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Abstract

Similarity functions measure how comparable pairs of elements are, and play a key1

role in a wide variety of applications, e.g., notions of Individual Fairness abiding2

by the seminal paradigm of Dwork et al. [2012], as well as Clustering problems.3

However, access to an accurate similarity function should not always be considered4

guaranteed, and this point was even raised by Dwork et al. [2012]. For instance, it5

is reasonable to assume that when the elements to be compared are produced by6

different distributions, or in other words belong to different “demographic” groups,7

knowledge of their true similarity might be very difficult to obtain. In this work, we8

present an efficient sampling framework that learns these across-groups similarity9

functions, using only a limited amount of experts’ feedback. We show analytical10

results with rigorous theoretical bounds, and empirically validate our algorithms11

via a large suite of experiments.12

1 Introduction13

Given a feature space I, a similarity function σ : I2 7→ R≥0 measures how comparable any pair14

of elements x, x′ ∈ I are. The function σ can also be interpreted as a distance function, where the15

smaller σ(x, x′) is, the more similar x and x′ are. Such functions are crucially used in a variety of16

AI/ML problems, and in each such case σ is assumed to be known.17

The most prominent applications where similarity functions have a central role involve considerations18

of individual fairness. Specifically, all such individual fairness paradigms stem from the the seminal19

work of Dwork et al. [2012], in which fairness is defined as treating similar individuals similarly. In20

more concrete terms, such paradigms interpret the aforementioned abstract definition of fairness as21

guaranteeing that for every pair of individuals x and y, the difference in the quality of service x and y22

receive (a.k.a. their received treatment) is upper bounded by their respective similarity value σ(x, y);23

the more similar the individuals are, the less different their quality of service will be. Therefore,24

any algorithm that needs to abide by such concepts of fairness, should always be able to access the25

similarity score for every pair of individuals that are of interest.26

Another family of applications where similarity functions are vital, involves Clustering problems. In27

a clustering setting, e.g, the standard k-means task, the similarity function is interpreted as a distance28

function, that serves as the metric space in which we need to create the appropriate clusters. Clearly,29

the aforementioned metric space is always assumed to be part of the input.30

Nonetheless, it is not realistic to assume that a reliable and accurate similarity function is always31

given. This issue was even raised in the work of Dwork et al. [2012], where it was acknowledged32

that the computation of σ is not trivial, and thus should be deferred to third parties. The starting33

point of our work here is the observation that there exist scenarios where computing similarity can be34
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assumed as easy (in other words given), while in other cases this task would be significantly more35

challenging. Specifically, we are interested in scenarios where there are multiple distributions that36

produce elements of I. We loosely call each such distribution a “demographic” group, interpreting37

it as the stochastic way in which members of this group are produced. In this setting, computing38

the similarity value of two elements that are produced according to the same distribution, seems39

intuitively much easier compared to computing similarity values for elements belonging to different40

groups. We next present a few motivating examples that clarify this statement.41

Individual Fairness: Consider a college admissions committee that needs access to an accurate42

similarity function for students, so that it provides a similar likelihood of acceptance to similar43

applicants. Let us focus on the following two demographic groups. The first being students from44

affluent families living in privileged communities and having access to the best quality schools and45

private tutoring. The other group would consist of students from low-income families, coming from46

a far less privileged background. Given this setting, the question at hand is “Should two students47

with comparable feature vectors (e.g., SAT scores, strength of school curriculum, number of48

recommendation letters) be really viewed as similar, when they belong to different groups?” At49

first, it appears that directly comparing two students based on their features can be an accurate way to50

elicit their similarity only if the students belong to the same demographic (belonging to the same51

group serves as a normalization factor). However, this trivial approach might hurt less privileged52

students when they are compared to students of the first group. This is because such a simplistic53

way of measuring similarity does not reflect potential that is undeveloped due to unequal access to54

resources. Hence, accurate across-groups comparisons that take into account such delicate issues,55

appear considerably more intricate.56

Clustering: Suppose that a marketing company has a collection of user data that wants to cluster,57

with its end goal being a downstream market segmentation analysis. However, as it is usually the58

case, the data might come from different sources, e.g., data from private vendors and data from59

government bureaus. In this scenario, each data source might have its own way of representing user60

information, e.g., each source might use a unique subset of features. Therefore, eliciting the distance61

metric required for the clustering task should be straightforward for data coming from the same62

source, while across-sources distances would certainly require extra care, e.g., how can one extract63

the distance of two vectors containing different sets of features?64

As suggested by earlier work on computing similarity functions for applications of individual fairness65

[Ilvento, 2019], when obtaining similarity values is an overwhelming task, one can employ the advice66

of domain experts. Such experts can be given any pair of elements, and in return produce their67

true similarity value. However, utilizing this experts’ advice can be thought of as very costly, and68

hence it should be used sparingly. For example, in the case of comparing students from different69

economic backgrounds, the admissions committee can reach out to regulatory bodies or civil rights70

organizations. Nonetheless, resorting to these experts for every student comparison that might arise,71

is clearly not a sustainable solution. Therefore, our goal in this paper is to learn the across-groups72

similarity functions, using as few queries to experts as possible.73

2 Preliminaries and contribution74

For the ease of exposition, we accompany the formal definitions with brief demonstrations on how75

they could relate to the previously mentioned college applications use-case.76

Let I denote the feature space of elements; for instance each x ∈ I could correspond to a valid77

student profile. We assume that elements come from γ known “demographic” groups, where γ ∈ N,78

and each group ℓ ∈ [γ] is governed by an unknown distribution Dℓ over I. We use x ∼ Dℓ to79

denote a randomly drawn x from Dℓ. Further, we use x ∈ Dℓ to denote that x is an element in the80

support of Dℓ, and thus x is a member of group ℓ. In the college admissions scenario where we have81

two demographic groups, there will be two distributions D1 and D2 dictating how the profiles of82

privileged and non-privileged students are respectively produced. Observe now that for a specific83

x ∈ I, we might have x ∈ Dℓ and x ∈ Dℓ′ , for ℓ ̸= ℓ′. Hence, in our model group membership84

is important, and every time we are considering an element x ∈ I, we know which distribution85

produced x, e.g., whether the profile x belongs to a privileged or non-privileged student.86

For every group ℓ ∈ [γ] there is an intra-group similarity function dℓ : I2 7→ R≥0, such that for all87

x, y ∈ Dℓ we have dℓ(x, y) representing the true similarity between x, y. In addition, the smaller88
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dℓ(x, y) is, the more similar x, y. Note here that the function dℓ is only used to compare members of89

group ℓ (in the college admissions example, the function d1 would only be used to compare privileged90

students with each other). Further, a common assumption for functions measuring similarity is that91

they are metric1 [Yona and Rothblum, 2018, Kim et al., 2018, Ilvento, 2019, Mukherjee et al., 2020,92

Wang et al., 2019]. We also adopt the metric assumption for the function dℓ. Finally, based on the93

earlier discussion regarding computing similarity between elements of the same group, we assume94

that dℓ is known, and given as part of the instance.95

Moreover, for any two groups ℓ and ℓ′ there exists an unknown across-groups similarity function96

σℓ,ℓ′ : I2 7→ R≥0, such that for all x ∈ Dℓ and y ∈ Dℓ′ , σℓ,ℓ′(x, y) represents the true similarity97

between x, y. Again, the smaller σℓ,ℓ′(x, y) is, the more similar the two elements, and for a meaningful98

use of σℓ,ℓ′ we must make sure that x is a member of group ℓ and y a member of group ℓ′. In the99

college admissions scenario, σ1,2 is the way you can accurately compare a privileged and a non-100

privilaged student. Finally, to capture the metric nature of a similarity function, we impose the101

following mild properties on σℓ,ℓ′ , which can be viewed as across-groups triangle inequalities:102

1. PropertyM1: σℓ,ℓ′(x, y) ≤ dℓ(x, z) + σℓ,ℓ′(z, y) for every x, z ∈ Dℓ and y ∈ Dℓ′ .103

2. PropertyM2: σℓ,ℓ′(x, y) ≤ σℓ,ℓ′(x, z) + dℓ′(z, y) for every x ∈ Dℓ and y, z ∈ Dℓ′ .104

In terms of the college admissions use-case,M1 andM2 try to capture reasonable assumptions of105

the following form. If a non-privileged student x is similar to another non-privileged student z, and z106

is similar to a privileged student y, then x and y should also be similar to each other.107

Observe now that the collection of all similarity values (intra-group and across-groups) in our108

model does not axiomatically yield a valid metric space. This is due to the following reasons. 1) If109

σℓ,ℓ′(x, y) = 0 for x ∈ Dℓ and y ∈ Dℓ′ , then we do not necessarily have x = y. 2) It is not always110

the case that dℓ(x, y) ≤ σℓ,ℓ′(x, z) + σℓ,ℓ′(y, z) for x, y ∈ Dℓ, z ∈ Dℓ′ . 3) It is not always the case111

that σℓ,ℓ′(x, y) ≤ σℓ,ℓ′′(x, z) + σℓ′′,ℓ′(z, y) for x ∈ Dℓ, y ∈ Dℓ′ , z ∈ Dℓ′′ .112

However, not having the collection of similarity values necessarily produce a metric space is not a113

weakness of our model. On the contrary, we view this as one of its strongest aspects. For one thing,114

imposing a complete metric constraint on the case of intricate across-groups comparisons sounds115

unrealistic and very restrictive. Further, even though existing literature treats similarity functions as116

metric ones, the seminal work of Dwork et al. [2012] mentions that this should not always be the117

case. Hence, our model is more general than the current literature.118

Goal of Our Problem: We want for any two groups ℓ, ℓ′ to compute a function fℓ,ℓ′ : I2 7→ R≥0,119

such that fℓ,ℓ′(x, y) is our estimate of similarity for any x ∈ Dℓ and y ∈ Dℓ′ . Specifically, we seek120

a PAC (Probably Approximately Correct) guarantee, where for any given accuracy and confidence121

parameters ϵ, δ ∈ (0, 1) we have:122

Pr
x∼Dℓ,y∼Dℓ′

[∣∣fℓ,ℓ′(x, y)− σℓ,ℓ′(x, y)∣∣ > ϵ
]
≤ δ

The subscript in the above probability corresponds to two independent random choices, one x ∼ Dℓ123

and one y ∼ Dℓ′ . In other words, we want for any given pair our estimate to be ϵ-close to the real124

similarity value, with probability at least 1− δ, where ϵ and δ are user-specified parameters.125

As for tools to learn fℓ,ℓ′ , we only require two things. At first, for each group ℓ we want a set Sℓ of126

i.i.d. samples from Dℓ. Obviously, the total number of used samples should be polynomial in the127

input parameters, i.e., polynomial in γ, 1ϵ and 1
δ . Secondly, we require access to an expert oracle,128

which given any x ∈ Sℓ and y ∈ Sℓ′ for any ℓ and ℓ′, returns the true similarity value σℓ,ℓ′(x, y). We129

refer to a single invocation of the oracle as a query. Since there is a cost to collecting expert feedback,130

an additional objective in our problem is minimizing the number of oracle queries.131

2.1 Outline and discussion of our results132

In Section 4 we present our theoretical results. We begin with a simple and very intuitive learning133

algorithm which achieves the following guarantees.134

1A function d is metric if a) d(x, y) = 0 iff x = y, b) d(x, y) = d(y, x) and c) d(x, y) ≤ d(x, z) + d(z, y)
for all x, y, z (triangle inequality).
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Theorem 2.1. For any given parameters ϵ, δ ∈ (0, 1), the simple algorithm produces a similarity135

approximation function fℓ,ℓ′ for every ℓ and ℓ′, such that:136

Pr[Error(ℓ,ℓ′)] := Pr
x∼Dℓ,

y∼Dℓ′ , A

[∣∣fℓ,ℓ′(x, y)− σℓ,ℓ′(x, y)∣∣ = ω(ϵ)
]

= O
(
δ + pℓ(ϵ, δ) + pℓ′(ϵ, δ)

)
The randomness here is of three independent sources. The internal randomness A of the algorithm, a137

choice x ∼ Dℓ, and a choice y ∼ Dℓ′ . The algorithm requires 1
δ log

1
δ2 samples from each group,138

and utilizes γ(γ−1)
δ2 log2 1

δ2 oracle queries.139

In plain English, the above theorem says that with a polynomial number of samples and queries, the140

algorithm achieves an O(ϵ) accuracy with high probability, i.e., with probability ω
(
1− δ− pℓ(ϵ, δ)−141

pℓ′(ϵ, δ)
)
. The definition of the functions pℓ is presented next.142

Definition 2.2. For each group ℓ, we use pℓ(ϵ, δ) to denote the probability of sampling an (ϵ, δ)-143

rare element of Dℓ. We define as (ϵ, δ)-rare for Dℓ, an element x ∈ Dℓ for which there is a144

less than δ chance of sampling x′ ∼ Dℓ with dℓ(x, x′) ≤ ϵ. Formally, x ∈ Dℓ is (ϵ, δ)-rare iff145

Prx′∼Dℓ
[dℓ(x, x

′) ≤ ϵ] < δ, and pℓ(ϵ, δ) = Prx∼Dℓ
[x is (ϵ, δ)-rare for Dℓ]. Intuitively, a rare146

element should be interpreted as an “isolated” member of the group, in the sense that it is at most147

δ-likely to encounter another element that is ϵ-similar to it. For instance, a privileged student is148

considered isolated, if only a small fraction of other privileged students have a profile similar to them.149

Clearly, to get a PAC guarantee where the algorithm’s error probability for ℓ and ℓ′ is O(δ), we need150

pℓ(ϵ, δ), pℓ′(ϵ, δ) = O(δ). We hypothesize that in realistic distributions each pℓ(ϵ, δ) should indeed151

be fairly small, and this hypothesis is actually validated by our experiments. The reason we believe152

this hypothesis to be true, is that very frequently real data demonstrate high concentration around153

certain archetypal elements. Hence, this sort of distributional density does not leave room for isolated154

elements in the rest of the space. Nonetheless, we also provide a strong no free lunch result for the155

values pℓ(ϵ, δ), which shows that any practical PAC-algorithm necessarily depends on them. This156

result further implies that our algorithm’s error probabilities are indeed almost optimal.157

Theorem 2.3 (No-Free Lunch Theorem). For any given ϵ, δ ∈ (0, 1), any algorithm using finitely158

many samples, will yield similarity approximations fℓ,ℓ′ with Pr
[
|fℓ,ℓ′(x, y)−σℓ,ℓ′(x, y)| = ω(ϵ)

]
=159

Ω(max{pℓ(ϵ, δ), pℓ′(ϵ, δ)}− ϵ); the probability is over the independent choices x ∼ Dℓ and y ∼ D′
ℓ160

as well as any potential internal randomness of the algorithm.161

In plain English, Theorem 2.3 says that any algorithm using a finite amount of samples, can achieve162

ϵ-accuracy with a probability that is necessarily at most 1 − max{pℓ(ϵ, δ), pℓ′(ϵ, δ)} + ϵ, i.e., if163

max{pℓ(ϵ, δ), pℓ′(ϵ, δ)} is large, learning is impossible.164

Moving on, we focus on minimizing the oracle queries. By carefully modifying the earlier simple165

algorithm, we obtain a new more intricate algorithm with the following guarantees:166

Theorem 2.4. For any given parameters ϵ, δ ∈ (0, 1), the query-minimizing algorithm produces167

similarity approximation functions fℓ,ℓ′ for every ℓ and ℓ′, such that:168

Pr[Error(ℓ,ℓ′)] = O(δ + pℓ(ϵ, δ) + pℓ′(ϵ, δ))

Pr[Error(ℓ,ℓ′)] is as defined in Theorem 2.1. Let N = 1
δ log

1
δ2 . The algorithm requires N samples169

from each group, and the number of oracle queries used is at most170 ∑
ℓ∈[γ]

(
Qℓ

∑
ℓ′∈[γ]: ℓ′ ̸=ℓ

Qℓ′
)

where Qℓ ≤ N and E[Qℓ] ≤ 1
δ + pℓ(ϵ, δ)N for each ℓ.171

At first, the confidence, accuracy and sample complexity guarantees of the new algorithm are the172

same as those of the simpler one described in Theorem 2.1. Furthermore, because Qℓ ≤ N , the173

queries of the improved algorithm are at most γ(γ − 1)N , which is exactly the number of queries174

in our earlier simple algorithm. However, the smaller the values pℓ(ϵ, δ) are, the fewer queries in175

expectation. Our experimental results indeed confirm that the improved algorithm always leads to a176

significant decrease in the used queries.177

Our final theoretical result involves a lower bound on the number of queries required for learning.178
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Theorem 2.5. For all ϵ, δ ∈ (0, 1), any learning algorithm producing similarity approximation179

functions fℓ,ℓ′ with Prx∼Dℓ,y∼Dℓ′

[
|fℓ,ℓ′(x, y)− σℓ,ℓ′(x, y)| = ω(ϵ)

]
= O(δ), needs Ω(γ

2

δ2 ) queries.180

Combining Theorems 2.4 and 2.5 implies that when all pℓ(ϵ, δ) are negligible, i.e., pℓ(ϵ, δ)→ 0, the181

expected queries of the Theorem 2.4 algorithm are asymptotically optimal.182

Finally, Section 5 contains our experimental evaluation, where through a large suite of simulations183

we validate our theoretical findings.184

3 Related work185

Metric learning is a very well-studied area [Bellet et al., 2013, Kulis, 2013, Moutafis et al., 2017,186

Suárez-Díaz et al., 2018]. There is also an extensive amount of work on using human feedback for187

learning metrics in specific tasks, e.g., image similarity and low-dimensional embeddings [Frome188

et al., 2007, Jamieson and Nowak, 2011, Tamuz et al., 2011, van der Maaten and Weinberger, 2012,189

Wilber et al., 2014]. However, since these works are either tied to specific applications or specific190

metrics, they are only distantly related to ours.191

Our model is more closely related to the literature on trying to learn the similarity function from192

the fairness definition of Dwork et al. [2012]. This concept of fairness requires treating similar193

individuals similarly. Thus, it needs access to a function that returns a non-negative value for any194

pair of individuals, and this value corresponds to how similar the individuals are. Specifically, the195

smaller the value the more similar the elements that are compared. Even though the fairness definition196

of Dwork et al. [2012] is very elegant and intuitive, the main obstacle for adopting it in practice197

is the inability to easily compute or access the crucial similarity function. To our knowledge, the198

only papers that attempt to learn this similarity function using expert oracles like us, are Ilvento199

[2019], Mukherjee et al. [2020] and Wang et al. [2019]. Ilvento [2019] addresses the scenario of200

learning a general metric function, and gives theoretical PAC guarantees. Mukherjee et al. [2020]201

give theoretical guarantees for learning similarity functions that are only of a specific Mahalanobis202

form. Wang et al. [2019] simply provide empirical results. The first difference between our model203

and these papers is that unlike us, they do not consider elements coming from multiple distributions.204

However, the most important difference is that these works only learn metric functions. In our case205

the collection of similarity values (from all dℓ and σℓ,ℓ′) does not necessarily yield a complete206

metric space; see the discussion in Section 2. Hence, our problem addresses more general functions.207

Regarding the difficulty in computing similarity between members of different groups, we are only208

aware of a brief result by Dwork et al. [2012]. In particular, given a metric d over the whole feature209

space, they mention that d can only be trusted for comparisons between elements of the same group,210

and not for across-groups comparisons. In order to achieve the latter for groups ℓ and ℓ′, they find a211

new similarity function d′ that approximates d, while minimizing the Earthmover distance between212

the distributions Dℓ,Dℓ′ . This is completely different from our work, since here we assume the213

existence of across-groups similarity values, which we eventually want to learn. On the other hand,214

the approach of Dwork et al. [2012] can be seen as an optimization problem, where the across-groups215

similarity values need to be computed in a way that minimizes some objective. Also, unlike our model,216

this optimization approach has a serious limitation, and that is requiring Dℓ,Dℓ′ to be explicitly217

known (recall that here we only need samples from these distributions).218

Finally, since similarity as distance is difficult to compute in practice, there has been a line of research219

that defines similarity using simpler, yet less expressive structures. Examples include similarity lists220

Chakrabarti et al. [2022], graphs Lahoti et al. [2019] and ordinal relationships Jung et al. [2019].221

4 Theoretical results222

All proofs for this section can be found in the supplementary material223

4.1 A simple learning algorithm224

Given any confidence and accuracy parameters δ, ϵ ∈ (0, 1) respectively, our approach is summarized225

as follows. At first, for every group ℓ we need a set Sℓ of samples that are chosen i.i.d. according to226
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Dℓ, such that |Sℓ| = 1
δ log

1
δ2 . Then, for every distinct ℓ and ℓ′, and for all x ∈ Sℓ and y ∈ Sℓ′ , we227

ask the expert oracle for the true similarity value σℓ,ℓ′(x, y). The next observation follows trivially.228

Observation 4.1. The algorithm uses γ
δ log

1
δ2 samples, and γ(γ−1)

δ2 log2 1
δ2 queries to the oracle.229

Suppose now that we need to compare any x ∈ Dℓ and y ∈ Dℓ′ . Our high level idea is that the
propertiesM1 andM2 of σℓ,ℓ′ (see Section 2), will actually allow us to use the closest element to
x in Sℓ and the closest element to y in Sℓ′ as proxies. Thus, let π(x) = argminx′∈Sℓ

dℓ(x, x
′) and

π(y) = argminy′∈Sℓ′
dℓ′(y, y

′). The algorithm then sets

fℓ,ℓ′(x, y) := σℓ,ℓ′(π(x), π(y))

where σℓ,ℓ′(π(x), π(y)) is known from the earlier queries.230

Before we proceed with the analysis of the algorithm, we need to recall some notation which was231

introduced in Section 2.1. Consider any group ℓ. An element x ∈ Dℓ with Prx′∼Dℓ
[dℓ(x, x

′) ≤ ϵ] <232

δ is called an (ϵ, δ)-rare element of Dℓ, and also pℓ(ϵ, δ) := Prx∼Dℓ
[x is (ϵ, δ)-rare for Dℓ].233

Theorem 4.2. For any given parameters ϵ, δ ∈ (0, 1), the simple algorithm produces similarity234

approximation functions fℓ,ℓ′ for every ℓ and ℓ′, such that235

Pr[Error(ℓ,ℓ′)] = O(δ + pℓ(ϵ, δ) + pℓ′(ϵ, δ))

where Pr[Error(ℓ,ℓ′)] is as in Theorem 2.1.236

Observation 4.1 and Theorem 4.2 directly yield Theorem 2.1.237

A potential criticism of the algorithm presented here, is that its error probabilities depend on pℓ(ϵ, δ).238

However, Theorem 2.3 shows that such a dependence is unavoidable (see appendix for proof).239

4.2 Optimizing the number of expert queries240

Here we modify the earlier algorithm in a way that improves the number of queries used. The idea241

behind this improvement is the following. Given the sets of samples Sℓ, instead of asking the oracle242

for all possible similarity values σℓ,ℓ′(x, y) for every ℓ, ℓ′ and every x ∈ Sℓ and y ∈ Sℓ′ , we would243

rather choose a set Rℓ ⊆ Sℓ of representative elements for each group ℓ. Then, we would ask the244

oracle for the values σℓ,ℓ′(x, y) for every ℓ, ℓ′, but this time only for every x ∈ Rℓ and y ∈ Rℓ′ . The245

choice of the representatives is inspired by the k-center algorithm of Hochbaum and Shmoys [1985].246

Intuitively, the representatives Rℓ of group ℓ will serve as similarity proxies for the elements of Sℓ,247

such that each x ∈ Sℓ is assigned to a nearby rℓ(x) ∈ Rℓ via a mapping function rℓ : Sℓ 7→ Rℓ.248

Hence, if dℓ(x, rℓ(x)) is small enough, x and rℓ(x) are highly similar, and thus rℓ(x) acts as a good249

approximation of x. The full details for the construction of Rℓ, rℓ are presented in Algorithm 1.250

Suppose now that we need to compare some x ∈ Dℓ and y ∈ Dℓ′ . Our approach will be251

almost identical to that of Section 4.1. Once again, let π(x) = argminx′∈Sℓ
dℓ(x, x

′) and252

π(y) = argminy′∈Sℓ′
dℓ′(y, y

′). However, unlike the simple algorithm of Section 4.1 that di-253

rectly uses π(x) and π(y), the more intricate algorithm here will rather use their proxies rℓ(π(x))254

and rℓ′(π(y)). Our prediction will then be255

fℓ,ℓ′(x, y) := σℓ,ℓ′
(
rℓ
(
π(x)

)
, rℓ′
(
π(y)

))
where σℓ,ℓ′(rℓ(π(x)), rℓ′(π(y))) is known from the earlier queries.256

Theorem 4.3. For any given parameters ϵ, δ ∈ (0, 1), the new query optimization algorithm produces257

similarity approximation functions fℓ,ℓ′ for every ℓ and ℓ′, such that258

Pr[Error(ℓ,ℓ′)] = O(δ + pℓ(ϵ, δ) + pℓ′(ϵ, δ))

where Pr[Error(ℓ,ℓ′)] is as in Theorem 2.1.259

Since the number of samples used by the algorithm is easily seen to be γ
δ log

1
δ2 , the only thing left in260

order to prove Theorem 2.4 is analyzing the number of oracle queries. To that end, for every group261

ℓ ∈ [γ] with its sampled set Sℓ, we define the following Set Cover problem.262
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Algorithm 1 Training Phase
Accuracy and confidence parameters ϵ, δ. For every group ℓ ∈ [γ], a set Sℓ of i.i.d. samples chosen
according to Dℓ, such that |Sℓ| = 1

δ log
1
δ2 .

1: for each ℓ ∈ [γ] do
2: Hℓ

x ← {x′ ∈ Sℓ : dℓ(x, x′) ≤ 8ϵ} for each x ∈ Sℓ.
3: U ← Sℓ, Rℓ ← ∅ and rℓ(x)← x for each x ∈ Sℓ.
4: while U ̸= ∅ do
5: Choose an arbitrary x ∈ U and set Rℓ ← Rℓ ∪ {x}.
6: Wx ← {x′ ∈ U : Hℓ

x ∩Hℓ
x′ ̸= ∅}.

7: rℓ(x
′)← x for every x′ ∈Wx and U ← U \Wx.

8: end while
9: end for

10: For every distinct ℓ and ℓ′, and for every x ∈ Rℓ and y ∈ Rℓ′ , ask the oracle for σℓ,ℓ′(x, y).
11: For every ℓ, return the set Rℓ and the function rℓ.

Definition 4.4. LetHℓx := {x′ ∈ Sℓ : dℓ(x, x′) ≤ 4ϵ} for all x ∈ Sℓ. Find C ⊆ Sℓ minimizing |C|,263

with
⋃
c∈C Hℓc = Sℓ. We use OPTℓ to denote the optimal value of this problem. Using standard264

terminology, we say x ∈ Sℓ is covered by C if x ∈
⋃
c∈C Hℓc, and C is feasible if it covers all x ∈ Sℓ.265

Lemma 4.5. For every ℓ ∈ [γ] we have |Rℓ| ≤ OPTℓ.266

Lemma 4.6. Let N = 1
δ log

1
δ2 . For each group ℓ ∈ [γ] we have OPTℓ ≤ N with probability 1, and267

E[OPTℓ] ≤ 1
δ + pℓ(ϵ, δ)N . The randomness here is over the samples Sℓ.268

The proof of Theorem 2.4 follows since all pairwise queries for the elements in the sets Rℓ are269 ∑
ℓ

(
|Rℓ|

∑
ℓ′ ̸=ℓ

|Rℓ′ |
)
≤
∑
ℓ

(
OPTℓ

∑
ℓ′ ̸=ℓ

OPTℓ′
)

(1)

where the inequality follows from Lemma 4.5. Combining (1) and Lemma 4.6 proves Theorem 2.4.270

Remark 4.7. The factor 8 in the definition of Hℓ
x at line 2 of Algorithm 1 is arbitrary. Actually,271

any factor ρ = O(1) would yield the same asymptotic guarantees, with any changes in accuracy272

and queries being only of an O(1) order of magnitude. Specifically, the smaller ρ is, the better the273

achieved accuracy and the more queries we are using.274

Finally, we are interested in lower bounds on the queries required for learning. Thus, we give Theorem275

2.5, showing that any algorithm with accuracy O(ϵ) and confidence O(δ) needs Ω(γ2/δ2) queries.276

Corollary 4.8. When for every ℓ ∈ [γ] the value pℓ(ϵ, δ) is arbitrarily close to 0, the algorithm277

presented in this section achieves an expected number of oracle queries that is asymptotically optimal.278

5 Experimental evaluation279

We implemented all algorithms in Python 3.10.6 and ran our experiments on a personal laptop with280

Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz and 16.0 GB memory.281

Algorithms: We implemented the simple algorithm from Section 4.1, and the more intricate algorithm282

of Section 4.2. We refer to the former as NAIVE, and to the latter as CLUSTER. For the training phase283

of CLUSTER, we set the dilation factor at line 2 of Algorithm 1 to 2 instead of 8. The reason for this,284

is that a minimal experimental investigation revealed that this choice leads to a good balance between285

accuracy guarantees and oracle queries. As explained in Section 3, neither the existing similarity286

learning algorithms [Ilvento, 2019, Mukherjee et al., 2020, Wang et al., 2019] nor the Earthmover287

minimization approach of Dwork et al. [2012] address the problem of finding similarity values for288

heterogeneous data. Furthermore, if the across-groups functions σ are not metric, then no approach289

from the metric learning literature can be used. Hence, as baselines we used three general regression290

models; an MLP, a Random Forest regressor (RF) and an XGBoost regressor (XGB). The MLP uses291

4 hidden layers of 32 relu activation nodes, and both RF and XGB use 200 estimators.292

Number of demographic groups: All our experiments are performed for two groups, i.e., γ = 2.293

The following reasons justify this decision. At first, this case captures the essence of our algorithmic294
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(a) Credit Card Default (b) Adult (c) Give Me Some Credit

Figure 1: Frequency counts for σ(x, y)

results; the γ > 2 case can be viewed as running the algorithm for γ = 2 multiple times, one for each295

pair of groups. Secondly, as the theoretical guarantees suggest, the achieved confidence and accuracy296

of our algorithms are completely independent of γ.297

Similarity functions: In all our experiments the feature space is Rd, where d ∈ N is case-specific.298

In line with our motivation which assumes that the intra-group similarity functions are simple, we299

define d1 and d2 to be the Euclidean distance. Specifically, for ℓ ∈ {1, 2}, the similarity between300

any x, y ∈ Dℓ is given by dℓ(x, y) =
√∑

i∈[d](xi − yi)2. For the across-groups similarities, we aim301

for a difficult to learn non-metric function; we purposefully chose a non-trivial function in order to302

challenge both our algorithms and the baselines. Namely, for any x ∈ D1 and y ∈ D2, we assume303

σ(x, y) = 3

√∑
i∈[d]

|αi · xi − βi · yi + θi|3 (2)

where the vectors α, β, θ ∈ Rd are basically the hidden parameters to be learned (of course non of304

the learners we use has any insight on the specific structure of σ).305

The function σ implicitly adopts a paradigm of feature importance [Niño-Adan et al., 2021]. Specifi-306

cally, when x and y are to be compared, their features are scaled accordingly by the expert using the307

parameters α, β, while some offsetting via θ might also be necessary. For example, in the college308

admissions use-case, certain features may have to be properly adjusted (increase a feature for a309

non-privileged student and decrease it for the privileged one). In the end, the similarity is calculated310

in an ℓ3-like manner. To see why σ is not a metric and why it satisfies the necessary propertiesM1311

andM2 from Section 2, refer to the last theorem in the Appendix.312

In each experiment we choose all αi, βi, θi independently. The values αi, βi are chosen uniformly at313

random from [0, 1], while the θi are chosen uniformly at random from [−0.01, 0.01]. Obviously, the314

algorithms do not have access to the vectors α, β, θ, which are only used to simulate the oracle and315

compare our predictions with the corresponding true values.316

Datasets: We used 2 datasets from the UCI ML Repository, namely Adult (48,842 points - 14317

features) [Kohavi, 1996] and Credit Card Default (30,000 points - 23 features) [Yeh and Lien, 2009],318

and the publicly available Give Me Some Credit dataset (150,000 points - 11 features) [Credit Fusion,319

2011]. We chose these datasets because this type of data is frequently used in applications of320

issuing credit scores, and in such cases fairness considerations are of utmost importance. For Adult,321

where categorical features are not encoded as integers, we assigned each category to an integer in322

{1,#categories}, and this integer is used in place of the category in the feature vector [Ding et al.,323

2021]. Finally, in every dataset we standardized all features through a MinMax re-scaller. Due to324

space constraints, the figures for Adult and Give me Some Credit are moved to the supplementary325

material. However, the observed traits there the same as the ones shown here for Credit Card Default.326

Choosing the two groups: For Credit Card Default and Adult, we defined groups based on marital327

status. Specifically, the first group corresponds to points that are married individuals, and the second328

to points that are not married (singles, divorced and widowed are merged together). In Give Me Some329

Credit, we partition individuals into two groups based on whether or not they have dependents.330

Choosing the accuracy parameter ϵ: To use a meaningful value for ϵ, we need to know the order331

of magnitude of σ(x, y). Thus, we calculated the value of σ(x, y) over 10, 000 trials, where the332

randomness was of multiple factors, i.e., the random choices for the α, β, θ, and the sampling of333
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Table 1: Error statistics for Credit Card Default
Algorithm Average Relative Error % SD of Relative Error % Average (Absolute Error)/ϵ SD of (Absolute Error)/ϵ

NAIVE 1.558 3.410 0.636 1.633
CLUSTER 1.593 3.391 0.646 1.626

MLP 3.671 4.275 1.465 1.599
RF 3.237 4.813 1.306 2.318

XGB 3.121 4.606 1.273 1.869

Table 2: Percent of decrease in queries when using CLUSTER instead of NAIVE

Credit Card Default Adult Give Me Some Credit
81.01% 80.40% 84.87%

x and y. Figure 1 shows histograms for the empirical frequency of σ(x, y) over the 10, 000 runs.334

In addition, in those trials the minimum value of σ(x, y) observed was 1) 0.1149 for Credit Card335

Default, 2) 0.1155 for Adult, and 3) 0.0132 for Give Me Some Credit. Thus, aiming for an accuracy336

parameter that is at least an order of magnitude smaller than the value to be learned, we choose337

ϵ = 0.01 for Credit Card Default and Adult, and ϵ = 0.001 for Give Me Some Credit.338

Confidence δ and number of samples: All our experiments are performed with δ = 0.001. In339

NAIVE and CLUSTER, we follow our theoretical results and sample N = 1
δ log

1
δ2 points from each340

group. Choosing the training samples for the baselines is a bit more tricky. For these regression341

tasks a training point is a tuple (x, y, σ(x, y)). In other words, these tasks do not distinguish between342

queries and samples. To be as fair as possible when comparing against our algorithms, we provide the343

baselines with N +Q training points of the form (x, y, σ(x, y)), where Q is the maximum number344

of queries used in any of our algorithms.345

Testing: We test our algorithms over 1, 000 trials, where each trial consists of independently sampling346

two elements x, y, one for each group, and then inputting those to the predictors. We are interested in347

two metrics. The first is the relative error percentage; if p is the prediction for elements x, y and t348

is their true similarity value, the relative error percentage is 100 · |p− t|/t. The second metric we349

consider is the absolute error divided by ϵ; if p is the prediction for two elements and t is their true350

similarity value, this metric is |p− t|/ϵ. We are interested in the latter metric because our theoretical351

guarantees are of the form |f(x, y)− σ(x, y)| = O(ϵ).352

Table 1 shows the average relative and absolute value error, together with the standard deviation353

for these metrics across all 1, 000 runs. It is clear that our algorithms dominate the baselines since354

they exhibit smaller errors with smaller standard deviations. In addition, NAIVE appears to have a355

tiny edge over CLUSTER, and this is expected (the queries of CLUSTER are a subset of NAIVE’s).356

However, as shown in Table 2, CLUSTER leads to a significant decrease in oracle queries compared to357

NAIVE, thus justifying its superiority. To further demonstrate the statistical behavior of the errors, we358

present Figure 2. This depicts the empirical CDF of each error metric through a bar plot. Specifically,359

the height of each bar corresponds to the fraction of test instances whose error is at most the value360

in the x-axis directly underneath the bar. Once again, we see that our algorithms outperform the361

baselines, since their corresponding bars are always higher than those of the baselines.362

(a) Relative Error Percentage (b) (Absolute Error) / ϵ

Figure 2: Empirical CDF for Credit Card Default
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A Missing proofs432

Proof of Theorem 4.2. For two distinct groups ℓ and ℓ′, consider what will happen when we are433

asked to compare some x ∈ Dℓ and y ∈ Dℓ′ . PropertiesM1 andM2 of σℓ,ℓ′ imply434

Q ≤ σℓ,ℓ′(x, y) ≤ P, where
P := dℓ(x, π(x)) + σℓ,ℓ′(π(x), π(y)) + dℓ′(y, π(y))

Q := σℓ,ℓ′(π(x), π(y))− dℓ(x, π(x))− dℓ′(y, π(y))

Note that when dℓ(x, π(x)) ≤ 3ϵ and dℓ′(y, π(y)) ≤ 3ϵ, the above inequalities and the definition435

of fℓ,ℓ′(x, y) yield
∣∣fℓ,ℓ′(x, y) − σℓ,ℓ′(x, y)

∣∣ ≤ 6ϵ. Thus, we just need upper bounds for A :=436

PrSℓ,x∼Dℓ
[∀x′ ∈ Sℓ : d(x, x′) > 3ϵ] and B := PrSℓ′ ,y∼Dℓ′ [∀y

′ ∈ Sℓ : d(y, y′) > 3ϵ], since the437

previous analysis and a union bound give Pr[Error(ℓ,ℓ′)] ≤ A+ B. In what follows we present an438

upper bound for A. The same analysis gives an identical bound for B.439

Before we proceed to the rest of the proof, we have to provide an existential construction. For440

the sake of simplicity we will be using the term dense for elements of Dℓ that are not (ϵ, δ)-rare.441

For every x ∈ Dℓ that is dense, we define Bx := {x′ ∈ Dℓ : dℓ(x, x
′) ≤ ϵ}. Observe that the442

definition of dense elements implies Prx′∼Dℓ
[x′ ∈ Bx] ≥ δ for every dense x. Next, consider the443

following process. We start with an empty set R = {}, and we assume that all dense elements444

are unmarked. Then, we choose an arbitrary unmarked dense element x, and we place it in the set445

R. Further, for every dense x′ ∈ Dℓ that is unmarked and has Bx ∩ Bx′ ̸= ∅, we mark x′ and set446

ψ(x′) = x. Here the function ψ maps dense elements to elements of R. We continue this picking447

process until all dense elements have been marked. Since Bz ∩ Bz′ = ∅ for any two z, z′ ∈ R448

and Prx′∼Dℓ
[x′ ∈ Bz] ≥ δ for z ∈ R, we have |R| ≤ 1/δ. Also, for every dense x we have449

dℓ(x, ψ(x)) ≤ 2ϵ due to Bx ∩Bψ(x) ̸= ∅.450

11

https://arxiv.org/abs/1812.05944
https://arxiv.org/abs/1812.05944
https://arxiv.org/abs/1812.05944
https://arxiv.org/abs/1910.10255
https://arxiv.org/abs/1910.10255
https://arxiv.org/abs/1910.10255
https://ojs.aaai.org/index.php/HCOMP/article/view/13152


Now we are ready to upper bound A .451

C := Pr
Sℓ,x∼Dℓ

[∀x′ ∈ Sℓ : d(x, x′) > 3ϵ ∧ x is (ϵ, δ)-rare]

≤ Pr
x∼Dℓ

[x is (ϵ, δ)-rare] = pℓ(ϵ, δ)

D := Pr
Sℓ,x∼Dℓ

[∀x′ ∈ Sℓ : d(x, x′) > 3ϵ ∧ x is dense]

≤ Pr
Sℓ

[∃r ∈ R : Br ∩ Sℓ = ∅]

≤
∑
r∈R

Pr
Sℓ

[Br ∩ Sℓ = ∅] ≤ |R|(1− δ)|Sℓ| ≤ |R|e−δ|Sℓ| ≤ δ

The upper bound for C is trivial. We next explain the computations for D. For the transition between452

the first and the second line we use a proof by contradiction. Hence, suppose that Sℓ ∩Br ̸= ∅ for453

every r ∈ R, and let ir denote an arbitrary element of Sℓ ∩Br. Then, for any dense element x ∈ Dℓ454

we have dℓ(x, π(x)) ≤ dℓ(x, iψ(x)) ≤ dℓ(x, ψ(x)) + dℓ(ψ(x), iψ(x)) ≤ 2ϵ + ϵ = 3ϵ. Back to the455

computations for D, to get the third line we simply used a union bound. To get from the third to the456

fourth line, we used the definition of r ∈ R as a dense element, which implies that the probability457

of sampling any element of Br in one try is at least δ. The final bound is a result of numerical458

calculations using |R| ≤ 1
δ and |Sℓ| = 1

δ log
1
δ2 .459

To conclude the proof, observe that A = C + D, and using a similar reasoning as the one in460

upper-bounding A we also get B ≤ pℓ′(ϵ, δ) + δ.461

Proof of Theorem 2.3. Given any ϵ, δ, consider the following instance of the problem. We have two462

groups represented by the distributions D1 and D2. For the first group we have only one element463

belonging to it, and let that element be x. In other words, every time we draw an element from D1464

that element turns out to be x, i.e., Prx′∼D1
[x′ = x] = 1. For the second group we have that every465

y ∈ D2 appears with probability 1
|D2| , and |D2| is a huge constant c≫ 0, with 1

c ≪ δ.466

Now we define all similarity values. At first, the similarity function forD1 will trivially be d1(x, x) =467

0. For the second group, for every distinct y, y′ ∈ D2 we define d2(y, y′) = 1. Obviously, for every468

y ∈ D2 we set d2(y, y) = 0. Observe that d1 and d2 are metric functions for their respective groups.469

As for the across-groups similarities, each σ(x, y) for y ∈ D2 is chosen independently, and it is470

drawn uniformly at random from [0, 1]. Note that this choice of σ satisfies the necessary metric-like471

propertiesM1 andM2 that were introduced in Section 2.472

Further, since ϵ, δ ∈ (0, 1), any y ∈ D2 will be (ϵ, δ)-rare:473

Pr
y′∼D2

[d2(y, y
′) ≤ ϵ] = Pr

y′∼D2

[y′ = y] =
1

|D2|
< δ

The first equality is because the only element within distance ϵ from y is y itself. The last inequality474

is because 1
|D2| < δ. Therefore, since all elements are (ϵ, δ)-rare, we have p2(ϵ, δ) = 1.475

Consider now any learning algorithm that produces an estimate function f . For any y ∈ D2, let us476

try to analyze the probability of having |f(x, y)− σ(x, y)| = ω(ϵ). At first, note that when y ∈ S2,477

we can always get the exact value f(x, y), since x will always be in S1. The probability of having478

y ∈ S2 is 1− (1− 1/|D2|)N , where N is the number of used samples. Since we have control over479

|D2| when constructing this instance, we can always set it to a large enough value that will give480

1− (1− 1/|D2|)N = ϵ; note that this is possible because 1− (1− 1/|D2|)N is decreasing in |D2|481

and lim|D2|→∞
(
1− (1− 1/|D2|)N

)
= 0. Hence,482

Pr
y
[|f(x, y)− σ(x, y)| = ω(ϵ)] = (1− ϵ) Pr

y
[|f(x, y)− σ(x, y)| = ω(ϵ) | y /∈ S2] + ϵ (3)

When y will not be among the samples, the algorithm needs to learn σ(x, y) via some other value483

σ(x, y′), for y′ being a sampled element of the second group. However, due to the construction of σ484

the values σ(x, y) and σ(x, y′) are independent. This means that knowledge of any σ(x, y′) (with485

y ̸= y′) provides no information at all on σ(x, y). Thus, the best any algorithm can do is guess486

f(x, y) uniformly at random from [0, 1]. This yields Pr[|f(x, y) − σ(x, y)| = ω(ϵ) | y /∈ S2] =487

1− Pr[|f(x, y)− σ(x, y)| = O(ϵ) | y /∈ S2] = 1− O(ϵ) = p2(ϵ, δ)− O(ϵ). Combining this with488

(3) gives the desired result.489
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Proof of Theorem 4.3. For two distinct groups ℓ and ℓ′, consider comparing some x ∈ Dℓ and490

y ∈ Dℓ′ . To begin with, let us assume that dℓ(x, π(x)) ≤ 3ϵ and dℓ′(y, π(y)) ≤ 3ϵ. Further-491

more, the execution of the algorithm implies Hℓ
π(x) ∩ H

ℓ
rℓ(π(x))

̸= ∅, and thus the triangle in-492

equality and the definitions of the sets Hℓ
π(x), H

ℓ
rℓ(π(x))

give dℓ(π(x), rℓ(π(x))) ≤ 16ϵ. Similarly493

dℓ′(π(y), rℓ′(π(y))) ≤ 16ϵ. Eventually:494

dℓ(x, rℓ(π(x))) ≤ dℓ(x, π(x)) + dℓ(π(x), rℓ(π(x))) ≤ 19ϵ

dℓ′(y, rℓ′(π(y))) ≤ dℓ′(y, π(y)) + dℓ′(π(y), rℓ′(π(y))) ≤ 19ϵ

For notational convenience, let A := dℓ(x, rℓ(π(x))) and B := dℓ′(y, rℓ′(π(y))). Then, the metric495

propertiesM1 andM2 of σℓ,ℓ′ and the definition of fℓ,ℓ′(x, y) yield496

|σℓ,ℓ′(x, y)− fℓ,ℓ′(x, y)| ≤ A+B ≤ 38ϵ

Overall, we proved that when dℓ(x, π(x)) ≤ 3ϵ and dℓ′(y, π(y)) ≤ 3ϵ, we have
∣∣fℓ,ℓ′(x, y) −497

σℓ,ℓ′(x, y)
∣∣ ≤ 38ϵ. Finally, as shown in the proof of Theorem 4.2, the probability of not having498

dℓ(x, π(x)) ≤ 3ϵ and dℓ′(y, π(y)) ≤ 3ϵ, is at most 2δ + pℓ(ϵ, δ) + pℓ′(ϵ, δ).499

Proof of Lemma 4.5. Consider a group ℓ, and let C∗ be its optimal solution for the problem of500

Definition 4.4. We first claim that eachHℓc with c ∈ C∗ contains at most one element of Rℓ. This is501

due to the following. For any c ∈ C∗, we have dℓ(z, z′) ≤ dℓ(z, c)+dℓ(c, z′) ≤ 8ϵ for all z, z′ ∈ Hℓc.502

In addition, the construction of Rℓ trivially implies dℓ(x, x′) > 8ϵ for all x, x′ ∈ Rℓ. Thus, no two503

elements of Rℓ can be in the sameHℓc with c ∈ C∗. Finally, since Definition 4.4 requires all x ∈ Rℓ504

to be covered, we have |Rℓ| ≤ |C∗| = OPTℓ.505

Proof of Lemma 4.6. Consider a group ℓ. Initially, through Definition 4.4 it is clear that OPTℓ ≤506

|Sℓ| = N . For the second statement of the lemma we need to analyze OPTℓ in a more clever way.507

Recall the classification of elements x ∈ Dℓ that was first introduced in the proof of Theorem 4.2.508

According to this, an element can either be (ϵ, δ)-rare, or dense. Now we will construct a solution Cℓ509

to the problem of Definition 4.4 as follows.510

At first, let Sℓ,r be the set of (ϵ, δ)-rare elements of Sℓ. We will include all of Sℓ,r to Cℓ, so that all511

(ϵ, δ)-rare elements of Sℓ are covered by Cℓ. Further:512

E
[
|Sℓ,r|

]
= pℓ(ϵ, δ)N (4)

Moving on, recall the construction shown in the proof of Theorem 4.2. According to that, there513

exists a setR of at most 1
δ dense elements from Dℓ, and a function ψ that maps every dense element514

x ∈ Dℓ to an element ψ(x) ∈ R, such that dℓ(x, ψ(x)) ≤ 2ϵ. Let us now define for each x ∈ R a set515

Gx := {x′ ∈ Dℓ : x′ is dense and ψ(x′) = x}, and note that dℓ(z, z′) ≤ dℓ(z, x) + dℓ(z
′, x) ≤ 4ϵ516

for all z, z′ ∈ Gx. Thus, for each x ∈ R with Gx ∩Sℓ ̸= ∅, we place in Cℓ an arbitrary y ∈ Gx ∩Sℓ,517

and that y gets all of Gx ∩ Sℓ covered. Finally, since the sets Gx induce a partition of the dense518

elements of Dℓ, Cℓ covers all dense elements of Sℓ.519

Equation (4) and |R| ≤ 1
δ yield E

[
|Cℓ|

]
≤ 1

δ + pℓ(ϵ, δ)N . Also, since Cℓ is shown to be a feasible520

solution for problem of Definition 4.4, we get521

OPTℓ ≤ |Cℓ| =⇒ E[OPTℓ] ≤
1

δ
+ pℓ(ϵ, δ)N

Proof of Theorem 2.5. We are given accuracy and confidence parameters ϵ, δ ∈ (0, 1) respectively.522

For the sake of simplifying the exposition in the proof, let us assume that 1
δ is an integer; all later523

arguments can be generalized in order to handle the case of 1/δ /∈ N.524

We construct the following problem instance. We have two groups represented by the distributions525

D1 and D2. In addition, for both of these groups we assume that the support of the corresponding526

distribution contains 1
δ elements, and Prx′∼D1 [x = x′] = δ for every x ∈ D1 as well as Pry′∼D2 [y =527

y′] = δ for every y ∈ D2.528

For every x, x′ ∈ D1 let d1(x, x′) = 1, and d1(x, x) = 0 for every x ∈ D1. Similarly, for every529

y, y′ ∈ D2 we set d2(y, y′) = 1, and for every y ∈ D2 we set d2(y, y) = 0. The functions d1 and d2530
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are clearly metrics. As for the across-groups similarity values, each σ(x, y) for x ∈ D1 and y ∈ D2531

is chosen independently, and it is drawn uniformly at random from [0, 1]. Note that this choice of σ532

satisfies the necessary propertiesM1,M2 introduced in Section 2.533

In this proof we are also focusing on a more special learning model. In particular, we assume that534

the distributions D1 and D2 are known. Hence, there is no need for sampling. The only randomness535

here is over the random arrivals x ∼ D1 and y ∼ D2, where x and y are the elements that need to be536

compared. Obviously, the similarity function σ would still remain unknown to any learner. Finally,537

the queries required for learning in this model cannot be more than the queries required in the original538

model, and this is because this model is a special case of the original.539

Consider now an algorithm with the error guarantees mentioned in the Theorem statement, and focus540

on a fixed pair (x, y) with x ∈ D1 and y ∈ D2. If the algorithm has queried the oracle for (x, y),541

it knows σ(x, y) with absolute certainty. Let us study what happens when the algorithm has not542

queried the oracle for (x, y). In this case, because the values σ(x′, y′) with x′ ∈ D1 and y′ ∈ D2 are543

independent, no query the algorithm has performed can provide any information for σ(x, y). Thus,544

the best the algorithm can do is uniformly at random guess a value in [0, 1], and return that as the545

estimate for σ(x, y). If Q̄x,y denotes the event where no query is performed for (x, y), then546

P := Pr
[
|fℓ,ℓ′(x, y)− σℓ,ℓ′(x, y)| = ω(ϵ) | Q̄x,y

]
= 1− Pr

[
|fℓ,ℓ′(x, y)− σℓ,ℓ′(x, y)| = O(ϵ) | Q̄x,y

]
= 1−O(ϵ) = Ω(1)

where the randomness comes only from the algorithm.547

For the sake of contradiction, suppose the algorithm uses q = o(1/δ2) queries. Since each (x, y) is548

equally likely to appear for a comparison, the overall error probability is549 (
1/δ2 − q
1/δ2

)
· P = Ω(1) · Ω(1) = Ω(1)

Contradiction; the error probability was assumed to be O(δ).550

Proof of Corollary 4.8. When every pℓ(ϵ, δ) is very close to 0, Lemma 4.6 gives E[OPTℓ] ≤ 1
δ .551

Thus, by inequality (1) the expected queries are γ(γ−1)
δ2 . Theorem 2.5 concludes the proof.552

Theorem A.1. The function σ defined in Equation (2) is not metric, and satisfies propertiesM1,M2553

for d1(x, y) = d2(x, y) =
√∑

i∈[d](xi − yi)2, when αi, βi ∈ [0, 1] for all i ∈ [d].554

Proof. The easiest way to see that σ(x, y) is not a metric, is by realizing that it does not satisfy555

the symmetry property and also x = y does not necessarily imply σ(x, y) = 0. Both of these556

issues stem from the offsets θi. To verify that symmetry is violated let x, y be 1-dimensional,557

and let x = 1, y = 2, α = 1, β = 1, θ = 2. Then σ(1, 2) = 1, while σ(2, 1) = 3. Next, let558

x = 1, y = 1, α = 1, β = 1, θ = 1. In this example, although x = y we have σ(x, y) = 1 ̸= 0.559

In the following we are going to show that σ satisfiesM1. The proof forM1 is identical. At first,560

take x, y, z ∈ Rd, such that x, z ∈ D1 and y ∈ D2. Then:561

σ(x, y) = 3

√∑
i∈[d]

|αi · xi − βi · yi + θi|3 = 3

√∑
i∈[d]

|(αi · xi − αi · zi) + (αi · zi − βi · yi + θi)|3

≤ 3

√∑
i∈[d]

|(αi · xi − αi · zi)|3 + 3

√∑
i∈[d]

|(αi · zi − βi · yi + θi)|3

= 3

√∑
i∈[d]

a3i |xi − zi|3 + σ(z, y) ≤ 3

√∑
i∈[d]

|xi − zi|3 + σ(z, y) ≤ d1(x, z) + σ(z, y)

To get the first inequality we used the triangle inequality for ℓ3. The second to last inequality is562

because α3
i ≤ 1 for all i, and the last inequality is because the ℓ3 norm of a vector is always smaller563

than its ℓ2 norm.564
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B Additional experimental results565

Table 3: Error statistics for Adult
Algorithm Average Relative Error % SD of Relative Error % Average (Absolute Error)/ϵ SD of (Absolute Error)/ϵ

NAIVE 1.319 3.381 0.847 2.382
CLUSTER 1.321 3.383 0.849 2.383

MLP 4.119 6.092 2.306 1.977
RF 3.519 6.657 2.020 2.987

XGB 2.248 5.351 1.215 1.655

Table 4: Error statistics for Give Me Some Credit
Algorithm Average Relative Error % SD of Relative Error % Average (Absolute Error)/ϵ SD of (Absolute Error)/ϵ

NAIVE 1.630 4.106 2.644 7.710
CLUSTER 1.645 4.118 2.648 7.665

MLP 5.819 9.073 7.588 8.750
RF 5.692 12.404 7.258 34.508

XGB 5.614 13.355 6.516 7.754

(a) Relative Error Percentage (b) (Absolute Error) / ϵ

Figure 3: Empirical CDF for Adult

(a) Relative Error Percentage (b) (Absolute Error) / ϵ

Figure 4: Empirical CDF for Give Me Some Credit
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