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Abstract

While bisimulation-based approaches hold promise for learning robust state repre-1

sentations for Reinforcement Learning (RL) tasks, their efficacy in offline RL tasks2

has not been up to par. In some instances, their performance has even significantly3

underperformed alternative methods. We aim to understand why bisimulation4

methods succeed in online settings, but falter in offline tasks. Our analysis reveals5

that missing transitions in the dataset are particularly harmful to the bisimulation6

principle, leading to ineffective estimation. We also shed light on the critical role7

of reward scaling in bounding the scale of bisimulation measurements and of the8

value error they induce. Based on these findings, we propose to apply the expectile9

operator for representation learning to our offline RL setting, which helps to prevent10

overfitting to incomplete data. Meanwhile, by introducing an appropriate reward11

scaling strategy, we avoid the risk of feature collapse in representation space. We12

implement these recommendations on two state-of-the-art bisimulation-based algo-13

rithms, MICo and SimSR, and demonstrate performance gains on two benchmark14

suites: D4RL and Visual D4RL. We provide our code in Supplementary Material.15

1 Introduction16

Reinforcement learning (RL) algorithms often require a significant amount of data to achieve optimal17

performance [37, 43, 21]. In scenarios where collecting data is costly or impractical, Offline RL18

methods offer an attractive alternative by learning effective policies from previously collected19

data [26, 29]. However, capturing the complex structure of the environment from limited data20

remains a challenge for Offline RL. One promising paradigm to alleviate the issue is to decouple21

representation learning from policy learning. This involves pre-training the state representation on22

offline data and then learning the policy upon the fixed representations [45, 42, 38, 47]. Though driven23

by various motivations, previous methods can be mainly categorized into two classes: i) implicitly24

shaping the agent’s representation of the environment via prediction and control of some aspects25

of the environment through auxiliary tasks , e.g., maximizing the diversity of visited states [31, 9],26

exploring attentive contrastive learning on sub-trajectories [45], or capturing temporal information27

about the environment [42]; ii) utilizing behavioral metrics, such as bisimulation metrics [10, 12, 4],28

to capture complex structure in the environment by measuring the similarity of behavior on the29

representations [46, 6]. The former methods have proven their effectiveness theoretically and30

empirically in Offline settings [38, 42, 45], while the adaptability of the latter approaches in the31

context of limited datasets remains unclear. This paper tackles this question.32

Bisimulation-based approaches, as their name suggests, utilize the bisimulation metrics update33

operator to construct an auxiliary loss and learn robust state representations. These representations34
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encapsulate the behavioral similarities between states by considering the difference between their35

rewards and dynamics. While the learned representations possess several desirable properties, such as36

smoothness [18], visual invariance [48, 1, 46], and task adaptation [49, 34, 41, 7], bisimulation-based37

objectives in most approaches are required to be coupled with the policy improvement procedure [48,38

5, 46]. In Offline RL, pretraining state representations via bisimulation-based methods is supposed39

to be cast as a special case of on-policy bisimulation metric learning where the behavior policy is40

fixed so that good performance should ensue. However, multiple recent studies [45, 20] suggest that41

bisimulation-based algorithms yield significantly poorer results on Offline tasks compared to a variety42

of (self-)supervised objectives.43

In this work, we highlight problems with using the bisimulation principle as an objective in Offline44

settings. We aim to provide a theoretical understanding of the performance gap in bisimulation-based45

approaches between online and offline settings:“why do bisimulation approaches perform well in46

Online RL tasks but tend to fail in Offline RL ones?” By establishing a connection between the47

Bellman and bisimulation operators, we uncover that missing transitions, which often occur in Offline48

settings, can cause the bisimulation principle to be compromised. This means that the bisimulation49

estimator can be ineffective in finite datasets. Moreover, we notice that the scale of the reward impacts50

the upper bounds of both the bisimulation measurement1 fixed point and the value error. This scaling51

term, if not properly handled, can potentially lead to representation collapse.52

To alleviate the aforementioned issues, we propose to learn state representations based on the expectile53

operator. With this asymmetric operator predicting expectiles of the representation distribution, we can54

achieve a balance between the behavior measurement and the greedy assignment of the measurement55

over the dataset. This results in a form of regularization over the bisimulation measurement, thus56

preventing overfitting to the incomplete data, and implicitly avoiding out-of-distribution estimation57

errors. Besides, by considering the specific properties of different bisimulation measurements, we58

investigate the representation collapse issue for the ones that are instantiated with bounded distances59

(e.g., cosine distance) and propose a way to scale rewards that reduces collapse. We integrate these60

improvements mainly on two bisimulation-based baselines, MICo [6] and SimSR [46], and show the61

effectiveness of the proposed modifications.62

The primary contributions of this work are as follows:63

• We investigate the potential harm of directly applying the bisimulation principle in Offline64

settings, prove that the bisimulation estimator can be ineffective in finite datasets, and65

emphasize the essential role of reward scaling.66

• We propose theoretically motivated modifications on two representative bisimulation-based67

baselines, including an expectile-based operator and a tailored reward scaling strategy. These68

proposed changes are designed to address the challenges encountered when applying the69

bisimulation principle in offline settings.70

• We demonstrate the superior performance our approach yields through an empirical study71

on two benchmark suites, D4RL [14] and Visual D4RL [32].72

2 Related Work73

State representation learning in Offline RL Pretraining representations has been recently studied74

in Offline RL settings, where several studies presented its effectiveness [3, 42, 38, 22]. In this75

paradigm, we learn state representations on pre-collected datasets before value estimation or policy76

improvement steps are run. The learned representation can then be used for subsequent policy77

learning, either online or offline. Some typical auxiliary tasks for pretraining state representations78

include capturing the dynamical [39] and temporal [42] information of the environment, exploring79

attentive contrastive learning on sub-trajectories [45], or improving policy performance by applying80

data augmentations techniques to the pixel-based inputs [8, 32].81

Bisimulation-based methods The pioneer works by [19, 30] aim to overcome the curse of dimen-82

sionality by defining equivalence relations between states to reduce system complexity. However,83

these approaches are impractical as they usually demand an exact match of transition distributions.84

1Since some bisimulation-based approaches do not exactly use metrics but instead of pseudometrics, diffuse
metrics or else, we will use the term “measurement” in the following.
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To address this issue, [11, 13] propose a bisimulation metric to aggregate similar states. This metric85

quantifies the similarity between two states and serves as a distance measure to allow efficient state86

aggregation. Unfortunately, it remains computationally expensive as it requires a full enumeration of87

states. Later, [4] devise an on-policy bisimulation metric for policy evaluation, providing a scalable88

method for computing state similarity. Building upon this, [48] develop a metric to learn state89

representations by modeling the latent dynamic transition as Gaussian. [5] further investigate the90

independent couple sampling strategy to reduce the computational complexity of representation91

learning, whereas [46] propose to learn state representations built on the cosine distance to alleviate a92

representation collapse issue. Despite the promising results obtained, one of the major remaining93

challenges in this paradigm is its dependency on coupling state representation learning with policy94

training. This is not always suitable for Offline settings, given that obtaining on-policy reward95

and transition differences is infeasible due to our inability to gather additional agent-environment96

interactions. To adapt bisimulation-based approaches to Offline settings, one solution is to consider97

the policy over the dataset as a specific behavior policy, and then apply the bisimulation principle98

on it to learn state representations in a pretraining stage, thus disentangling policy training from99

bisimulation-based learning. Notably, although there exist recent studies [45, 39] investigating the100

potential of bisimulation-based methods to pretrain state representations, it has not yielded satisfactory101

results yet [45].102

3 Preliminaries103

3.1 Offline RL104

We consider the standard Markov decision process (MDP) framework, in which the environment is105

given by a tupleM = (S,A, T, r, γ), with state space S, action space A, transition function T that106

decides the next state s′ ∼ T (·|s, a), reward function r(s, a) bounded by [Rmin, Rmax], and a discount107

factor γ ∈ [0, 1). The agent in state s ∈ S selects an action a ∈ A according to its policy, mapping108

states to a probability distribution over actions: a ∼ π(·|s). We make use of the state value function109

V π(s) = EM,π [
∑∞

t=0 γ
tr (st, at) | s0 = s] to describe the long term discounted reward of policy π110

starting at state s. In the sequel, we use T a
s and ras to denote T (·|s, a) and r(s, a), respectively. In111

Offline RL, we are given a fixed dataset of environment interactions that include N transition samples,112

i.e. D = {si, ai, s′i, ri}Ni=1. We assume that the dataset D is composed of trajectories generated i.i.d.113

under the control of a behavior policy πβ , whose state occupancy is denoted by µβ(s).114

3.2 Bisimulation-based Update Operator115

The concept of bisimulation is used to establish equivalence relations on states. This is done recur-116

sively by considering two states as equivalent if they have the same distribution over state transitions117

and the same immediate reward [27, 19]. Since bisimulation considers worst-case differences between118

states, it commonly results in “pessimistic” outcomes. To address this limitation, the π-bisimulation119

metric was proposed in [4]. This new metric only considers actions induced by a given policy π120

rather than all actions when measuring the behavior distance between states:121

Theorem 1. [4] Let M be the set of all measurements on S. Define Fπ : M→M by122

Fπ(g)(si, sj) = |rπsi − rπsj |+ γW(g)
(
Tπ
si , T

π
sj

)
(1)

where si, sj ∈ S, rπsi =
∑

a∈A π(a|si)rasi , Tπ
si =

∑
a∈A π(a|si)T a

si , andW(g) is the Wasserstein123

distance with cost function g between distributions. Then Fπ has a least fixed point gπ∼, and gπ∼ is a124

π-bisimulation metric.125

Although it is feasible to compute the behavior difference measurement gπ∼ by applying the operator126

Fπ iteratively (which is guaranteed to converge to a fixed point since Fπ is a contraction), this127

approach comes at a high computational complexity due to the Wasserstein distance on the right-hand128

side of the equation. To tackle this issue, MICo [5] proposed using an independent couple sampling129

strategy instead of optimizing the overall coupling of the distributions Tπ
si and Tπ

sj , resulting in a novel130

measurement to evaluate the difference between states. Additionally, SimSR [46] further explored131

the potentiality of combining the cosine distance with bisimulation-based measurements to learn state132
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representations. Both works can be generalized as:133

FπGπ(si, sj) = |rπsi − rπsj |+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[Gπ(s′i, s
′
j)], (2)

and Fπ has a least fixed point Gπ
∼

2. The instantiation of G varies in different approaches [5, 46]. For134

example, in SimSR [46], the cosine distance is used to instantiate G on the embedding space, and the135

dynamics difference is computed by the cosine distance between the next-state pair (s′i, s
′
j) sampled136

from a transition model of the environment. A more detailed description can be found in Appendix C.137

Lemma 2. [5] (Lifted MDP) The bisimulation-based update operator Fπ forM is the Bellman138

evaluation operator for a specific lifted MDP.139

Due to this interpretation of the bisimulation-based update operator as the Bellman evaluation operator140

in a lifted MDP, we can derive certain conclusions about bisimulation by drawing inspiration from141

policy evaluation methods. In the next section, we will borrow analytical ideas from [16] to prove that142

the bisimulation-based objective may be ineffective for finite datasets. We summarize all notations in143

Appendix A and provide all proofs in Appendix D.144

4 Ineffective Bisimulation Estimators in Finite Datasets145

The high-level idea of bisimulation-based state representation learning is to learn state embeddings146

such that when states are projected onto the embedding space, their behavioral similarity is maintained.147

We denote our parameterized state encoder by ϕ : S → Rn and a distance D(·, ·) in the embedding148

space Rn by Gπ
ϕ(si, sj)

.
= D(ϕ(si), ϕ(sj)). For instance, D(·, ·) may be the Łukaszyk–Karmowski149

distance [5] or the cosine distance [46]. To avoid unnecessary confusion, we defer implementation150

details to Section 5.151

When considering bisimulation-based state representations, the goal is to acquire stable state repre-152

sentations under policy π via the measurement Gπ
∼. The primary focus is usually to minimize a loss153

over the bisimulation error, denoted by ∆π
ϕ, which measures the distance between the approximation154

Gπ
ϕ and the fixed point Gπ

∼:155

∆π
ϕ(si, sj) := |Gπ

ϕ(si, sj)−Gπ
∼(si, sj)|. (3)

However, since the fixed point Gπ
∼ is unobtainable without full knowledge of the underlying MDP,156

this approximation error is often unknown. Recall that in Lemma 2, we have shown that we can157

connect a bisimulation-based update operator to a lifted MDP. Taking inspiration from Bellman158

evaluation for the value function, we define the bisimulation Bellman residual ϵπϕ as:159

ϵπϕ(si, sj) := |Gπ
ϕ(si, sj)−FπGπ

ϕ(si, sj)|. (4)

Then, we can connect the bisimulation Bellman residual with the bisimulation error by the following:160

Theorem 3. (Bisimulation error upper-bound). Let µπ(s) denote the stationary distribution over161

states, let µπ(·, ·) denote the joint distribution over synchronized pairs of states (si, sj) sampled162

independently from µπ(·). For any state pair (si, sj) ∈ S × S , the bisimulation error ∆π
ϕ(si, sj) can163

be upper-bounded by a sum of expected bisimulation Bellman residuals ϵπϕ:164

∆π
ϕ(si, sj) ≤

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]
. (5)

Thereafter, the bisimulation Bellman residual is used as a surrogate objective to approximate the165

fixed point Gπ
∼ when learning our state representation. Indeed, the minimization of the bisimulation166

Bellman residual objective over all pairs (s′i, s
′
j) ∼ µπ leads to the minimization of the corresponding167

bisimulation error. This ensures that if the expected on-policy bisimulation Bellman residual (i.e.,168

Eµπ
[ϵπϕ], and we will use the term “expected bisimulation residual” in following) minimization169

objective is zero, then the bisimulation error must be zero for the state pairs under the same policy.170

However, when the dataset is limited, rather than an infinite transition set covering the whole MDP,171

minimizing the expected bisimulation residual will no longer be sufficient to guarantee a zero172

bisimulation error.173

2For readability, we will conflate the notations Gπ and Gπ(x, y), they are the same if not specified
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Proposition 4. (The expected bisimulation residual is not sufficient over incomplete datasets). If174

there exists states s′i and s′j not contained in dataset D, where the occupancy µπ(s
′
i|si, ai) > 0 and175

µπ(s
′
j |sj , aj) > 0 for some (si, sj) ∼ µπ, then there exists a bisimulation measurement Gπ

ϕ and a176

constant C > 0 such that177

• For all (ŝi, ŝj) ∈ D, the bisimulation Bellman residual ϵπϕ(ŝi, ŝj) = 0.178

• There exists (si, sj) ∈ D, such that the bisimulation error ∆π
ϕ(si, sj) = C.179

As an example, if we only have (si, ai, r, s
′
i) and (sj , aj , r, s

′
j) in a dataset, where both rewards180

equal to zero for state si and sj , and if we choose Gπ
ϕ(si, sj) = C, and Gπ

ϕ(s
′
i, s

′
j) =

1
γC, then the181

bisimulation Bellman residual is ϵπϕ(si, sj) = 0, while the bisimulation error ∆π
ϕ = Gπ

ϕ(si, sj)−0 =182

C is strictly positive. Note that this failure case does not involve modifying the environment in an183

extremely adversarial manner, it simply occurs when we are required to estimate the representation184

of states with subsequent states that are missing from the dataset. Since the distance between the185

missing states can be arbitrarily large as they are out-of-distribution, directly minimizing the Bellman186

bisimulation error could achieve the minimal Bellman bisimulation error over the dataset, while not187

necessarily improving the state representation.188

In the context of Offline RL, since the dataset is finite, bisimulation-based representation learning189

ought to be conceptualized as a pretraining process over the behavior policy πβ of the dataset D.190

However, the failure case above indicates that applying the bisimulation operatorFπβ and minimizing191

the associated Bellman bisimulation error does not necessarily ensure the sufficiency of the learned192

representation for downstream tasks. Ideally, if we had access to the fixed-point measurement193

G
πβ
∼ , then we could directly minimize the error between the approximation G and the fixed-point194

G
πβ
∼ . However, given the static and incomplete nature of the dataset, acquiring the fixed-point195

G
πβ
∼ explicitly is not feasible. From another perspective, the failure stems from out-of-distribution196

estimation errors. Assuming we could estimate the bisimulation exclusively with in-sample learning,197

this issue could be intuitively mitigated. As such, we resort to expectile regression as a regularizer,198

allowing us to circumvent the need for out-of-sample / unseen state pairs.199

5 Method200

In this section, we describe how we adapt existing bisimulation-based representation approaches201

to offline RL. We use the expectile-based operator to learn state representations that optimize the202

behavior measurement over the dataset, while avoiding overfitting to the incomplete data. In addition,203

we analyze the impact of reward scaling and propose as a consequence to normalize the reward204

difference in the bisimulation Bellman residual in order to satisfy the specific nature of different205

instantiations of the bisimulation measurement while keeping a lower value error. The pseudo-code206

of our method is shown in Algorithms in Appendix B.207

5.1 Expectile-based Bisimulation Operator208

The efficacy of expectile regression in achieving in-sample learning has already been demonstrated209

in previous research [25, 33]. Consequently, we will first describe our proposed expectile-based210

operator, and subsequently show how expectile regression can effectively address the aforementioned211

challenge. Specifically, we consider the update operator as follows:212 (
Fπβ

τ G
πβ

ϕ

)
(si, sj) := argmin

G
πβ
ϕ

Eai∼πβ(·|si),aj∼πβ(·|sj)
[
τ [ϵ̂]2+ + (1− τ)[−ϵ̂]2+

]
,

ϵ̂ = E
s′i∼T

πβ
si

s′j∼T
πβ
sj

[
|r(si, ai)− r(sj , aj)|+ γG

πβ

ϕ̄
(s′i, s

′
j)︸ ︷︷ ︸

target G

−Gπβ

ϕ (si, sj)
]
,

(6)

where ϵ̂ is the estimated one-step bisimulation Bellman residual, πβ is the behavior policy, Gϕ̄ is213

the target encoder, updated using an exponential moving average, and [·]+ = max(·, 0). Since the214

expectile operator in Equation 6 does not have a closed-form solution, in practice, we minimize it215

through gradient descent steps:216

G
πβ

ϕ (si, sj)← G
πβ

ϕ (si, sj)− 2αEai∼πβ(·|si),aj∼πβ(·|sj) [τ [ϵ̂]+ + (1− τ)[ϵ̂]−] (7)
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where α is the step size. The fixed-point of the measurement obtained using this expectile-based217

operator is denoted as Gτ . Although the utilization of the expectile statistics is well established, its218

application for estimating bisimulation measurement is not particularly intuitive. In the following,219

we will show how expectile-based operator can be helpful in addressing the aforementioned issue.220

First, it is worth noting that when τ = 1/2, this operator becomes the bisimulation expectation of the221

behavior policy, i.e., Eµπβ
[ϵ̂]. Next, we shall consider how this operator performs when τ → 1. We222

show that under certain assumptions, our method indeed approximates an “optimal” measurement in223

terms of the given dataset. We first prove a technical lemma stating that the update operator is still a224

contraction, and then prove a lemma relating different expectiles, finally we derive our main result225

regarding the “optimality” of our method.226

Lemma 5. For any τ ∈ [0, 1),Fπ
τ is a γτ -contraction, where γτ = 1−2α(1−γ)min {τ, 1− τ} < 1.227

Lemma 6. For any τ, τ ′ ∈ [0, 1) with τ ′ ≥ τ , and for all si, sj ∈ S and any α, we have Gτ ′ ≥ Gτ .228

Theorem 7. In deterministic MDP and fixed finite dataset, we have:229

lim
τ→1

Gτ (si, sj) = max
ai∈A,aj∈A

s.t. πβ(ai|si)>0,πβ(aj |sj)>0

G∗
∼((si, ai), (sj , aj)). (8)

where G∗
∼((si, ai), (sj , aj)) is a fixed-point measurement constrained to the dataset and defined on230

the state-action space S ×A as231

G∗
∼((si, ai), (sj , aj)) = |r(si, ai)− r(sj , aj)|+ γE

s′i∼T
πβ
si

s′j∼T
πβ
sj

 max
a′
i∈A,a′

j∈A
s.t. πβ(a

′
i|s

′
i)>0,πβ(a

′
j |s

′
j)>0

G∗
∼((s

′
i, a

′
i), (s

′
j , a

′
j))

 .

Intuitively, G∼((si, ai), (sj , aj)) can be interpreted as a state-action value function Q(s̃, ã) in a232

lifted MDP M̃ , and G∼(si, sj) as a state value function V (s̃). We defer the detailed explanation to233

Appendix E.234

Theorem 7 illustrates that, as τ → 1, we are effectively approximating the maximum235

G∼((si, ai), (sj , aj)) over actions a′i, a
′
j from the dataset. When we set τ = 1, the expectile-236

based bisimulation operator achieves fully in-sample learning: we only consider state pairs that have237

corresponding actions in the dataset. For instance, only when we have (s′i, a
′
i) ∈ D and (s′j , a

′
j) ∈ D,238

can we apply the measurement of G∗
∼. As such, by manipulating τ , we balance a trade-off between239

minimizing the expected bisimulation residual (for τ = 0.5) and evaluating G∗
∼((si, ai), (sj , aj))240

solely on the dataset (for τ = 1), thereby sidestepping the failure case outlined in Proposition 4 in an241

implicit manner.242

5.2 Reward Scaling243

Most previous works [4, 48, 5, 46] have overlooked the impact of reward scaling in the bisimulation244

operator. To demonstrate its importance, we investigate a more general form of the bisimulation245

operator in Equation 2, given as:246

FπG(si, sj) = cr · |rπsi − rπsj |+ ck · Eπ
s′i,s

′
j
[G(s′i, s

′
j)]. (9)

We then can derive the following:247

Gπ
∼(si, sj) = FπGπ

∼(si, sj) = cr · |rπsi − rπsj |+ ck · Eπ
s′i,s

′
j
[Gπ

∼(s
′
i, s

′
j)]

≤ cr · (Rmax −Rmin) + ck · Eπ
s′i,s

′
j
[Gπ

∼(s
′
i, s

′
j)]

≤ cr · (Rmax −Rmin) + ck ·max
s′i,s

′
j

Gπ
∼(s

′
i, s

′
j).

(10)

Accordingly, we have Gπ
∼(si, sj) ≤

cr·(Rmax−Rmin)
1−ck

. Adopting the conventional settings of cr = 1 and248

ck = γ as suggested in [5, 46], could possibly result in a relatively large upper bound of Gπ
∼ between249

states. This is due to the common practice of setting γ at 0.99. However, when bisimulation operators250

are instantiated with bounded distances, e.g., cosine distance, such a setting may be unsuitable.251

Therefore, it becomes important to tighten the upper bound.252

Besides, we can also derive the value bound between the ground truth value function and the253

approximated value function:254
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Figure 1: The effectiveness of Reward Scaling (RS) in SimSR on halfcheetah-medium-expert-v2,
with results averaged on 3 random seeds. (Left) Effective Dimension [47] comparison: without RS,
there is a significant reduction in the effective dimension, accompanied by a marked increase in
instability as training progresses. (Right) Numerical value comparison of estimated bisimulation
Bellman residual: ϵ̂ is persistently greater than 0 in the absence of RS, which indicates that target G
is invariably larger than Gϕ, suggesting that Gϕ does not achieve steady convergence.

Theorem 8. (Value bound based on on-policy bisimulation measurements in terms of approximation255

error). Given an MDP M̃ constructed by aggregating states in an ω-neighborhood, and an encoder256

ϕ that maps from states in the original MDPM to these clusters, the value functions for the two257

MDPs are bounded as258 ∣∣∣V π (s)− Ṽ π (ϕ (s))
∣∣∣ ≤ 2ω + ∆̂

cr(1− γ)
. (11)

where ∆̂ := ∥Ĝπ
∼ − Ĝπ

ϕ∥∞ is the approximation error.259

In essence, Equation 10 and Theorem 8 reveal that: (i) there is a positive correlation between the260

reward scale cr and the upper bound of the fixed-point Gπ
∼, and (ii) a larger reward scale cr facilitates261

a more accurate approximation of the value function Ṽ π(ϕ(s)) to its ground-truth value V π(s). It is262

important to note that cr also impacts the value of ∆̂, as depicted in Figure 1(Right)3. Therefore, it is263

crucial to first ensure the alignment with the instantiation of the bisimulation measurement, and then264

choose the largest possible cr to minimize the value error. For instance, as the SimSR operator [46]265

uses the cosine distance, ck = γ is predetermined. We should thus set cr ∈ [0, 1 − γ], and apply266

min-max normalization to the reward function. This can make Gπ
∼ ≤ 1 and therefore be consistent267

with the maximum value of 1 of the cosine distance. To achieve a tighter bound in Equation11, we268

should then maximize the reward scale, setting cr to 1− γ. Figure 1 illustrates the effectiveness of269

this reward scaling.270

6 Experiments271

6.1 Performance Comparison in D4RL Benchmark272

Implementation Details We analyze our proposed method on the D4RL benchmark [14] of OpenAI273

gym MuJoCo tasks [44] which includes a variety of datasets that have been commonly used in the274

Offline RL community. To illustrate the effectiveness of our method, we implement it on top of275

two bisimulation-based approaches, MICo [5] and SimSR [46]. It is worth noting that there are276

two versions of SimSR depending on its use of a latent dynamics model: SimSR_basic follows the277

dynamics that the environment provides, and SimSR_full constructs latent dynamics for sampling278

successive latent states. We opt for SimSR_basic as our backbone, as it exhibits superior and more279

stable performance in the D4RL benchmark tasks compared to SimSR_full. Additionally, to explore280

the impact of bisimulation-based representation learning on the downstream performance of policy281

learning, we build these approaches on top of the Offline RL method TD3BC [15]. We examine three282

3Despite Figure 1(Right) depicting the approximate residual ϵ̂, we have drawn a connection between ϵπϕ and
∆π
ϕ in the Appendix, which can reflect the possible situations for ∆̂.
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Figure 2: Performance comparison on 12 D4RL tasks over 10 seeds with one standard error shaded
in the default setting. For every seed, the average return is computed every 10,000 training steps,
averaging over 10 episodes. The horizontal axis indicates the number of transitions trained on. The
vertical axis indicates the normalized average return.

environments: halfcheetah, hopper, and walker2d, with four datasets per task: expert, medium-expert,283

medium-replay, and medium. We first pretrain the encoder during 100k timesteps, then freeze it,284

pass the raw state through the frozen encoder to obtain the representations that serve as input for the285

Offline RL algorithm. Further details on the experiment setup are included in Appendix F.286
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Figure 3: Bootstrapping distributions for uncer-
tainty in IQM (i.e., inter-quartile mean) measure-
ment, following from the performance criterion
in [2].

Analysis Figure 2 illustrates the performance287

of two approaches and their variants in the D4RL288

tasks. We use EBS to represent the scheme of289

employing the expectile-based operator, while290

RS denotes the reward scaling scheme. The291

latter includes both min-max reward normaliza-292

tion and penalization coefficient with (1 − γ)293

in the bisimulation operator. As discussed in294

Section 5.2, the role of reward scaling varies295

depending on the specific instantiation of G4.296

We observe that without RS, SimSR almost fails297

in every dataset, which aligns with our under-298

standing of the critical role reward scaling plays.299

The results also illustrate that EBS effectively300

enhances the downstream performance of the301

policy for both SimSR and MICo. It is notewor-302

thy that in this experiment, we set τ = 0.6 for303

the expectile in SimSR and τ = 0.7 in MICo304

across all datasets, demonstrating the robustness of this hyperparameter. Regarding SimSR, when305

RS is applied (SimSR+RS), the performance is comparable to the TD3BC baseline, while the in-306

corporation of the expectile-based operator (SimSR+RS+EBS) further enhances final performance307

4Since MICo does not necessitate a particular upper bound, RS may be harmful to its performance. Our
experiments have substantiated this observation, leading us to exclude the MICo+RS results from Figure 2.
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Table 1: Performance comparison with several other baselines on V-D4RL benchmark, averaged on 3
random seeds.

Dataset CURL DRIMLC HOMER ICM MICo→MICo+EBS SimSR→ SimSR+RS+EBS
cheetah-run-medium 392 524 475 365 177→ 449 (↗ 272) 391→ 491(↗ 100)
walker-walk-medium 452 425 439 358 450→ 447 (—) 443→ 480(↗ 37)
cheetah-run-medium-replay 271 395 306 251 335→357 (↗ 22) 374→ 462(↗ 88)
walker-walk-medium-replay 265 235 283 167 207→ 240 (↗ 33) 197→ 240(↗ 43)
cheetah-run-medium-expert 348 403 383 280 282→ 341 (↗ 59) 360→ 547(↗ 187)
walker-walk-medium-expert 729 399 781 606 586→ 635(↗ 49) 755→ 845(↗ 90)
cheetah-run-expert 200 310 218 237 308→ 331(↗ 23) 409→ 454(↗ 45)
walker-walk-expert 769 427 686 850 370→ 447 (↗ 77) 578→ 580 (—)
total 3426 3118 3571 3114 2715→ 3253 (↗ 538) 3507→ 4043 (↗ 536)

and sample efficiency. Besides, we additionally present the IQM normalized return of all variants in308

Figure 3, illustrating our performance gains over the backbones. Further, we have also constructed309

an ablation study to investigate the impact of different settings of τ , the results show that a suitable310

expectile τ is crucial for control tasks. We present the corresponding results in Appendix E.311

6.2 Performance Comparison in V-D4RL Benchmark312

Implementation details We also evaluate our method on a visual observation setting of DMControl313

suite (DMC) tasks, V-D4RL benchmark [32]. Similar to the previous experiment, we add the314

proposed schemes on top of MICo and SimSR. In the experiments, we notice that the latent dynamics315

modeling can help to boost performance for the visual setting, hence we use SimSR_full as the316

backbone. Additionally, we also notice that MICo often gives really poor performance in the V-D4RL317

benchmark, while adding latent dynamics alleviates the issue. Therefore, we boost MICo with explicit318

dynamics modeling for a fair comparison. To compare the performance with the other representation319

approaches, we include 4 competitive representation learning approaches for Offline RL, including320

DRIML [35], HOMER [36], CURL [28], and Inverse model [40]. Detailed descriptions of these321

approaches can be found in Appendix G.322

Analysis We evaluate all aforementioned approaches by integrating the pre-trained encoder from323

each into an Offline RL method DrQ+BC [32], which combines data augmentation techniques with324

TD3BC. The results in Table 1 illustrate the effectiveness of our proposed method, the numerical325

improvements are underlined with red upward arrows. Compared to the other baselines, while326

SimSR+RS+EBS does not achieve the highest score in all datasets, it achieves the best overall perfor-327

mance. Besides, our modifications on MICo and SimSR consistently show significant improvements.328

This indicates that our proposed method is not only applicable to raw-state inputs but also compatible329

with pixel-based observations.330

7 Discussion331

Limitations and Future Work While τ remains constant in our D4RL experiments, optimal332

performance may arise under different τ settings, contingent on the specific attributes of the dataset.333

Therefore, to yield the best outcomes, one might need to set various τ to identify the most suitable334

value. However, this process could consume substantial computational resources. Another area of335

potential study involves evaluating the effectiveness of our approach in off-policy settings, given that336

off-policy settings may also lead to similar failure cases.337

Conclusion In this work, we highlight the effectiveness of the bisimulation operator over incomplete338

datasets and emphasize the crucial role of reward scaling in Offline settings. By employing the339

expectile operator in bisimulation, we manage to strike a balance between behavior measurement and340

greedy assignment of the measurement over datasets. We also propose a reward scaling strategy to341

reduce the risk of representation collapse in specific bisimulation-based measurements. Empirical342

studies show the effectiveness of our proposed modifications.343
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A Notation563

Table 2 summarizes our notation.564

Table 2: Table of Notation.
Notation Meaning Notation Meaning

M MDP M̃ Lifted MDP (auxiliary MDP)

S state space A action space

T transition function r reward function

γ discount factor π policy of the agent

V π(s) state value function given policy π D dataset

πβ behavior policy µβ(s) state occupancy of the dataset

Fπ on-policy bisimulation operator gπ∼ π-bisimulation metric

D(·, ·) a specific distance Gπ
∼ fixed point of MICo and SimSR

ϕ state encoder Gπ
ϕ(si, sj) parameterized bisimulation measurement

∆π
ϕ bisimulation error ϵπϕ bisimulation Bellman residual

µπ(s) stationary distribution over states on policy π µπ the distribution over pairs of states

Eµπ [ϵ
π
ϕ] expected on-policy bisimulation Bellman residual Fπβ behavior bisimulation operator

τ expectile term γτ discount factor with expectile

Fπβ
τ behavior bisimulation operator with expectile ϵ̂ estimated one-step residual

Gϕ̄ bisimulation measurement parameterized by target encoder G∼(si, ai, sj , aj) a measurement on state-action space

G∗
∼(si, ai, sj , aj) maximum measurement constrained to dataset cr scale term of reward in bisimulation

ck scale term of transition in bisimulation Ṽ π(ϕ(s)) value function based on state encoder

ω distance bound of aggregating neighbor ∆̂ approximation error of bisimulation measurement

B Algorithm565

We provide the algorithm in Algorithm 1, and a pytorch-like implementation build on top of SimSR566

in Algorithm 2.567

Algorithm 1 Proposed Implementation
1: Stage 1 Preprocessing:
2: Min-Max reward normalization: r̄ = r−rmin

rmax−rmin
3: Stage 2 Pretraining the encoder:
4: Initialize encoder parameter ϕ, expectile τ , learning rate α, discount factor γ.
5: for each gradient step do
6: Apply reward scaling when computing ϵ̂:

ϵ̂ = (1− γ)|r̄(si, ai)− r̄(sj , aj)|+ γG
πβ

ϕ̄
(s′i, s

′
j)−G

πβ

ϕ (si, sj) (12)

7: Update encoder ϕ:

ϕ← ϕ− 2αEai∼πβ(·|si),aj∼πβ(·|sj) [τ [ϵ̂]+ + (1− τ)[ϵ̂]−] (13)

8: end for
9: Stage 3 Training value function and policy network:

10: Initialize value function parameter ψ, policy network parameter θ, learning rate λV and λπ .
11: for each gradient step do
12: Sample tuple (s, a, s′, r̄) from dataset D
13: Encode the states to representation space: z = ϕ(s), z′ = ϕ(s′)
14: Update value function with (z, a, z′, r̄):

ψ = ψ − λV∇ψLV (ψ). (14)

15: Update policy network with (z, a, z′, r̄):

θ = θ − λπ∇θLπ(θ). (15)

16: end for
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Algorithm 2 SimSR+RS+EBS Pseudocode, PyTorch-like

class ReplayBuffer(object):
def __init__(self):

...
self.reward_normalization()
...

...
def reward_normalization(self):

r_max = self.reward.max()
r_min = self.reward.min()
self.reward = (self.reward - r_min) / (r_max - r_min)

def compute_distance(features_a, features_b):
similarity_matrix = torch.matmul(features_a, features_b.T)
dis = 1-similarity_matrix
return dis

def expectile_loss(diff, expectile):
weight = torch.where(diff > 0, expectile, (1 - expectile))
return weight * (diff ** 2)

# encoder: mlp, encoder network, the output is l2-normalized
# target_encoder: mlp, same as encoder, updated by EMA
# discount: discount factor $\gamma$
# slope: expectile $\tau$
def compute_ebs_loss(encoder, target_encoder, replay_buffer, batch_size, discount, slope):

observation, action, reward, discount, next_observation = replay_buffer.sample(batch_size) # sample a
batch of tuples from replay buffer

latent_state = encoder(observation)
latent_next_state = target_encoder(next_observation)
r_diff = (1 - discount) * torch.abs(reward.T - reward)
next_diff = compute_distance(latent_next_state, latent_next_state)
z_diff = compute_distance(latent_state, latent_state)
bisimilarity = r_diff + discount * next_diff

encoder_loss = expectile_loss(bisimilarity.detach() - z_diff, slope)
encoder_loss = encoder_loss.mean()
return encoder_loss

C Technical backgrounds568

C.1 Bisimulation metric569

Bisimulation measures equivalence relations on MDPs with a recursive form: two states are deemed570

equivalent if they share the equivalent distributions over the next equivalent states and they have571

the same immediate reward [27, 19]. However, since bisimulation considers equivalence for all572

actions, including bad ones, it commonly results in “pessimistic” outcomes. Instead, [4] developed573

π-bisimulation which removes the requirement of considering each action and only needs to consider574

the actions induced by a policy π.575

Definition 9. [4] Given an MDP M, an equivalence relation Eπ ⊆ S × S is a π-bisimulation576

relation if whenever (s,u) ∈ Eπ the following properties hold:577

1. r(s, π) = r(u, π)578

2. ∀C ∈ SEπ , T (C|s, π) = T (C|u, π)579

where SEπ is the state space S partitioned into equivalence classes defined by Eπ. Two states580

s, u ∈ S are π-bisimilar if there exists a π-bisimulation relation Eπ such that (s, u) ∈ Eπ .581

However, π-bisimulation is still too stringent to be applied at scale as π-bisimulation relation582

emphasizes the equivalence is a binary property: either two states are equivalent or not, thus becoming583

too sensitive to perturbations in the numerical values of the model parameters. The problem becomes584

even more prominent when deep frameworks are applied.585

Thereafter, they proposed a π-bisimulation metric to leverage the absolute value between the immedi-586

ate rewards w.r.t. two states and the 1-Wasserstein distance (W1) between the transition distributions587

conditioned on the two states and the policy π to formulate such measurement:588

Theorem 10. Define Fπ : M→M by Fπ(d)(s, u) = |Rπ
s −Rπ

u|+ γW1(d)(T
π
s , T

π
u ), then Fπ has589

a least fixed point dπ∼, and dπ∼ is a π-bisimulation metric.590
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Although the Wasserstein distance is a powerful metric to calculate the distance between two591

probability distributions, it requires to enumerate all states which is impossible in RL tasks of592

continuous state space. Various extensions have been proposed [48, 5, 46] to reduce the computational593

complexity. DBC [48] extend bisimulation metrics to learn state representation, via minimizing the594

ℓ1-norm distance of representations and the bisimulation metrics, meanwhile modeling the latent595

dynamics as Gaussian and utilizing W2 distance to compute it, which can be formulated as a closed-596

form result. However, DBC has several issues like loss function mismatch and specific requirements597

for Gaussian modeling, which limits its application and performance.598

C.2 MICo distance599

MICo distance [5], tackles the above issue by restricting the coupling class to the independent600

coupling to avoid intractable Wasserstein distance computation. The MICo operator and its associated601

theoretical guarantee are given as:602

Theorem 11. [5] Given a policy π, MICo distance Fπ is defined as:603

FπU(si, sj) = |rπsi − rπsj |+ γEs′i∼Tπ
s ,s′j∼Tπ

sj
[U(s′i, s

′
j)] (16)

has a fixed point Uπ .604

By considering the Wasserstein distance in the definition of bisimulation metrics can be upper-605

bounded by taking a restricted class of couplings of the transition distributions, MICo restricts the606

coupling class precisely to the singleton containing the independent coupling, utilizing the Indepen-607

dent Couple sampling strategy to bypass the computation of the Wasserstein distance. However,608

MICo distance U requires to be a Łukaszyk-Karmowski metric, which does not satisfy the identity609

of indiscernibles. As a result, the approximated distance on the learned embedding space based on610

the MICo distance, which involves a Łukaszyk-Karmowski metric to measure the distance between611

dynamics, may suffer from the violation issue of the identity of indiscernibles.612

C.3 SimSR operator613

To avoid the potential representation collapse, SimSR [46] develop a more concise update operator to614

learn state representation more effectively. Coupling with cosine distance, SimSR defines its operator615

as:616

Theorem 12. [46] Given a policy π, Simple State Representation (SimSR) is updated as:617

Fπcosϕ(si, sj) = |rπsi − rπsj |+ γEs′i∼Tπ
si

,s′j∼Tπ
sj
[cosϕ(s′i, s

′
j)] (17)

has the same fixed point as MICo.618

Further, considering the latent dynamics can be beneficial to representation learning, they additionally619

develop a form of operator including dynamics modeling:620

Theorem 13. [46] Given a policy π, and a latent dynamics model T̂ , SimSR is updated as621

Fπcosϕ(si, sj) =|rπsi − rπsj |+ γEz′
i∼T̂π

ϕ(si)
,z′

j∼T̂π
ϕ(sj)

[cos(z′i, z
′
j)]. (18)

If latent dynamics are specified, Fπ has a fixed point.622

When considering MICo distance and the basic version of SimSR, we can notice that they have a623

similar recursive iteration formulation. And therefore both works can be generalized under:624

FπGπ(si, sj) = |rπsi − rπsj |+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[Gπ(s′i, s
′
j)], (19)

while the instantiation of G varies in these two approaches.625

C.4 Lifted MDP626

The connection between bisimulation-based operators and lifted MDP can be referred to [5]. We627

provide the corresponding Lemma here for reference.628
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Lemma 2. (Lifted MDP) The bisimulation-based update operator Fπ for M, is the Bellman629

evaluation operator for a specific lifted MDP.630

Proof. Given the MDP specified by the tuple (S,A, T,R), we construct a lifted MDP (S̃, Ã, T̃ , R̃),631

by taking the state space to be S̃ = S2, the action space to be Ã = A2, the transition dynamics to632

be given by T̃ ã
s̃ (s̃

′) = T̃
(ai,aj)

(si,sj)
((s′i, s

′
j)) = T ai

si (s
′
i)T

aj
sj (s

′
j) for all (si, sj), (s′i, s

′
j) ∈ S2, ai, aj ∈ A,633

and the action-independent rewards to be R̃s̃ = R̃(si,sj) = |rπsi − rπsj | for all si, sj ∈ S. The634

Bellman evaluation operator F̃ π̃ for this lifted MDP at discount rate γ under the policy π̃(ã|s̃) =635

π̃(ai, aj |si, sj) = π(ai|si)π(aj |sj) is given by (for all Gπ ∈ RS×S and (si, sj) ∈ S × S):636

(F̃ π̃G̃π)(s̃) = R̃s̃ + γ
∑
s̃′∈S̃

T̃ ã
s̃ (s̃

′)π̃(ã|s̃)G̃π(s̃′)

(F̃ π̃Gπ)(si, sj) = R̃(si,sj)+γ
∑

(s′i,s
′
j)∈S2̃

T
(ai,aj)

(si,sj)
((s′i, s

′
j))π̃(ai, aj |si, sj)Gπ(s′i, s

′
j)

= |rπsi − rπsj |+ γ
∑

(s′i,s
′
j)∈S2

Tπ
si(s

′
i)T

π
sj (s

′
j)G

π(s′i, s
′
j) = (Fπ

MGπ)(si, sj) .

C.5 Expectile Regression637
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Figure 4: The asymmetric squared loss used for
expectile regression. Larger τ gives more weight
to positive differences.

Expectile regression, a method in statistics, is638

an extension of quantile regression that provides639

a more detailed analysis of a distribution’s tail.640

This technique aims to estimate the expectiles641

of a conditional distribution, which are like per-642

centiles but with respect to the mean, not the643

median. In essence, expectile regression can644

help capture the structure of data variability and645

analyze extreme observations in a more precise646

manner than quantile regression. The τ ∈ (0, 1)647

expectile of some random variable X is defined648

as a solution to the asymmetric least squares649

problem:650

argmin
mτ

Ex∼X [Lτ
2 (x−mτ )] , (20)

where Lτ
2(u) = |τ − 1(u < 0)|u2. That is, for τ > 0.5, this asymmetric loss function downweights651

the contributions of x values smaller than mτ while giving more weights to larger values. Figure 4652

shows the illustration of this asymmetric loss. More detailed descriptions can be found in [25, 33].653

D Proof654

D.1 Connection between bisimulation error and bisimulation Bellman residual655

In this section, we will revise some definitions a bit for obtaining the equivalence between bisimulation656

error and bisimulation Bellman residual. We first define bisimulation error ∆π
ϕ that measure the657

distance of the approximation Gπ
ϕ to the fixed point Gπ

∼ as:658

∆π
ϕ := Gπ

ϕ(si, sj)−Gπ
∼(si, sj). (21)

And define bisimulation Bellman residual ϵπϕ as:659

ϵπϕ := Gπ
ϕ(si, sj)−FπGπ

ϕ(si, sj). (22)

Notably, this is slightly different from the notation in Section 4 given the fact that we do not apply660

absolute value here. Then, we can have the following theorems.661
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Theorem 14. (The bisimulation Bellman residual can be defined as a function of the bisimulation662

error)663

ϵπϕ(si, sj) = ∆π
ϕ(si, sj)− γEs′i∼Tπ

si

s′j∼Tπ
sj

[∆π
ϕ(s

′
i, s

′
j)], (23)

Proof. This follows directly from the bisimulation update operator:664

ϵπϕ(si, sj) = Gπ
ϕ(si, sj)−FπGπ

ϕ(si, sj)

= Gπ
∼(si, sj) + ∆π

ϕ(si, sj)−Fπ(Gπ
∼(si, sj) + ∆π

ϕ(si, sj))

= ∆π
ϕ(si, sj)− γEs′i∼Tπ

si

s′j∼Tπ
sj

[∆π
ϕ(s

′
i, s

′
j)]

(24)

665

Theorem 15. (The bisimulation error can be defined as a function of the bisimulation Bellman666

residual). For any state pair (si, sj) ∈ S × S , the approximation error ∆π
ϕ(si, sj) can be defined as667

a function of the Bellman bisimulation error ϵϕ668

∆π
ϕ(si, sj) =

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]
. (25)

Proof. Our proof follows similar steps to the proof of Lemma 6.1 in [23] and Theorem 1 in [16].669

First by definition:670

∆π
ϕ(si, sj) := Gπ

ϕ(si, sj)−Gπ
∼(si, sj)

⇒ Gπ
∼(si, sj) = Gπ

ϕ(si, sj)−∆π
ϕ(si, sj)

(26)

Then we can decompose the error:671

∆π
ϕ(si, sj) = Gπ

ϕ(si, sj)−Gπ
∼(si, sj)

= Gπ
ϕ(si, sj)−

|rπsi − rπsj |+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[Gπ
∼(s

′
i, s

′
i)]


= Gπ

ϕ(si, sj)−

|rπsi − rπsj |+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[Gπ
ϕ(s

′
i, s

′
j)−∆π

ϕ(s
′
i, s

′
j)]


= Gπ

ϕ(si, sj)−

|rπsi − rπsj |+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[Gπ
ϕ(s

′
i, s

′
j)]

+ γEs′i∼Tπ
si

s′j∼Tπ
sj

[
∆π

ϕ(s
′
i, s

′
j)
]

= ϵπϕ(si, sj) + γEs′i∼Tπ
si

s′j∼Tπ
sj

[
∆π

ϕ(s
′
i, s

′
j)
]

(27)
By considering the operator G as the Bellman evaluation operator for the lifted MDP (See Section C.4),672

we can rewrite the formula as:673

∆π̃
ϕ(x̃) = ϵπ̃ϕ(x̃) + γEx̃′∼T π̃

x̃

[
∆π̃

ϕ(x̃
′)
]
. (28)

Then we can treat ∆π̃
ϕ(x̃) as a value function and ϵπ̃ϕ(x̃) as reward, we can see that:674

∆π̃
ϕ(x̃) =

1

1− γ
Ex̃′∼T π̃

x̃

[
ϵπ̃ϕ(x̃

′)
]
. (29)

Then we can obtain675

∆π
ϕ(si, sj) =

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]
. (30)

676
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D.2 Thoerem 3677

Theorem 3. (Bisimulation error upper-bound). Let µπ(s) denote the stationary distribution over678

states, let µπ(·, ·) denote the joint distribution over synchronized pairs of states (si, sj) sampled679

independently from µπ(·). For any state pair (si, sj) ∈ S × S , the bisimulation error ∆π
ϕ(si, sj) can680

be upper-bounded by a sum of expected bisimulation Bellman residuals ϵπϕ:681

∆π
ϕ(si, sj) ≤

1

1− γ
E(si,sj)∼µπ

[
ϵπϕ(si, sj)

]
. (31)

Proof. We start from Equation 25 in Section D.1.682

∆π
ϕ(si, sj) =

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]

⇒ |∆π
ϕ(si, sj)| =

1

1− γ

∣∣∣E(s′i,s
′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]∣∣∣

≤ 1

1− γ
E(s′i,s

′
j)∼µπ

[∣∣ϵπϕ(s′i, s′j)∣∣] .
(32)

Then when we define bisimulation error ∆π
ϕ(si, sj) := |∆π

ϕ(si, sj)| and bisimulation Bellman683

residual ϵπϕ(s
′
i, s

′
j) := |ϵπϕ(s′i, s′j)|, we have684

∆π
ϕ(si, sj) ≤

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]
. (33)

685

D.3 Proposition 4686

Proposition 4. (The expected bisimulation residual is not sufficient over incomplete datasets). If687

there exists states s′i and s′j not contained in dataset D, where the occupancy µπ(s
′
i|si, ai) > 0 and688

µπ(s
′
j |sj , aj) > 0 for some si ∈ D, sj ∈ D, then there exists a bisimulation measurement and C > 0689

such that690

• For all (ŝi, ŝj) ∈ D, the bisimulation Bellman residual ϵπϕ(ŝi, ŝj) = 0.691

• There exists (si, sj) ∈ D, such that the bisimulation error ∆π
ϕ(si, sj) = C.692

Proof. This is a direct consequence of Theorem 15. Let D′ contain the set of state pairs (s′i, s
′
j) not693

contained in the dataset D, where the next-state pair occupancy µπ(s
′
i, s

′
j |si, ai, sj , aj) > 0. Let694

Dunique be the set of unique state pairs in D. It follows that695

∆π
ϕ(si, sj) =

1

1− γ
E(s′i,s

′
j)∼µπ

[
ϵπϕ(s

′
i, s

′
j)
]

=
1

1− γ

∑
(s′i,s

′
j)∼Dunique

µπ((s
′
i, s

′
j)|si, ai, sj , aj)ϵπϕ(s′i, s′j)+

1

1− γ

∑
(s′i,s

′
j)∼D′

µπ((s
′
i, s

′
j)|si, ai, sj , aj)ϵπϕ(s′i, s′j)

(34)

Recall that ϵπϕ(si, sj) = ∆π
ϕ(si, sj) − γEs′i∼Tπ

si

s′j∼Tπ
sj

[∆π
ϕ(s

′
i, s

′
j)], and there exists at least one696

G(si, sj), such that (si, sj) ∈ D′. Since the sets D and D′ are distinct, it follows697

that there exists a measurement G such that ϵπϕ(si, sj) = 0 for all (si, sj) ∈ D, but698

1
1−γ

∑
(s′i,s

′
j)∼D′ µπ(s

′
i, s

′
j |si, ai, sj , aj)ϵπϕ(s′i, s′j) = C.699
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D.4 Lemma 5700

Lemma 5. For any τ ∈ [0, 1), Fπ
τ is a γτ -contraction, where γτ = 1− 2α(1− γ)min {τ, 1− τ}.701

Proof. Note that Fπ
1/2 is the standard bisimulation operator for π, of which the fixed point is Gπ

∼. To702

keep the notation succinct, we will replace Gπ with G. For any G1, G2,703

Fπ
1/2G1(si, sj)−Fπ

1/2G2(si, sj)

= (G1(si, sj) + αEπ[δi])− (G2(si, sj) + αEπ[δj ])

= (1− α)(G1(si, sj)−G2(si, sj)) + αEπ[(1− γ)|rπsi − rπsj |+ γG1(s
′
i, s

′
j)

− (1− γ)|rπsi − rπsj | − γG2(s
′
i, s

′
j)]

= (1− α)(G1(si, sj)−G2(si, sj)) + αEπ[γG1(s
′
i, s

′
j)− γG2(s

′
i, s

′
j)]

≤ (1− α)∥G1 −G2∥∞ + αγ∥G1 −G2∥∞
= (1− α(1− γ))∥G1 −G2∥∞.

(35)

When τ ̸= 1
2 , we introduce two more operators to simplify the analysis:704

(Fπ
+G1)(si, sj) = G(si, sj) + Eπ[δ]+

(Fπ
−G2)(si, sj) = G(si, sj) + Eπ[δ]−

(36)

Now we show that both operators meet the Banach-fixed point theorem (e.g. ∥Fπ
+G1 −Fπ

+G2∥∞ ≤705

∥G1 −G2∥∞). For any G1, G2:706

(Fπ
+G1)(si, sj)− (Fπ

+G2)(si, sj)

= G1 −G2 + Eπ[[δi]+ − [δj ]+]

= Eπ[G1 + [δi]+ − (G2 + [δj ]+)]

(37)

The relationship between G1 + [δi]+ and G2 + [δj ]+ exists in four cases:707

• δi ≥ 0, δj ≥ 0, then708

G1 + [δi]+ − (G2 + [δj ]+) = γ(G1(s
′
i, s

′
j)−G2(s

′
i, s

′
j)). (38)

• δi < 0, δj < 0, then709

G1 + [δi]+ − (G2 + [δj ]+) = G1(si, sj)−G2(si, sj). (39)

• δi ≥ 0, δj < 0, then710

G1 + [δi]+ − (G2 + [δj ]+)

= (1− γ)|rπsi − rπsj |+ γG1(s
′
i, s

′
j)−G2(si, sj)

< (1− γ)|rπsi − rπsj |+ γG1(s
′
i, s

′
j)− ((1− γ)|rπsi − rπsj |+ γG2(s

′
i, s

′
j))

= γ(G1(s
′
i, s

′
j)−G2(s

′
i, s

′
j)),

(40)

where the inequality comes from G2(si, sj) > (1− γ)|rπsi − rπsj |+ γG2(s
′
i, s

′
j).711

• δi < 0, δj ≥ 0, then712

G1 + [δi]+ − (G2 + [δj ]+)

= G1(si, sj)− ((1− γ)|rπsi − rπsj |+G2(s
′
i, s

′
j))

≤ G1(si, sj)−G2(si, sj),

(41)

where the inequality comes from G2(si, sj) ≤ (1− γ)|rπsi − rπsj |+ γG2(s
′
i, s

′
j).713
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As a result, we have (Fπ
+G1)(si, sj)− (Fπ

+G2)(si, sj) ≤ ∥G1 −G2∥∞. Combine Fπ
+ and Fπ

−, we714

can rewrite Fπ
τ as:715

Fπ
τ G(si, sj) = G(si, sj) + 2αEπ[τ [δ]+ + (1− τ)[δ]−]

= (1− 2α)G(si, sj) + 2ατ(G(si, sj) + Eπ[[δ]+] + 2α(1− τ)(G(si, sj) + Eπ[[δ]−])

= (1− 2α)G(si, sj) + 2ατ(Fπ
+G1)(si, sj) + 2α(1− τ)(Fπ

−G1)(si, sj).
(42)

What’s more716

Fπ
1
2
G(si, sj) = G(si, sj) + αEπ[δ]

= G(si, sj) + α((Fπ
+G1)(si, sj) + (Fπ

−G1)(si, sj)− 2αG(si, sj))

= (1− 2α)G(si, sj) + α((Fπ
+G1)(si, sj) + (Fπ

−G1)(si, sj)).

(43)

When τ > 1
2 , for any G1 and G2:717

(Fπ
τ G1)(si, sj)− (Fπ

τ G2)(si, sj)

= (1− 2α)(G1(si, sj)−G2(si, sj)) + 2ατ((Fπ
+G1)(si, sj)− (Fπ

+G2)(si, sj))

+ 2α(1− τ)((Fπ
−G1)(si, sj)− (Fπ

−G2)(si, sj))

= (1− 2α− 2(1− 2α)(1− τ))(G1(si, sj)−G2(si, sj))2(1− τ)((Fπ
1
2
G1)(si, sj)− (Fπ

1
2
G2)(si, sj))

− 2α(1− 2τ)((Fπ
+G1)(si, sj)− (Fπ

+G2)(si, sj))

≤ (1− 2α− 2(1− 2α)(1− τ))∥G1(si, sj)−G2(si, sj)∥∞
+ 2(1− τ)(1− α(1− γ))∥G1(si, sj)−G2(si, sj)∥∞
− 2α(1− 2τ)∥G1(si, sj)−G2(si, sj)∥∞

= (1− 2α(1− τ)(1− γ))∥G1(si, sj)−G2(si, sj)∥∞
(44)

When τ < 1
2 , for any G1 and G2:718

(Fπ
τ G1)(si, sj)− (Fπ

τ G2)(si, sj)

= (1− 2α)(G1(si, sj)−G2(si, sj)) + 2ατ((Fπ
+G1)(si, sj)− (Fπ

+G2)(si, sj))

+ 2α(1− τ)((Fπ
−G1)(si, sj)− (Fπ

−G2)(si, sj))

= (1− 2α− 2τ(1− 2α))(G1(si, sj)−G2(si, sj)) + 2τ((Fπ
1
2
G1)(si, sj)− (Fπ

1
2
G2)(si, sj))

+ 2α(1− 2τ)((Fπ
−G1)(si, sj)− (Fπ

−G2)(si, sj))

≤ (1− 2α− 2τ(1− 2α))∥G1(si, sj)−G2(si, sj)∥∞
+ 2τ(1− α(1− γ))∥G1(si, sj)−G2(si, sj)∥∞
+ 2α(1− 2τ)∥G1(si, sj)−G2(si, sj)∥∞

= (1− 2ατ(1− γ))∥G1(si, sj)−G2(si, sj)∥∞.
(45)

719

D.5 Lemma 6720

Lemma 6. For any τ, τ ′ ∈ [0, 1) with τ ′ ≥ τ , and for all si, sj ∈ S and any α, we have Gτ ′ ≥ Gτ .721

Proof. We denote Gτ ′ is the fixed point of applying the operator Fπ
τ ′ , and Gτ is the fixed point of722

applying the operator Fτ . Based on Equation 6, we have:723

Fπ
τ ′G(si, sj)−Fπ

τ G(si, sj)

= (1− 2α)G(si, sj) + 2ατ ′Fπ
+G(si, sj) + 2α(1− τ ′)Fπ

−G(si, sj)

− ((1− 2α)G(si, sj) + 2ατFπ
+G(si, sj) + 2α(1− τ)Fπ

−G(si, sj))

= 2α(τ ′ − τ)(Fπ
+G(si, sj)−Fπ

−G(si, sj))

= 2α(τ ′ − τ)Eπ[[δ]+ − [δ]−] ≥ 0.

(46)

Therefore Gτ ′ > Gτ .724
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D.6 Theorem 7725

Theorem 7. In deterministic MDP and fixed finite dataset, we have:726

lim
τ→1

Gτ (si, sj) = max
ai∈A,aj∈A

s.t. πβ(ai|si)>0,πβ(aj |sj)>0

G∗
∼((si, ai), (sj , aj)). (47)

where G∗
∼((si, ai), (sj , aj)) is a fixed-point measurement constrained to the dataset and defined on727

state-action space S ×A as728

G∗
∼((si, ai), (sj , aj)) = |r(si, ai)−r(sj , aj)|+γE

s′i∼T
πβ
si

s′j∼T
πβ
sj

 max
a′
i∈A,a′

j∈A
s.t. πβ(a

′
i|s

′
i)>0,πβ(a

′
j |s

′
j)>0

G∗
∼((s

′
i, a

′
i), (s

′
j , a

′
j))

 .

(48)

Proof. First, we can easily proof that G∗
∼(si, ai, sj , aj) is a fixed point. Define the corresponding729

operator of G∗
∼ is F ∗, we can know that F ∗ is a contraction. Then, we have730

Corollary 16. For any τ , si, sj ∈ S we have731

Gτ (si, sj) ≤ max
ai∈A,aj∈A

s.t. πβ(ai|si)>0,πβ(aj |sj)>0

G∗
∼((si, ai), (sj , aj)) (49)

Proof. The proof follows from the observation that convex combination is smaller than maximum.732

733

Besides, we also have734

Lemma 17. Let X be a real-valued random variable with a bounded support and supremum of the
support is x∗. Then,

lim
τ→1

mτ = x∗

Proof. Same as the Lemma 1 in [25]. One can show that expectiles of a random variable have the735

same supremum x∗. Moreover, for all τ1 and τ2 such that τ1 < τ2, we get mτ1 ≤ mτ2 . Therefore,736

the limit follows from the properties of bounded monotonically non-decreasing functions.737

Combining Corollary 16 and Lemma 17, we can obtain the above.738

739

D.7 Theorem 8740

Theorem 8. (Value bound based on on-policy bisimulation measurements in terms of encoder error).741

Given an MDP M̃ constructed by aggregating states in an ω-neighborhood, and an encoder ϕ that742

maps from states in the original MDPM to these clusters, the value functions for the two MDPs are743

bounded as744 ∣∣∣V π (si)− Ṽ π (ϕ (si))
∣∣∣ ≤ 2ω + ∆̂

cr(1− γ)
. (50)

where ∆̂ := ∥Ĝπ
∼ − Ĝπ

ϕ∥∞ is the approximation error.745

Proof. Let the reward function be bounded as R ∈ [0, 1], ϕ : S → S̃, and ϕ(si) = ϕ(sj) ⇒746

Ĝπ
ϕ(si, sj) = |ϕ(si)− ϕ(sj)| ≤ 2ω, we can conduct an aggregat MDP M̃ = (S̃,A, T̃ , R̃). Let ξ be747

23



a measure on S. Following Lemma 8 in [24], we have that:748 ∣∣∣V π (si)− Ṽ π (ϕ (si))
∣∣∣ ≤ c−1

r

ξ(ϕ(s))

∫
z∈ϕ(s)

cR |rπ(s)− rπ(z)|

+ (1− γ)

∣∣∣∣∣∣
∫

s′∈S

(Tπ(s′|s)− Tπ(s′|z)) crγ

1− γ
V π(s′)ds′

∣∣∣∣∣∣ dξ(z) + γ∥V π − Ṽ π∥∞

≤ c−1
r

ξ(ϕ(s))

∫
z∈ϕ(s)

Gπ
∼(s, z)dξ(z) + γ∥V π − Ṽ π∥∞

(51)
Thus, taking the supremum on the LHS, we have:749

(1− γ)
∣∣∣V π (si)− Ṽ π (ϕ (si))

∣∣∣ ≤ c−1
r

ξ(ϕ(s))

∫
z∈ϕ(s)

Gπ
∼(s, z)dξ(z)

≤ c−1
r

ξ(ϕ(s))

∫
z∈ϕ(s)

Ĝπ
ϕ(s, z) + ∥Gπ

∼ − Ĝπ
ϕ∥∞dξ(z)

=
c−1
r

ξ(ϕ(s))

∫
z∈ϕ(s)

(2ω + ∆̂)dξ(z)

= c−1
r (2ω + ∆̂).

(52)

Therefore,750 ∣∣∣V π (si)− Ṽ π (ϕ (si))
∣∣∣ ≤ 2ω + ∆̂

cr(1− γ)
, (53)

751

E Understanding of Theorem 7752

Theorem 7. In deterministic MDP and fixed finite dataset, we have:753

lim
τ→1

Gτ (si, sj) = max
ai∈A,aj∈A

s.t. πβ(ai|si)>0,πβ(aj |sj)>0

G∗
∼((si, ai), (sj , aj)). (54)

where G∗
∼((si, ai), (sj , aj)) is a fixed-point measurement constrained to the dataset and defined on754

the state-action space S ×A as755

G∗
∼((si, ai), (sj , aj)) = |r(si, ai)− r(sj , aj)|+ γE

s′i∼T
πβ
si

s′j∼T
πβ
sj

 max
a′
i∈A,a′

j∈A
s.t. πβ(a

′
i|s

′
i)>0,πβ(a

′
j |s

′
j)>0

G∗
∼((s

′
i, a

′
i), (s

′
j , a

′
j))

 .

(55)

Given the MDP specified by the tuple (S,A, T,R), we construct a lifted MDP (S̃, Ã, T̃ , R̃), by756

taking the state space to be S̃ = S2, the action space to be Ã = A2, the transition dynamics to be757

given by T̃ ã
s̃ (s̃

′) = T̃
(ai,aj)

(si,sj)
((s′i, s

′
j)) = T ai

si (s
′
i)T

aj
sj (s

′
j) for all (si, sj), (s′i, s

′
j) ∈ S2, ai, aj ∈ A,758

and the action-independent rewards to be R̃s̃ = R̃(si,sj) = |rπsi − rπsj | for all si, sj ∈ S. The759

Bellman evaluation operator F̃ π̃ for this lifted MDP at discount rate γ under the policy π̃(ã|s̃) =760

π̃(ai, aj |si, sj) = π(ai|si)π(aj |sj) is given by (for all Gπ ∈ RS×S and (si, sj) ∈ S × S):761

(F̃ π̃Q∗)(s̃, ã) = R̃s̃,ã+γ
∑
s̃∈S̃

T̃ ã
s̃ (s̃

′)max
ã∈Ã

Q∗(s̃′, ã′). (56)
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Though similar, Equation 55 has more constraints as it requires the possibility of πβ(a
′
i|s′i) and762

πβ(a
′
j |s′j) are larger than zero in the dataset. As such, we may also change the Equation 56 to:763

(F̃ π̃Q∗)(s̃, ã) = R̃s̃,ã+γ
∑
s̃∈S̃

T̃ ã
s̃ (s̃

′) max
ã′∈A

s.t. π̃β(ã
′|s̃′)>0

Q∗(s̃′, ã′).
(57)

This is, indeed, equivalent to the in-sample-style Q function in [25]. Intuitively, G∗
∼((si, ai), (sj , aj))764

can be interpreted as the optimal state-action value function Q∗(s̃, ã) in a lifted MDP M̃ . Then765

Gπ
∼((si, ai), (sj , aj)) is the state-action value function Qπ(s̃, ã) that associated with policy π, and766

G∼(si, sj) as a state value function V (s̃). And therefore, we can connect our expectile-based767

bisimulation operator to the lifted MDP, where we can use the conventional analytics tools in RL to768

analyze bisimulation operators.769

F Additional Experiments770

F.1 Ablation Study771
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Figure 5: Performance comparison on 12 D4RL tasks over 10 seeds with one standard error shaded
in the default setting.

Here we present the ablation study of setting different expectile τ ∈ {0.3, 0.4, · · · , 0.7} in Figure 5772

to investigate the effect of the critical hyper-parameter in EBS. The experimental results demonstrate773

that the final performance gradually improves with a larger τ . Notably, the most superior performance774

is achieved when τ equals 0.6. However, when τ further increases to 0.7, the agent’s performance775

suffers a sharp decline. We hypothesize that this could be due to the value function possibly exploding776

when τ is set to larger values, subsequently leading to poorer performance outcomes. This is as777

expected since the over-large τ leads to the overestimation error caused by neural networks. The778

experimental results demonstrate that we can balance a trade-off between minimizing the expected779

bisimulation residual and evaluating “optimal” measurement solely on the dataset by choosing a780

suitable τ .781

G Additional Related Works782

Here we present a brief introduction of all baselines we used in the experiments:783
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TD3BC [15] add a behavior cloning term to regularize the policy of the TD3 [17] algorithm,784

achieves a state-of-the-art performance in Offline settings.785

DrQ+BC [32] combining data augmentation techniques with the TD3+BC method, which applies786

TD3 in the offline setting with a regularizing behavioral-cloning term to the policy loss. The policy787

objective is: π = argmax
π

E(s,a)∼D
[
λQ(s, π(s))− (π(s)− a)2

]
788

DRIML [35] and HOMER [36] (Time Contrastive methods) learn representations which can789

discriminate between adjacent observations in a rollout and pairs of random observations.790

CURL [28] (Augmentation Contrastive method) learns a representation that is invariant to a class791

of data augmentations while being different across random example pairs.792

Inverse Model [40] (One-Step Inverse Models) predict the action taken conditioned on the previous793

and resulting observations.794
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