A Impossibility results — missing proofs

Hereafter, we report all the proofs omitted from Section[d] We start by proving the following corollary
of Proposition[d.T]on simple fractional HGs.

Corollary 4.2. Given a parameter X there exists a bounded distribution with parameter X such that

in simple fractional HGs no -core exists for € < W

Proof. Consider the instance Z in the proof of Proposition We have shown that there exists a
collection of coalitions F = 2N U{{41,...,n}}\{0} of size 27 that always contains a core-blocking
coalition for any possible partition 7.

Let D be a bounded distribution of parameter A such that, for some p > 0, Prc.p [C] =pif C € F
and p/\, otherwise. For such a distribution the probability of sampling a specific coalition in F is
therefore given by p = W In conclusion,

A
B —
= 200(\ —1) +2n

~

Pr [C core-blocks 7] > CPrD [C core-blocks m A C € F]

and the thesis follows. O

In the following, we will prove the results regarding anonymous HGs. The approach is similar to the
one used for fractional HGs, and it is based on a single-peaked instance with an empty core shown
in [6].

Proposition 4.3. There exists a distribution D and an anonymous (single-peaked) HG instance such
that for every e < 1/27 there is no e-fractional core w.r.t. D.

Proof. Anonymous hedonic games have been shown to have an empty core even under single-peaked
preferences [6]. Such an example considers an instance Z with seven agents whose preferences are
single-peaked with respect to the natural ordering 1. .. 7. For our purposes, it is not important how
the instance 7 looks like but only the aforementioned properties it has.

Starting from Z, we can define an instance Z’, with N’ = [n] being the set of agents, which still has
an empty core. Let us denote by N = {1,..., 7} the set of the seven agents in Z. Their preferences
for coalitions of size 1 to 7 remain the same while any other coalition size is strictly less preferred.
In particular, we can extend their preferences in such a way that the instance is still singled-peaked
with respect to the natural ordering 1 ... n; namely, if & € [7] is the less preferred size according to
agenti € N, then, weset h >; 8 >; 9- - >; n. For the remaining agents, we assume preferences to
be decreasing for decreasing coalition size, i.e.,n >; n —1 >; --- »; 1 fori € N’ \ N, which are
clearly single-peaked in the natural ordering.

We next show this instance has an empty core and that for any coalition structure 7 there exists a core
blocking coalition in 2V U {{8, ..., n}} \ {0}.

Given a partition 7, any agent 7 € N if not in a coalition of size at most 7 would deviate and form
the singleton coalition. Assume now that in 7 agents in IV are in coalitions of size at most 7, as a

consequence, agents in N’ \ N = {8,... n} are in a coalition of size at most n — 7; if such agents
are in a coalition of size strictly smaller than n — 7 then the coalition {8, ..., n} is a core blocking
coalition. Let us finally assume that agents 8, ..., n form a coalition together of size n — 7 in 7. No

matter how the agents of /V are partitioned in 7w we know that any partition of N can always be core
blocked by a coalition in 2%V since Z has an empty core. Therefore, the new instance Z’ has an empty
core and it is always possible to find a blocking coalition in 2V U {{8,...,n}} \ {0}.

We are now ready to show our claim. Let D be the uniform distribution over 2V U{{8, ..., n}}\0. For
any coalition structure 7 it holds that Pre.p[C blocking for 7r] > 1/27 completing the proof. [

As for fractional HGs, the following corollary focuses specifically on A-bounded distributions.

Corollary 4.4. Given a parameter \, there exists a \-bounded distribution such that for ¢ <
m no e-fractional core-stable solution exists in anonymous single-peaked HGs.
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Proof. Consider the instance Z’ in the proof of Proposition We have shown that there exists a
collection of coalitions F = 2V U {{8,...,n}}\ {0} of size 27 that always contains a core-blocking
coalition for any possible partition 7.

Let D be a bounded distribution of parameter A such that, for some p > 0, Prc.p [C]| =pif C € F
and p/ A, otherwise. For such a distribution the probability of sampling a specific coalition in F is

therefore given by p = m In conclusion,

A
CP:rD [C core-blocks 7] > CfirD [C core-blocks m A C € F] > FO—D 1
and the thesis follows. O

B Simple fractional Hedonic Games — missing proofs

In the following, we will report the proofs of the technical lemmas omitted from Section [3]

The first result concerns the sample complexity of exactly learning agents’ preferences in simple
FHGs.

Lemma 5.2. By sampling m > 16log § + 4n sets from U(2N) it is possible to learn exactly the
valuation functions vy, . . . , v, with confidence 1 — 6.

Proof. Let us first focus on a fixed agent ¢. Every sampled set S € S that contains ¢ corresponds to a
linear equation

as1vi({1}) + - +asicvi({i = 1}) + asipvi({i + 1}) + - + asvi({n}) = vi(S)/]5],

where the v;({j})s are the unknowns and

1 ifjes
S5 700  otherwise.

Now, let us denote by A* = [arg, j]qepm],jen (i} the m/ x (n — 1) binary matrix corresponding to
a sample S = ((S1,v(51)), .-, (Sm/, v(Sm))) in which every set Sy, ¢ € [m/'], contains agent .
Learning the exact valuation function v; can be accomplished when the sets Sy, ..., .S, are such
that the matrix A’ has full rank, i.e., rank n — 1.

Let us denote by o, ..., a,_1 the columns of A*. Having in mind that each entry in A’ is equal
to 0 and 1 with the same probability of 1/2, we can inductively compute the probability that a set
of columns {ay, ..., axy1} is linearly independent as a function of m'. In particular, if we denote
by py the probability that the set {c1, ...,y } is linearly independent, then it is easy to see that

P+l =pr - (1 — 2_("”/_’“)) andp; =1— 2=™"_ Therefore, P = Hle (1 — 2_(’”/_”1)), so that

-1
— 1! 1_; > 1_;71 >1_n7_1
Pn—1 =iz om'—i+l ) = om’'—n+2 = om/—n+2

It follows that p,,—1 > 1 — §/(2n) when

2n(n —1)

m’:310g%+n—122log2%+n71210g2 5

+n—2.

A sampled set S contains agent ¢ with probability 1/2. Let E; be the number of sets containing i in a
sample of size m. Then, by the Chernoff’s inequality, taking 8 = 1 — 2m//m,

2

2m/ m

(1* m ) 2 _ (m—2m/)2
2 = e 4m

Pr[E;<m']|=Pr[E; < (1-p)m/2] <e”

which is less then §/(2n) if and only if W > log 2. Since % =2 -m+ %/2,
it suffices to require that 2 — m/ > log 22, i.e., m > 4log 2* + 4m/. This holds letting m =

161log % + 4n > 4log 2 + 12log % + 4n — 4 = 4log 2 + 4m/.
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Summarizing, the probability of learning exactly the valuation function v; is at least the probability
that with m examples F; > m/’ times the probability that A* has rank n — 1 given m’ examples
containing 4, that is at least (1 — 6/(2n)) - (1 —d/(2n)) > 1 —§/n.

By a direct union bound argument, the probability of not learning exactly one of the n valuation
functions vy, ..., v, is at most J, hence the claim. O

Hereafter, we will prove the main technical lemma of the section:

Lemma 5.5. Let ¢ > ° and let 7 be the partition returned by Algortthml_'m this case. Then the
following statements hold

(i) H is never empty when executing line 11 of the while loop of Algorithm|[I}
(ii) each agent i € Gr is green.

The proof of Lemmal[5.5 is quite involved and we will divide it in several parts. Throughout the proof,
N, will denote the neighborhood of agent ¢ in the graph induced by the game. We start by proving
the first statement i.e. that there is always at least one agent in H in each iteration of the while loop
(line 10).

Lemma B.1. Let ¢ > 2-—. Then, H is never empty when executing line 11 of the while loop of
Algorithml(]]

Proof. Consider an iteration ¢ of the while loop, and assume that in line 11 a given ¢ € H is selected.
Then, if in line 13 it results 7; C N \ H, in line 16 only agent i is removed from H.

/3
We now show that such a property is guaranteed whenever d; > "¢

If ”1—;3 < d; < % then [712_”%} = 1. We prove that agent 4, in line 13, selects in F; exactly
one singleton neighbor in N \ H. In fact, the number of agents in N \ H that have been already

grouped in some coalitions during the previous iterations is less than % 4 ,as by the ordering of H
the property |F;| = 1 holds for all agents 5 selected in line 11 during the previous iterations. As

a consequence, since H = | 2 | the number of singleton neighbors of i left in N \ H is at least
nl/3 1/3 > nl/3 /3 nt/ >
di_(62+124>— 15_(62"‘124)—1'

If d; > %, again F; will contain exactly [nz_d;l singleton neighbors in N \ H. In fact, denoted as

Gr' the set of agents selected in line 11 in the previous iterations, the number of available singleton
neighbors of ¢ outside H at iteration ¢ is more than

2d,; nl/3 n'/3 24, nt/3
d; — - —>di - —] -
Z [nfdﬂ 62 — 124 (n—di] 62
JEGrt
n2/3 nl/3  pl/3 n2/3 nl/3
>d; — — di— ——— ———
- 62 - 31 + 124 62 ~ 62 - 31 62
n n2/3 nl/3  3p2/3  opl/3
> — > —1
-3 62-31 62 — 10 — 31
[ 2d; ]
~—'n—d; ’
where we have used the fact that, being: € H, d; <n — 31n2/3, so that
[ 2d; ] 2(n — 31n%/?) - 2nt/3 )
n—d;' = 31n2/3 31 '
In order to prove the claim, we finally observe that if d; < "= 5 , again |F;| = 1 and in line 13 at

most two agents are removed from H. Therefore, if s is the total number of agents of degree less
than = —/ selected in line 11 during the execution of Algorlthmlll at the beginning of iteration ¢ the
number of agents left in H is at least %-5— 1/ —2s—(t—1—3s)= ”61;3 s—t+1>1,ass < ’;243

/3
and t < q24 O
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To prove the second statement of Lemma [5.5, we will differentiate two cases, based on the degree of
. . .. . . . . . 1/8
the agent 7 € H picked at a certain iteration. First we will consider agents with degree d; > .

Lemma B.2. Let (i) > "1/3 and T be the partition returned by AlgorithmM Then, each agent i € Gr
with degree d; > "— is green.

Proof. As shown in the proof of the previous lemma, if ¢ has degree d; > "1 =, then coalition 7 (%)
= dJ neighbors of 7 in N \ H. This allows us to determine exactly

will contain agent ¢ and exactly (
the utility of 7 in 7.

In particular, if d; < %, being LL o W = 1, v;(w) = 1/2, as agent 7 in her coalition forms a
matching with one neighbor in N\ H. Consider then a coalition C' sampled according to the uniform
distribution and containing 7. We now show that the probability that v;(C') > 1/2 is low enough to
respect the definition of greeness. In fact, the following Chernoff bounds hold:

4 — — )

oFru |
[|C| <l } <t <916

C~ U(2N

By applying the union bound, the probability that one of the above two events holds is at most

9—n'/?/15:24 4 9=n'/?/16 - 9=n''® Therefore, with probability at least 1 2-7""° hone of the two

events hold, and recalling that by hypothesis d; < n/3, v;(C) < 5 Sdl < 1, hence i is green.

If d; > %, being 7 in a coalition with exactly [%W neighbors in N \ H, it is possible to lower
bound v;(7) as

{nzd; -‘ 2dz

n— d -‘ +1 n+ dl .

vi(m) = (

We now show that the probability that for a sampled coalition C' containing i it results v;(C') > n%‘j T
is again low enough to satisfy the definition of greeness. We will make use of the following Chernoff’s
bounds. Given « and f3, positive constants, it holds:

a2di

[|CﬂN|>(1+ )(;]<e_ 5

C~ U(2N)

B2n

[lcl<a-pF|<e™

C~U(2N)

2’!7.
_‘*T) it holds that v;(C) < ((11+a))d .

We want to show that, for suitable « and (3, this quantity is lower than ="~ - giving us the desired

Similarly as above, with probability a least 1 — (e~

result. To this aim, choosing 5 = %—1/3 and o = %,
nl/3
15

14+ —1 )4
u+mm_<*Wfa>¢
(1—=5)n (1= g7) n

2 (*15)
(n1/3 ) Qn_nZ/S
15 (”if - 1) (2n2/3 — nl/3)

2d; < 2d;
o2n — 31n2/3 +15n1/3 — n+d;

IA
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It is straightforward to see that:

—od;  —p%n 25n1/3 1/3 1/3 nl/3

e 6 H4e a2 <e @ 2 +e_n176§2.2_n176:2_ 16 +1.

O

The following lemma deals with the agents with lowest degrees, that can be regrouped by Algorithm/[T}

Lemma B.3. Let (b > ° and 7 be the partition returned by Algorlthml_] Then, each agent i € Gr
with degree d; < “— is green.

Proof. Differently from the case addressed in the previous lemma, agents ¢ € H with degree

d; < %éa are possibly regrouped by the procedure. This in particular happens when they are not
able to select a singleton neighbor in N \ H, and thus they must select a neighbor already included

in some non-singleton coalition formed in the previous iterations. Since the algorithm stops after at
1/3
most & ﬁ steps the worst possible scenario is when all these agents fall together in a single coalition

of size 124 ° 41, which implies that v;(7) > m.

1 1/3 1/3
C — ]| <e” — 9= Q")
CU<2N>[ |‘2( nl/?’)]_e

Observe that, for [C] > % (1 — —5) = n—n®?,

2

&U<di< o2nl/3 2 _ 1 _ 1

(A S S = .

|C] 15 (n _ n2/3) 15n1/3 (n1/3 _ 1) nl/3 1+ n1/3/124

Thus, with probability greater than 1 — 2-2(n"?), v;(C) < v;(m), which concludes the proof. [

C Anonymous Hedonic Games — missing proofs

In the following, we will report the missing proofs of Section [6]

First, we will prove the Chernoff bounds over the size of sampled coalitions from a bounded
distribution:

Lemma 6.3. Let X be the random variable representing the size of C ~ D, with D \-bounded, and
let i := E[X]. Then,

n An

<u<
A+1 =M=

and Pr(|X — | > A-p] <

m\m

4
where € is such that 0 < € < 1 and A is the quantity %.
Proof. Observe that X can be seen as the sum of n Poisson trials X;,7 € N where X; = 1if ¢
belongs to the sampled coalition and 0 otherwise. Let us denote by p; the probability of the event
X; = 1. From Lemma@ we know that A%-l <p; < %-5-1’ as the size of the family of subsets that
we focus on is 2”1, Since the mean x of X is equal to > ien Di> by summing the above expression
over ¢ € N we obtain exactly:

n An
<u< . 4
P P Wi @
To show the bound instead, we will use Equation i.e., for b € (0,1) being constant:
Pri|X —p| >bu] < 2e~b*n/3 < 9e~*n/3(A+1) ,
D
where the last inequality follows by Equation@ Setting o = % yields e~¥’n/3004+1) = g
and concludes the proof. O
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The following two results concern the estimation of the interval I (e). First, we will prove that, with

a certain number of samples, it is possible to learn a confidence interval for the mean coalition size .

Lemma 6.4. Given any two constants o > 0,6 < 1, if m > %, then:
JLr la—pl<al=1-4. ©)
Proof. By the Hoeffding bound (see Theorem 4.13 in [23]):
2e2m
P 0— [ > < 2e w2
SPr lla—pl=a]<2e <9,
where the last inequality holds by hypothesis on m. O

We are now able to prove that Ip(g) can indeed be learned from samples.
Lemma 6.5. By sampling m = 2214 A)n? logn/§

E sets from D it is possible to learn exactly the
valuations in I'p(e), with confidence 1 — 4.

Proof. Let us start observing that, for any s € Ip(e),

£ IS
s<(1-5) < X Blei=t <t B (101 =]

where the second inequality follows by Lemma|6.3|while the third by the definition of A-bounded.

Therefore, Prcp [|C] = s] > 55-. In order to learn exactly v;(s) for a certain s, it is sufficient
to sample a coalition of size s containing agent ¢. By the definition of conditional probability we
have Pro.p [|C] =sAi€ C] =Preup i € C||C|=s] -Pro.p|[|C| = s] . Itis not hard to
see that the conditional probability remains a A-bounded distribution if we restrict the probability

space on coalitions of size s. We can therefore apply Lemma [3.5]and conclude that

s € €
Pr [|C|=sAieC]> ——FF—— — > ———— |
CNrDH [=snieC]z s+An—s) 2An — 2X\(1+ A\)n?

As a consequence, the probability that, sampled m coalitions, none of them is of size s and contains ¢

is upper bounded by:
I3 m _ me
1- — < 2A(1+A)n? |
( A1+ A)n2) =°

By setting m = w, we finally obtain that the probability that we have not learned the

€
valuation of i for the size s after m samples is less than 6 /n?.

In conclusion, applying the union bound twice, the probability that for at least one agent we have not
learned the valuation for some size s € Ip(e) is at most ¢. This concludes our proof. O

We will turn our attention now to single-peaked anonymous HGs. In this case, we are able to show a
different procedure, that refines the result already obtained in the general case.

Theorem 6.2. Given a A-bounded distribution D and a parameter 6 € (0,1), for any single-peaked
anonymous HG instance and with confidence 1 — §, we can efficiently compute an e-fractional

core-stable partition for every e > 4 - #

Also in this case, we will have at first a learning phase which is the very same learning phase as
in the previous section. Let us define I as in the proof of Theorem x; therefore we know that with
confidence 1 — 4§, In(e) C I. A crucial observation is that if we restrict single-peaked preferences on
I preferences remain single-peaked. Let {s1, ..., si} be the sizes in I according to the single-peaked
ordering.

We define p; the peak of ¢ in I, and for each h € [k] :
Ly,={ieN|pi=si AN <h}
Ep={i € N|pi=sn}
GhZ{iEN|pi=Sg/\€>h}.
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Let h* € [k] be the highest index such that |Lj«| < n/2. For the sake of simplicity, from now on
we will omit h* and use the notation L, E/, G in place of Ly«, Ep«, Gp+. Notice that, by definition,
|L| + |E| > n/2, and hence |G| < n/2.

The computation phase works as follows.

Let s* = s« and let r = n mod s*. We create (n — r)/s* coalitions of size s* and a coalition
of size r (if » > 0). In forming coalitions of size s*, we give priority to agents in E, that is, in the
coalition of size r there is an agent of E if and only if any other coalition contains only agents of E.

Let 7 be the resulting coalition structure and N’ = {i € N s.t.|n(i)|] = s*}. We denote by
X'=XNN andbyz' =|X'|for X € {L,G, E}.

Lemma C.1. For any C core-blocking of 7, E' N C = ).

Proof. Each agent in E’ is in the most preferred coalition. O

Lemma C.2. For any core-blocking coalition C for m having size ¢ € I,it must hold L' N C =
OvG ne =0

Proof. Consider 7,1 in L' and G’, respectively. The sizes that are better than s* for ¢ in I are the
ones that are worse than s* for 7’. Therefore, 7 and i’ cannot be both in C. O

Proof of Theorem[6.2] First we will show that ' + ¢’ > n/4 V ¢’ + ¢’ > n/4 must hold. Indeed,
by definition, I’ + ¢’ + ¢/ =n—r > n/2. Ifl' + ¢/ < n/4, then ¢’ + ¢’ > ¢’ > n/4; similarly, if
g +¢e <n/d thenl’ +¢e >1' >n/4.

Let us estimate how many core-blocking coalitions C' with sizes ¢ € I do exist. By the previous
lemmas, all C of this kind do not contain agents from E’, and contain agents either from L’ or from
G’ but not from both. Therefore, the number of possible core-blocking coalitions with size in I
satisfies:

[{C core-blocks 7 A ¢ € T}| < 27—~ 4 gn—e'=d'
< 2. max{2"¢ "V oan—¢'~d")

3n
3n 11
<2470,

where the last inequality holds by the observation above. Let us set a = 2%+l /2n =217%,

In conclusion, the probability of sampling a core blocking coalition is given by
Pr [C core-blocks m] = Pr [C core-blocks m Ac € I]+ Pr [C core-blocks m Ac & I]
C~D ~D C~D

< Pr [Ccore-blocksw/\céI]+CPrD[c§_ZI]

~

a
< — 2 <
*)\a—|—1—a+g/ =&
where the second to last inequality holds true, with confidence 1 — J, because of Lemma@and the
last inequality holds for e > 4 - 2, 4 = 2Aa O

24 = 2d42(0—1)  Aatl-a’
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