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Abstract

Recent works in learning-integrated optimization have shown promise in settings
where the optimization problem is only partially observed or where general-purpose
optimizers perform poorly without expert tuning. By learning an optimizer g to
tackle these challenging problems with f as the objective, the optimization process
can be substantially accelerated by leveraging past experience. The optimizer can
be trained with supervision from known optimal solutions or implicitly by optimiz-
ing the compound function f ◦ g. The implicit approach may not require optimal
solutions as labels and is capable of handling problem uncertainty; however, it is
slow to train and deploy due to frequent calls to optimizer g during both training
and testing. The training is further challenged by sparse gradients of g, especially
for combinatorial solvers. To address these challenges, we propose using a smooth
and learnable Landscape SurrogateM as a replacement for f ◦ g. This surrogate,
learnable by neural networks, can be computed faster than the solver g, provides
dense and smooth gradients during training, can generalize to unseen optimization
problems, and is efficiently learned via alternating optimization. We test our ap-
proach on both synthetic problems, including shortest path and multidimensional
knapsack, and real-world problems such as portfolio optimization, achieving com-
parable or superior objective values compared to state-of-the-art baselines while
reducing the number of calls to g. Notably, our approach outperforms existing
methods for computationally expensive high-dimensional problems.

1 Introduction

Mathematical optimization problems in various settings have been widely studied, and numerous
methods exist to solve them [25, 32]. Although the literature on this topic is immense, real-world
applications consider settings that are nontrivial or extremely costly to solve. The issue often stems
from uncertainty in the objective or in the problem definition. For example, combinatorial problems
involving nonlinear objectives are generally hard to address, even if there are efficient methods that
can handle special cases (e.g., k-means). One possible approach could be learning so-called linear
surrogate costs [16] that guide an efficient linear solver towards high quality solutions for the original
hard nonlinear problem. This automatically finds a surrogate mixed integer linear program (MILP),
for which relatively efficient solvers exist [19]. Another example is the smart predict+optimize
framework (a.k.a. decision-focused learning) [13, 41] where some problem parameters are unknown
at test time and must be inferred from the observed input using a model (e.g., neural nets).

Despite having completely different settings and purposes, what is common among learning surrogate
costs, smart predict+optimize, and other integrations of learning and optimization, is the need to
learn a certain target mapping to estimate the parameters of a latent optimization problem. This
makes the optimization problem well-defined, easy to address, or both. In this work, we draw general
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Figure 1: Overview of our proposed framework LANCER. We replace the non-convex and often non-differentiable
function f ◦ g with landscape surrogateM and use it to learn the target mapping cθ . The current output of cθ
is then used to evaluate f and to refineM. This procedure is repeated in alternating optimization fashion.

connections between different problem families and combine them into a unified framework. The
core idea (section 3) is to formulate the learning problem via constructing a compound function f ◦ g
that includes a parametric solver g and the original objective f . To the best of our knowledge, this
paper is the first to propose a generic optimization formulation (section 3) for these types of problems.

Minimizing this new compound function f ◦ g via gradient descent is a nontrivial task as it requires
differentiation through the argmin operator. Although various methods have been proposed to
tackle this issue [3, 2], they have several limitations. First, they are not directly applicable to
combinatorial optimization problems, which have 0 gradient almost everywhere, and thus require
various computationally expensive approximations [34, 41, 15, 39]. Second, even if the decision
variables are continuous, the solution space (i.e., argmin) may be discontinuous. Some papers [12,
17] discuss the fully continuous domain but typically involve computing the Jacobian matrix, which
leads to scalability issues. Furthermore, in some cases, an explicit expression for the objective
may not be given, and we may only have black-box access to the objective function, preventing
straightforward end-to-end backpropagation.

These limitations motivate Landscape Surrogate losses (LANCER), a unified model for solving coupled
learning and optimization problems. LANCER accurately approximates the behavior of the compound
function f ◦ g, allowing us to use it to learn our target parametric mapping (see fig. 1). Intuitively,
LANCER must be differentiable and smooth (e.g., neural nets) to enable exact and efficient gradient
computation. Furthermore, we propose an efficient alternating optimization algorithm that jointly
trains LANCER and the parameters of the target mapping. Our motivation is that training LANCER
in this manner better distills task-specific knowledge, resulting in improved overall performance.
Experimental evaluations (section 5) confirm this hypothesis and demonstrate the scalability of our
proposed method.

The implementation of LANCER can be found at https://github.com/facebookresearch/
LANCER.

2 Related work

Smart Predict+Optimize framework considers settings where we want to train a target mapping
which predicts latent components to an optimization problem to improve downstream performance.
A straightforward and naive approach in P+O is to build the target machine learning model in a
two–stage fashion: train the model on ground truth problem parameters using some standard measure
of accuracy (e.g., mean squared error) and then use its prediction to solve the optimization problem.
However, this approach is prone to produce highly suboptimal models [6, 41] since the learning
problem does not capture the task-specific objectives. Instead, “smart” Predict+Optimize (SPO) [13]
proposed to minimize the decision regret, i.e., the error induced by the optimization solution based
on the estimated problem parameters coming from the machine learning model. A variety of methods
exist for learning such models in the continuous, and often convex, optimization setting. These
approaches usually involve backpropagating through the solver [11, 12]. In some isolated and simple
scenarios, an optimal solution exists [22], or the learning problem can be formulated via efficient
surrogate losses [13]. Extending the SPO framework for combinatorial problems is challenging,
and current methods rely on identifying heuristic gradients often via continuous, primal, or dual
relaxations [33, 41, 34, 31, 39, 15, 28]. Alternative approaches leverage specific structures of
the optimization problem [9, 21, 40], such as being solvable via dynamic programming or graph
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partitioning. Further work focuses on SPO for individual problems Shah et al. [37], which collects
perturbed input instances and learns a separate locally convex loss for each instance. In contrast,
we define the loss over the domain rather than per instance, allowing for generalization to unseen
instances, and our bilevel optimization formulation enables more efficient training. Moreover,
compared to prior works, our method generically applies to a wider variety of problem settings,
losses, and problem formulations. See Table 1 for a direct comparison of the requirements and
capabilities for different approaches.

Mixed integer nonlinear programming (MINLP) LANCER can be considered as a solver for
constrained combinatorial problems with nonlinear and nonconvex objectives (MINLP), a challenging
class of optimization problems [4]. Apart from SurCo [16], which we will discuss in detail in section 3,
specialized solvers exist that deal with various MINLP formulations [7, 1, 19]. These specialized
solvers generally require an analytical form for the objective and cannot handle black-box objectives.
Additionally, these methods are not designed to handle general-purpose large-scale problems without
making certain approximations or using specialized modeling techniques, such as linearizing the
objective function or applying domain-specific heuristics. Lastly, some previous work directly
predicts solutions to economic dispatch problems [8], uses reinforcement learning to build solutions
to linear combinatorial problems [23], or uses reinforcement learning for ride hailing problems [43].
These approaches are designed for specific application domains or are tailored to linear optimization
settings where the reward for a single decision variable is its objective coefficient, which is not
trivially applicable in nonlinear settings.

Optimization as a layer The optimization-as-a-layer family of methods considers the composition
of functions where one (or more) of the functions is defined as the solution to a mathematical
optimization problem [3, 2, 17, 18]. Since both P+O and SurCo can be formulated as a nesting of a
target mapping with the argmin operator (i.e., optimization solver), one can leverage approaches
from this literature. The core idea here is based on using the implicit function theorem to find
necessary gradients and backpropagate through the solver. Similar concepts exist for combinatorial
optimization [15, 39, 28, 31, 29], where gradient non-existence is tackled through improved primal
or dual relaxations.

3 A Unified Training Procedure

In this work, we focus on solving the following optimization problems:

min
x

f(x; z) s.t. x ∈ Ω (1)

where f is the function to be optimized (linear or nonlinear), x ∈ Ω are the decision variables that
must lie in the feasible region, typically specified by (non)linear (in)equalities and possibly integer
constraints, and z ∈ Z is the problem description (or problem features). For example, if f is to find a
shortest path in a graph, then x is the path to be optimized, and z represents the pairwise distances
(or features used to estimate them) in the formulation.

Ideally, we would like to have an optimizer that can (1) deal with the complexity of the loss function
landscape (e.g., highly nonlinear objective f , complicated and possibly combinatorial domain Ω),
(2) leverage past experience in solving similar problems, and (3) can deal with a partial information
setting, in which only an observable problem description y can be seen but not the true problem
description z when the decision is made at test time.

To design such an optimizer, we consider the following setting: assume that for the training instances,
we have access to the full problem descriptions {zi} ⊆ Z , as well as the observable descriptions
{yi} ⊆ Y , while for the test instance, we only know its observable description ytest, but not its
full description ztest. Note that such a setting naturally incorporates optimization under uncertainty,
in which a decision need to be made without full information, while the full information can be
obtained in hindsight (e.g., portfolio optimization). Given this setting, we propose the following
general training procedure on a training set Dtrain := {(yi, zi)}Ni=1 to learn a good optimizer:

min
θ
L(Y, Z) :=

N∑
i=1

f (gθ(yi); zi) (2)
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Here gθ : Y 7→ Ω is a learnable solver that returns a high quality solution for objective f directly
from the observable problem description yi. θ are the learnable solver’s parameters. Once gθ is
learned, we can solve new problem instances with observable description ytest by either calling
xtest = gθ(ytest) to get a reasonable solution, or continue to optimize Eqn. 1 using x = xtest as an
initial solution.

Theoretically, if problem description z is fully observable (i.e., y = z), the optimization oracle
argminx∈Ω f(x; z) solves Eqn. 2. However, solving may be computationally intractable even with
full information as in nonlinear combinatorial optimization.

Our proposed training procedure is general and covers many previous works that rely on either fully
or partially observed problem information.

Smart Predict+Optimize (P+O) In this setting, f belongs to a specific function family (e.g.,
linear or quadratic programs). The full problem description z includes objective coefficients, but
we only have access to noisy versions of them in y. Then the goal in P+O is to identify a mapping
cθ (e.g. a neural net) so that a downstream solver outputs a high quality solution: gθ(y) =
argminx∈Ω f(x; cθ(y)). Here argminx∈Ω f can often be solved with standard approaches, and the
main challenge is to estimate the problem description accurately (w.r.t. eq. (2)). Note that other P+O
formulations can be encompassed within our framework in eq. (2). For instance, the regret-based
formulation described in SPO [13] can be represented as maxẑ∈gθ(y) f (ẑ; z)− f∗ where f∗ is the
optimal loss that is independent of θ.

Learning surrogate costs for MINLP When f is a general nonlinear objective (but y = z is fully
observed), computing argminx∈Ω f also becomes non-trivial, especially if x is in combinatorial
spaces. Such problems are commonly referred as mixed integer nonlinear programming (MINLP).
To leverage the power of linear combinatorial solvers, SurCo [16] sets the learnable solver to be
gθ(y) = argminx∈Ω x⊤cθ(y), which is a linear solver and does not include the nonlinear function
f at all. Intuitively, this models the complexity of f by the learned surrogate cost cθ, which is
parameterized by a neural network. Surprisingly, this works quite well in practice [16].

4 LANCER: Learning Landscape Surrogate Losses

Variations of training objective Eqn. 2 have been proposed to learn θ in one way or another. This
includes derivative-based approaches discussed in section 2 as well as domain-specific methods that
learn θ efficiently and avoid backpropagating through the solver, e.g., SPO+ [13].

While these are valid approaches, at each step of the training process, we need to call a solver to
evaluate gθ , which can be computationally expensive. Furthermore, gθ is learned via gradient descent
of Eqn. 2, which involves backpropagating through the solver. One issue of this procedure is that the
gradient is non–zero only at certain locations (i.e., when changes in the coefficients lead to changes
in the optimal solution), which makes the gradient-based optimization difficult.

One question arises: can we model the composite function f ◦ gθ jointly? The intuition here is that
while gθ can be hard to compute, f ◦ gθ can be smooth to model, since f can be smooth around
the solution provided by gθ. If we model f ◦ gθ locally by a landscape surrogate modelM, and
optimize directly on the local landscape ofM, then the target mapping cθ can be trained without
running expensive solvers:

min
θ
M(Y,Z) :=

N∑
i=1

M (cθ(yi); zi) . (3)

Note thatM directly depends on cθ (not on gθ). Obviously,M cannot be any arbitrary function.
Rather it should satisfy certain conditions: 1) capture a task-specific loss f ◦ gθ (not just f and
not the solver g alone, but jointly); 2) be differentiable and smooth. Differentiability allows us to
train our target model cθ in end-to-end fashion (assuming c is itself differentiable). The primary
advantage is that we can avoid backpropagating through the solver or even through f (e.g., multi-
armed bandits). Moreover,Mw is typically high dimensional (e.g., a neural net) and potentially can
make the learning problem for cθ much easier. The question is how to obtain such a modelM? One
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way is to parameterize it and formulate the learning problem:

min
w

N∑
i=1

∥Mw(cθ∗(yi), zi)− f (gθ∗(yi); zi)∥

s.t. θ∗ ∈ argminθ

N∑
i=1

Mw(cθ(yi), zi).

(4)

The main motivation for this bi-level optimization formulation is that the surrogate modelMw is not
concerned to be accurate for all possible cθ; rather, we are interested in finding the configuration of
Mw that yields the closest approximation to f ◦g near θ∗. In other words,Mw serves as a surrogate
loss that approximates L at a certain landscape: Mw(Y, Z;θ∗) ∼ L(Y, Z;θ∗). By adopting the
bi-level optimization framework, we can focus on learning accurateMw for such θ∗.

It is important to note that evaluating f ◦ g depends on both cθ(yi) and zi (see eq. (2)). Therefore, to
construct an accurate surrogate modelMw that can effectively approximate f ◦ g, it is essential for
Mw to take into consideration the influence of both inputs.

To solve eq. 4, one could apply established methods from the bi-level optimization literature, such
as [17, 42]. However, majority of them still rely on∇θL (or even∇2

θ), which involves differentiating
through the solver. To overcome this issue, we propose a simple and generic Algorithm 1, which
is based on alternating optimization (high-level idea is depicted in fig. 1). The core idea is to
simultaneously learn both mappings (Mw and cθ) to explore different solution spaces. By improving
our target model cθ , we obtain better estimates of the surrogate loss around the solution, and a better
estimatorMw leads to better optimization of the desired loss L. The use of alternating optimization
helps both mappings reach a common goal. Furthermore, similarly flavored alternating optimization
techniques were found to be successful in other problems with non-differentiable nature [44, 45].

In practice, the “inner” optimization (lines 10 and 12) does not have to be done “perfectly”. In our
approach, we perform a fixed (smaller) number of updates; that is, we do not precisely solve the
minimization for bothMw and cθ. For example, most experiments use 10-20 updates per t. One
potential reason is that we do not want the models to overfit to the data; instead, we increase the total
number of outer loop T . We discuss this further in the experimental setup.

Algorithm 1 Pseudocode for simultaneously learning LANCER and target model cθ . Note that the algorithm
may vary slightly based on setting (e.g., P+O and variations of SurCo ), see Appendix B.

1: Input: Dtrain ← {yi, zi}Ni=1, solver g, objective f , target model cθ;
2: Initialize cθ (e.g. random, warm start);
3: for t = 1 . . . T do
4: •w-step (fix θ and optimize over w):
5: for (yi, zi) ∈ Dtrain do
6: evaluate ĉi = cθ(yi);
7: evaluate f̂i = f(g(ĉi); zi);
8: add (ĉi, zi, f̂i) to D;
9: end for

10: solve minw

∑
i∈D

∥∥∥Mw(ĉi, zi)− f̂i

∥∥∥ via supervised learning;
11: • θ-step (fix w and optimize over θ):
12: solve minθ

∑
i∈Dtrain

Mw(cθ(yi), zi) via supervised learning.
13: end for

Note that the Algorithm 1 avoids backpropagating through the solver or even through f . The only
requirement is evaluating the function f at the solution of g, which can be achieved by blackbox solver
access. As a result, this approach eliminates the complexity and computational expense associated
with computing derivatives of combinatorial solvers, making it a more efficient and practical solution
as shown in Table 1.

It is worth noting that our framework shares similarities with actor-critic reinforcement learning [24].
In this analogy, we can think of cθ as an actor responsible for making certain decisions, like predicting
coefficients. On the other hand,Mw plays the role of a critic which evaluates the actor’s decisions
by estimating the objective value f , and provides feedback to the actor.
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Table 1: Conceptual comparison of methods from related literature. Capabilities on the left are present or not
for Methods on the top. ± is given when this capability depends empirically on the problem at hand.

Feature \ Method LANCER SurCo [16] LODLs [37] SPO+ [13] DiffOpt [15, 2, 34] Exact [1, 36]

On-the-fly opt + + − − − +
Nonlinear f + + + − + +
Blackbox f + − + − − −
∂f not required + − + + − +
∂gθ not required + − + + − +
Generalization + + − + + −
Few fast solver calls ± ± − ± ± −

Similar to many other approaches designed for solving problems with bi-level optimizations, including
actor-critic algorithms, we currently lack theoretical guarantees regarding the convergence of LANCER
with respect to either Mw or cθ. This lack of guarantees can also impact the stability of the
algorithm. However, this is primarily a matter that can be addressed through empirical investigation
and depends on various factors, which is typical in the process of model selection. In Appendix E,
we present ablation studies that we conducted to evaluate the stability of our approach across various
hyperparameters and neural network architectures. These, along with our main experimental results
in section 5, demonstrate that LANCER generally exhibits robustness in many cases.

4.1 Reusing landscape surrogate modelMw

Once Algorithm 1 finishes, we usually discardMw as it is an intermediate result of the algorithm, and
we only retain cθ (and solver g) for model deployment. However, we have found through empirical
exploration that the learned surrogate lossMw can be reused for a range of problems, increasing the
versatility of the approach. This is particularly advantageous for SurCo setting, where we handle one
instance at a time. In this scenario, we utilize the trainedMw for unseen test instances by executing
only the θ-step of Algorithm 1. The main advantage of this extension is that it eliminates the need for
access to the solver g, leading to significant deployment runtime improvements.

4.2 Reusing past evaluations of f ◦ gθ

In LANCER, the learning process of Mw is solely reliant on D and is independent of the current
state of cθ. Put simply, to effectively learnMw, we only need the inputs and outputs of f ◦ gθ,
namely cθ(yi), Z, and the corresponding objective value f̂ . Interestingly, we can cache the predicted
descriptions themselves, cθ(yi), without the need for the model θ or problem information. This
caching mechanism allows us to reuse the data (cθ(yi), z, f̂) from previous iterations (1 . . . T − 1)
as-is. By adopting this practice, we enhance and diversify the available training data forMw, which
proves particularly advantageous for neural networks. This concept bears resemblance to the concept
of a replay buffer [27] commonly found in the literature on Reinforcement Learning.

5 Experiments

We validate our approach (LANCER) in two settings: smart predict+optimize and learning surrogate
costs for MINLP. For each setting, we study a range of problems, including linear, nonlinear,
combinatorial, and others, encompassing both synthetic and real-world scenarios. Overall, LANCER
exhibits superior or comparable objective values while maintaining efficient runtime. Additionally,
we perform ablation studies, such as re-usingM.

5.1 Synthetic data

5.1.1 Combinatorial optimization with linear objective

The shortest path (SP) and multidimensional knapsack (MKS) are both classic problems in combina-
torial optimization with broad practical applications. In this setting, we consider a scenario where
problem parameters z, such as graph edge weights and item prices, cannot be directly observed
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Shortest Path Multidimensional Knapsack

Figure 2: Normalized test regret (lower is better) for different P+O methods: 2-stage, SPO+ [13], DBB [34],
LODLs [37] and ours (LANCER). Overlaid dark green bars (right) indicate that the method warm started from the
solution of 2stg. DBB performs considerably worse on the right benchmark and is cut off on the y-axis.

during test time, and instead need to be estimated from y via learnable mapping z = cθ(y). That is,
we consider smart P+O setting.

Setup We use standard linear program (LP) formulation for SP and mixed integer linear program
(MILP) formulation for MKS. Observed features y and the corresponding ground truth problem
descriptions z for SP are generated using the same procedure as in [38]: grid size of 5× 5, feature
dimension of y ∈ R5 (obtained using a random linear mapping from z), 1000 instances for both
train and test. For MKS, we increased the knapsack dimension to 5 and capacity to 45, and we set
the number of items to 100. Moreover, we use randomly initialized MLP (1 ReLu hidden layer) to
generate features of dimension y ∈ R256. As for the baselines, apart from the naive 2-stage approach,
we have SPO+ [13] and DBB [34], both implemented in PyEPO [38] library. Furthermore, we
added LODLs, a novel method from Shah et al. [37]. We explored as best as we could all important
hyperparameters for all methods on a fixed cross-validation set. Regarding the LANCER, we utilize
MLP with 2 tanh hidden layers of size 200 for surrogate modelM. We set T = 10 and the number
of updates forM and cθ is at most 10. We use SCIP [1] to solve LP for the shortest path and MILP
for knapsack. Further details can be found in Appendix C.1.1.

Results The results are summarized in fig. 2. We report the normalized regret as described
in [38]. The findings indicate that LANCER and SPO+ consistently outperform the two-stage baseline,
particularly when considering the warm start. As SPO+ is specifically designed for linear programs,
it provides informative gradients, making it a robust baseline. Even in MKS, where theorems
proposed in [13] are no longer applicable, SPO+ performs decently with minimal tuning effort. The
DBB approach, however, demonstrates unsatisfactory default performance but can yield favorable
outcomes with proper initialization and tuning (see the right plot). Interestingly, the other P+O
baselines, initialized randomly, were unable to outperform a naive 2stg in both benchmarks.

LANCER achieves superior performance in both tasks, with a noticeable advantage in MKS. This may
be attributed to the high dimension of the MKS problem and the large feature space (y). One possible
explanation is that the sparse gradients of the derivative-based method make the learning problem
harder, whereas LANCER models the landscape of f ◦ g, providing informative gradients for cθ.

5.1.2 Combinatorial optimization with nonlinear objective

In this section, we apply LANCER for solving mixed integer nonlinear programs (MINLP). Specifically,
we transform a combinatorial problem with a nonlinear objective into an instance of MILP via learning
linear surrogate costs as described in Ferber et al. [16]. Note that in this setting, we assume that the
full problem description y = z is given and fully observable (in contrast to the P+O setting).

We begin by examining on-the-fly optimization, where each problem is treated independently. In this
scenario, the cost vector cθ(y) simplifies to a constant value c. SurCo is then responsible for directly
training the cost vector c of the linear surrogate. As we lack a distribution of problems to trainM,
specific adaptations to Algorithm 1 are necessary, which are outlined in detail in Appendix B. We
refer to this version as LANCER–zero to be consistent with SurCo–zero.
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Grid 5x5 Grid 15x15

Figure 3: Results on stochastic shortest path using different grid sizes: 5x5 (left) and 15x15 (right). We report
avg objective values (higher is better) on three settings described in [16]. For grid size of 15x15, SCIP [1] was
unable to finish within the 30 min time limit.

Setup Nonlinear shortest path problems arise when the objective is to maximize the probability of
reaching a destination before a specified time in graphs with random edges [26, 14]. The problem
formulation is similar to the standard linear programming (LP) formulation of the shortest path, as
described in section 5.1.1, with a few adjustments: 1) the weight of each edge follows a normal distri-
bution, i.e., we ∼ N (µe, σe); 2) the objective is to maximize the probability that the sum of weights
along the shortest path is below a threshold W , which can be expressed using the standard Gaussian
cumulative distribution function (CDF), P (

∑
e∈E we ≤W ) = Φ

(
(W −

∑
e∈E µe)/

√∑
e∈E σe

)
where E is the set of edges belonging to the shortest path. We use 5 × 5 and 15 × 15 grid graphs
with 25 draws of edge weights. We set the threshold W to three different values corresponding to
loose, normal, and tight deadlines. The remaining settings are adapted from Ferber et al. [16], and
additional details can be found in Appendix C.1.2.

Results Fig. 3 illustrates the performance of different methods in both grid sizes. SCIP directly
formulates the MINLP to maximize the CDF, resulting in an optimal solution. However, this approach
is not scalable for larger problems and is limited to smaller instances like the 5× 5 grid. The heuristic
method assigns each edge weight as we = µe + γσe, where γ is a user-defined hyperparameter, and
employs standard shortest path algorithms (e.g., Bellman-Ford). As the results indicate, this heuristic
approach produces highly suboptimal solutions. SurCo–zero and LANCER–zero demonstrate similar
performance, with LANCER–zero being superior in almost all scenarios.

5.2 Real-world use case: quadratic and broader nonlinear portfolio selection

5.2.1 The quadratic programming (QP) formulation

Table 2: Portfolio selection normalized test
decision loss (lower is better).

Method Test DL
Random 1
Optimal 0
2–Stage 0.57 ± 0.02

LODLs [37] 0.55 ± 0.02
MDFL [41] 0.52 ± 0.01
LANCER 0.53 ± 0.02

In this study, we tackle the classical quadratic
Markowitz [30] portfolio selection problem. We use real-
world data from Quandl [35] and follow the setup de-
scribed in Shah et al. [37]. The prediction task leverages
each stock’s historical data y to forecast future prices z,
which are then utilized to solve the QP (i.e., P+O setting).
The predictor is the MLP with 1 hidden layer of size 500.

Setup We follow a similar setup described in [37], ex-
cept for a fix in the objective’s quadratic term that slightly
affects the decision error’s magnitude. More details can
be found in Appendix C.2.1. We compare LANCER against
two-stage and LODLs. However, SPO+ is not applicable in this nonlinear setting, and DBB’s per-
formance is notably worse since it is designed for purely combinatorial problems. Additionally, we
report the optimal solution (using the ground truth values of z) and the (Melding Decision Focused
Learning) MDFL [41] method, which leverages the implicit function theorem to differentiate through
the KKT conditions. For our LANCER implementation, we use an MLP with 2 hidden layers forM
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and update each of the parametric mappings 5 times per iteration with a total of T = 8 iterations. We
use cvxpy [10] to solve the QP.

Results Table 2 summarizes our results. We report the normalized decision loss (i.e., normalized
Eqn. (2)) on test data. Since the problem is smooth and exact gradients can be calculated, MDFL
achieves the best performance closely followed by the LANCER. The remaining results are in agreement
with [37]. While LANCER does not achieve the best overall performance, it does so using a significantly
smaller number of calls to a solver, as we discuss in more detail in Section 5.3.

5.2.2 Combinatorial portfolio selection with third-order objective

Figure 4: Objective (lower is better) and deployment
runtime for combinatorial portfolio selection problem.
For LANCER–zero and SurCo–zero, numbers at each
point correspond to the number of iterations.

The convex portfolio optimization problem dis-
cussed in the previous section 5.2.1 is unable
to capture desirable properties such as logical
constraints [5, 15], or higher-order loss func-
tions [20] that integrate metrics like co-skewness
to better model risk. We use the Quandl [35]
data (see Appendix C.2.2 for details on setup)
and similar to section 5.1.2, we assume that the
full problem description z is given at train/test
time.

Results are shown in fig. 4. We first tried to
solve the given MINLP exactly via SCIP. How-
ever, it fails to produce the optimal solution
within a 1 hour time limit and we report the
best incumbent feasible solution. MIQP (blue
squares) and MILP (blue triangles) approxima-
tions overlook the co-skewness and non-linear
terms, respectively. Comparing their perfor-
mance, MIQP exhibits a 2× lower loss than
the MILP baseline but in a significantly longer
runtime. For LANCER and SurCo, we present results for two scenarios: learning the linear cost vector
c directly (zero) for each instance, and a parameterized version cθ(z) (prior). The main distinction
of “prior” is that no learning occurs during test time, as we directly map the problem descriptor z
to a linear cost vector and solve the MILP. Consequently, the deployment runtime is similar to that
of the MILP approximation, but LANCER–prior produces slightly superior solutions. Remarkably,
LANCER–zero achieves significantly better loss values, surpassing all other methods. Although it
takes longer to run, the runtime remains manageable, and importantly, the solution quality improves
with an increasing number of iterations.

According to our experimental findings, LANCER demonstrated the most substantial improvement
in this specific setting. Encouraged by this success, we conducted a deeper exploration of the
complexities of this problem, as detailed in Appendix D.

5.3 Computational efficiency

Comparing baseline methods, including LANCER, we find that querying solver gθ is the primary
computational bottleneck. To evaluate this aspect, we empirically analyze different algorithms
on various benchmarks in the P+O domain. The results, depicted in fig. 5, highlight that LODLs
require sampling a relatively large number of points per training instance, leading to potentially
time-consuming solver access. On the other hand, gradient-based methods like DBB, MDFL, and
SPO+ typically solve the optimization problem 1-2 times per update but require more iterations
to converge. In contrast, LANCER accesses the solver in the w-step, with the number of accesses
proportional to the training set size and a small total number of alternating optimization iterations.
Moreover, we leverage saved solutions from previous iterations, akin to a replay buffer, when fitting
M. These combined factors allow us to achieve favorable results with a small value of T .
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Multidimensional Knapsack Portfolio Optimization

Figure 5: Trade-off curves between black-box solver calls (MILP or QP) vs decision loss (or regret) on P+O
problems. Point labels (e.g. 1,4,7) correspond to the epoch; except for LODLs, where they correspond to the
number of samples per instance. Each algorithm uses a different number of BB calls per epoch.

Table 3: Results of reusingM on stochastic shortest path problem from fig. 3 (15× 15 grid). Here, “reused
Mw” has limited access to the solver g, and thus is much faster while retaining solution quality.

Method Loose Deadline Normal Deadline Tight Deadline
obj. time (s) obj. time (s) obj. time (s)

LANCER–zero 0.556 ± 0.006 61.1 ± 3.2 0.497 ± 0.004 62.3 ± 2.9 0.434 ± 0.005 62.8 ± 2.7
LANCER–reusedMw 0.556 ± 0.007 2.9 ± 0.3 0.496 ± 0.004 2.7 ± 0.6 0.432 ± 0.004 2.5 ± 0.6

5.4 Reusing landscape surrogateMw

In this scenario, we introduce a dependency ofMw on both the predicted linear cost (c) and the
problem descriptor (y), as described in section 4.1. This enables us to reuse Mw for different
problem instances without retraining, and eliminate the dependency on the solver gθ , giving LANCER
a substantial runtime acceleration. To validate this hypothesis, we pretrainMw using 200 instances
of the stochastic shortest path on a 15× 15 grid by providing concatenated (c,y) as input. We apply
LANCER–zero to the same test set as before and present results in fig. 3, demonstrating comparable
performance between these two approaches, with “reusedMw” being much faster.

6 Conclusion

This paper makes a dual contribution. Firstly, we derive a unified training procedure to address
various coupled learning and optimization settings, including smart predict+optimize and surrogate
learning. This is significant as it advances our understanding of learning-integrated optimization
under partial information. Secondly, we propose an effective and powerful method called LANCER
to tackle this training procedure. LANCER offers several advantages over existing literature, such as
versatility, differentiability, and efficiency. Experimental results validate these advantages, leading
to significant performance improvements, especially in high-dimensional spaces, both in problem
description and feature space. One potential drawback is the complexity of tuningM, requiring
model selection and training. However, future research directions include addressing this drawback
and exploring extensions of LANCER, such as applying it to fully black box f scenarios.
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A Computational complexity

It is quite straightforward to estimate the runtime of our approach from Algorithm 1 in the main paper.
Let us denote Ig as the time to get the solution from solver g(yi). Also, let Iw and Iθ be the runtime
of training the parametric lossMw and the target model cθ , respectively. Then, assuming evaluating
f is negligible, one iteration of our algorithm naively takesO(N · Ig + Iw + Iθ), so the total runtime
is O(T ·N · Ig + T · Iw + T · Iθ). In practice, we iterate at most 100 times (T < 100). Therefore,
the main bottleneck is O(T · N · Ig), which is mainly overtaken by an access to g. Although we
claim that leveragingM to learn θ is efficient, we admit that there is still a requirement to access the
solver g.

However, there are several accelerations that can be made:

1. O(N · Ig) is embarrassingly parallel computation since each request to g is independent
and, additionally, subsampling on Dtrain can be performed.

2. We can “warm start” the solver g from solutions obtained in t− 1, which typically yields
faster convergence.

3. Although we did not test this, but one can “early stop” the solver g if it is too costly to
solve optimally (e.g. large scale MILP). Our hypothesis is that it is enough to obtain a
feasible solution x̂ in certain neighborhood of x∗. Since we are still able to evaluate f and
(f(x̂), ĉ, z) is a “valid” tuple, we can use it to trainMw.

4. Moreover, we empirically found out that the supervised learning steps (lines 10 and 12) do
not require “perfect” learning. That is, we perform several gradient updates over w and θ,
which significantly reduces Iw and Iθ.

B Pseudocodes

Algorithms 2-4 below closely resemble the Algorithm 1 in the main paper. However, there are minor
variations that depend on the problem setting, whether it involves learning linear surrogates for
MINLP or smart Predict+Optimize setting.

Algorithm 2 Pseudocode for learning LANCER and target model cθ for smart Predict+Optimize
setting. Note: y – input (always observed) features, z – ground truth problem descriptions (available
at train time only).

1: Input: Dtrain ← {yi, zi}Ni=1, solver g, objective f (can be black–box), target model cθ , (optional)
prediction loss penalty λ;

2: Initialize cθ from solving: minθ
∑

i∈Dtrain
∥cθ(yi)− zi∥;

3: Set D ← {};
4: for t = 1 . . . T do
5: • w-step (fix θ and optimize over w):
6: for (yi, zi) ∈ Dtrain do
7: evaluate ĉi = cθ(yi);
8: evaluate f̂i = f(g(ĉi); zi);
9: add (ĉi, zi, f̂i) to D;

10: end for
11: minimize: minw

∑
j∈D

∥∥∥Mw(ĉj , zj)− f̂j

∥∥∥;
12: • θ-step (fix w and optimize over θ):
13: minimize: minθ

∑
i∈Dtrain

Mw(cθ(yi), zi) + λ∥cθ(yi)− zi∥.
14: end for
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Algorithm 3 Pseudocode for learning linear surrogates with LANCER–zero (used in sections 5.1.2 and
5.2.2). Note that y = z in this setting and we have only one optimization problem instance.

1: Input: problem description y, solver g, objective f (can be black–box);
2: Initialize c ∈ RL;
3: Set D ← {};
4: for t = 1 . . . T do
5: • w-step (fix c and optimize over w):
6: randomly sample {ĉi}Ni around c;
7: for i = 1...N do
8: evaluate f̂i = f(g(ĉi);y);
9: add (ĉi, f̂i) to D;

10: end for
11: minimize: minw

∑
j∈D

∥∥∥Mw(ĉj)− f̂j

∥∥∥;
12: • θ-step (fix w and optimize over c):
13: // θ = c in this setting as we solve for a single problem instance y
14: minimize: mincMw(c).
15: end for

Algorithm 4 Pseudocode for learning linear surrogates with LANCER–prior (used in section 5.2.2):
we learn cθ on a distribution of optimization problems. Note that y = z in this setting

1: Input: Dtrain ← {yi}Ni=1, solver g, objective f (can be black–box), target model cθ;
2: Initialize cθ (random, warm start from heuristics);
3: Set D ← {};
4: for t = 1 . . . T do
5: • w-step (fix θ and optimize over w):
6: for (yi) ∈ Dtrain do
7: evaluate ĉi = cθ(yi);
8: evaluate f̂i = f(g(ĉi);yi);
9: add (ĉi,yi, f̂i) to D;

10: end for
11: minimize: minw

∑
j∈D

∥∥∥Mw(ĉj ,yj)− f̂j

∥∥∥;
12: • θ-step (fix w and optimize over θ):
13: minimize: minθ

∑
i∈Dtrain

Mw(cθ(yi),yi).
14: end for

C Details of experimental setup

C.1 Synthetic data

C.1.1 Combinatorial optimization with linear objective

Data We follow the setup and scripts from PyEPO [38] library to generate data.

• For SP, we follow the same data generation process as in the original scripts: 5 × 5
grid (40 total edges), 1000 training problem instances with 5 input features (i.e., Y ∈
R1000×5) and the same for the test set. Input features (y) are generated using normal
distribution with N (0,1). The ground truth descriptors z are obtained by first randomly
and linearly projecting y in 40 dimensions followed by nonlinearity (polynomial of degree
6 and normalization). Lastly, random noise is added to z to make the problem harder. We
use the standard linear program (LP) formulation of the shortest path and implement solver
g in SCIP [1].

• As for MKS, we begin by generating a cost vector for each item using a random uniform
distribution between 0 and 5. Then, we obtain features y by passing z through a random
neural network with one hidden layer of size 500 and tanh activation. Knapsack capacity
is 40, knapsack dimension is 5, 100 total items to choose from, feature dimension is 256
and there are 1000 instances in both train/test. Lastly, weight for each item is generated
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according to the uniform distribution between 0 and 1. We use the standard mixed-integer
linear program (MILP) formulation of the multidimensional knapsack and implement solver
g in SCIP [1].

Target mapping cθ All baselines use the same target mappings for each problem: linear mapping
for SP and MLP with 1 hidden layer for MKS (size of 300 and tanh activation).

LANCER The training procedure closely follows Algorithm 2. Other problem dependent settings
are as follows:

• For SP, LANCER uses MLP with 2 hidden layers of size 100 (tanh activation). We train
LANCER for T = 10 iterations. At each iteration, we make 5 updates (using Adam optimizer
with lr= 0.001) for each mappings (cθ andMw).

• For MKS, LANCER uses MLP with 2 hidden layers of size 200 (tanh activation). We train
LANCER for T = 7 iterations. At each iteration, we perform 5 updates (using Adam optimizer
with lr= 0.001) for cθ and 10 updates forMw.

Baselines

• SPO+,DBB: We use the versions implemented within PyEPO and set the number of epochs
to 25. Both methods use the Adam optimizer with learning rates tuned for each problem.
Other arguments follow the default setting suggested by authors.

• LODLs: We use the implementation provided by authors in [37]. We set the number of
sampling points to 1000 and employ “random Hessian” version of the algorithm. Other
arguments follow the default setting suggested by authors.

C.1.2 Combinatorial optimization with nonlinear objective

We aim to solve the following optimization problem with nonlinear objective:

min
x

Φ

(W −
∑

(u,v)∈E

xu,vµu,v)/

√ ∑
(u,v)∈E

xu,vσu,v


s.t.

∑
(u,t)∈E

xu,t ≥ 1 (at least one unit of flow into t)

∑
u:(u,v)∈E

xu,t −
∑

u:(v,u)∈E

xu,t ≥ 0 , ∀v /∈ {s, t} (flow in ≥ flow out)

x ≥ 0

(5)

where Φ is the standard Gaussian cumulative distribution function (CDF), E is the set of all edges,
W is the user-defined threshold, µu,v and σu,v are the mean and the variance of the corresponding
edge’s weight.

Data We closely follow the data generation process described in [16]. Specifically, each edge is a
random variable with µ coming from the uniform distribution (between 0.1 and 0.2); and with σ is
also generated uniformly randomly (between 0.1 and 0.3 multiplied by 1− µ). For thresholds W , we
set them as follows: calculate the distance of the shortest path distance using the mean value as an
edge weight and multiply it to 0.9 for tight, 1.0 for normal and 1.1 for loose deadlines, respectively.
We set the number of problem instances to 25 and use the Bellman-Ford algorithm for a solver g.

LANCER The training procedure closely follows Algorithm 3. We use MLP with 2 hidden layers
of size 200 (300 for 15×15 grid size) and tanh activation. We train LANCER for T = 40 iterations. At
each iteration, we make 10 updates (using Adam optimizer) for each learnable models (c andMw).

Baselines

• SCIP attempts to solve the original MINLP defined in Eqn. (5). We set the maximum time
limit to 30 min before terminating the solver.
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• Domain Heuristic simply assigns each edge’s weight as we = µe + γσe (where γ is a
hyperparameter) and run the Bellman-Ford’s algorithm.

• SurCo [16] replicates the same experimental setup as described in the original paper.
Specifically, we use DBB [34] to differentiate through the solver with λ = 1000 and apply
Adam optimizer for 40 epochs with the learning rate = 0.1.

C.2 Real-world use case: quadratic and broader nonlinear portfolio selection

C.2.1 The quadratic programming (QP) formulation

We use the standard quadratic program formulation of the Markowitz’ [30] portfolio selection
problem:

min
x

αxTGx− µTx

s.t.
k∑

i=1

xi = 1 and x ≥ 0
(6)

where µ is an expected return vector for each portfolio and G is the covariance matrix. We set the
user-defined hyperparameter α = 0.1 in all experiments and use CvxPy [10] to solve QP in eq. (6).

Data We reuse the code from Shah et al. [37] to generate data (downloaded from QuandlWIKI [35])
and use the same setup. The features y are historical stock prices and the task is to predict an expected
return µ (using MLP with 1 hidden layer of size 500) in smart Predict+Optimize fashion. There are
200 instances in train/validation set and 400 instances in test set. The number of portfolios in each
instance is 50.

LANCER The training procedure closely follows Algorithm 2. We use MLP with 2 hidden layers
of size 100 and tanh activation. We train LANCER for T = 8 iterations. At each iteration, we make 10
updates (using Adam optimizer) to fit each mapping (cθ andMw).

Baselines

• LODLs: We use the implementation provided by authors in [37]. We replicate their
configurations for this experiment, except we made a quick fix in the code as they forgot to
add a matrix transpose in the quadratic term.

• MDFL (Melding Decision Focused Learning) [41]: we use the version implemented in [37]
and follow their configurations.

C.2.2 Combinatorial portfolio selection with third-order objective

We extend the portfolio selection problem in eq. (6) as follows:

min
x,v

αxTGx+ γ∥x− x0∥1 − µTx− βxTSx⊗ x

s.t.
k∑

i=1

xi = 1

fmin ∗ vi ≤ xi ≤ fmax ∗ vi for i = 1 . . . k (fraction of each selected portfolio)

m ≤
k∑

i=1

vi ≤M (no. of selected portfolios must be between m and M )

x ≥ 0

v ∈ {0, 1}

(7)

where S is co-skewness matrix and v is the binary variables to enforce discrete constraints (e.g. hard
limit on number of portfolios). We also introduce the initial portfolio selection vector x0 (generated
uniformly at random) and enforce our final solution to be close to it (via γ). We set the penalty on
co-skewness as β = 0.5, γ = 0.01, m = 3, M = 10, fmin = 0.01 and fmax = 0.2 throughout all
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experiments. We reuse the same data as in section C.2.1 but increase the number of portfolios to 100
and add co-skewness matrix S to it. Note that in this task we assume that all problem descriptors are
fully observed (e.g. µ,G,S).

LANCER The training procedure for LANCER-zero closely follows Algorithm 3 and LANCER-prior
closely follows Algorithm 4. We use MLP with 2 hidden layers of size 300 and tanh activation. We
train LANCER for T = 40 iterations. At each iteration, we perform 10 updates (using Adam optimizer)
for each learnable models (cθ andMw). Additionally, LANCER-prior uses a parametric mapping for
cθ which is implemented via 1 hidden layer MLP of size 500, which µ takes as input.

Baselines

• SCIP attempts to solve the problem defined in Eqn. (7) in three different settings related to
the objective: ignores all nonlinear terms (MILP), ignores cubic term (MIQP) and attempts
to solve the original nonlinear problem (MINLP). We set the maximum time limit to 60 min
before terminating the solver and obtaining the best solution.

• For SurCo [16], we use two versions: SurCo-prior and SurCo-zero. SurCo-prior uses the
same mapping for cθ as LANCER described above. We use DBB [34] to differentiate through
the solver with λ = 100 and apply Adam optimizer for 100 epochs with the learning rate
= 0.1 (0.0001 for prior).

D Combinatorial portfolio selection with third-order objective

Based on our experimental findings, LANCER showcased the most significant improvement in ad-
dressing the combinatorial portfolio selection problem. Inspired by this success, we delved further
into the intricacies of this problem and sought to visualize the actual solutions obtained by the two
best-performing methods: SurCo and LANCER. We present the results for a randomly selected instance
in Figure 6.

We have assigned a symbol of a corresponding S&P company to each point for clarity. On the
Y-axis, we represent the expected return of a selected stock, which is multiplied by its fraction
(approximate solution x in Eqn. (7)). Similarly, the X-axis displays the “risk−skewness score”
calculated as follows: αx⊙ (Gx)− βx⊙ (Sx⊗ x), where ⊙ denotes element-wise multiplication.
This computation results in a vector of dimensions equal to the number of stocks, enabling us to
interpret it as a score assigned to each stock. Furthermore, the combinatorial constraints outlined in
Eqn. (7) enforce the selection of a maximum of M stocks with fractions lower than or equal to fmax.

As we try to maximize the return and minimize the risk−skewness score, we want all points to be in
the upper-left corner. This is what LANCER achieves. It is interesting to see that LANCER chooses the
less number of portfolios (6 vs 9) but assigns higher fraction to them improving overall objective.

E Stability of LANCER

Similar to many other approaches designed for solving problems with bi-level optimizations, includ-
ing actor-critic algorithms, we currently lack theoretical guarantees regarding the convergence of
LANCER with respect to eitherMw or cθ . This lack of guarantees can also impact the stability of the
algorithm. However, this is primarily a matter that can be addressed through empirical investigation
and depends on various factors, which is typical in the process of model selection. Nevertheless,
we have observed that LANCER generally exhibits robustness in many cases. As an evidence,
we performed additional experiments on nonlinear shortest path problem (section 5.1.2). In the
two tables below we demonstrate that the final objective does not fluctuate significantly when we
experiment with different combinations of hyperparameters and variations of neural net architecture.
We will leave more ablation studies as the future work.
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Figure 6: Visualization of the solution for a single instance of the combinatorial portfolio selection
with third-order objective. LANCER demonstrates a tendency to select and allocate a significant
proportion to stocks characterized by a combination of low ’risk − skewness’ and high rewards
(upper-left corner).

Table 4: Exploring various hyperparameters for LANCER for nonlinear shortest path problem from
section 5.1.2.

Mw lrn_rate Mw max_itr cθ lrn_rate cθ max_itr OBJECTIVE
0.0005 10 0.001 10 0.4651
0.001 10 0.001 10 0.4649
0.01 10 0.001 10 0.4650

0.0005 5 0.001 10 0.4590
0.001 5 0.001 10 0.4597
0.01 5 0.001 10 0.4651

0.0005 20 0.001 10 0.4651
0.001 20 0.001 10 0.4612
0.01 20 0.001 10 0.4651
0.001 10 0.0005 10 0.4612
0.001 10 0.01 10 0.4650
0.001 10 0.001 20 0.4648

Table 5: Exploring various model architecture for LANCER for nonlinear shortest path problem from
section 5.1.2.

Mw num of hidden layers Mw layer size OBJECTIVE
1 50 0.4644
1 100 0.4646
1 200 0.4641
2 50 0.4646
2 100 0.4651
2 200 0.4651
3 50 0.4644
3 100 0.4650
3 200 0.4642

19


	Introduction
	Related work
	A Unified Training Procedure
	LANCER: Learning Landscape Surrogate Losses
	Reusing landscape surrogate model Mw
	Reusing past evaluations of fgbold0mu mumu 

	Experiments
	Synthetic data
	Combinatorial optimization with linear objective
	Combinatorial optimization with nonlinear objective

	Real-world use case: quadratic and broader nonlinear portfolio selection
	The quadratic programming (QP) formulation
	Combinatorial portfolio selection with third-order objective

	Computational efficiency
	Reusing landscape surrogate Mw

	Conclusion
	Computational complexity
	Pseudocodes
	Details of experimental setup
	Synthetic data
	Combinatorial optimization with linear objective
	Combinatorial optimization with nonlinear objective

	Real-world use case: quadratic and broader nonlinear portfolio selection
	The quadratic programming (QP) formulation
	Combinatorial portfolio selection with third-order objective


	Combinatorial portfolio selection with third-order objective
	Stability of LANCER

