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Abstract

One of the most impactful findings in computational neuroscience over the past
decade is that the object recognition accuracy of deep neural networks (DNNs)
correlates with their ability to predict neural responses to natural images in the
inferotemporal (IT) cortex [1, 2]. This discovery supported the long-held theory
that object recognition is a core objective of the visual cortex, and suggested
that more accurate DNNs would serve as better models of IT neuron responses to
images [3–5]. Since then, deep learning has undergone a revolution of scale: billion
parameter-scale DNNs trained on billions of images are rivaling or outperforming
humans at visual tasks including object recognition. Have today’s DNNs become
more accurate at predicting IT neuron responses to images as they have grown
more accurate at object recognition?
Across three independent experiments, we find this is not the case: DNNs have
become progressively worse models of IT as their accuracy has increased on
ImageNet. To understand why DNNs experience this trade-off and evaluate if
they are still an appropriate paradigm for modeling the visual system, we turn to
recordings of IT that capture spatially resolved maps of neuronal activity elicited
by natural images [6]. These neuronal activity maps reveal that DNNs trained
on ImageNet learn to rely on different visual features than those encoded by
IT and that this problem worsens as their accuracy increases. We successfully
resolved this issue with the neural harmonizer, a plug-and-play training routine
for DNNs that aligns their learned representations with humans [7]. Our results
suggest that harmonized DNNs break the trade-off between ImageNet accuracy
and neural prediction accuracy that assails current DNNs and offer a path to more
accurate models of biological vision. Our work indicates that the standard approach
for modeling IT with task-optimized DNNs needs revision, and other biological
constraints, including human psychophysics data, are needed to accurately reverse-
engineer the visual cortex.

1 Introduction

The release of AlexNet [8] was significant not only for shifting the paradigm of computer vision
into the era of deep learning, it also heralded a new approach for “systems identification” and
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approximating the transformations used by neurons in the visual cortex to build robust and invariant
object representations. Over the past decade, deep neural networks (DNNs) like AlexNet, which are
trained for object recognition on ImageNet [9], have been found to contain units that significantly
better fit neural activity in inferior temporal (IT) cortex in non-human primates compared to classic
hand-tuned models from computational neuroscience [1]. It was later found that DNN predictions of
neural data improved as these models grew more accurate at object recognition and began to rival
humans on the task [10,11]. This surprising similarity between such task-optimized DNNs and brains
supported the extant theory that object recognition is a core principle shaping the organization of the
visual cortex [12], and raised the question of how important the many biological details amassed by
visual neuroscience actually are for predicting neural responses in visual cortex. In the years since
those findings, deep learning has undergone a revolution of scale, and current DNNs which rival or
exceed human accuracy in vision and language are significantly larger and trained with orders of
magnitude more data than ever before [13]. Does the object recognition accuracy of a DNN still
correlate with its ability to predict IT responses to natural objects?

To answer this question, we turned to Brain-Score [3], the standard approach for benchmarking
the accuracy of models at predicting neural activity in visual cortex of non-human primates. In
brief, the Brain-Score evaluation method involves linearly mapping model unit responses to neural
activity and then evaluating model unit predictions on held-out images. With this approach, we
found a consistent trend across three different IT datasets hosted on the official Brain-Score website
(Brain-score.org), which reflect neural responses to gray-scale versions of realistic rendered
objects and natural images [14–16]. As DNNs have improved on ImageNet [9] over recent years,
they have become progressively less accurate at predicting IT neuron responses to images (Fig. 1) *

In this study, we investigated two potential explanations for why task-optimized DNNs are turning
into poor models of IT. (i) The internet data diets of DNNs and the routines used to train them to
high accuracy on ImageNet leads them to learn the wrong visual features for explaining primate
vision and IT responses to objects [7, 17–19]. (ii) Newer DNNs are becoming less brain-like in their
architectures, and this problem has been magnified as DNNs have grown larger and ultimately deeper
than the visual cortex [20].

Figure 1: Deep neural networks (DNNs) are becoming progressively worse models of inferior
temporal (IT) cortex as they grow more accurate on ImageNet. Experimental data shown here is
taken from Brain-score.org, and each experiment utilized different stimuli. The 104 dots in each
panel depict the ImageNet accuracy and neural prediction accuracy of DNNs, and the grey-shaded
region denotes the pareto-front governing the trade-off between these variables. EffNet=EfficientNet.

Contributions. To understand if the trade-off between ImageNet accuracy and IT predictions that
we observed (Fig. 1) is due to the training routines and data diets of DNNs or their architectures,
we turned to a new set of experimental recordings of IT neuronal responses to high-resolution color
images [6]. The experimental images were significantly closer to the statistical distribution of images
in ImageNet (Fig. S1.), unlike prior studies of IT [14]. The recordings also provided a coarse estimate
of which image features drove neuronal activity (Fig. 2), which helped characterize DNN errors in
explaining neural responses and explain why DNNs are becoming worse models of IT. We adopted
the Brain-Score evaluation method to measure the prediction accuracy of 135 DNNs on recordings
from medial (ML) and posterior (PL) lateral IT in two different Monkeys. To summarize our findings:

*In [11] it was noted that while there was an overall correlation of 0.92 between DNN accuracy on ImageNet
and predicting IT responses, the correlation weakened for state-of-the-art models.
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• We observed the same trade-off we found on Brain-Score.org data (Fig. 1) in each of our
recordings: DNNs are becoming less accurate at predicting IT responses as they improve on
ImageNet (Fig. 3).

• DNNs trained on ImageNet learn different features than those encoded by IT (Fig. 4), and this
mismatch is not helped by training on more internet data, using newer DNN architectures like
Transformers, relying on self-supervision, or optimizing for adversarial robustness.

• We successfully broke this trade-off by training DNNs with the neural harmonizer [7] and aligning
the representations they learn for object recognition with humans.

• We further demonstrate that harmonized DNNs (hDNNs) are not only significantly better at
explaining IT responses than any other DNN available, they also generate interpretable hypotheses
on the features driving IT neuron responses.

Figure 2: IT recordings that reveal spatial maps of neuronal responses to complex natural images
offer unprecedented insights into their feature selectivity [6]. (a) Neurons in posterior (PL) and/or
medial (ML) lateral IT in two animals were localized using functional magnetic resonance imaging
(fMRI), and neural responses to images were recorded using chronically implanted 32-channel
multi-electrode arrays. (b) The monkeys were rapidly shown each image multiple times for 200ms
each time (Monkey 1: n = 256, Monkey 2: n = 49). Images were positioned differently each
time to measure neural responses to every part of the image. (c) This procedure yielded spatially
resolved maps of neural activity for an image, revealing the relative importance of different features
for the recorded neurons. (d) DNNs were fit to these recordings following the Brain-Score evaluation
method [11], in which partial least squares decoders were used to find the units in a DNN that
provided the best match for neuronal responses to images.

2 Methods

Neural recordings. We leveraged recordings of IT neuronal responses from two monkeys [6],
which were designed to reveal feature preferences of putative face-selective neurons. The recorded
neurons also exhibited selectivity for non-face object features [6]. Recordings were made using
chronically implanted 32-channel multi-electrode arrays within the fMRI-defined middle lateral (ML)
and posterior lateral (PL) face patches of one monkey (Monkey 1), and ML of another monkey
(Monkey 2, Fig. 2a). The activating regions in these areas were mapped (1-3o), then each image
was shown to the animals after they were cued to fixate at a specific position in space (Fig. 2b). The
same images were shown multiple times while the monkeys fixated at a red dot in the center of
the screen, which made it possible to derive spatial activity maps of neuronal responses (Fig. 2c).
Fixation positions fell in a 16 × 16 grid for Monkey 1 and 7 × 7 grid for Monkey 2, and the average
neuronal activity at each position was taken to generate spatial activity maps. A total of 14 images
were shown to Monkey 1, and a different set of 14 images were shown to Monkey 2.
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The recordings for Monkey 1 resulted in responses from 32 neurons in ML and 31 neurons in PL. For
Monkey 2, we obtained responses from 32 neurons (see Appendix B for more details). Following [6],
we binned neuronal responses every 40ms of the recording, from 50ms to 250ms. Within each bin, we
calculated the noise ceiling for every neuron, which represents the maximum correlation achievable
between any two neurons within that time interval. Noise ceilings for each recording were similar
to those reported for standard IT Brain-Score datasets (Appendix B). In the main text, we present
modeling results from the time bins that exhibited the highest average noise ceiling for each Monkey
and recording site. Additional results from other time bins, which are consistent with these findings,
can be found in Appendix E.

DNNs. We investigated the neural fits of 135 different DNNs representing a variety of approaches
used in computer vision today: 62 convolutional neural networks trained on ImageNet [21–34,34–47]
(CNNs), 23 DNNs trained on other datasets in addition to ImageNet (which we refer to as “DNN extra
data”) [32,36,48], 25 vision transformers [49–54] (ViTs), 10 DNNs trained with self-supervision [55,
56], and 15 DNNs trained to be robust to noise or adversarial examples [57, 58]. Each model
was implemented in PyTorch with the TIMM toolbox (https://github.com/huggingface/
pytorch-image-models) and pre-trained weights. Inference was executed on one NVIDIA TITAN
X GPU. Additional model details, including the licenses used for each, are detailed in Appendix C

Neural Harmonizer. It was recently found that DNN representations are becoming less aligned
with human perception as they evolve and improve on ImageNet [7, 59, 60]. A partial solution to this
problem is the neural harmonizer, a training routine that can be combined with any DNN to align
its representations with humans without sacrificing performance. Here, we test the hypothesis that
aligning DNNs with human visual representations can similarly significantly improve their accuracy
in predicting neural responses to images.

Training DNNs with the neural harmonizer on ImageNet involves an additional loss to standard
cross-entropy for object recognition. This extra loss forces a model’s gradients to appear as similar
as possible to feature importance maps derived from human behavioral experiments (see [7] for
details). To implement this loss, let Pi(.) be a function that a multi-scale Gaussian pyramid of a
human feature importance map ϕ to N , with i ∈ {1, ..., N}. During training, we seek to minimize∑N

i ||Pi(g(fθ,x))−Pi(ϕ)||2 in order to align feature importance maps between humans and DNNs
at every scale of the pyramid. Before they are compared, feature importance maps from humans and
DNNs are normalized and rectified using z(.), a function that transforms a feature importance map ϕ
from either source to have 0 mean and unit standard deviation. This procedure yields the complete
neural harmonization loss:

LHarmonization =λ1

N∑
i

||(z ◦ Pi ◦ g(fθ,x))
+ − (z ◦ Pi(ϕ))

+||2 (1)

+ LCCE(fθ,x,y) + λ2

∑
i

θ2i (2)

Following the original neural harmonizer implementation [7] and training recipe, we trained six
DNNs on ImageNet and human feature importance maps from the ClickMe game [61]: VGG16 [25],
LeViT [62], ResNetV2-50 [63], EfficientNet_b0 [22], ConvNext [32], and MaxViT [64]. Each
model was trained with Tensorflow 2.0 on 8 V4 TPU cores with all of the images in the ImageNet
training set, and ClickMe human feature importance maps for the 200,000 images which were
annotated. Images and feature importance maps were augmented with mixup [65], random left-right
flips, and random crops during training. Only the object recognition loss was computed for images
without human feature importance maps. Model weights were optimized with stochastic gradient
descent and momentum, batches of 512 images, label smoothing [66], a learning rate of 0.3, and a
learning rate schedule that began with a 5-epoch warm-up period followed by a cosine decay over 90
epochs at steps 30, 50 and 80.

Neural fitting. We evaluated the neural fit of each model by computing their fit separately for
each IT recording, using the Brain-Score evaluation method [11]. This method involved fitting
image-evoked activities from a layer of a deep neural network (DNN) to the corresponding neural
responses using the partial least squares regression algorithm from Scikit-Learn.
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To implement the Brain-Score evaluation method on the spatially-resolved recordings we investigate
here, we first split each image shown to each animal into an equal number of patches as there were
fixation locations in an image. Each image patch captured the receptive field of recorded neurons,
and in total, there were 4, 046 image patches for ML and 4, 046 image patches for PL in Monkey 1,
and 1, 134 image patches for ML in Monkey 2. We measured DNN neuronal fits as the Spearman
correlations between model predictions and true neural responses for each patch of an image held out
of training divided by each neuron’s noise ceiling. We then stored the median Spearman correlation
over neurons and repeated the training/testing procedure to get the mean correlation across all images
viewed by a monkey. Separate fitting procedures were performed for every layer of activities in a
model, and we report a DNN’s Brain-Score as its best possible fit across layers.

Figure 3: DNNs trained on ImageNet face a trade-off between achieving high object recognition
accuracy and predicting responses to natural images in IT.. We measured the accuracy of 135
DNNs at predicting image-evoked responses from neurons in posterior lateral (PL) and medial-
lateral (ML) areas of IT [6] by computing the neural predictivy of each model with the Brain-Score
evaluation method [11]. DNN neural predictivity is progressively worsening as models improve
on ImageNet. This problem can be partially fixed by training DNNs with the neural harmonizer,
which aligns their learned object representations with humans. Error bars denote 95% bootstrapped
confidence intervals.

3 Results

Task Optimization is insufficient for reverse-engineering IT. Ever since it was found that DNNs
optimized for object recognition produce accurate predictions of IT neural responses to images, it
was suggested that prediction accuracy would continue improve alongside DNN performance on
ImageNet [10–12]. Is this the case with today’s DNNs that rival or exceed the performance of human
object recognition?

To answer this question, we leverage recordings of neuronal responses to high-resolution natural
images in medial (ML) and posterior lateral (PL) IT (see Methods and Fig. 2). These images fall
within the same statistical distribution as ImageNet images (Fig. S1), ensuring that our findings
are not influenced by distributional shifts that are a well-known problem faced by computer vision
models [67]. Image-evoked neural responses were spatially mapped, enabling insights into the visual
features driving the responses of IT neurons and DNNs. Moreover, while these regions were localized
according to their selectivity to face stimuli, they were also noted to respond to non-face stimuli [6].

Across 135 different DNNs, representing the variety of approaches used today in computer vision,
we found that DNNs pretrained on ImageNet have become progressively less accurate at predicting
ML and PL responses in two separate Monkeys (Fig. 3). For instance, ConvNext tiny, which
achieved 74.3% accuracy on ImageNet, is as accurate in predicting neural responses to images as
the ResNetv2-152x4, which reached 84.9% accuracy on ImageNet. Moreover, training routines
that have been suggested to be more biologically plausible or yield representations that are closer to
biological vision, such as training with self-supervision [68] or for adversarial robustness [69], made
no difference. All DNNs trained on internet data faced a pareto-front that bounded their accuracy in
predicting IT responses as a function of their ImageNet accuracy.

DNNs need biologically-aligned training routines There are at least two potential reasons why
ImageNet-trained DNNs face a trade-off between object recognition and neural prediction accuracy:
(i) DNN data diets and training routines work well for ImageNet but lead them to learn features
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that are misaligned with biological vision [7, 17–19] or (ii) their architectures are a poor match to
visual cortex [20]. To test this first possibility, we turned to the neural harmonizer. Given prior work
demonstrating that aligning DNNs with human perception using the neural harmonizer significantly
improved their ability to predict human behavior, we reasoned that harmonization might similarly
improve DNN explanations of neural data by forcing them to rely on human-like visual features.
Indeed, we found that harmonized DNNs (hDNNs) were significantly more accurate at predicting
image-evoked responses in ML (T (5) = 5.30, p < 0.01) and PL (T (5) = 6.11, p < 0.001) neurons
of Monkey 1 and ML (T (5) = 6.89, p < 0.001) neurons of Monkey 2 (reported as the average of
T score from independent samples t−tests comparing the predictivity of each hDNN to the DNN
with the highest neural-predictivty). The success of hDNNs indicates that the architectural mismatch
between DNNs and the visual cortex is far less of a problem for modeling the visual cortex than
the training routines and data diets that are being used today to achieve high accuracy on ImageNet.
Behavior – even from humans – is an important constraint on DNNs that is needed to build more
accurate models of primate visual cortex.

Figure 4: DNNs optimized for object recognition on ImageNet rely on different features than
those encoded by neurons in primate inferior temporal (IT) cortex.. The activity of PL IT neurons
is plotted next to the predicted activity of a model representing each class of DNNs: harmonized
DNNs (hDNNs), visual transformers, self-supervised DNNs, convolutional neural networks, DNNs
trained on more data than ImageNet, and adversarially robust DNNs.

Spatially-mapped neural responses reveal a feature mismatch between IT and DNNs The IT
recordings used in the Brain-Score benchmark all utilized the same paradigm, in which hundreds or
thousands of images were shown to multiple animals during passive viewing [14]. In contrast, the
recordings we rely on involve many fewer unique images, but neural responses for each image are
spatially mapped. This spatial mapping reveals what types of features are driving neural responses
and makes it easier to understand the successes and failures of DNNs in explaining these data [6].

Although the neurons in ML and PL were located based on their selectivity to faces, the spatial maps
of their responses revealed a much more complex response profile. IT neurons in both animals were
strongly driven by faces, non-face objects, and contextual cues associated with faces [6]. In contrast,
the best-fitting units of DNNs with state-of-the-art accuracy on ImageNet, like the ResNetv2-152x4
(Fig. 4), responded strongly to background features. This problem was shared by DNNs trained
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on internet data but with routines that have been considered more biologically plausible, like self-
supervised learning (e.g., SSL ResNet-18), or routines that yield perceptual robustness that is closer
to humans, like adversarial training (e.g., Robust ResNetv2-50). hDNNs like the harmonized
MaxViT, on the other hand, were, in general, reliably predictive of what parts of images elicited the
most activity from IT neurons.

Figure 5: Predictions of the visual features drive neuronal responses in PL of Monkey 1 from a
harmonized ResNet-50 and a standard ResNet-50. Image patches for each model depict what the
important features are across all images shown to the animal. The relative importance of each feature
for predicting the recordings is color-coded in the bar chart on the right.

hDNNs generate testable predictions for visual neuroscience The surprising effectiveness of
DNNs pre-trained on object recognition for predicting IT responses to images was a significant
finding in computational neuroscience, which raised the tantalizing possibility that these models
could form the basis of neuroprosthetics, and reduce the need for animal experiments. However, a
persistent problem with DNNs since their inception is their lack of interpretability, meaning that using
DNNs for systems identification effectively swaps one black box (the visual system) with another (a
DNN) without getting the field any closer to understanding how vision works. Recent strides in the
field of explainable artificial intelligence (XAI) have begun to alleviate this problem. For instance, it
is now possible to reliably locate and characterize the features in datasets, like ImageNet, that drive
patterns of model behavior using concept recursive activation factorization (CRAFT [70]). When
paired with accurate models of IT and recordings that reveal locations in images that elicit neuronal
responses, CRAFT can generate testable predictions of what those features are.

We used CRAFT to extract features from harmonized and regular ResNet-50s trained on ImageNet
that explain their predictions of neural activity in PL of Monkey 1 (Fig. 5). To do this, we decomposed
a DNNs predicted activities for image patches into the most important and distinct features using
non-negative matrix factorization, then scaned over every single image patch to find those which most
strongly explained each discovered feature. While the harmonized ResNet-50 predicted that parts
of faces, arms, and heads explained the majority of variance in IT, the less accurate and unharmonized
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ResNet-50 predicted that the background, oriented-edges, and a feature combining head, body,
arm, and hand parts were most important for IT. Thus, hDNNs not only break the trade-off between
ImageNet and neural prediction accuracy of ImageNet-trained DNNs, they can also generate testable
hypotheses on the relative importance of different features for visual system neurons.

4 Related work

The scaling laws of deep learning The immense gains of DNNs in computer vision [13] and natural
language processing [71] over recent years share a common theme: they have relied on unprecedented
computational resources to train models with billions of parameters on internet-scale datasets. These
benefits of scale have been studied over the past several years across a number of domains and often
yield predictable improvements on standard internet benchmarks [71,72]. Surprisingly, scale has also
caused models to exhibit human-like behavior in psychophysics experiments [13, 57, 73, 74]. In other
words, many aspects of primate behavior are captured progressively better by DNNs as they scale-up
and improve in accuracy on benchmarks like ImageNet.

Scale is sufficient for modeling internet benchmarks, but not primate intelligence In parallel,
there’s a growing body of research suggesting that large-scale DNNs are becoming less aligned
with human perception in multiple ways. For instance, the representations and visual decision-
making behavior of DNNs are inconsistent with humans, and this problem has worsened as they have
improved on ImageNet [7]. DNNs are also becoming less capable at predicting perceptual similarity
ratings of humans, and they remain vulnerable [75] to so-called “adversarial attacks.” Our work adds
to this body of research, indicating that current scaling laws are incompatible with modeling primate
behavior and poorly suited for explaining the neural computations that shape it.

Aligning DNNs with primate vision There have been a number of methods proposed for aligning
DNNs with primate vision beyond the neural harmonizer that we leverage here [7]. It was found
that co-training DNNs for object recognition and minimizing representational dissimilarity improved
the adversarial robustness of a recurrent DNN [76]. Others have shown that similar forms of
representational alignment improve few-shot learning and predictions of human semantic judgments
in DNNs [77,78]. The successes of these behavioral and representational alignment methods highlight
the real limitations of current DNN training routines and data diets for generating artificially intelligent
systems that act like biological ones.

Biological learning routines There have been many efforts to align the object functions, learning
rules, and data diets of DNNs more closely with biological systems. It was found that DNNs trained
with self-supervision on ImageNet instead of supervised recognition achieve similar accuracy in
predicting V1, V4, and IT responses to images [68]. DNNs trained with self-supervised learning on
head-mounted camera video from infants instead of ImageNet were approximately as accurate at
predicting neural data as DNNs trained on Imagenet but needed far less data to do this [68]. Others
have found that adversarial training of DNNs yields models that are more accurate at predicting neural
responses to images [79] and have similar tolerance to adversarial attacks as neurons in IT [69].

5 Discussion

A revised approach for reverse engineering visual cortex Biological data is expensive to gather
and often noisy. This makes the prospect of accurately modeling the responses of IT to complex
stimuli especially daunting. DNNs optimized for object recognition represented a potential solution
for this problem: pretraining on internet datasets alleviated training issues associated with small-scale
neural data, and the architectures and training routines of accurate DNNs could offer insights into the
circuits that underlie visual perception as well as the developmental principles that shape those circuits.
Our findings suggest that while DNNs still hold great potential for predicting image-evoked responses
from IT neurons, new training routines and data diets are necessary for continued improvement.

The neural harmonizer is a partial solution to the problems that DNNs face in modeling primate
IT. The success of hDNNs in breaking the pareto-front faced by 135 different DNNs indicates that
significant aspects of primate perception and the neural circuits that shape it cannot be divined from
internet data alone. We believe that the neural harmonizer and learning constraints provided by
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large-scale human behavior data is only a short-term solution to this problem, and that if DNNs were
able to learn about the visual world more like primates do, they would be even better at predicting
neural data. In support of this goal, we release our code and data at https://serre-lab.github.
io/neural_harmonizer/.

Limitations. One limitation of our work is that we use the responses of neurons with face-selectivity
to replicate and understand the trade-off between ImageNet accuracy and neural predictivity faced by
DNNs. As faces (and even humans) are not a category in ImageNet, it is possible that this dataset [6]
could bias our results in ways that are difficult to predict†. However, we find the same ImageNet
accuracy and neural predictivity trade-off on this dataset (Fig. 3) as we did on the three recordings
of object selective neurons hosted on the Brain-Score website (Fig. 1), indicating that DNNs face
similar issues in predicting each set of recordings. Moreover, the neural harmonizer was successful
in breaking this trade-off, even though it involves ImageNet training using human feature importance
maps for objects. Finally, it was noted in the original paper where our recordings came from that the
neurons, while localized based on their face-selectivity, responded to non-face stimuli as well [6].
In summary, our work reliably demonstrates that new paradigms are needed to advance DNNs as
models of IT, and spatially-resolved recordings such as those used in this work support this goal.

Another limitation of our work is that while we found that hDNNs are significantly more predictive of
IT neuron responses than any other DNN, they still explain only 50-60% of the variance in neuronal
activity. One straightforward way of doing better is by expanding the dataset of human feature
importance maps we used for harmonization from annotations for approximately 200,000 images to
the entire 1.2M ImageNet dataset.

Broader impacts. By building better models of primate IT, we are taking significant steps toward
the reducing the reliance of visual neuroscience on animal models for experimentation, supporting
the development of neuroprosthetic devices that resolve visual dysfunctions, and providing vision
scientists with a richer understanding of how IT works. Our findings also highlight a main limitation
of the scaling laws that are guiding progress throughout artificial intelligence today: scale is not
sufficient for explaining biological intelligence.
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Houlsby, N.: Scaling vision transformers to 22 billion parameters. (February 2023)

[14] Majaj, N.J., Hong, H., Solomon, E.A., DiCarlo, J.J.: Simple learned weighted sums of inferior temporal
neuronal firing rates accurately predict human core object recognition performance. J. Neurosci. 35(39)
(September 2015) 13402–13418

[15] Sanghavi, S., Apurva Ratan Murty, N., DiCarlo, J.J.: SanghaviMurty2020 (November 2022)

[16] Sanghavi, S., Jozwik, K.M., DiCarlo, J.J.: SanghaviJozwik2020 (November 2022)

[17] Linsley, D., Shiebler, D., Eberhardt, S., Serre, T.: Learning what and where to attend. (2019)

[18] Linsley, D., Eberhardt, S., Sharma, T., Gupta, P., Serre, T.: What are the visual features underlying
human versus machine vision? In: 2017 IEEE International Conference on Computer Vision Workshops
(ICCVW). (October 2017) 2706–2714

[19] Ullman, S., Assif, L., Fetaya, E., Harari, D.: Atoms of recognition in human and computer vision. Proc.
Natl. Acad. Sci. U. S. A. 113(10) (March 2016) 2744–2749

[20] Eberhardt, S., Cader, J.G., Serre, T.: How deep is the feature analysis underlying rapid visual categorization?
In Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., eds.: Advances in Neural Information
Processing Systems 29. Curran Associates, Inc. (2016) 1100–1108

[21] Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., Lu, H.: Transformer tracking. (March 2021)

[22] Tan, M., Le, Q.V.: EfficientNet: Rethinking model scaling for convolutional neural networks. (May 2019)

[23] Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. (March
2020)

[24] Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan,
V., Le, Q.V., Adam, H.: Searching for MobileNetV3. (May 2019)

[25] Simonyan, K., Zisserman, A.: Very deep convolutional networks for Large-Scale image recognition.
(September 2014)

[26] Huang, L., Zhao, X., Huang, K.: GOT-10k: A large High-Diversity benchmark for generic object tracking
in the wild. (October 2018)

[27] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. (December 2015)

[28] Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., Li,
M., Smola, A.: ResNeSt: Split-Attention networks. (April 2020)

[29] Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2Net: A new Multi-Scale
backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43(2) (February 2021) 652–662

[30] Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., Houlsby, N.: Big transfer (BiT):
General visual representation learning. (December 2019)

[31] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted residuals and
linear bottlenecks. (January 2018)

10



[32] Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. (January
2022)

[33] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the impact of
residual connections on learning. (February 2016)

[34] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for
computer vision. (December 2015)

[35] Chollet, F.: Xception: Deep learning with depthwise separable convolutions. (October 2016)

[36] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., Krueger, G., Sutskever, I.: Learning transferable visual models from natural language supervision.
(February 2021)

[37] Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A., Le, Q.V.: Adversarial examples improve image recognition.
(November 2019)

[38] Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural
networks. (November 2016)

[39] Brendel, W., Bethge, M.: Approximating CNNs with Bag-of-local-Features models works surprisingly
well on ImageNet. (March 2019)

[40] Mehta, D., Sotnychenko, O., Mueller, F., Xu, W., Elgharib, M., Fua, P., Seidel, H.P., Rhodin, H., Pons-Moll,
G., Theobalt, C.: XNect: real-time multi-person 3D motion capture with a single RGB camera. ACM
Trans. Graph. 39(4) (July 2020) 82:1–82:17

[41] Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. (July 2017)

[42] Wang, C.Y., Liao, H.Y.M., Yeh, I.H., Wu, Y.H., Chen, P.Y., Hsieh, J.W.: CSPNet: A new backbone that
can enhance learning capability of CNN. (November 2019)

[43] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: MnasNet: Platform-Aware
neural architecture search for mobile. (July 2018)

[44] Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., Keutzer, K.: Fb-
net: Hardware-aware efficient convnet design via differentiable neural architecture search. CoRR
abs/1812.03443 (2018)

[45] Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: More features from cheap operations.
CoRR abs/1911.11907 (2019)

[46] Yu, F., Wang, D., Darrell, T.: Deep layer aggregation. CoRR abs/1707.06484 (2017)

[47] Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Eca-net: Efficient channel attention for deep convo-
lutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Los Alamitos, CA, USA, IEEE Computer Society (jun 2020) 11531–11539

[48] Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves ImageNet classification.
(November 2019)

[49] d’Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli, G., Sagun, L.: ConViT: Improving vision
transformers with soft convolutional inductive biases. (March 2021)

[50] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image
transformers & distillation through attention. (December 2020)

[51] Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Steiner, A.,
Keysers, D., Uszkoreit, J., Lucic, M., Dosovitskiy, A.: MLP-Mixer: An all-MLP architecture for vision.
(May 2021)

[52] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words:
Transformers for image recognition at scale. (October 2020)

[53] Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., Beyer, L.: How to train your ViT? data,
augmentation, and regularization in vision transformers. (June 2021)

[54] Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in
self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision
(ICCV). (2021)

[55] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual
representations. (February 2020)

[56] Zeki Yalniz, I., Jégou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for
image classification. (May 2019)

11



[57] Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained
CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. (November
2018)

[58] Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., Madry, A.: Do adversarially robust ImageNet models
transfer better? (July 2020)

[59] Kumar, M., Houlsby, N., Kalchbrenner, N., Cubuk, E.D.: Do better ImageNet classifiers assess perceptual
similarity better? (September 2022)
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A Datasets

Distribution shifts One possible explanation for the trade-off we observed between DNN accuracy
on ImageNet vs. predictions of neural data is that there was a distributional shift between the images
used in the two evaluations. To test this possibility, we extracted activity vectors for a large sample of
images from ImageNet and all images from the standard Brain-Score benchmark dataset for IT [14]
and the images we used in our experiments [6]. For ImageNet, we used all images in the validation
set that also had human annotations from ClickMe.

We measured distribution shifts by measuring the accuracy of a linear classifier in discriminating
between ImageNet and either the standard Brain-Score benchmark dataset for IT [14] or the images
we used in our experiments [6]. We began by taking equal-sized random samples of ImageNet image
encodings and encodings from either the Brain-Score dataset (28 of 191 images) or our dataset
(all 28 images). We then trained a linear SVM using scikit-learn and performed leave-one-out
cross-validation on either set of samples. Finally, we repeated this procedure 1,000 times, using
a new random sample of ImageNet encodings each time, and measured the average accuracy for
discriminating between ImageNet and either neural data image set. We found that images used in
the standard Brain-Score benchmark for IT [14] are significantly further out-of-distribution from
ImageNet than the images that we used in the main text [6] (T (999) = 98.12, p < 0.001, Fig. S1).

Figure S1: Stimuli from [14], but not [6], are out-of-distribution from ImageNet. Penultimate-
layer activities from a ResNetv2-50 trained on ImageNet were extracted for 1916 images from the
validation set of ImageNet, 191 images from [14], and 28 images from [6]. A principle components
analysis decomposed those activities into a 2-Dimensional projection, which demonstrated a dis-
tribution shift for stimuli from [14], but not [6]. Indeed, while stimuli from [14] could be reliably
discriminated from ImageNet (98.7 acc, T (999) = 98.12, p < 0.001), images from [6] were not
discriminable from ImageNet (56.5 acc, T (999) = 98.12, n.s
.
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Figure S2: Noise ceilings at every 40ms bin of activity from 0ms - 250ms. We binned every 40ms
of neural responses following the original procedure for processing this data [6]

B Neural data analysis

We measured the maximum explainable variance, or noise ceiling, in our neural data recordings
in every 40ms bin of activity from 0ms - 250ms. We binned every 40ms by following the original
procedure for processing this data [6]. Because images were not repeatedly shown to the same
population receptive field, we computed each neuron’s noise ceiling for an image as the highest
correlation between it and another neuron for that image. We then focused our analyses in the main
text on the time bin where each neurons in each animal/brain area achieved the highest average noise
ceiling (Fig. S2).

C Models

DNN Model Zoo We comprehensively evaluated the ability of a myriad of DNNs from the TIMM
toolbox. These DNNs, available under the Apache 2.0 license, are intended for non-commercial
research purposes. The complete list of DNNs we evaluated can be found in Table S1.

D Neural Harmonizer Training

We relied on the original neural harmonizer recipe [7] to train and harmonize 14 DNNs for object
recognition on the ImageNet [9] dataset. For each model, we searched for settings of the regularization
terms λ1 and λ2, which control the relative importance of losses for object recognition and human
feature alignment during training, that maximized accuracy on the ImageNet validation set. In
total, we trained a VGG16, ResNet50_v2, ViT_b16, EfficientNet_b0, ConvNext Tiny, and
MaxViT Tiny (Table. S2). We did not attempt to apply the neural harmonizer to models which
relied on pretraining with datasets other than ImageNet because the ClickMe feature importance
dataset we used only contained annotations on a subset of images in ImageNet. Thus, we expect that

14



Architecture Model Versions

CNN

VGG 4
ResNet 24

EfficientNet 8
ConvNext 10
MobileNet 6
Inception 7
DenseNet 4
RegNet 3

Xception 4
MixNet 4
DarkNet 2
NFNet 2

TinyNet 4
LCNet 2
DLA 2

MnasNet 2
Resnext101 6
GhostNet 2

ViT

General ViT 21
leViT 4

MaxViT 7
DeiT 4

Hybrid CoAtNet 5
Table S1: Our DNN model zoo, taken from the TIMM library.

Model Accuracy Human Alignment Note
VGG 69.3 61.5 λ = 2
ResNet 50 77.17 45.0 λ = 2
EfficientNet B0 77.51 52.3 λ = 20
ViT B16 75.7 72.6 λ = 5
ConvNext Tiny 75.9 73.2 λ = 1
MaxViT Tiny 78.6 45.3 λ = 1

Table S2: DNNs trained with the neural harmonizer.

more work is needed for expanding ClickMe to larger-than-ImageNet scale data before these DNNs
can be harmonized.

E Extended results

Cross validation One limitation of the evaluation approach used in the original Brain-Score
work [11] is that model selection is done on the same dataset as testing (i.e., there is no partitioning
of the data into separate training, validation, and test sets). Thus, it is possible that the results we
describe in the main text are a byproduct of “double dipping.” To test for this possibility, we repeated
our experiments using separate training, validation, and test splits of the data. For each round of cross
validation in this procedure, we held out one image for testing. We also held out half of the training
data for selecting the model layer that best predicted neural responses (validation). Our results from
this approach strongly correlated with the ones reported in our original submission and our overall
conclusions remain the same (Fig. S3; Monkey 1 ML ρ = 0.98, p < 0.001; Monkey 2 ML ρ = 0.97,
p < 0.001); and Monkey 2 PL ρ = 0.98, p < 0.001).
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Figure S3: DNN neural prediction accuracy after evaluating on a test set held out of training.
Unlike the original approach introduced in Brain-Score [11], here we train, validate, and test models
on separate partitions of the dataset. DNNs trained and evaluated in this way follow the trends
described in the main text.

Task ML PL
Autoencoding 0.005 -0.009
Class object 0.091 0.075
Curvature 0.019 -0.009
Denoising -0.014 0.013
Edge occlusion 0.029 -0.0002
Edge texture 0.025 0.014
Egomotion 0.002 -0.018
Fixated pose 0.118 0.101
Jigsaw 0.099 0.097
Keypoints 2D 0.024 0.015
Keypoints 3D -0.057 -0.006
Nonfixated pose 0.164 0.086
Normal 0.065 0.056
Reshading 0.019 0.001
Room layout 0.131 0.087
Segment semantic -0.011 0.029
Segment unsupervised 25D 0.041 0.008
Segment unsupervised 2D 0.052 0.043
Vanishing point 0.046 0.076

Table S3: Neural predictions for ML and PL in Monkey 1 using Taskonomy-trained DNNs.

Alternative objective functions and datasets To better understand how ImageNet per se affected
DNNs’ abilities to predict neural responses, we evaluated a zoo of them trained on the Taskonomy
dataset and task set [80] and also the Ecoset [81] naturalistic object categorization dataset and task.
We took 19 DNNs pretrained on each task in the Taskonomy, and 4 DNNs trained for classification
on ecoset, and applied the standard Brain-Score fitting procedure that we describe in our original
submission Methods to derive prediction accuracy scores for each model. These models were far less
effective at explaining neural activity than any of the ImageNet-trained models we provided in the
main text (Tables S3 and S4). To summarize, our human behavior-aligned harmonized DNNs are
more accurate at predicting neural responses than other DNN we tested, regardless of the dataset or
task that was used to train them.

Model Best time bin Score
Alexnet 90 0.046
ResNet50 130 0.111
VGG16 130 0.086
Inception 210 0.109

Table S4: Neural predictions for ML in Monkey 1 using Ecoset-trained DNNs.
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Model Neural ImageNet
VGG baseline 0.523 67.23
VGG harmonized 0.524 67.369
ResNet50v2 baseline 0.501 76
ResNet50v2 harmonized 0.502 77.17
ConvNext baseline 0.519 74.3
ConvNext harmonized 0.524 75.8
MaxViT baseline 0.541 78.6
MaxViT harmonized 0.543 78.7
EfficientNetB0 baseline 0.506 75.4
EfficientNetB0 harmonized 0.508 77.51
LeViT baseline 0.472 74.9
LeViT harmonized 0.473 75.4
ViT baseline 0.493 73.2
ViT harmonized 0.499 75.7

Table S5: Performance of select DNNs on inferotemporal (IT) recordings from Brain-score.
org [14]. For each DNN class, models with higher accuracy at predicting IT responses and ImageNet
recognition are bolded.

Performance on Brain-Score As a point of comparison, we tested a subset of our DNN on a stan-
dard inferotemporal (IT) recordings benchmark on Brain-Score.org. In each case, harmonization
marginally improved performance over baseline (Table S5).

Neural dynamics We also present modeling results on other time bins (with lower noise ceilings)
than those considered in the main text (Figs. S4- S6). For ML IT in monkey 1 and monkey 2,
we present 90ms-130ms, 130ms-170ms, and 210ms-250ms. For PL IT of Monkey 1, we present
130ms-170ms, 170ms-210ms, and 210ms-250ms, windows. In each case, we found a similar trade-off
in these data as we did in those highlighted in the main text, as well as a significant improvement for
harmonized vs. unharmonized DNNs. This similarity extends to the qualitative predictions made by
each model on ML IT neurons (recall that we show the image-evoked activities of PL IT neurons in
the main text, S6).
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Figure S4: Results using different time bins than in the main text for the same region (ML) for
both monkeys. The pattern of results for each time-bin are consistent with the main text, despite
these data having lower noise ceilings.

Figure S5: Results using different time bins than in the main text for the IT PL in Monkey 1..
The pattern of results for each time-bin are consistent with the main text, despite these data having
lower noise ceilings.
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Figure S6: DNNs optimized for object recognition on ImageNet rely on different features than
those encoded by neurons in primate inferior temporal (IT) cortex. The activity of ML IT
neurons of Money 1 is plotted next to the predicted activity of a model representing each class
of DNNs: harmonized DNNs (hDNNs), visual transformers, self-supervised DNNs, convolutional
neural networks, DNNs trained on more data than ImageNet, and adversarially robust DNNs.
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