
A CAP algorithm description514

The section below illustrates in the CAP pruning algorithm step-by-step. Prunable model weights Rd515

are partitioned into blocks of fixed size B. Below ρ
(B)
i denotes the saliency scores for weight ith516

inside a block it belongs to and ρi is the score across the whole model. The steps of the algorithm are517

listed below:518

Algorithm 1 CAP pruning algorithm

1: ρi - saliency scores for weights
2: Accumulate Fisher inverse blocks F
3: for each block do
4: err = 0
5: for element in a block do
6: Select the weight wi with smallest score ρ

(B)
i (using the (2) for ρi)

7: Prune wi

8: Update remaining weights in the block via (2)
9: err+ = ρ

(B)
i

10: ρi ← err
11: Save current state of the block for later merging
12: Update Fisher inverse block
13: end for
14: end for
15: Sort the scores ρi in ascending order
16: Mark the weights with smallest scores ρi as pruned
17: for each block do
18: Load the saved state of the block with the weights marked pruned and all remaining alive.
19: end for

B Training details519

Augmentation/regularization recipe520

Table 4: Summary of the augmentation and regularization procedures used in the work.
Procedure DeiT light1

Weight decay 0.05 0.03
Label smoothing ε 0.1 0.1

Dropout % %
Stoch.Depth 0.1 0.0

Gradient Clip. % 1.0

H.flip ! !

RRC ! !
Rand Augment 9/0.5 2/0.5

Mixup alpha 0.8 0.0
Cutmix alpha 1.0 0.0
Erasing prob. 0.25 0.0
Erasing count 1 0

Test crop ratio 0.9 0.9

For the gradual pruning experiments (with 300 epochs) we have used cyclic learning schedule, with521

high learning rate directly after the pruning step with gradual decrease up to the next pruning step.522

For both DeiT-Tiny and DeiT-Small model during the additional fine-tuning for 100 epochs we’ve523

applied cosine annealing schedule with ηmax = 5 · 10−5, ηmin = 1 · 10−5 and all other parameters524

the same as in the Table 5.525

13

Table 5: Hyperparameters of the schedules used in gradual pruning.
Model Prune freq LR sched {fdecay, ηmax, ηmin} Augm Batch size Epochs

DeiT-Tiny 20 {cyclic_linear, 5 · 10−4, 1 · 10−5} light1 1024 300
DeiT-Small 20 {cyclic_linear, 5 · 10−4, 1 · 10−5} deit 1024 300

C Post-Pruning Recovery526

The choice of augmentation parameters and learning rate schedule is critical for high performance. For527

example, reducing the level of augmentation during fine-tuning for smaller models, e.g. DeiT-Tiny,528

significant improves performance, whereas larger models, e.g. the 4x larger DeiT-Small, requires529

strong augmentations for best results even during fine-tuning. See Figure 5 for an illustration; the530

augmentation procedure is described in detail in B.531

Moreover, the choice of cyclic learning rate (LR) schedule is critical as well. To illustrate this, we532

compare convergence obtained when using a cosine annealing schedule, which is very popular for533

pruning CNNs [24, 38, 32], from ηmax = 5 · 10−4 to ηmin = 10−5, while performing pruning534

updates 2 times more frequently (one update per 10 epochs) than in our standard setup from the535

following section 4.2. The results are provided in Figure 5, where cosine annealing (no cycles) is536

in red. All experiments use the CAP pruner, and highlight the importance of the learning rate and537

augmentation schedules for recovery.538

0 50 100 150 200 250 300
Epoch

58

60

62

64

66

68

70

72

74

Va
l a

cc
ur

ac
y

DeiT-Tiny

light1
deit
no cycles

0 50 100 150 200 250 300
Epoch

70

72

74

76

78

Va
l a

cc
ur

ac
y

DeiT-Small
light1
deit

Figure 5: Ablations of the training setting on DeiT-Tiny (up) and DeiT-Small (down). Green curves
correspond to the light1 [40] augmentation recipe, blue curves to the deit [42] recipe. The red curve
follows training with a single (acyclic) cosine annealing schedule, as in [24, 38].

D Additional Results for One-Shot Pruning539

In this section we present comparison of Global Magnitude (GM), WoodFisher (WF) and Correlation540

Aware (CAP) pruners in one-shot pruning setting for DeiT models [42] of different size (i.e DeiT-Tiny,541

DeiT-Small, DeiT-Base) to study the scaling behavior of ViT sparsification.542

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Va
l a

cc
ur

ac
y

DeiT-Tiny
GM
WF
CAP

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
l a

cc
ur

ac
y

DeiT-Small
GM
WF
CAP

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
l a

cc
ur

ac
y

DeiT-Base
GM
WF
CAP

Figure 6: One-shot pruning of different DeiT versions.

Notice, that the gap between magnitude pruning and second order methods is very pronounced for all543

models, whereas the difference in performance between CAP and WF decreases with increase of the544

size of model. Nevertheless, CAP performs still noticeably better than WF, especially in high sparsity545

regime.546

Pruning and finetuning. In most of the practical setups one cannot achieve both high compression547

rate and maintain performance of the dense model in one-shot setup. The full retraining procedure548

allows to achieve high sparsity but is rather expensive in the terms of compute. One can be interested549

14

to have something in between - moderately sparse model, close in performance to the original model550

but without the need of long and expensive training.551

In the experiments below we prune all models to 50% sparsity, and fine-tune for 20 epochs. In552

addition to ViT/DeiT, we also consider similar models based on variants of self-attention [27, 1],553

and compare against a GM baseline. We use a linearly-decaying learning rate schedule between554

ηmax = 10−4 to ηmax = 10−5 and the DeiT training recipe [42]. The results are given in Table 6,555

and show that CAP can almost fully-recover accuracy in this setup for all models; the gaps from GM556

and WF (see DeiT-Small 75 and 90%) are still very significant.557

Table 6: One-shot + fine-tuning on ImageNet-1k.
Model Method Sparsity (%) Top1-Accuracy (%)

DeiT-Small

Dense 0 79.8

GM 50 79.0
CAP 79.5

GM
75

74.3
WF 75.8
CAP 76.9

GM
90

45.6
WF 59.3
CAP 65.1

DeiT-Base

Dense 0 81.8

GM 50 81.5
CAP 81.6

GM
75

80.1
WF 80.2
CAP 81.0

GM
90

68.1
WF 69.2
CAP 76.3

Model Method Sparsity (%) Top1-Accuracy (%)

ConvNext-Small

Dense 0 83.1

GM
50

82.5
WF 82.5
CAP 82.8

GM
75

80.7
WF 81.0
CAP 81.9

GM
90

70.9
WF 73.2
CAP 78.2

XCiT-Small
Dense 0 82.0

GM 50 81.7
CAP 81.9

Swin-Tiny

Dense 0 81.3

GM 50 80.6
CAP 80.9

558

E Experiments with other models559

In the main part of the text, we considered only gradual pruning of ViT models, but the proposed560

method is applicable to any architecture for image classification, such as convolutional neural network561

(CNN) or a ViT-CNN hybrid. We have selected recently proposed EfficientFormer [26] as a member562

of ViT-CNN hybrid family and trained it using the same setting and hyperparameters as for DeiT-563

Small. Two CNN architectures - ResNet50-D 2 and EfficientNetV2-Tiny [41] 3, considered in this564

work were trained with the use of augmentation and regularization procedure described in the recent565

PyTorch blog post. Differently from most of the prior art we have used the ResNet50-D trained with566

the modern recipe from timm repository.567

For ResNet50-D we prune all convolutional weights except the first convolution and we keep the568

classification layer dense. In EfficientNetv2-Tiny we do not prune depthwise convolutions since they569

do not contribute much to the total number of parameters and FLOPs but they are important to the570

model performance. We have set the block size to be 256 for ResNet50-D and 16 for EfficientNetV2-571

Tiny while keeping all the other hyperparameters of CAP the same as for DeiT experiments. Such a572

small block size was chosen for EfficientNetV2-Tiny due to the fact that it is the largest common573

divisor of the prunable weights.574

First of all, we conducted comparison between one-shot pruning methods for ResNet50-D. We575

compare between Uniform and Global magnitude pruning, WoodFisher with block size of 256,576

M-FAC with block size of 2048 and CAP with uniform and global sparsity. One can observe that577

CAP outperforms all previous methods even when comparing uniform sparsity with global sparsity.578

Contrary to the case of DeiT where there is no much difference in performance between uniform and579

global magnitude pruning for ResNet50-D global sparsity turns out to be much better. This results is580

quite expectable since CNN are not uniform and deeper layers are mode wide than those close to the581

input.582

2resnet50d checkpoint with 80.5 % accuracy for dense model
3efficientnetv2_rw_t checkpoint with 82.3 % accuracy for dense model

15

https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
https://github.com/rwightman/pytorch-image-models

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
l a

cc
ur

ac
y

ResNet50-D

Magn (U)
Magn (G)
M-FAC (G)
WF (G)
CAP (U)
CAP (G)

Figure 7: One-shot pruning of ResNet50-D model on ImageNet dataset.
Next we carried out one-shot + finetuning experiments with ResNet50-D keeping setup the same as583

for DeiT models in Table 6. We have selected 75 % and 90 % as the difference between methods584

becomes pronounced only at sufficiently high sparsity. Notably, the performance of Global magnitude585

and WF is roughly the same, the initial difference after one-shot pruning between WF and Global586

Magnitude vanishes during the finetuning procedure, whereas there is still a gap in performance587

between CAP and other methods.588

Table 7: One-shot + fine-tuning on ImageNet.
Model Method Sparsity (%) Top1-Accuracy (%)

ResNet-50D

Dense 0 80.5

GM
75

79.0
WF 79.0
CAP 79.2

GM
90

74.7
WF 74.8
CAP 75.2

Finally we conducted gradual pruning runs following the same sparsification schedule as for DeiT-589

models. The EfficientFormer and EfficientNet models despite being already very optimized and590

parameter efficient can be still compressed with small drop in accuracy.591

F Scaling behaviour of pruning with respect to model size.592

To study the scaling behavior with respect to model size we took all variants of the ConvNext2 family593

of models [48] since it covers wide range of model sizes except for the large one due to the memory594

and compute constraints. The smallest model from the family - ConvNext2-Atto has 3.7M parameters595

whereas the largest considered ConvNext2-Large has 198M parameters. All the models were pruned596

to 50% in one-shot. We observed that the relative accuracy drop (difference between accuracy of the597

dense and sparse model) initially decreases with increase of model size and then reaches a plateau.598

CAP consisently outpeforms WF across all scales and the difference is the most pronounced for the599

smallest model.600

16

Table 8: Gradual pruning on ImageNet. Parentheses followed by the upwards directed arrow denote
additional fine-tuning for 100 epochs.

Model Method Sparsity (%) Top1-Accuracy (%)

EffFormer-L1

Dense 0 78.9

CAP

50 78.0
60 77.4
75 76.4
90 72.4 (72.8 ↑)

ResNet-50D

Dense 0 80.5

CAP

50 79.8
60 79.7
75 79.2 (79.6 ↑)
90 77.1 (77.5 ↑)

EffNetV2-Tiny

Dense 0 82.4

CAP

50 81.0
60 80.6
75 79.6 (80.0 ↑)
90 75.0

4 8 16 32 64 128 256
Params (M)

0

2

4

6

8

10

12

14

16

Ac
cu

ra
cy

 d
ro

p
(%

)

CAP
WF

Figure 8: Left: CAP vs WoodFisher for pruning of ConvNext2 family.

G Timings601

Any algorithms involving second order loss information are believed to require tremendous amounts602

of compute. Time required for calculation of pruning scores and the OBS update comprises collection603

of grads, Fisher inverse rank-1 updates and additional pruning iteration for CAP. We have measured604

the time of single pruning step for DeiT-Small and present the results in Table 9. All measurements605

were done on a single RTX A6000 GPU with 48GB of memory. One can observe that the amount of606

time needed to perform a pruning update is not very large, especially when compared to the duration607

of typical training procedure of modern computer vision models on ImageNet that usually takes608

several days on a multi-gpu node. Note that the additional step for CAP adds small fraction of total609

computational time relative to other steps of the OBS method.610

Table 9: Minutes per pruning step for DeiT-Small.
Model Method Time (minutes)

DeiT-Small Fast WoodFisher [22] 20
CAP 23

17

H Composite compression611

In addition to weight pruning one can decrease storage and inference cost with the help of other612

compression approaches: quantization (casting weights and activations to lower precision) and token613

pruning specific for the transformer architecture.614

H.1 Quantization-Aware Training615

Weight quantization is done in the following way - one takes sparse checkpoint and then runs616

quantization aware training (QAT). We ran QAT training for 50 epochs with linearly decaying617

learning rate schedule from ηmax = 10−4 to ηmin = 10−5. Models are quantized to 8-bit precision. In618

all experiments performed accuracy of quantized model almost reproduces the accuracy of the sparse619

model stored in full precision.620

Table 10: ImageNet-1K top-1 accuracy for sparse models after QAT training.
Model Sparsity (%) Accuracy (%)

DeiT-Tiny 75 72.2
DeiT-Small 75 77.7
DeiT-Base 75 81

H.2 Token Pruning621

There are different approaches for token pruning proposed in the literature. In this work we follow622

the one from [34]. Specifically, in DynamicViT one selects the ratio of tokens being pruned at each623

step with the lowest importance score, predicted by the model itself. Following the main setup from624

the paper we prune tokens after 3rd, 6th, 9th block, and the token pruning ratio after each block is625

ρ = 0.2 (i.e 20% least improtant tokens are pruned).626

Table 11: ImageNet-1K top-1 accuracy for sparse models with token pruning.
Model Method Sparsity (%) Top1-Accuracy (%)

DynamicViT-Tiny CAP
50 72.0
60 71.6
75 70.2

DynamicViT-Small CAP
50 79.5
60 79.4
75 78.7

H.3 Semi-structured sparsity.627

While CPUs can utilize sparsity patterns of arbitrary form to speed-up the computations at the present628

time modern GPU accelerators can handle only restricted form of unstructured sparsity, namely629

the N : M sparsity pattern that enforces exactly N non-zero values for each block of M weights.630

Namely, since the introduction of Ampere architecture NVIDIA GPUs have special kernels that can631

work with 2 : 4 sparse matrices [29]. One can integrate the N : M sparsity in the CAP framework632

without significant changes. The only difference with the original CAP approach is that while running633

the CAP iterations one doesn’t prune a given weight in case in a group of M weights to which634

this weights belongs to there are M − N zero weights. Since the sparsity pattern is significantly635

constrained compared to generic unstructured sparsity pattern drop in performance after doing pruning636

step and consequent fine-tuning is more challenging than it would be for unconstrained sparsity. In637

experiments below we prune models to 2 : 4 sparsity either in one-shot setting and one-shot+finetune.638

We apply shorter (10 epochs) and longer (50 epochs) finetuning procedure with linearly decaying639

learning rate schedule. According to the results in the Table 12 CAP significantly outperforms640

competitive methods for one-shot pruning, although the drop in performance is quite large for all641

methods. After finetuning procedure difference between different methods decreases. Nevertheless,642

there is some gap in performance between second order methods and magnitude pruning even after643

relatively long finetuning.644

To demonstrate practical benefits from 2:4 sparsity pattern we compiled both sparse and dense models645

via TensorRT engine and compared the throughput. The inference was executed on Nvidia T4 GPU646

18

Table 12: Semi-structured 2 : 4 pruning of ViT models.
Model Method Epochs Top1-Accuracy (%)

DeiT-Tiny

Dense 72.2

GM 0 24.4
WF 44.1
CAP 55.9

GM
10

68.8
WF 71.1
CAP 71.5

GM
50

72.5
WF 72.7
CAP 72.7

DeiT-Small

Dense 79.8

GM 0 53.6
WF 67.8
CAP 72.0

GM
10

77.9
WF 78.1
CAP 78.0

GM
50

78.6
WF 79.0
CAP 79.0

DeiT-Base

Dense 81.8

GM 0 66.4
WF 73.7
CAP 78.1

GM
10

81.2
WF 81.3
CAP 81.3

GM
50

81.7
WF 81.6
CAP 81.7

with batch size of 64 in half precision. Sparsity allows for small but certain speedup for models of647

different scale.648

Table 13: Speedup factors for 2 : 4 sparsity.
Model Speedup

DeiT-Tiny 1.07
DeiT-Small 1.07
DeiT-Base 1.10

I CAP/WF hyperparameters649

Following the oBERT’s directions [22] on identifying the optimal set of hyperparameters via one-shot650

pruning experiments, we conduct a grid search over the three most important hyperparameters:651

• Number of grads collected for Fisher inverse652

• Dampening constant λ653

• Block size654

The more grads are collected, the more accurate is the empirical Fisher inverse estimate, however,655

more compute is required at the same time. We chose N = 4096 as a point from which further656

increase of Fisher samples doesn’t improve performance a lot. Dependence of the one-shot pruning657

performance at different sparsities vs number of grads is presented on Figure 9.658

The next parameter to be studied is the dampening constant λ in. This constant regularizes the659

empirical Fisher matrix and allows to avoid instabilities in computation of the inverse. However, this660

constant decreases the correlation between different weights and in the limit λ→∞ OBS reduces661

to magnitude pruning. The optimal dampening constant for CAP (λopt = 10−8) is smaller than the662

one for WoodFisher (λopt = 10−6), i.e CAP remains numerically and computationally stable with663

smaller amount of regularization compared to WF (we observed that for λ < 10−7 WF performance664

starts to deteriorate rapidly).665

19

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
l a

cc
ur

ac
y

DeiT-Small
16
64
256
1024
4096

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
l a

cc
ur

ac
y

DeiT-Small
16
64
256
1024
4096

Figure 9: Left: One-shot pruning performance of WoodFisher. Right: One-shot pruning performance
of CAP.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
l a

cc
ur

ac
y

DeiT-Small
1e-5
1e-6
1e-7

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
l a

cc
ur

ac
y

DeiT-Small
1e-7
1e-8
1e-9

Figure 10: Left: One-shot pruning performance of WoodFisher. Right: One-shot pruning perfor-
mance of CAP.

And the last but not the least important parameter is the block size in [38]. The larger the block size666

is, the more correlations between different weights are taken into account. However, as mentioned667

in 2 the computational and storage cost scales with the block size. Moreover, for a fixed number668

of gradients in the Fisher estimate matrix with larger block sizes is likely to be worse conditioned.669

Therefore, one would like to work with smaller block sizes but not to keep the approximation as670

accurate as possible. We’ve selected block size according to the accuracy-efficiency trade-off.671

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
l a

cc
ur

ac
y

DeiT-Small
48
96
192

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
l a

cc
ur

ac
y

DeiT-Small
48
96
192

Figure 11: Left: One-shot pruning performance of WoodFisher. Right: One-shot pruning perfor-
mance of CAP.

In addition, we’ve studied the benefit from application of multiple recomputations in the one-shot672

pruning setting for WoodFisher and CAP. Since the assumption of static Fisher matrix F(w∗) doesn’t673

hold in general, we expect that multiple recomputations are likely to result in higher one-shot accuracy674

20

in accordance with the result from [13]. This is indeed the case. The gain from recomputations is675

more pronounced for WoodFisher, since CAP already performs implicit Fisher inverse updates in its676

operation. Yet, the efect is not vanishing even for the case of CAP.677

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
l a

cc
ur

ac
y

DeiT-Small

WF (Nr=1)
WF (Nr=2)
WF (Nr=5)
WF (Nr=8)
CAP (Nr=1)
CAP (Nr=5)

Figure 12: One-shot performance for WF and CAP with different number of recomputations Nr.

J Details and hyperparameter choices for other pruning methods.678

In this section we provide some additional details about methods compared on Figures 2 and 7.679

The popular Movement Pruning [37] computes the weight saliency scores during the training pro-680

cedure, hence it is not a one-shot pruning method by the definition. We have observed that use of681

the naive elementwise product of gradient and weights (i.e ρi = wi ⊙∇wiL(w)) leads to a poor682

performance, significantly below even the Magnitude Pruning baseline. However, the following first683

order pruning criterion:684

ρi =

N∑
k=1

∥w(k)
i ⊙∇wi

L(k)(w)∥ (9)

allows to get reasonable saliency scores that produce more accurate sparse models than Magnitude685

Pruning. However, its performance is still inferior to any of the second order pruning methods. This686

method is denoted as GrW (Gradient times weight) on Figures 2 and 7.687

M-FAC Pruner proposed in [13] is a pruner leveraging second order information that doesn’t require688

an explicit construction of Fisher Inverse matrix. Therefore, unlike WoodFisher and CAP that require689

O(Bd) memory computation and storage cost of this method is constant with respect to the block690

size and one can take into account correlations between larger groups of weights for free. Following691

the original paper we chose block size of 2k as the best performing one. However, one can see from692

Figures 2 and 7 that smaller block sizes turn out to perform better. A possible explanation of this693

phenomenon is that the Fisher Inverse estimate becomes too noisy and unstable for large blocks.694

K Execution latency.695

In addition to the plot throughput vs accuracy shown in the main part we present in this section696

execution latency per sample vs latency when running models on the DeepSparse engine. The results697

are presented on Figure 13.698

L Comparison with AC/DC training699

In addition to the sparse training from scratch with periodic updates of the sparsity weights with700

some saliency criterion for weight elimination and regrowth [10] one can consider alternating701

compressed/decompressed training (AC/DC), proposed in [32]. Namely one switches between dense702

stages with standard unconstrained training of the model, and sparse stages when the model is pruned703

to the target sparsity level and trained with the frozen sparsity mask until the beginning of the next704

dense stage, when the sparsity mask is removed. This procedure produces both accurate dense and705

sparse models.706

21

3 10 30 100
Latency (ms)

68

70

72

74

76

78

80

82

Va
l a

cc
ur

ac
y

DeiT-Base
DeiT-Small
DeiT-Tiny

Figure 13: Accuracy vs latency on ImageNet-1k.

Following the original paper we use magnitude pruning as a saliency criterion for weight pruning.707

The augmentation and regularization pipeline follows the settings from [42]. All models with AC/DC708

were trained for 600 epochs in total with first pruning step at epoch 150 followed by 7 sparse stages709

25 epochs long each, and 6 dense stages of the same length. The last dense stage lasts 50 epochs710

and the last sparse is 75 epochs long. Learning rate is gradually decayed from ηmax = 5 · 10−4 to711

ηmin = 10−6 with cosine annealing. Initial warm-up phase with linearly increasing learning rate is 20712

epochs. We compare AC/DC with CAP models finetuned for additional 100 epochs.713

Table 14: AC/DC vs CAP (finetuned for additional 100 epochs) on ImageNet-1k.
Model Method Sparsity (%) Top1-Accuracy (%)

DeiT-Small

CAP 60 79.9
AC/DC 80.4

CAP 75 79.0
AC/DC 79.0

CAP 90 75.8
AC/DC 72.0

One can observe that at low sparsity AC/DC achieves higher accuracy for the same sparsity target714

(even outperforming the dense baseline by 0.6%), whereas for 75% performance of both methods is715

equal, and CAP outperforms AC/DC at higher sparsity. However, one should note, that CAP uses716

computational budget (including the training of original model) of 440 epochs for 60% sparsity, 520%717

for 75% and 700% for 90% vs 600 epochs used in AC/DC.718

M One-shot pruning of DETR719

The approach presented in the paper is not limited to the image classification task, but can be applied720

to other computer vision tasks, such as object detection. We chose the DeTR model [4] with ResNet50721

backbone and ran one-shot pruning procedure with global magnitude, WoodFisher and CAP pruner.722

Specifically, we pruned all convolutional layers in the CNN backbone expect the first one and all723

linear projections in transformer encoder and decoder blocks while keeping the detection heads724

dense. The results are presented in Table 15. Following the standard protocol we used bbox mAP725

for evaluation. One can observe, that difference between the second order methods and magnitude726

pruning is very pronounced even for relatively small sparsity of 50%, and CAP outperforms WF727

pruner.728

22

Table 15: One-shot pruning of DeTR.
Model Method Sparsity (%) bbox mAP

DeTR

Dense 0 0.42

GM
50

0.16
WF 0.36
CAP 0.38

N Proof of Theorem 1729

Theorem N.0. Let S be a set of samples, and let ∇ℓ1(w
∗), . . . ,∇ℓm(w∗) be a set of gradients with730

i ∈ S, with corresponding empirical Fisher matrix F̂−1(w∗). Assume a sparsification target of k731

weights from w∗. Then, a sparse minimizer for the the constrained squared error problem732

minw′
1

2m

m∑
i=1

(
∇ℓi(w

∗)⊤w′ −∇ℓi(w
∗)⊤w∗

)2

s.t. w′ has at least k zeros, (10)

is also a solution to the problem of minimizing the Fisher-based group-OBS metric733

argminQ,|Q|=k

1

2
·w∗

Q
⊤
(
F̂−1(w∗)[Q,Q]

)−1

w∗
Q. (11)

Proof. We start by examining the unconstrained squared error function in Equation (10), which734

we denote by G. Clearly, the function G is a d-dimensional quadratic in the variable w′, and has a735

minimum at w∗. Next, let us examine G’s second-order Taylor approximation around w∗, given by736

(w′ −w∗)⊤
(1

m

m∑
i=1

∇ℓi(w
∗)⊤∇ℓi(w

∗)
)
(w′ −w∗), (12)

where we used the fact that w∗ is a minimum of the squared error, and thus the function has 0 gradient737

at it. However, by the definition of the empirical Fisher, this is exactly equal to738

(w′ −w∗)⊤F̂(w∗)(w′ −w∗). (13)
The Taylor approximation is exact, as the original function is a quadratic, and so the two functions739

are equivalent. Hence, we have obtained the fact that, under the empirical Fisher approximation, a740

k-sparse solution minimizing Equation 10 will also be a k-sparse solution minimizing Equation 1.741

However, the question of finding a k-sparse solution minimizing Equation 1 is precisely the starting742

point of the standard OBS derivations (see e.g. [38] or [22]), which eventually lead to the formula in743

Equation (11). This concludes the proof.744

O Augmentation choice for Empirical Fisher745

We compared the performance of CAP with Empirical Fisher computed on image-label pairs where746

the validation transforms were applied to images (i.e center crop with resize) and the same set747

of augmentations used for training and finetuning (RandAugment transforms, Label smoothing,748

e.t.c.). We observed that the sparsity solution obtained without augmenting samples for Empirical749

Fisher estimate turns out to be strongly overfitting. We point out that in both cases we use the same750

population size for Empirical Fisher.751

Figure 14 illustrates this result: using validation augmentation (red) yields better training loss but752

degenerates in terms of validation accuracy. A possible explanation is that CAP chooses an overfitting753

solution which the model is unable to escape during finetuning.754

23

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Tr
ai

n
lo

ss

DeiT-Tiny

no aug
aug

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

1.2

1.3

1.4

1.5

1.6

1.7

Va
l l

os
s

DeiT-Tiny

no aug
aug

Figure 14: Training (left) and validation loss (right) for one-shot + finetuning.

P Fisher matrix structure755

In order to validate the necessity of taking into account the correlations between weights, one has756

to make sure that the empirical Fisher matrix used as proxy for Hessian is non-diagonal. We have757

visualized an average block of empirical Fisher for a particular layer on Figure 15 from DeiT-Tiny and758

ConvNext-Small models. One can see, Fisher matrix exhibits a pronounced non-diagonal structure,759

which justifies the need of a careful and thorough treatment of weight correlations.760

blocks.5.attn.proj.weight stages.2.blocks.24.mlp.fc1.weight

Figure 15: Left: empirical Fisher block for a weight from DeiT-Tiny. Right: empirical Fisher block
for a weight from ConvNext-Small.

Q Broader impact761

Compressed models are not expected to exhibit more malicious and potentially harmful behavior762

compared to the dense models. However, they may face the same issues like the original models in763

safety-critical applications such as susceptibility to adversarial attacks and distribution shifts.764

R Limitations765

The proposed method is mostly suitable for small and medium sized models (up to order of ∼ 100M).766

For larger models the compute and storage cost associated with the estimate of empirical Fisher767

becomes prohibitively expensive. Compression of the largest models considered is this paper requires768

2-4 high-end GPUs (A100 with 80GiB). Pruning models to high sparsity requires significant amount769

of training. Search for fast and efficient procedures for the recovery of compressed models is left as770

potential direction for further research.771

24

	CAP algorithm description
	Training details
	Post-Pruning Recovery
	Additional Results for One-Shot Pruning
	Experiments with other models
	Scaling behaviour of pruning with respect to model size.
	Timings
	Composite compression
	Quantization-Aware Training
	Token Pruning
	Semi-structured sparsity.

	CAP/WF hyperparameters
	Details and hyperparameter choices for other pruning methods.
	Execution latency.
	Comparison with AC/DC training
	One-shot pruning of DETR
	Proof of Theorem 1
	Augmentation choice for Empirical Fisher
	Fisher matrix structure
	Broader impact
	Limitations

