, 58] required an additional projection step for the update of parameters of neural network58

function so as to guarantee the boundedness between the unknown parameter at any time step with59

the initialization. This in some cases is impractical. Hence, a natural question that arises is60

Is it possible to provide a non-asymptotic convergence rate analysis of Neural-Q-Whittle
with two coupled parameters updated in two timescales under Markovian observations
without the extra projection step?

61

The theoretical convergence guarantee of two-timescale Q-learning with neural network function62

approximation under Markovian observations remains largely an open problem, and in this paper, we63

provide an affirmative answer to this question. Our main contributions are summarized as follows:64

• We propose Neural-Q-Whittle, a novel Whittle index based Q-learning algorithm with neural65

network function approximation for RMAB. Inspired by recent work on TD learning [47] and Q-66

learning [15] with linear function approximation, our Neural-Q-Whittle removes the additional67

impractical projection step in the neural network function parameter update.68

• We establish the first finite-time analysis of Neural-Q-Whittle under Markovian observations.69

Due to the two-timescale nature for the updates of two coupled parameters (i.e., Q-function values70

and Whittle indices) in Neural-Q-Whittle, we focus on the convergence rate of these parameters71

rather than the convergence rate of approximated Q-functions as in [13, 22, 58]. Our key technique72

is to view Neural-Q-Whittle as a 2TSA for finding the solution of suitable nonlinear equations.73

Different from recent works on finite-time analysis of a general 2TSA [20] or with linear function74

approximation [57], the nonlinear parameterization of Q-function in Neural-Q-Whittle under75

Markovian observations imposes significant difficulty in finding the global optimum of the corre-76

sponding nonlinear equations. To mitigate this, we first approximate the original neural network77

function with a collection of local linearization and focus on finding a surrogate Q-function in the78

neural network function class that well approximates the optimum. Our finite-time analysis then79

requires us to consider two Lyapunov functions that carefully characterize the coupling between80

iterates of Q-function values and Whittle indices, with one Lyapunov function defined with respect to81

the true neural network function, and the other defined with respect to the locally linearized neural82

network function. We then characterize the errors between these two Lyapunov functions. Putting83

them together, we prove that Neural-Q-Whittle achieves a convergence in expectation at a rate84

O(1/k2/3), where k is the number of iterations.85

• Finally, we conduct experiments to validate the convergence performance of Neural-Q-Whittle,86

and verify the sufficiency of our proposed condition for the stability of Neural-Q-Whittle.87
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2 Preliminaries88

RMAB. We consider an infinite-horizon average-reward RMAB with each arm n ∈ N described by89

a unichain MDP [44] Mn := (S,A, Pn, rn), where S is the state space with cardinality S < ∞, A90

is the action space with cardinality A, Pn(s
′|s, a) is the transition probability of reaching state s′ by91

taking action a in state s, and rn(s, a) is the reward associated with state-action pair (s, a). At each92

time slot t, the DM activates K out of N arms. Arm n is “active” at time t when it is activated, i.e.,93

An(t) = 1; otherwise, arm n is “passive”, i.e., An(t) = 0. Let Π be the set of all possible policies94

for RMAB, and π ∈ Π is a feasible policy, satisfying π : Ft 7→ AN , where Ft is the sigma-algebra95

generated by random variables {Sn(h), An(h) : ∀n ∈ N , h ≤ t}. The objective of the DM is to96

maximize the expected long-term average reward subject to an instantaneous constraint that only K97

arms can be activated at each time slot, i.e.,98

RMAB: max
π∈Π

lim inf
T→∞

1

T
Eπ

(
T∑

t=0

N∑
n=1

rn(t)

)
, s.t.

N∑
n=1

An(t) = K, ∀t. (1)

Whittle Index Policy. It is well known that RMAB (1) suffers from the curse of dimensionality [43].99

To address this challenge, Whittle [55] proposed an index policy through decomposition. Specifically,100

Whittle relaxed the constraint in (1) to be satisfied on average and obtained a unconstrained prob-101

lem: maxπ∈Π lim infT→∞
1
T Eπ

∑T
t=1

∑N
n=1{rn(t) + λ(1 − An(t))}, where λ is the Lagrangian102

multiplier associated with the constraint. The key observation of Whittle is that this problem can103

be decomposed and its solution is obtained by combining solutions of N independent problems via104

solving the associated dynamic programming (DP): Vn(s) = maxa∈{0,1} Qn(s, a),∀n ∈ N , where105

Qn(s, a)+β=a
(
rn(s,a)+

∑
s′

pn(s
′|s,1)Vn(s

′)
)
+(1−a)

(
rn(s,a)+λ+

∑
s′

pn(s
′|s,0)Vn(s

′)
)
, (2)

where β is unique and equals to the maximal long-term average reward of the unichain MDP, and106

Vn(s) is unique up to an additive constant, both of which depend on the Lagrangian multiplier λ. The107

optimal decision a∗ in state s then is the one which maximizes the right hand side of the above DP.108

The Whittle index associated with state s is defined as the value λ∗
n(s) ∈ R such that actions 0 and 1109

are equally favorable in state s for arm n [3, 23], satisfying110

λ∗
n(s) :=Qn(s,0)−Qn(s,1)=rn(s,1)+

∑
s′

pn(s
′|s,1)Vn(s

′)−rn(s,0)−
∑
s′

pn(s
′|s,0)Vn(s

′). (3)

Whittle index policy then activates K arms with the largest Whittle indices at each time slot. Addi-111

tional discussions are provided in Section B in supplementary materials.112

Q-Learning for Whittle Index. Since the underlying MDPs are often unknown, [3] proposed113

Q-Whittle, a tabular Whittle index based Q-learning algorithm, where the updates of Q-function114

values and Whittle indices form a 2TSA, with the former operating on a faster timescale for a given115

λn and the later on a slower timescale. Specifically, the Q-function values for ∀n ∈ N are updated as116

Qn,k+1(s, a) := Qn,k(s, a) + αn,k1{Sn,k=s,An,k=a}

(
rn(s, a) + (1− a)λn,k(s)

+ max
a

Qn,k(Sn,k+1, a)− In(Qk)−Qn,k(s, a)
)
, (4)

where In(Qk) =
1
2S

∑
s∈S(Qn,k(s, 0) +Qn,k(s, 1)) is standard in the relative Q-learning for long-117

term average MDP setting [1], which differs significantly from the discounted reward setting [44, 1].118

{αn,k} is a step-size sequence satisfying
∑

k αn,k = ∞ and
∑

k α
2
n,k < ∞.119

Accordingly, the Whittle index is updated as120

λn,k+1(s) = λn,k(s) + ηn,k(Qn,k(s, 1)−Qn,k(s, 0)), (5)

with the step-size sequence {ηn,k} satisfying
∑

k ηn,k = ∞,
∑

k η
2
n,k < ∞ and ηn,k = o(αn,k).121

The coupled iterates (4) and (5) form a 2TSA, and [3] provided an asymptotic convergence analysis.122

3 Neural Q-Learning for Whittle Index123

A closer look at (5) reveals that Q-Whittle only updates the Whittle index of a specific state when124

that state is visited. This makes Q-Whittle suffers from slow convergence. In addition, Q-Whittle125
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Algorithm 1 Neural-Q-Whittle: Neural Q-Learning for Whittle Index

1: Input: ϕϕϕ(s, a) for ∀s ∈ S, a ∈ A, and learning rates {αk}k=1,...,T , {ηk}k=1,...,T

2: Initialization: br ∼ Unif({−1, 1}),wr,0 ∼ N (000, Id/d),∀r ∈ [1,m] and λ(s) = 0, ∀s ∈ S
3: for s ∈ S do
4: for k = 1, . . . , T do
5: Sample (Sk, Ak, Sk+1) according to the ϵ-greedy policy;
6: ∆k=r(Sk, Ak)+ (1−Ak)λk(s)+maxa f(θθθk;ϕϕϕ(Sk+1, a))− I(θθθk)−f(θθθk;ϕϕϕ(Sk, Ak));
7: θθθk+1 = θθθk + αk∆k∇θθθf(θθθk;ϕϕϕ(Sk, Ak));
8: λk+1(s) = λk(s) + ηk(f(θθθk;ϕϕϕ(s, 1))− f(θθθk;ϕϕϕ(s, 0));
9: end for

10: end for
11: Return: λ(s),∀s ∈ S.

needs to store the Q-function values for all state-action pairs, which limits its applicability only to126

problems with small state space. To address this challenge and inspired by the empirical success127

of deep Q-learning, we develop Neural-Q-Whittle through coupling Q-Whittle with neural128

network function approximation by using low-dimensional feature mapping and leveraging the strong129

representation power of neural networks. For ease of presentation, we drop the subscript n in (4)130

and (5), and discussions in the rest of the paper apply to any arm n ∈ N .131

Specifically, given a set of basis functions ϕℓ : S × A 7→ R,∀ℓ = 1, · · · , d with d ≪ SA, the132

approximation of Q-function Qθθθ(s, a) parameterized by a unknown weight vector θθθ ∈ Rmd, is133

given by Qθθθ(s, a) = f(θθθ;ϕϕϕ(s, a)), ∀s ∈ S, a ∈ A, where f is a nonlinear neural network function134

parameterized by θθθ and ϕϕϕ(s, a), with ϕϕϕ(s, a) = (ϕ1(s, a), · · · , ϕd(s, a))
⊺. The feature vectors are135

assumed to be linearly independent and are normalized so that ∥ϕϕϕ(s, a)∥ ≤ 1,∀s ∈ S, a ∈ A . In136

particular, we parameterize the Q-function by using a two-layer neural network [13, 58]137

f(θθθ;ϕϕϕ(s, a)) :=
1√
m

m∑
r=1

brσ(w
⊺
rϕϕϕ(s, a)), (6)

where θθθ = (b1, . . . , bm,w⊺
1 , . . . ,w

⊺
m)⊺ with br ∈ R and wr ∈ Rd×1,∀r ∈ [1,m]. br,∀r are138

uniformly initialized in {−1, 1} and wr,∀r are initialized as a zero mean Gaussian distribution139

according to N (000, Id/d). During training process, only wr,∀r are updated while br,∀r are fixed140

as the random initialization. Hence, we use θθθ and wr,∀r interchangeably throughout this paper.141

σ(x) = max(0, x) is the rectified linear unit (ReLU) activation function.142

Given (6), we can rewrite the Q-function value updates in (4) as143

θθθk+1 = θθθk + αk∆k∇θθθf(θθθk;ϕϕϕ(Sk, Ak)), (7)

with ∆k being the temporal difference (TD) error defined as ∆k := r(Sk, Ak) + (1−Ak)λk(s)−144

I(θθθk) + maxa f(θθθk;ϕϕϕ(Sk+1, a)) − f(θθθk;ϕϕϕ(Sk, Ak)), where I(θθθk) = 1
2S

∑
s∈S [f(θθθk;ϕϕϕ(s, 0)) +145

f(θθθk;ϕϕϕ(s, 1))]. Similarly, the Whittle index update (5) can be rewritten as146

λk+1(s) = λk(s) + ηk(f(θθθk;ϕϕϕ(s, 1))− f(θθθk;ϕϕϕ(s, 0))). (8)

The coupled iterates in (7) and (8) form Neural-Q-Whittle as summarized in Algorithm 1, which147

aims to learn the coupled parameters (θθθ∗, λ∗(s)) such that f(θθθ∗,ϕϕϕ(s, 1)) = f(θθθ∗,ϕϕϕ(s, 0)),∀s ∈ S.148

Remark 1. Unlike recent works for Q-learning with linear [6, 36, 63] or neural network function149

approximations [13, 22, 58], we do not assume an additional projection step of the updates of150

unknown parameters θθθk in (7) to confine θθθk,∀k into a bounded set. This projection step is often151

used to stabilize the iterates related to the unknown stationary distribution of the underlying Markov152

chain, which in some cases is impractical. More recently, [47] removed the extra projection step153

and established the finite-time convergence of TD learning, which is treated as a linear stochastic154

approximation algorithm. [15] extended it to the Q-learning with linear function approximation.155

However, these state-of-the-art works only contained a single-timescale update on Q-function values,156

i.e., with the only unknown parameter θθθ, while our Neural-Q-Whittle involves a two-timescale157

update between two coupled unknown parameters θθθ and λ as in (7) and (8). Our goal in this paper is158

to expand the frontier by providing a finite-time bound for Neural-Q-Whittle under Markovian159

noise without requiring an additional projection step.160
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4 Finite-Time Analysis of Neural-Q-Whittle161

In this section, we present the finite-time analysis of Neural-Q-Whittle for learning Whittle index162

λ(s) of any state s ∈ S when data are generated from a MDP. To simplify notation, we abbreviate163

λ(s) as λ in the rest of the paper. We start by first rewriting the updates of Neural-Q-Whittle in (7)164

and (8) as a nonlinear two-timescale stochastic approximation (2TSA) in Section 4.1.165

4.1 A Nonlinear 2TSA Formulation with Neural Network Function166

We first show that Neural-Q-Whittle can be rewritten as a variant of the nonlinear 2TSA. For167

any fixed policy π, since the state of each arm {Sk} evolves according to a Markov chain, we can168

construct a new variable Xk = (Sk, Ak, Sk+1), which also forms a Markov chain with state space169

X := {(s, a, s′)|s ∈ S, π(a|s) ≥ 0, p(s′|s, a) > 0}. Therefore, the coupled updates (7) and (8) of170

Neural-Q-Whittle can be rewritten in the form of a nonlinear 2TSA [20]:171

θθθk+1 = θθθk + αkh(Xk, θθθk, λk), λk+1 = λk + ηkg(Xk, θθθk, λk), (9)

where θθθ0 and λ0 being arbitrarily initialized in Rmd and R, respectively; and h(·) and g(·) satisfy172

h(Xk, θθθk, λk) := ∇θθθf(θθθk;ϕϕϕ(Sk, Ak))∆k, θθθk ∈ Rmd, λk ∈ R, (10)

g(Xk, θθθk, λk) := f(θθθk;ϕϕϕ(s, 1))− f(θθθk;ϕϕϕ(s, 0)), θθθk ∈ Rmd. (11)

Since ηk ≪ αk, the dynamics of θθθ evolves much faster than those of λ. We aim to establish the173

finite-time performance of the nonlinear 2TSA in (9), where f(·) is the neural network function174

defined in (6). This is equivalent to find the root1 (θθθ∗, λ∗) of a system with two coupled nonlinear175

equations h : X × Rmd × R → Rmd and g : X × Rmd × R → R such that176

H(θθθ, λ) := Eµ[h(X,θθθ, λ)] = 0, G(θθθ, λ) := Eµ[g(X,θθθ, λ)] = 0, (12)

where X is a random variable in finite state space X with unknown distribution µ. For a fixed θθθ, to177

study the stability of λ, we assume the condition on the existence of a mapping such that λ = y(θθθ) is178

the unique solution of G(θθθ, λ) = 0. In particular, y(θθθ) is given as179

y(θθθ) = r(s,1)+
∑
s′

p(s′|s,1)max
a

f(θθθ;ϕϕϕ(s′, a))−r(s,0)−
∑
s′

p(s′|s,0)max
a

f(θθθ;ϕϕϕ(s′, a)). (13)

4.2 Main Results180

As inspired by [20], the finite-time analysis of such a nonlinear 2TSA boils down to the choice of181

two step sizes {αk, ηk,∀k} and a Lyapunov function that couples the two iterates in (9). To this end,182

we first define the following two error terms:183

θ̃θθk = θθθk − θθθ∗, λ̃k = λk − y(θθθk), (14)

which characterize the coupling between θθθk and λk. If θ̃θθk and λ̃k go to zero simultaneously, the184

convergence of (θθθk, λk) to (θθθ∗, λ∗) can be established. Thus, to prove the convergence of (θθθk, λk) of185

the nonlinear 2TSA in (9) to its true value (θθθ∗, λ∗), we can equivalently study the convergence of186

(θ̃θθk, λ̃k) by providing the finite-time analysis for the mean squared error generated by (9). To couple187

the fast and slow iterates, we define the following weighted Lyapunov function188

M(θθθk, λk) :=
ηk
αk

∥θ̃θθk∥2 + ∥λ̃k∥2 =
ηk
αk

∥θθθk − θθθ∗∥2 + ∥λk − y(θθθk)∥2, (15)

where ∥ · ∥ stands for the the Euclidean norm for vectors throughout the paper. It is clear that189

the Lyapunov function M(θθθk, λk) combines the updates of θθθ and λ with respect to the true neural190

network function f(θθθ;ϕϕϕ(s, a)) in (6).191

To this end, our goal turns to characterize finite-time convergence of E[M(θθθk, λk)]. However, it is192

challenging to directly finding the global optimum of the corresponding nonlinear equations due193

1The root (θθθ∗, λ∗) of the nonlinear 2TSA (9) can be established by using the ODE method following the
solution of suitably defined differential equations [9, 48, 3, 21, 19, 20], i.e., θ̇θθ = H(θθθ, λ), λ̇ = η

α
G(θθθ, λ), where

a fixed stepsize is assumed for ease of expression at this moment.
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Figure 1: Neural-Q-Whittle operates w.r.t. true neural function f(·) with its finite-time perfor-
mance given in Theorem 1 (indicated in dashed lines). Our proofs operate in three steps: (i) Step 1:
Obtain local linearization f0(·) and define Lyapunov function M̂(·) w.r.t. f0(·). (ii) Step 2: Character-
ize the finite-time performance w.r.t. M̂(·) using Lyapunov drift method. Since Neural-Q-Whittle
is updated w.r.t. f(·), we need to characterize the gap between f(·) and f0(·). (iii) Step 3: Similarly,
we characterize the approximation errors between M(·) and M̂(·).

to the nonlinear parameterization of Q-function in Neural-Q-Whittle. In addition, the operators194

h(·), g(·) and y(·) in (10), (11) and (13) directly relate with the convoluted neural network function195

f(θθθ;ϕϕϕ(s, a)) in (6), which hinders us to characterize the smoothness properties of theses operators.196

Such properties are often required for the analysis of stochastic approximation [15, 19, 21].197

To mitigate this, (Step 1) we instead approximate the true neural network function f(θθθ,ϕϕϕ(s, a)) with a198

collection of local linearization f0(θθθ;ϕϕϕ(s, a)) at the initial point θθθ0. Based on the surrogate stationary199

point θθθ∗0 of f0(θθθ;ϕϕϕ(s, a)), we correspondingly define a modified Lyapunov function M̂(θθθk, λk)200

combining updates of θθθ and λ with respect to such local linearization. Specifically, we have201

M̂(θθθk, λk) :=
ηk
αk

∥θθθk − θθθ∗0∥2 + ∥λk − y0(θθθk)∥2, (16)

where y0(·) is in the same expression as y(·) in (13) by replacing f(·) with f0(·), and we will describe202

this in details below. (Step 2) We then study the convergence rate of the nonlinear 2TSA using203

this modified Lyapunov function under general conditions. (Step 3) Finally, since the two coupled204

parameters θθθ and λ in (9) are updated with respect to the true neural network function f(θθθ;ϕϕϕ(s, a))205

in (6) in Neural-Q-Whittle, while we characterize their convergence using the approximated206

neural network function in Step 2. Hence, this further requires us to characterize the approximation207

errors. We visualize the above three steps in Figure 1 and provide a proof sketch in Section 4.3.208

Combing them together gives rise to our main theoretical results on the finite-time performance of209

Neural-Q-Whittle, which is formally stated in the following theorem.210

Theorem 1. Consider iterates {θθθk} and {λk} generated by Neural-Q-Whittle in (7) and (8).211

Given αk = α0

(k+1) , ηk = η0

(k+1)4/3
, we have for ∀k ≥ τ212

E[M(θθθk+1, λk+1)|Fk−τ ] ≤
2τ2E[M̂(θθθτ , λτ )]

(k + 1)2
+

1200α3
0

η0

(C1 + ∥θ̂θθ0∥)2 + (2C1 + ∥λ̂0∥)2

(k + 1)2/3

+
2η0c

2
0

α0(1− κ)2
∥span(ΠFf(θθθ

∗)−f(θθθ∗))∥2 +
(

2

(k + 1)2/3
+2

)
O
(c31(∥θθθ0∥+|λ0|+1)3

m1/2

)
, (17)

where C1 := c1(∥θθθ0∥+ ∥λ0∥+ 1) with c1 being a proper chosen constant, c0 is a constant defined213

in Assumption 3, τ is the mixing time defined in (22), and ΠF represents the projection to the set of214

F contianing all possible f0(θθθ;ϕϕϕ(s, a)) in (18).215

The first term on the right hand side (17) corresponds to the bias compared to the Lyapunov function216

at the mixing time τ , which goes to zero at a rate of O(1/k2). The second term corresponds to the217

accumulated estimation error of the nonlinear 2TSA due to Markovian noise, which vanishes at the218

rate O(1/k2/3). Hence it dominates the overall convergence rate in (17). The third term captures the219

distance between the optimal solution (θθθ∗, λ∗) to the true neural network function f(θθθk;ϕϕϕ(s, a)) in220

(6) and the optimal one (θθθ∗0, y0(θθθ
∗
0)) with local linearization f0(θθθk;ϕϕϕ(s, a)) in (18), which quantifies221

the error when f(θθθ∗) does not fall into the function class F . The last term characterizes the distance222

between f(θθθk;ϕϕϕ(s, a)) and f0(θθθk;ϕϕϕ(s, a)) with any θθθk. Both terms diminish as m → ∞. Theorem223

1 implies the convergence to the optimal value (θθθ∗, λ∗) is bounded by the approximation error, which224

6



will diminish to zero as representation power of f0(θθθk;ϕϕϕ(s, a)) increases when m → ∞. Need to225

mention that a constant step size will result in a non-vanishing accumulated error as in [15].226

Remark 2. A finite-time analysis of nonlinear 2TSA was presented in [38]. However, [38] required227

a stability condition that limk→∞(θθθk, λk) = (θθθ∗, λ∗), and both h and g are locally approximated228

as linear functions. [19, 57] relaxed these conditions and provided a finite-time analysis under i.i.d.229

noise. These results were later extended to Markovian noise [20] under the assumption that H230

function is strongly monotone in θθθ and G function is strongly monotone in λ. Since [20] leveraged231

the techniques in [19], it needed to explicitly characterize the covariance between the error caused232

by Markovian noise and the parameters’ residual error in (14), leading to the convergence analysis233

much more intrinsic. [15] exploited the mixing time to avoid the covariance between the error234

caused by Markovian noise and the parameters’ residual error, however, it only considered the single235

timescale Q-learning with linear function approximation. Though our Neural-Q-Whittle can be236

rewritten as a nonlinear 2TSA, the nonlinear parameterization of Q-function caused by the neural237

network function approximation makes the aforementioned analysis not directly applicable to ours238

and requires additional characterization as highlighted in Figure 1. The explicit characterization of239

approximation errors further distinguish our work.240

4.3 Proof Sketch241

In this section, we sketch the proofs of the three steps shown in Figure 1 as required for Theorem 1.242

4.3.1 Step 1: Approximated Solution of Neural-Q-Whittle243

We first approximate the optimal solution by projecting the Q-function in (6) to some function classes244

parameterized by θθθ. The common choice of the projected function classes is the local linearization of245

f(θθθ;ϕϕϕ(s, a)) at the initial point θθθ0 [13, 58], i.e., F := {f0(θθθ;ϕϕϕ(s, a)),∀θθθ ∈ Θ}, where246

f0(θθθ;ϕϕϕ(s, a)) =
1√
m

m∑
r=1

br1{w⊺
r,0ϕϕϕ(s, a) > 0}w⊺

rϕϕϕ(s, a). (18)

Then, we define the approximate stationary point θθθ∗0 with respect to f0(θθθ;ϕϕϕ(s, a)) as follows.247

Definition 1. [[13, 58]] A point θθθ∗0 ∈ Θ is said to be the approximate stationary point of Algorithm248

1 if for all feasible θθθ ∈ Θ it holds that Eµ,π,P [(∆0 · ∇θθθf0(θθθ;ϕϕϕ(s, a)))
⊺(θθθ − θθθ∗0)] ≥ 0,∀θθθ ∈ Θ,249

with ∆0 := [r(s, a) + (1− a)λ∗ − I0(θθθ) + maxa′ f0(θθθ;ϕϕϕ(s
′, a))− f0(θθθ;ϕϕϕ(s, a))], where I0(θθθ) =250

1
2S

∑
s∈S [f0(θθθ;ϕϕϕ(s, 0)) + f0(θθθ;ϕϕϕ(s, 1))]251

Though there is a gap between the true neural function (6) and the approximated local linearized252

function (18), the gap diminishes as the width of neural network i.e., m, becomes large [13, 58].253

With the approximated stationary point θθθ∗0, we can redefine the two error terms in (14) as254

θ̂θθk = θθθk − θθθ∗0, λ̂k = λk − y0(θθθk), (19)

using which we correspondingly define a modified Lyapunov function M̂(θθθk, λk) in (16), where255

y0(θθθ)=r(s,1)+
∑
s′

p(s′|s, 1)max
a

f0(θθθ;ϕϕϕ(s
′, a))−r(s,0)−

∑
s′

p(s′|s, 0)max
a

f0(θθθ;ϕϕϕ(s
′, a)). (20)

4.3.2 Step 2: Convergence Rate of M̂(θθθk, λk) in (16)256

Since we approximate the true neural network function f(θθθ;ϕϕϕ(s, a)) in (6) with the local linearized257

function f0(θθθ;ϕϕϕ(s, a)) in (18), the operators h(·) and g(·) in (10)-(11) turn correspondingly to be258

h0(Xk, θθθk, λk) = ∇θθθf0(θθθk;ϕϕϕ(Sk, Ak))∆k,0, g0(θθθk) := f0(θθθk;ϕϕϕ(s, 1))− f0(θθθk;ϕϕϕ(s, 0)), (21)

with ∆k,0 := r(Sk, Ak) + (1−Ak)λk − I0(θθθk) + maxa f0(θθθk;ϕϕϕ(Sk+1, a))− f0(θθθk;ϕϕϕ(Sk, Ak)).259

Before we present the finite-time error bound of the nonlinear 2TSA (9) under Markovian noise, we260

first discuss the mixing time of the Markov chain {Xk} and our assumptions.261

Definition 2 (Mixing time [15]). For any δ > 0, define τδ as262

τδ =min{k ≥ 1 : ∥E[h0(Xk, θθθ, λ)|X0 = x]−H0(θθθ, λ)∥ ≤ δ(∥θθθ − θθθ∗0∥+ ∥λ− y0(θθθ
∗
0)∥)}. (22)
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Assumption 1. The Markov chain {Xk} is irreducible and aperiodic. Hence, there exists a unique263

stationary distribution µ [31], and constants C > 0 and ρ ∈ (0, 1) such that dTV (P (Xk|X0 =264

x), µ) ≤ Cρk,∀k ≥ 0, x ∈ X , where dTV (·, ·) is the total-variation (TV) distance [31].265

Remark 3. Assumption 1 is often assumed to study the asymptotic convergence of stochastic266

approximation under Markovian noise [4, 9, 15].267

Lemma 1. The function h0(X,θθθ, λ) defined in (21) is globally Lipschitz continuous w.r.t θθθ and λ268

uniformly in X , i.e., ∥h0(X,θθθ1, λ1)−h0(X,θθθ2, λ2)∥ ≤ Lh,1∥θθθ1 − θθθ2∥+ Lh,2∥λ1 − λ2∥,∀X ∈ X ,269

and Lh,1 = 3, hh,2 = 1 are valid Lipschitz constants.270

Lemma 2. The function g0(θθθ) defined in (21) is linear and thus Lipschitz continuous in θθθ, i.e.,271

∥g0(θθθ1)− g0(θθθ2)∥ ≤ Lg∥θθθ1 − θθθ2∥, and Lg = 2 is a valid Lipschitz constant.272

Lemma 3. The function y0(θθθ) defined in (20) is linear and thus Lipschitz continuous in θθθ, i.e.,273

∥y0(θθθ1)− y0(θθθ2)∥ ≤ Ly∥θθθ1 − θθθ2∥, and Ly = 2 is a valid Lipschitz constant.274

Remark 4. The Lipschitz continuity of h guarantees the existence of a solution θθθ to the ODE θ̇θθ for a275

fixed λ, while the Lipschitz continuity of g and y ensures the existence of a solution λ to the ODE λ̇276

when θθθ is fixed. These lemmas often serve as assumptions when proving the convergence rate for277

both linear and nonlinear 2TSA [30, 38, 18, 24, 19, 17, 26].278

Lemma 4. For a fixed λ, there exists a constant µ1 > 0 such that h0(X,θθθ, λ) defined in (10) satisfies279

E[θ̂θθ
⊺
h0(X,θθθ, λ)] ≤ −µ1∥θ̂θθ∥2.

For fixed θθθ, there exists a constant µ2 > 0 such that g0(X,θθθ, λ) defined in (11) satisfies280

E[λ̂g0(X,θθθ, λ)] ≤ −µ2∥λ̂∥2.
Remark 5. Lemma 4 guarantees the stability and uniqueness of the solution θθθ to the ODE θ̇θθ for a281

fixed λ, and the uniqueness of the solution λ to the ODE λ̇ for a fixed θθθ. This assumption can be282

viewed as a relaxation of the stronger monotone property of nonlinear mappings [19, 15], since it is283

automatically satisfied if h and g are strong monotone as assumed in [19].284

Lemma 5. Under Assumption 1 and Lemma 1, there exist constants C > 0, ρ ∈ (0, 1) and285

L = max(3,maxX h0(X,θθθ∗0), y0(θθθ
∗
0)) such that286

τδ ≤ log(1/δ) + log(2LCmd)

log(1/ρ)
.

Remark 6. τδ is equivalent to the mixing time of the underlying Markov chain satisfying287

limδ→0 δτδ = 0 [15]. For simplicity, we remove the subscript and denote it as τ .288

We now present the finite-time error bound for the Lyapunov function M̂(θθθk, λk) in (16).289

Theorem 2. Consider iterates {θθθk} and {λk} generated by Neural-Q-Whittle in (7) and (8).290

Given Lemma 1-4, αk = α0

(k+1) , ηk = η0

(k+1)4/3
, C1 := c1(∥θθθ0∥+ ∥λ0∥+ 1) with a constant c1,291

E[M̂(θθθk+1, λk+1)|Fk−τ ] ≤
τ2E[M̂(θθθτ , λτ )]

(k + 1)2
+

600α3
0

η0

(C1 + ∥θ̂θθ0∥)2 + (2C1 + ∥λ̂0∥)2

(k + 1)2/3

+
O
(
c31(∥θθθ0∥+|λ0|+1)3m−1/2

)
(k + 1)2/3

, ∀k ≥ τ. (23)

4.3.3 Step 3: Approximation Error between M(θθθk, λk) and M̂(θθθk, λk)292

Finally, we characterize the approximation error between Lyapunov functions M(θθθk, λk) and293

M̂(θθθk, λk). Since we are dealing with long-term average MDP, we assume that the total varia-294

tion of the MDP is bounded [46].295

Assumption 2. There exists 0 < κ < 1 such that sup(s,a),(s′,a′) ∥p(·|s, a)− p(·|s′, a′)∥TV = 2κ.296

Hence, the Bellman operator is a span-contraction operator [46], i.e.,297

span(T f0(θθθ
∗
0)− T f(θθθ∗)) ≤ κ span(f0(θθθ

∗
0)− f(θθθ∗)). (24)

Assumption 3. ∥θθθ∗0 − θθθ∗∥ ≤ c0∥span(f0(θθθ∗0)− f(θθθ∗))∥, with c0 being a positive constant.298

Lemma 6. For M(θθθk, λk) in (15) and M̂(θθθk, λk) in (16), with constants c1 and c0 (Assumption 3),299

M(θθθk, λk) ≤ 2M̂(θθθk, λk)+
2ηkc

2
0

αk(1−κ)
∥span(ΠFf(θθθ

∗)−f(θθθ∗))∥+2O
(c31(∥θθθ0∥+|λ0|+1)3

m1/2

)
.
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5 Numerical Experiments300

We numerically evaluate the performance of Neural-Q-Whittle using an example of circulant301

dynamics [23, 3, 8]. The state space is S = {1, 2, 3, 4}. Rewards are r(1, a) = −1, r(2, a) =302

r(3, a) = 0, and r(4, a) = 1 for a ∈ {0, 1}. The dynamics of states are circulant and defined as303

P 1 =

0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5
0.5 0 0 0.5

 and P 0 =

0.5 0 0 0.5
0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5

 .

This indicates that the process either remains in its current state or increments if it is active (i.e.,304

a = 1), or it either remains the current state or decrements if it is passive (i.e., a = 0). The exact value305

of Whittle indices [23] are λ(1) = −0.5, λ(2) = 0.5, λ(3) = 1, and λ(4) = −1. In our experiments,306

we set the learning rates as αk = 0.5/(k + 1) and ηk = 0.1/(k + 1)4/3. We use ϵ-greedy for the307

exploration and exploitation tradeoff with ϵ = 0.5. We consider a two-layer neural network with the308

number of neurons in the hidden layer as m = 200. As described in Algorithm 1, br,∀r are uniformly309

initialized in {−1, 1} and wr,∀r are initialized as a zero mean Gaussian distribution according to310

N (000, Id/d). These results are carried out by Monte Carlo simulations with 100 independent trials.311
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Figure 2: Convergence of Neural-Q-Whittle.

Convergence to true Whittle index.312

We verify that Neural-Q-Whittle313

convergences to true Whittle in-314

dices. As illustrated in Figure 2a,315

Neural-Q-Whittle guarantees the316

convergence to true Whittle indices317

and outperforms Q-Whittle [3] in318

the convergence speed. This is due319

to the fact that Neural-Q-Whittle320

updates the Whittle index of a spe-321

cific state even when the current vis-322

ited state is not that state. Note that323

many existing Whittle index based Q-324

learning algorithms do not guarantee convergence to the true Whittle indices, e.g., WIQL [8] and325

QWIC [23]. See additional discussions in supplementary materials.326
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Figure 3: Verification of Assump-
tion 3 w.r.t the constant c0.

Convergence of the Lyapunov function defined in (15). We327

also evaluate the convergence of the proposed Lyapunov func-328

tion defined in (15), which is presented in Figure 2b. It depicts329

E[M(θθθk, λk)] vs. the number of iterations in logarithmic scale.330

For ease of presentation, we only take state s = 4 as an illus-331

trative example. It is clear that M(θθθk, λk) converges to zero as332

the number of iterations increases, which is in alignment with333

our theoretical results in Theorem 1.334

Verification of Assumption 3. We now verify Assumption 3335

that the gap between θθθ∗0 and θθθ∗ can be bounded by the span of336

f0(θθθ
∗
0) and f(θθθ∗) with a constant c0. In Figure 3, we show c0337

as a function of the number of neurons in the hidden layer m.338

It clearly indicates that constant c0 exists and decreases as the number of neurons grows larger.339

6 Conclusion340

We presented Neural-Q-Whittle, a Whittle index based Q-learning algorithm for the notoriously341

intractable RMAB with neural network function approximation. We proved that Neural-Q-Whittle342

achieves an O(1/k2/3) convergence rate, where k is the number of iterations when data are generated343

from a Markov chain and Q-function is approximated by a ReLU neural network. By viewing344

Neural-Q-Whittle as 2TSA and leveraging the Lyapunov drift method, we removed the projection345

step on parameter update of Q-learning with neural network function approximation. Extending the346

current framework to two-timescale Q-learning (i.e., the coupled iterates between Q-function values347

and Whittle indices) with general deep neural network approximation is our future work.348
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A Related Work497

Online Restless Bandits. The online RMAB setting, where the underlying MDPs are unknown,498

has been gaining attention, e.g., [16, 32, 33, 49, 41, 25]. However, these methods do not exploit the499

special structure available in the problem and contend directly with an extremely high dimensional500

state-action space yielding the algorithms to be too slow to be useful. Recently, RL based algorithms501

have been developed [23, 3, 8, 27, 52, 56], to explore the problem structure through index policies.502

For instance, [23] proposed a Q-learning algorithm for Whittle index under the discounted setting,503

which lacks of convergence guarantees. [8] approximated Whittle index using the difference of504

Q(s, 1) − Q(s, 0) for any state s, which is not guaranteed to converge to the true Whittle index505

in general scenarios. To our best knowledge, the Q-Whittle in (4)-(5) proposed by [3] is the506

first algorithm with a rigorous asymptotic analysis. Therefore, [23, 3, 8, 27] lacked finite-time507

performance analysis and multi-timescale stochastic approximation algorithms usually suffer from508

slow convergence.509

[52, 56] designed model-based low-complexity policy but is constrained to either a specific Markovian510

model or depends on a simulator for a finite-horizon setting which cannot be directly applied here.511

Latter on, [57] showed the finite-time convergence performance under the Q-Whittle setting of512

[3] with linear function approximation. However, the underlying assumption in [3, 57] is that data513

samples are drawn i.i.d per iteration. This is often not the case in practice since data samples of514

Q-learning are drawn according to the underlying Markov decision process. Till now, the finite-time515

convergence rate of Q-Whittle under the more challenging Markovian setting remains to be an516

open problem. Though [42] proposed a novel DQN method and applied it to Whittle index learning,517

it lacks of theoretical convergence analysis. To our best knowledge, our work is the first to study518

low-complexity model-free Q-learning for RMAB with neural network function approximation and519

provide a finite-time performance guarantee.520

Two-Timescale Stochastic Approximation. The theoretical understanding of average-reward rein-521

forcement learning (RL) methods is limited. Most existing results focus on asymptotic convergence522

[50, 1, 51, 61], or finite-time performance guarantee for discounted Q-learning [15, 45, 14]. How-523

ever, the analysis of average-reward RL algorithms is known to be more challenging than their524

discounted-reward counterparts [62, 54]. In particular, our Neural-Q-Whittle follows the 2TSA525

scheme [11, 29, 7]. The standard technique for analyzing 2TSA is via the ODE method to prove526

asymptotic convergence [9]. Building off the importance of asymptotic results, recent years have527

witnessed a focus shifted to non-asymptotic, finite-time analysis of 2TSA [24, 21, 19, 59]. The528

closest work is [19], which characterized the convergence rate for a general non-linear 2TSA with529

i.i.d. noise. We generalize this result to provide a finite-time analysis of our Neural-Q-Whittle530

with Markovian noise. In addition, existing finite-time analysis, e.g., sample complexity [62] and531

regret [54] of Q-learning with average reward focus on a single-timescale SA, and hence cannot532

be directly applied to our Neural-Q-Whittle. Finally, existing Q-learning with linear function533

approximation [36, 6, 63] and neural network function approximation [13, 58] requires an additional534

projection step onto a bounded set related to the unknown stationary distribution of the underlying535

MDPs, or focuses on a single-timescale SA [15].536

B Review on Whittle Index Policy537

Whittle index policy addresses the intractable issue of RMAB through decomposition. In each538

round t, it first calculates the Whittle index for each arm n independently only based on its current539

state sn(t), and then the Whittle index policy simply selects the K arms with the highest indices to540

activate. Following Whittle’s approach[55], we can consider a system with only one arm due to the541

decomposition, and the Lagrangian is expressed as542

L(π, λ) = lim inf
T→∞

1

T
Eπ

T∑
t=1

{
r(t) + λ

(
1− a(t)

)}
, (25)

where λ is the Lagrangian multiplier (or the subsidy for selecting passive action). For a particular λ,543

the optimal activation policy can be expressed by a set of states in which it would activate this arm,544

which is denoted D(λ).545
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Definition 3 (Indexiability). We denote D(λ) as the set of states S for which the optimal action546

for the arm is to choose a passive action, i.e., A = 0. Then the arm is said to be indexable if D(λ)547

increases with λ, i.e., if λ > λ′, then D(λ) ⊇ D(λ′).548

Following the indexability property, the Whittle index in a particular state S is defined as follows.549

Definition 4 (Whittle Index). The Whittle index in state S for the indexable arm is the smallest value550

of the Lagrangian multiplier λ such that the optimal policy at state S is indifferent towards actions551

A = 0 and A = 1. We denote such a Whittle index as λ(S) satisfying λ(S) := infλ≥0{S ∈ D(λ)}.552

Definition 5 (Whittle index policy). Whittle index policy is a controlled policy which activates the K553

arms with the highest whittle index λi(Si(t)) at each time slot t.554

C Proof of Lemmas for “Step 2: Convergence Rate of M̂(θθθk, λk) in (16)”555

C.1 Proof of Lemma 1556

Proof. Recall that

f0(θθθ;ϕϕϕ(s, a)) =
1√
m

m∑
r=1

br1{w⊺
r,0ϕϕϕ(s, a) > 0}w⊺

rϕϕϕ(s, a).

Thus we denote ∇θθθf0(θθθ;ϕϕϕ(s, a)) as557

∇θθθf0(θθθ;ϕϕϕ(s, a)) :=
[ 1√

m
b11{w⊺

1,0ϕϕϕ(s, a) > 0}ϕϕϕ(s, a)⊺, . . . ,

1√
m
bm1{w⊺

m,0ϕϕϕ(s, a) > 0}ϕϕϕ(s, a)⊺
]⊺
. (26)

Since ∥ϕϕϕ(s, a)∥ ≤ 1,∀s ∈ S, a ∈ A and the fact that br,∀r ∈ [m] is uniformly initialized as 1 and558

−1, we have ∥∇θθθf0(θθθ;ϕϕϕ(s, a))∥ ≤ 1.559

Therefore, we have the following inequality for any parameter pairs (θθθ1, λ1) and (θθθ2, λ2) with560

X = (s, a, s′) ∈ X ,561

∥h0(X,θθθ1, λ1)− h0(X,θθθ2, λ2)∥

=
∥∥∥∇θθθf0(θθθ1;ϕϕϕ(s, a))

[
r(s, a) + (1− a)λ1 − I0(θθθ1) + max

a1

f0(θθθ1;ϕϕϕ(s
′, a1))− f0(θθθ1;ϕϕϕ(s, a))

]
−∇θθθf0(θθθ2;ϕϕϕ(s, a))

[
r(s, a) + (1− a)λ2 − I0(θθθ2) + max

a2

f0(θθθ2;ϕϕϕ(s
′, a2))− f0(θθθ2;ϕϕϕ(s, a))

]∥∥∥
(a1)
=
∥∥∥∇θθθf0(θθθ1;ϕϕϕ(s, a))

[
(1− a)(λ1 − λ2) + I0(θθθ2)− I0(θθθ1) + f0(θθθ2;ϕϕϕ(s, a))− f0(θθθ1;ϕϕϕ(s, a))

+ max
a1

(
f0(θθθ1;ϕϕϕ(s

′, a1))−max
a2

f0(θθθ2;ϕϕϕ(s
′, a2))

]∥∥∥
(a2)

≤ ∥(1− a)(λ1 − λ2)∥+ ∥f0(θθθ2;ϕϕϕ(s, a))− f0(θθθ1;ϕϕϕ(s, a))∥

+

∥∥∥∥∥ 1

2S

∑
s̃∈S

f0(θθθ2;ϕϕϕ(s̃, 0))− f0(θθθ1;ϕϕϕ(s̃, 0)) + f0(θθθ2;ϕϕϕ(s̃, 1))− f0(θθθ1;ϕϕϕ(s̃, 1))

∥∥∥∥∥
+
∥∥∥max

a1

(
f0(θθθ1;ϕϕϕ(s

′, a1))−max
a2

f0(θθθ2;ϕϕϕ(s
′, a2))

∥∥∥
(a3)

≤ ∥(1− a)(λ1 − λ2)∥+ ∥∇θθθf0(θθθ1;ϕϕϕ(s, a))(θθθ2 − θθθ1)∥

+

∥∥∥∥∥ 1

2S

∑
s̃∈S

∇θθθf0(θθθ1;ϕϕϕ(s̃, 0))(θθθ2 − θθθ1) +∇θθθf0(θθθ1;ϕϕϕ(s̃, 1))(θθθ2 − θθθ1)

∥∥∥∥∥
+
∥∥∥max

a1

(
f0(θθθ1;ϕϕϕ(s

′, a1))−max
a2

f0(θθθ2;ϕϕϕ(s
′, a2))

∥∥∥
(a4)

≤ ∥(λ1 − λ2)∥+ 2∥θθθ1 − θθθ2∥+
∥∥∥max

a1

(
f0(θθθ1;ϕϕϕ(s

′, a1))−max
a2

f0(θθθ2;ϕϕϕ(s
′, a2))

∥∥∥
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(a5)

≤ ∥(λ1 − λ2)∥+ 2∥θθθ1 − θθθ2∥+
∥∥∥max

a′
f0(θθθ1;ϕϕϕ(s

′, a′))− f0(θθθ2;ϕϕϕ(s
′, a′))

∥∥∥
(a6)

≤ ∥(λ1 − λ2)∥+ 3∥θθθ1 − θθθ2∥.
Specifically, (a1) holds due to the fact that ∇θθθf0(θθθ1;ϕϕϕ(s, a)) = ∇θθθf0(θθθ2;ϕϕϕ(s, a)) as in (26). Since

I0(θθθk) =
1

2S

∑
s̃∈S

[
f0(θθθk;ϕϕϕ(s̃, 0)) + f0(θθθk;ϕϕϕ(s̃, 1))

]
,

(a2) is due to the fact that ∥x+y∥ ≤ ∥x∥+∥y∥,∀x,y ∈ Rmd and ∥x·y∥ ≤ ∥x∥·∥y∥,∀x,y ∈ Rmd562

and ∥ϕϕϕ(s, a)∥ ≤ 1,∀s, a. (a3) holds since563

f0(θθθ2;ϕϕϕ(s, a))− f0(θθθ1;ϕϕϕ(s, a)) = ∇θθθf0(θθθ1;ϕϕϕ(s, a))(θθθ2 − θθθ1),∀s ∈ S, a ∈ A. (27)
(a4) holds for the same reason as (a2). (a5) is due to the fact that564

∥max
a′

f0(θθθ1;ϕϕϕ(s
′, a′))− f0(θθθ2;ϕϕϕ(s

′, a′))∥ ≤ max

(∥∥∥max
a′

f0(θθθ1;ϕϕϕ(s
′, a′))− f0(θθθ2;ϕϕϕ(s

′, a′))
∥∥∥,

∥∥∥min
a′

f0(θθθ1;ϕϕϕ(s
′, a′))− f0(θθθ2;ϕϕϕ(s

′, a′))
∥∥∥). (28)

(a6) holds for the same reason as (a3) and (a4).565

C.2 Proof of Lemma 2566

Proof. Since g0(·) is irrelevant with X and λ, in the following, we write g0(X,θθθ, λ) with g0(λ)567

interchangeably. For any θθθ1 ∈ Rmd and θθθ2 ∈ Rmd, we have568

∥g0(θθθ1)− g0(θθθ2)∥
= ∥f0(θθθ1;ϕϕϕ(s, 1))− f0(θθθ1;ϕϕϕ(s, 0))− f0(θθθ2;ϕϕϕ(s, 1)) + f0(θθθ2;ϕϕϕ(s, 0))∥
≤ ∥f0(θθθ1;ϕϕϕ(s, 1))− f0(θθθ2;ϕϕϕ(s, 1))∥+ ∥f0(θθθ1;ϕϕϕ(s, 0))− f0(θθθ2;ϕϕϕ(s, 0))∥
= ∥∇θθθf0(θθθ1;ϕϕϕ(s, 1))(θθθ2 − θθθ1)∥+ ∥∇θθθf0(θθθ1;ϕϕϕ(s, 0))(θθθ2 − θθθ1)∥
≤ ∥∇θθθf0(θθθ1;ϕϕϕ(s, 1))∥ · ∥θθθ1 − θθθ2∥+ ∥∇θθθf0(θθθ1;ϕϕϕ(s, 0))∥ · ∥θθθ1 − θθθ2∥
≤ 2∥θθθ1 − θθθ2∥,

where the first inequality is due to the fact that ∥x + y∥ ≤ ∥x∥ + ∥y∥, ∀x,y ∈ Rmd, the second569

inequality holds due to ∥x · y∥ ≤ ∥x∥ · ∥y∥, ∀x,y ∈ Rmd, and the last inequality holds since570

∥∇θθθf0(θθθ1;ϕϕϕ(s, a))∥ ≤ 1,∀s ∈ S, a ∈ A.571

C.3 Proof of Lemma 3572

Proof. For any θθθ1 ∈ Rmd and θθθ2 ∈ Rmd, we have573

∥y0(θθθ1)− y0(θθθ2)∥

=
∥∥∥r(s, 1)− r(s, 0) +

∑
s′

P (s′|s, 1)max
a

f0(θθθ1;ϕϕϕ(s
′, a))−

∑
s′

P (s′|s, 0)max
a

f0(θθθ1;ϕϕϕ(s
′, a))

− r(s, 1)− r(s, 0) +
∑
s′

P (s′|s, 1)max
a

f0(θθθ2;ϕϕϕ(s
′, a))−

∑
s′

P (s′|s, 0)max
a

f0(θθθ2;ϕϕϕ(s
′, a))

∥∥∥
=
∥∥∥∑

s′

P (s′|s, 1)max
a

f0(θθθ1;ϕϕϕ(s
′, a))−

∑
s′

P (s′|s, 1)max
a

f0(θθθ2;ϕϕϕ(s
′, a))

−
∑
s′

P (s′|s, 0)max
a

f0(θθθ1;ϕϕϕ(s
′, a)) +

∑
s′

P (s′|s, 0)max
a

f0(θθθ2;ϕϕϕ(s
′, a))

∥∥∥
≤
∥∥∥∑

s′

P (s′|s, 1)max
a

f0(θθθ1;ϕϕϕ(s
′, a))−

∑
s′

P (s′|s, 1)max
a

f0(θθθ2;ϕϕϕ(s
′, a))

∥∥∥
+
∥∥∥∑

s′

P (s′|s, 0)max
a

f0(θθθ1;ϕϕϕ(s
′, a)) +

∑
s′

P (s′|s, 0)max
a

f0(θθθ2;ϕϕϕ(s
′, a))

∥∥∥
≤ 2∥θθθ1 − θθθ2∥,

with the last inequality holds due to (27) and (28).574
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C.4 Proof of Lemma 4575

Proof. 1) We first show that there exists a constant µ1 > 0 such that E[θ̂θθ
⊺
h0(X,θθθ, λ)] ≤ −µ1∥θ̂θθ∥2.576

According to the definition of θθθ∗0 given in Definition 1, E[h0(X,θθθ∗0, y0(θθθ
∗
0))] = 0. Hence, we have577

E
[
θ̂θθ
⊺
(h0(X,θθθ, λ)− h0(X,θθθ∗0, y0(θθθ

∗
0))
]

= θ̂θθ
⊺
E[h0(X,θθθ, λ)− h0(X,θθθ∗0, y0(θθθ

∗
0))]

= θ̂θθ
⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))

[
r(s, a) + (1− a)λ− I0(θθθ) + max

a1

f0(θθθ;ϕϕϕ(s
′, a1))− f0(θθθ;ϕϕϕ(s, a))

]
−∇θθθf0(θθθ

∗
0;ϕϕϕ(s, a))

[
r(s, a) + (1− a)y0(θθθ

∗
0)− I0(θθθ

∗
0) + max

a2

f0(θθθ
∗
0;ϕϕϕ(s

′, a2))− f0(θθθ
∗
0;ϕϕϕ(s, a))

]]
(b1)
= θ̂θθ

⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))

[
(1− a)(λ− y0(θθθ

∗
0)) + I(θθθ∗0)− I0(θθθ) + f0(θθθ

∗
0;ϕϕϕ(s, a))− f0(θθθ;ϕϕϕ(s, a))

+ max
a1

f0(θθθ;ϕϕϕ(s
′, a1))−max

a2

f0(θθθ
∗
0;ϕϕϕ(s

′, a2))
]]

= θ̂θθ
⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))

[
max
a1

f0(θθθ;ϕϕϕ(s
′, a1))−max

a2

f0(θθθ
∗
0;ϕϕϕ(s

′, a2))
]]

− θ̂θθ
⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))[I0(θθθ)− I0(θθθ

∗
0)]
]
− θ̂θθ

⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))[f0(θθθ;ϕϕϕ(s, a))− f0(θθθ

∗
0;ϕϕϕ(s, a))]

]
+ θ̂θθ

⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))[(1− a)(λ− y0(θθθ

∗
0))]
]

(b2)

≤ θ̂θθ
⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))max

a′

[
f0(θθθ;ϕϕϕ(s

′, a′))− f0(θθθ
∗
0;ϕϕϕ(s

′, a′))
]]

− θ̂θθ
⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))[I0(θθθ)− I0(θθθ

∗
0)]
]
− θ̂θθ

⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))[f0(θθθ;ϕϕϕ(s, a))− f0(θθθ

∗
0;ϕϕϕ(s, a))]

]
+ θ̂θθ

⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))[(1− a)(λ− y0(θθθ

∗
0))]
]

(b3)

≤ θ̂θθ
⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))max

a′

[
f0(θθθ;ϕϕϕ(s

′, a′))− f0(θθθ
∗
0;ϕϕϕ(s

′, a′))
]]

− θ̂θθ
⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))[I0(θθθ)− I0(θθθ

∗
0)]
]
− θ̂θθ

⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))[f0(θθθ;ϕϕϕ(s, a))− f0(θθθ

∗
0;ϕϕϕ(s, a))]

]
(b4)
= ∥θ̂θθ∥2E

[
∇θθθf0(θθθ;ϕϕϕ(s, a))

⊺∇θθθf0(θθθ;ϕϕϕ(s
′, ã))

]
− ∥θ̂θθ∥2E

[
∇θθθf0(θθθ;ϕϕϕ(s, a))

⊺
[ 1

2S

∑
s̃∈S

∇θθθf0(θθθ;ϕϕϕ(s̃, 0)) + f0(θθθ;ϕϕϕ(s̃, 1))
]]

− ∥θ̂θθ∥2E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))

⊺∇θθθf0(θθθ;ϕϕϕ(s, a))
]

where (b1) holds since ∇θθθf0(θθθ;ϕϕϕ(s, a)) = ∇θθθf0(θθθ
∗
0;ϕϕϕ(s, a)) as in (26), (b2) is due to the fact that578

maxa1
f0(θθθ;ϕϕϕ(s

′, a1)) − maxa1
f0(θθθ

∗
0;ϕϕϕ(s

′, a2)) ≤ maxa′

[
f0(θθθ;ϕϕϕ(s

′, a′)) − f0(θθθ
∗
0;ϕϕϕ(s

′, a′))
]
,579

and (b3) holds due to the fact that θ̂θθ
⊺
E
[
∇θθθf0(θθθ;ϕϕϕ(s, a))[(1− a)(λ− y0(θθθ

∗
0))]
]
≤ 0 since a larger580

Whittle index λ will choose the action a = 1. Notice that the ã in (b4) represents the action a′ which581

maximizes f0(θθθ;ϕϕϕ(s′, a′))− f0(θθθ
∗
0;ϕϕϕ(s

′, a′)). Due to the definition of ∇θθθf0(θθθ;ϕϕϕ(s, a)) in (26), we582

show that E[θ̂θθ
⊺
h0(X,θθθ, λ)] ≤ 0.583

2) Next, we show that there exists a constant µ2 > 0 such that E[λ̂g0(X,θθθ, λ)] ≤ −µ2∥λ̂∥2.584

According to the definition of g0(θθθ), i.e., g0(θθθ) := f0(θθθ;ϕϕϕ(s, 1)) − f0(θθθ;ϕϕϕ(s, 0)). Since y0(θθθ)585

is the solution of λ such that f0(θθθ;ϕϕϕ(s, 1)) = f0(θθθ;ϕϕϕ(s, 0)), the signs of λ̂ := λ − y0(θ) and586

f0(θθθ;ϕϕϕ(s, 1)) − f0(θθθ;ϕϕϕ(s, 0)) are always opposite. Hence, we have E[λ̂g0(X,θθθ, λ)] ≤ 0, which587

completes the proof.588

589
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C.5 Proof of Lemma 5590

Proof. Under Lemma 1, we have591

∥h0(X,θθθ, λ)− h0(X,θθθ∗, λ∗)∥ ≤ 3∥θθθ − θθθ∗∥+ ∥λλλ− λλλ∗∥. (29)

Let L = max(3,maxX h0(X,θθθ∗, λ∗)), then according to (29), we have592

∥h0(X,θθθ, λ)∥ ≤ L(∥θθθ − θθθ∗∥+ ∥λλλ− λλλ∗∥+ 1).

Denote hi
0(X,θθθ, λ) as the i-th element of h0(X,θθθ, λ). Following [15], we can show that θθθ ∈ Rmd,593

λ ∈ R1, and x ∈ X ,594

∥E[h0(Xk, θθθ, λ)|X0 = x]− Eµ[h0(X,θθθ, λ)]∥

≤
md∑
i=1

|E[hi(Xk, θθθ, λ)|X0 = x]− Eµ[h
i
0(X,θθθ, λ)]|

≤ 2L(∥θθθ − θθθ∗∥+ ∥λ− λ∗∥+ 1)

md∑
i=1

∣∣∣∣∣E
[

hi
0(Xk, θθθ, λ)

2L(∥θθθ − θθθ∗∥+ ∥λ− λ∗∥+ 1)

∣∣∣X0 = x

]

− Eµ

[
hi
0(X,θθθ, λ)

2L(∥θθθ − θθθ∗∥+ ∥λ− λ∗∥+ 1)

] ∣∣∣∣∣
≤ 2L(∥θθθ − θθθ∗∥+ ∥λ− λ∗∥+ 1)mdCρk,

where the last inequality holds due to Assumption 1. To guarantee 2L(∥θθθ − θθθ∗∥ + ∥λ − λ∗∥ +595

1)mdCρk ≤ δ(∥θθθ − θθθ∗∥+ ∥λ− λ∗∥+ 1), we have596

τδ ≤ log(1/δ) + log(2LCmd)

log(1/ρ)
,

which completes the proof.597

598

C.6 Proof of Lemma 6599

Proof. Based on the definition of M(θθθk, λk) in (15), we have600

M(θθθk, λk) :=
ηk
αk

∥θθθk − θθθ∗∥2 + ∥λk − y(θθθk)∥2

=
ηk
αk

∥θθθk − θθθ∗0 + θθθ∗0 − θθθ∗∥2 + ∥λk − y0(θθθk) + y0(θθθk)− y(θθθk)∥2

≤ 2ηk
αk

(∥θθθk − θθθ∗0∥2 + ∥θθθ∗0 − θθθ∗∥2) + 2(∥λk − y0(θθθk)∥2 + ∥y0(θθθk)− y(θθθk)∥2)

= 2M̂(θθθk, λk) +
2ηk
αk

∥θθθ∗0 − θθθ∗∥2 + 2∥y0(θθθk)− y(θθθk)∥2

≤ 2M̂(θθθk, λk) +
2ηkc

2
0

αk
∥span(f0(θθθ∗0)− f(θθθ∗))∥2 + 2∥y0(θθθk)− y(θθθk)∥2, (30)

where the first inequality holds based on ∥x + y∥2 ≤ 2∥x∥2 + 2∥y∥2, and the second inequality601

holds based on Assumption 3. Next, we bound ∥span(f0(θθθ∗0)− f(θθθ∗))∥ as follows602

∥span(f0(θθθ∗0)− f(θθθ∗))∥ = ∥span(f0(θθθ∗0)−ΠFf(θθθ
∗) + ΠFf(θθθ

∗)− f(θθθ∗))∥
≤ ∥span(f0(θθθ∗0)−ΠFf(θθθ

∗))∥+ ∥span(ΠFf(θθθ
∗)− f(θθθ∗))∥

= ∥span(ΠFT f0(θθθ
∗
0)−ΠFT f(θθθ∗))∥+ ∥span(ΠFf(θθθ

∗)− f(θθθ∗))∥
≤ κ∥span(f0(θθθ∗0)− f(θθθ∗))∥+ ∥span(ΠFf(θθθ

∗)− f(θθθ∗))∥, (31)

where the last inequality follows (24). This indicates that603

∥span(f0(θθθ∗0)− f(θθθ∗))∥2 ≤ 1

(1− κ)2
∥span(ΠFf(θθθ

∗)− f(θθθ∗))∥2. (32)
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We further bound ∥y0(θθθk)− y(θθθk)∥2 as follows604

∥y0(θθθk)− y(θθθk)∥2 =
∥∥∥∑

s′

p(s′|s,1)max
a1

f0(θθθk;ϕϕϕ(s
′, a1))−

∑
s′

p(s′|s,0)max
a2

f0(θθθk;ϕϕϕ(s
′, a2))

−
∑
s′

p(s′|s,1)max
a3

f(θθθk;ϕϕϕ(s
′, a3)) +

∑
s′

p(s′|s,0)max
a4

f(θθθk;ϕϕϕ(s
′, a4))

∥∥∥2
=
∥∥∥∑

s′

p(s′|s,1)(max
a1

f0(θθθk;ϕϕϕ(s
′, a1))−max

a3

f(θθθk;ϕϕϕ(s
′, a3)))

−
∑
s′

p(s′|s,0)(max
a2

f0(θθθk;ϕϕϕ(s
′, a2))−max

a4

f(θθθk;ϕϕϕ(s
′, a4))

∥∥∥2
≤ 2∥max

(s,a)
f0(θθθk;ϕϕϕ(s, a))− f(θθθk;ϕϕϕ(s, a))∥2

≤ 2O
(c31(∥θθθ0∥+|λ0|+1)3

m1/2

)
, (33)

where the last inequality is due to Lemma 10. Substituting (32) and (33) back to (30) yields the final605

results.606

607

D Proof of the Theorem 2608

To prove Theorem 2, we need the following three key lemmas about the error terms defined in (19).609

Lemma 7. Let {θθθk, λk} be generated by (9). Then under Lemmas 1-4, for any k ≥ τ , we have610

E
[∥∥∥θ̃θθk+1

∥∥∥2|Fk−τ

]
≤ (1 + 150α2

k + ηk/αk − 2αkµ1)E
[ ∥∥∥θ̂θθk∥∥∥2 |Fk−τ

]
+ 6α2

kE
[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+

α3
k

ηk
O
(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
. (34)

Proof. According to (19), we have θ̂θθk+1 := θθθk+1 − θθθ∗0 = θ̂θθk + αkh(Xk, θθθk, λk), which leads to611 ∥∥∥θ̂θθk+1

∥∥∥2 =
∥∥∥θ̂θθk∥∥∥2 + 2αkθ̂θθ

⊺
kh(Xk, θθθk, λk) +

∥∥∥αkh(Xk, θθθk, λk)
∥∥∥2

=
∥∥∥θ̂θθk∥∥∥2 + 2αkθ̂θθ

⊺
k(h(Xk, θθθk, λk)− h0(Xk, θθθk, λk)) + 2αkθ̂θθ

⊺
kh0(Xk, θθθk, λk)

+ α2
k∥h(Xk, θθθk, λk)− h0(Xk, θθθk, λk) + h0(Xk, θθθk, λk)∥2

≤
∥∥∥θ̂θθk∥∥∥2 + 2αkθ̂θθ

⊺
k(h(Xk, θθθk, λk)− h0(Xk, θθθk, λk)) + 2αkθ̂θθ

⊺
kh0(Xk, θθθk, λk)

+ 2α2
k∥h(Xk, θθθk, λk)− h0(Xk, θθθk, λk)∥2 + 2α2

k∥h0(Xk, θθθk, λk)∥2. (35)

The above inequality holds due to the fact that ∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2. Taking expectations of612

∥θ̂θθk+1∥2 w.r.t Fk−τ yields613

E
[
∥θ̂θθk+1∥2|Fk−τ

]
≤E
[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
+ 2αkE

[
θ̂θθ
⊺
kh0(Xk, θθθk, λk)|Fk−τ

]
+ 2α2

kE
[∥∥∥h0(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
︸ ︷︷ ︸

Term1

+ 2αkE
[
θ̂θθ
⊺
k(h(Xk, θθθk, λk)− h0(Xk, θθθk, λk))|Fk−τ

]
︸ ︷︷ ︸

Term2

+ 2α2
kE
[∥∥∥h(Xk, θθθk, λk)− h0(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
︸ ︷︷ ︸

Term3
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≤E
[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
−2αkµ1E

[∥∥∥θ̃θθk∥∥∥2|Fk−τ

]
+ Term1+ Term2 + Term3, (36)

where the last inequality is due to Lemma 4. Next, we bound each individual term. Term1 is bounded614

as615

Term1 = 2α2
kE
[∥∥∥h0(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
(c1)
= 2α2

kE
[∥∥∥h0(Xk, θθθk, λk)− h0(Xk, θθθk, y0(θθθk)) + h0(Xk, θθθk, y0(θθθk))

− h0(Xk, θθθ
∗
0, y0(θθθ

∗
0)) + h0(Xk, θθθ

∗
0, y0(θθθ

∗
0))−H0(θθθ

∗
0, y0(θθθ

∗
0))
∥∥∥2|Fk−τ

]
(c2)

≤ 6α2
kE
[∥∥∥h0(Xk, θθθk, λk)− h0(Xk, θθθk, y0(θθθk))

∥∥∥2|Fk−τ

]
+ 6α2

kE
[∥∥∥h0(Xk, θθθk, y0(θθθk))− h0(Xk, θθθ

∗
0, y0(θθθ

∗
0))
∥∥∥2|Fk−τ

]
+ 6α2

kE
[∥∥∥h0(Xk, θθθ

∗
0, y0(θθθ

∗
0))−H0(θθθ

∗
0, y0(θθθ

∗
0))
∥∥∥2|Fk−τ

]
(c3)

≤ 6α2
kE
[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+ 150α2

kE
[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
, (37)

where (c1) holds due to H0(θθθ0, y0(θθθ
∗
0)) = 0, (c2) follows from the triangular inequality, and (c3)616

follows from the Lipschitz continuity of h0(X,θθθ, λ) in Lemma 1.617

Term2 is bounded as618

Term2 = 2αkE
[
θ̂θθ
⊺
k(h(Xk, θθθk, λk)− h0(Xk, θθθk, λk))|Fk−τ

]
(c4)

≤ ηk
αk

E
[ ∥∥∥θ̂θθk∥∥∥2 |Fk−τ

]
+

α3
k

ηk
E
[∥∥∥h(Xk, θθθk, λk)− h0(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
(c5)

≤ ηk
αk

E
[ ∥∥∥θ̂θθk∥∥∥2 |Fk−τ

]
+

α2
k

ηk
O
(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
, (38)

where (c4) holds due to the fact that 2x⊺y ≤ ∥x∥2 + ∥y∥2 and (c5) is due to Lemma 10.619

Term3 is bounded as620

Term3 = 2α2
kE
[∥∥∥h(Xk, θθθk, λk)− h0(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
(c6)

≤ 2α2
kO
(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
, (39)

where (c6) comes from Lemma 10. Substituting Term1, Term2, and Term3 back into (36) leads to621

the desired result in (34), which is622

E
[
∥θ̂θθk+1∥2|Fk−τ

]
≤E
[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
− 2αkµ1E

[∥∥∥θ̃θθk∥∥∥2|Fk−τ

]
+ 6α2

kE
[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+ 150α2

kE
[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
+

ηk
αk

E
[ ∥∥∥θ̂θθk∥∥∥2 |Fk−τ

]
+

α3
k

ηk
O
(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
+ 2α2

kO
(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
= (1 + 150α2

k + ηk/αk − 2αkµ1)E
[ ∥∥∥θ̂θθk∥∥∥2 |Fk−τ

]
+ 6α2

kE
[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+ (α3

k/ηk + 2α2
k)O

(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
.

By neglecting higher order infinitesimal, we have the inequality in (34). This completes the proof.623
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Lemma 8. Let {θθθk, λk} be generated by (9). Then under Lemmas 1-4, for any k ≥ τ , we have624

E
[∥∥∥λ̂k+1

∥∥∥2∣∣∣Fk−τ

]
≤ (1− 2ηkµ2 + αkηk + 24α2

k +
ηk
αk

− 2η2kµk

αk
+ η2k +

24α3
k

ηk
)E
[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+ (600α2

k + 8η2k +
8η3k
αk

+
600α3

k

ηk
)E
[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
+

ηk
αk

O
(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
. (40)

Proof. According to the definition in (14), we have625

λ̂k+1 = λk+1 − y0(θθθk+1)

= λ̂k + ηkg(θθθk) + y0(θθθk)− y0(θθθk+1),

which leads to626 ∥∥∥λ̂k+1

∥∥∥2= ∥∥∥λ̂k + ηkg(θθθk) + y0(θθθk)− y0(θθθk+1)
∥∥∥2

=
∥∥∥λ̂k + ηkg(θθθk)

∥∥∥2︸ ︷︷ ︸
Term1

+
∥∥∥y0(θθθk)− y0(θθθk+1)

∥∥∥2︸ ︷︷ ︸
Term2

+ 2
(
λ̂k + ηkg(θθθk)

)(
y0(θθθk)− y0(θθθk+1)

)
︸ ︷︷ ︸

Term3

. (41)

The second equality is due to the fact that ∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2x⊺y. We next analyze the627

conditional expectation of each term in
∥∥∥λ̂k+1

∥∥∥2 on Fk−τ . We first focus on Term1.628

E
[
Term1|Fk−τ

]
= E

[∥∥∥λ̂k

∥∥∥2 + 2ηkλ̂kg(θθθk) +
∥∥∥ηkg(θθθk)∥∥∥2|Fk−τ

]
= E

[∥∥∥λ̂k

∥∥∥2 + 2ηkλ̂kg0(θθθk) + 2ηkλ̂k(g(θθθk)− g0(θθθk)) + η2k

∥∥∥g(θθθk)− g0(θθθk) + g0(θθθk)
∥∥∥2|Fk−τ

]
≤ E

[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+ 2ηkE

[
λ̂kg0(θθθk)|Fk−τ

]
+ 2ηkE

[
λ̂k(g(θθθk)− g0(θθθk))|Fk−τ

]
+ 2η2kE

[∥∥∥g(θθθk)− g0(θθθk)
∥∥∥2|Fk−τ

]
+ 2η2kE

[∥∥∥g0(θθθk)∥∥∥2|Fk−τ

]
(d1)
= E

[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+ 2ηkE

[
λ̂kg0(θθθk)|Fk−τ

]
+ 2ηkE

[
λ̂k(g(θθθk)− g0(θθθk))|Fk−τ

]
+ 2η2kE

[∥∥∥g(θθθk)− g0(θθθk)
∥∥∥2|Fk−τ

]
+ 2η2kE

[∥∥∥g0(θθθk)− g0(θθθ
∗
0)
∥∥∥2|Fk−τ

]
(d2)
= E

[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
− 2ηkµ2E

[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+ 8η2kE

[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
+ 2ηkE

[
λ̂k(g(θθθk)− g0(θθθk))|Fk−τ

]
+ 2η2kE

[∥∥∥g(θθθk)− g0(θθθk)
∥∥∥2|Fk−τ

]
(d3)

≤ E
[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
− 2ηkµ2E

[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+ 8η2kE

[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
+ αkηkE

[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+ (4ηk/αk + 8η2k)O

(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
,

where (d1) follows from g0(θθθ
∗
0) = 0, (d2) holds due to Lemma 4 and the Lipschitz continuity of y0629

in Lemma 3, and (d3) comes from Lemma 10. For Term2, we have630

E
[
Term2|Fk−τ

]
= E

[∥∥∥y0(θθθk)− y0(θθθk+1)
∥∥∥2|Fk−τ

]
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= 4E
[∥∥∥θθθk − θθθk+1

∥∥∥2|Fk−τ

]
= 4α2

kE
[∥∥∥h(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
= 4α2

kE
[∥∥∥h(Xk, θθθk, λk)− h0(Xk, θθθk, λk) + h0(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
= 8α2

kE
[∥∥∥h0(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
+ 8α2

kE
[∥∥∥h(Xk, θθθk, λk)− h0(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
(d4)
= 8α2

kE
[∥∥∥h0(Xk, θθθk, λk)− h0(Xk, θθθk, y0(θθθk)) + h0(Xk, θθθk, y0(θθθk))

− h0(Xk, θθθ
∗
0, y0(θθθ

∗
0)) + h0(Xk, θθθ

∗
0, y0(θθθ

∗
0))−H0(θθθ

∗
0, y0(θθθ

∗
0))
∥∥∥2|Fk−τ

]
+ 8α2

kE
[∥∥∥h(Xk, θθθk, λk)− h0(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
(d5)

≤ 24α2
kE
[∥∥∥h0(Xk, θθθk, λk)− h0(Xk, θθθk, y0(θθθk))

∥∥∥2|Fk−τ

]
+ 24α2

kE
[∥∥∥h0(Xk, θθθk, y0(θθθk))− h0(Xk, θθθ

∗
0, y0(θθθ

∗
0))
∥∥∥2|Fk−τ

]
+ 24α2

kE
[∥∥∥h0(Xk, θθθ

∗
0, y0(θθθ

∗
0))−H0(θθθ

∗
0, y0(θθθ

∗
0))
∥∥∥2|Fk−τ

]
+ 8α2

kE
[∥∥∥h(Xk, θθθk, λk)− h0(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
(d6)

≤ 24α2
kE
[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+ 600α2

kE
[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
+ 8α2

kE
[∥∥∥h(Xk, θθθk, λk)− h0(Xk, θθθk, λk)

∥∥∥2|Fk−τ

]
(d7)

≤ 24α2
kE
[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+ 600α2

kE
[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
+ 8α2

kO
(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
(42)

where (d4) is due to the fact that H0(θθθ
∗
0, y0(θθθ

∗
0)) = 0, (d5) holds according to ∥x + y + z∥2 ≤631

3∥x∥2 +3∥y∥2 +3∥z∥2 since g(Xk, f(λλλ
∗),λλλ∗) = 000, (d6) holds because of the Lipschitz continuity632

of h0 and y0 in Lemma 1 and Lemma 3, and (d7) comes from Lemma 10. Next, we have the633

conditional expectation of Term3 as634

E
[
Term3|Fk−τ

]
= 2E

[ ∥∥∥λ̂k + ηkg(θθθk)
∥∥∥ · ∥∥∥y0(θθθk)− y0(θθθk+1)

∥∥∥|Fk−τ

]
(d8)

≤ ηk
αk

Term1 +
αk

ηk
Term2

=
ηk
αk

E
[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
− 2η2kµ2

αk
E
[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+

8η3k
αk

E
[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
+ η2kE

[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+

ηk
αk

(4ηk/αk + 8η2k)O
(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
+

24α3
k

ηk
E
[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+

600α3
k

ηk
E
[∥∥∥θ̂θθk∥∥∥2|Fk−τ

]
+

8α3
k

ηk
O
(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
,

where (d8) holds because 2xTy ≤ 1/β∥x∥2 +β∥y∥2, ∀β > 0. Summing Term1, Term2, and Term3635

and neglecting higher order infinitesimal yield the desired result.636
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Now we are ready to prove the results in Theorem 2. Providing Lemma 8 and Lemma 7, if ηk

αk
is637

non-increasing, we have the following inequality638

E
[
M̂(θθθk+1, λk+1)

∣∣∣Fk−τ

]
= E

[
ηk
αk

∥∥∥θ̂θθk+1

∥∥∥2 + ∥∥∥λ̂k+1

∥∥∥2∣∣∣Fk−τ

]
≤ ηk

αk
(1− 2αkµ1)E

[ ∥∥∥θ̂θθk∥∥∥2 |Fk−τ

]
+

600α3
k

ηk
E
[ ∥∥∥θ̂θθk∥∥∥2 |Fk−τ

]
+

8α3
k

ηk
O
(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
+ (1− 2ηkµ2)E

[∥∥∥λ̂k

∥∥∥2|Fk−τ

]
+

600α3
k

ηk
E
[ ∥∥∥λ̂k

∥∥∥2 |Fk−τ

]
. (43)

Since (k + 1)2 · α3
k

η =
α3

0

η0
(k + 1)1/3, multiplying both sides of (43) with (k + 1)2, we have639

(k + 1)2E
[
M̂(θθθk+1, λk+1)

∣∣∣Fk−τ

]
≤k2E

[
M̂(θθθk, λk)

∣∣∣Fk−τ

]
+

600α3
0

η0
(k + 1)1/3

(∥∥∥θ̂θθk∥∥∥2 + ∥∥∥λ̂k

∥∥∥2)
+

8α3
0

η0
(k + 1)1/3O

(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
. (44)

Summing (44) from time step τ to time step k, we have640

(k + 1)2E
[
M̂(θθθk+1, λk+1)

∣∣∣Fk

]
≤ τ2E

[
M̂(θθθτ , λτ )

]
+

600α3
0

η0
(k + 1)4/3

(∥∥∥θ̂θθτ∥∥∥2 + ∥∥∥λ̂τ

∥∥∥2)
+

8α3
0

η0
(k + 1)4/3O

(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
≤ τ2E

[
M̂(θθθτ , λτ )

]
+

600α3
0

η0

(C1 + ∥θ̂θθ0∥)2 + (2C1 + ∥λ̂0∥)2

(k + 1)−4/3

+
8α3

0

η0

O
(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
(k + 1)−4/3

, (45)

where the second inequality holds due to Lemma 9. Finally, dividing both sides by (k + 1)2 and641

moving the constant term into O(·) yields the results in Theorem 2.642

E Auxiliary Lemmas643

In this part, we present several key lemmas which are needed for the major proofs. We first show the644

parameters update in (9) is bounded in the following lemma.645

Lemma 9. The update of θθθk and λk in (9) is bounded with respect to the initial θθθ0 and λ0, i.e.,

∥θθθk − θθθ0∥+ |λk − λ0| ≤ c1(∥θθθ0∥+ |λ0|+ 1),

with c1 be the constant, i.e., c1 := 1
2 + 3

2 (L
′
hατ + L′

gητ )(L
′
hατ + L′

gητ + 1).646

Proof. Without loss of generality, we assume that

L′
h ≥ max(3,max

X∈X
∥h0(X, 0, 0)∥), L′

g ≥ max(2,max
X∈X

∥g0(X, 0, 0)∥).

Then based on triangular inequality and Lemmas 1-2, we have647

∥h0(X,θθθ, λ)∥ ≤ L′
h(∥θθθ∥+ |λ|+ 1), ∥g0(X,θθθ, λ)∥ ≤ L′

g(∥θθθ∥+ |λ|+ 1),∀θθθ, λ,X ∈ X . (46)
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Since we have θθθk+1 = θθθk + αkh(Xk, θθθk, λk), we have the following inequality due to Lipschitz648

continuity of h in (46)649

∥θθθk+1 − θθθk∥ = αk∥h(Xk, θθθk, λk)∥ ≤ αkL
′
h(∥θθθk∥+ |λk|+ 1). (47)

Similarly, we have650

|λk+1 − λk| = ηk|g(Xk, θθθk, λk)| ≤ ηkL
′
g(∥θθθk∥+ |λk|+ 1). (48)

Due to triangular inequality, adding (47) and (48) leads to651

∥θθθk+1∥+ |λk+1|+ 1 ≤ (L′
hαk + L′

gηk + 1)(∥θθθk∥+ |λk|+ 1)

≤ (L′
hα0 + L′

gη0 + 1)(∥θθθk∥+ |λk|+ 1), (49)

where the second inequality holds due to the non-increasing learning rates {αk, ηk}. Rewriting the652

above inequality in (49) in a recursive manner yields653

∥θθθk∥+ λk + 1 ≤ (L′
hα0 + L′

gη0 + 1)k−τ (∥θθθτ∥+ |λτ |+ 1). (50)

Hence, we have654

∥θθθk − θθθk−τ∥+ |λk − λk−τ | ≤
k−1∑

t=k−τ

∥θθθt+1 − θθθt∥+ |λt+1 − λt|

≤ (L′
hα0 + L′

gη0)

k−1∑
t=k−τ

(∥θθθt∥+ |λt|+ 1)

≤ (L′
hα0 + L′

gη0)(∥θθθk−τ∥+ |λk−τ |+ 1)

k−1∑
t=k−τ

(L′
hα0 + L′

gη0 + 1)t−τ

= [(L′
hα0 + L′

gη0 + 1)τ − 1](∥θθθk−τ∥+ |λk−τ |+ 1)

≤ (e(L
′
hα0+L′

gη0)τ − 1)(∥θθθk−τ∥+ |λk−τ |+ 1)

≤ 2(L′
hα0 + L′

gη0)τ(∥θθθk−τ∥+ |λk−τ |+ 1),

where the last inequality holds when (L′
hα0 + L′

gη0)τ ≤ 1/4. This implies when k = τ , we have655

∥θθθτ − θθθ0∥+ |λτ − λ0| ≤ 2(L′
hα0 + L′

gη0)τ(∥θθθ0∥+ |λ0|+ 1). (51)

Similarly, we also have656

∥θθθk − θθθτ∥+ λk − λτ ≤
k−1∑
t=τ

∥θθθt+1 − θθθt∥+ λt+1 − λt

≤
k−1∑
t=τ

(L′
hαt + L′

gηt)(∥θθθt∥+ λt + 1)

≤ (∥θθθτ∥+ λτ + 1)

k−1∑
t=τ

(L′
hαt + L′

gηt)

t−τ∏
i=0

(L′
hατ+i + L′

gητ+i + 1). (52)

Therefore, the following inequality holds657

∥θθθk − θθθ0∥+ |λk − λ0|
≤ ∥θθθk − θθθτ∥+ |λk − λτ |+ ∥θθθτ − θθθ0∥+ |λτ − λ0|
≤ 2(L′

hα0 + L′
gη0)τ(∥θθθ0∥+ |λ0|+ 1)

+ (∥θθθτ∥+ λτ + 1)

k−1∑
t=τ

(L′
hαt + L′

gηt)

t−τ∏
i=0

(L′
hατ+i + L′

gητ+i + 1)

≤ 2(L′
hα0 + L′

gη0)τ(∥θθθ0∥+ |λ0|+ 1)
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+ (2(L′
hα0 + L′

gη0)τ + 1)

k−1∑
t=τ

(L′
hαt + L′

gηt)

t−τ∏
i=0

(L′
hατ+i + L′

gητ+i + 1)(∥θθθ0∥+ |λ0|+ 1)

≤

(
1

2
+

3

2

k−1∑
t=τ

(L′
hαt + L′

gηt)

t−τ∏
i=0

(L′
hατ+i + L′

gητ+i + 1)

)
(∥θθθ0∥+ |λ0|+ 1),

with the last equality holds when (L′
hα0 + L′

gη0)τ ≤ 1/4. When
∑k−1

t=τ (L
′
hαt +658

L′
gηt)

∏t−τ
i=0 (L

′
hατ+i + L′

gητ+i + 1) is non-increasing with k, then we can set c1 as c1 :=659

1
2 + 3

2 .(L
′
hατ + L′

gητ )(L
′
hατ + L′

gητ + 1). This completes the proof.660

Provided Lemma 9, we have the following lemma related with local linearization of Q functions and661

the original Q functions.662

Lemma 10 (Lemma 5.2 in [13]). There exists a constant c1such that663

E
[
∥h(Xk, θθθk, λk)− h0(Xk, θθθk, λk)∥2|Fk−τ

]
≤ O

(
c31(∥θθθ0∥+ |λ0|+ 1)3 ·m−1/2

)
.

Lemma 10 indicates that if the updated parameter is always bounded in a ball with the initialized664

one as the center and a fixed radius, the local linearized function f0(·) in (18) and the original neural665

network approximated function f(·) in (6) have bounded gap, which tends to be zero as the width666

of hidden layer m grow large. For interested readers, please refer to [13] for detailed proofs of this667

lemma.668

F Additional Experimental Results669

In this section, we provide some additional experimental results related with the convergence670

comparison of the proposed Neural-Q-Whittle to other Whittle index learning algorithms, i.e.,671

Q-Whittle-LFA [57], WIQL [8] and QWIC [23]. The underlying configuration is the same as that in672

Section 5. In Figure 4, we present the convergence results of Neural-Q-Whittle and the aforemen-673

tioned benchmarks. As we observe from Figure 4, only Neural-Q-Whittle and Q-Whittle-LFA674

in [57] can converge to the true Whittle indices for each state, while the other two benchmarks675

algorithms do not guarantee the convergence of true Whittle indices. Interestingly, the learning676

Whittle indices converge and maintain a correct relative order of magnitude, which is still be able677

to be used in real world problems [57]. Moreover, we observe that Neural-Q-Whittle achieves678

similar convergence performance as Q-Whittle-LFA in the considered example, whereas the latter679

has been shown to achieve good performance in real world applications in [57]. Though this work680

focuses on the theoretical convergence analysis of Q-learning based whittle index under the neural681

network function approximation, it might be promising to implement it in real-world applications to682

fully leverage the strong representation ability of neural network functions, which serves as future683

investigation of this work.684
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Figure 4: Convergence comparison between Neural-Q-Whittle and other benchmark algorithms.
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