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Abstract

Popular metrics for clustering comparison, like the Adjusted Rand Index and the
Adjusted Mutual Information, are type II biased. The Standardized Mutual In-
formation removes this bias but suffers from counterintuitive non-monotonicity
and poor computational efficiency. We introduce the p-value adjusted Rand Index
(PMI2), the first cluster comparison method that is type II unbiased and provably
monotonous. The PMI2 has fast approximations that outperform the Standardized
Mutual information. We demonstrate its unbiased clustering selection, approxima-
tion quality, and runtime efficiency on synthetic benchmarks. In experiments on
image and social network datasets, we show how the PMI2 can help practitioners
choose better clustering and community detection algorithms.

1 Introduction

Clustering is fundamental to unsupervised learning, and practitioners can choose from many algo-
rithms to partition a dataset into homogeneous clusters. Therefore it is common to annotate parts of
an otherwise unlabeled dataset and select the clustering algorithm that best reproduces the annotations
[1]. A good selection crucially depends on the clustering comparison method, like the Mutual
Information (MI) [25] or the Rand Index (RI) [39]. The importance of the comparison method further
increases with the advent of deep learning methods for applications such as community detection,
in which they serve as components of loss functions during network training [10, 12, 33]. Some
use cases admit multiple clustering solutions [23, 38], and clustering comparison can help identify
qualitatively different clustering solutions for a single dataset. Other applications of clustering
comparison include categorical feature selection or consensus clustering [5, 17].

The MI and RI are biased towards clusterings with particular cluster size distributions [19] (type I
bias). For example, the MI favors larger clusters for any reference clustering [24]. The Adjusted
Rand Index (ARI) [11] and Adjusted Mutual Information (AMI) [25] achieve a constant baseline
value by subtracting the expected value under random permutation of the cluster labels. However,
they still exhibit a bias when multiple clusterings are compared via a fixed ground truth (type II bias)
[29], as opposed to comparing two random clusterings with each other. This type II scenario typically
arises when selecting the best algorithm for a given task on a labeled subset of the data.

Romano et al. [30] showed via the Tsallis entropy, that the AMI and ARI are special cases of general-
ized information-theoretic clustering comparison measures AMIq and proposed standardization to
resolve both types of biases. However, the runtime for standardization generally exhibits a substantial
time complexity of O(N3kA max(kA, kB)) [30], where N represents the number of data points
and kA and kB denote the respective number of clusters. This complexity is prohibitive for many
applications [15]. Gösgens et al. [9] found that the Standardized Mutual Information (SMI) does not
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increase monotonically as one clustering is adjusted to match a reference and therefore reject the SMI
entirely.

This work presents the p-value of the MIq (denoted PMIq) as a provably monotonous type II bias
correction. We formally define type II bias and prove that the PMIq does not suffer from it. For
the SMIq, there is only empirical evidence [29, 30]. We show that the PMIq is monotonous for
q ≥ 2. This includes the p-value of the RI, but for the MI, the p-value is not monotonous. When
normalized with the normal CDF, the SMIq approximates the PMIq, which we confirm via Monte
Carlo simulation. We reduce the runtime of the SMI2 from O(N3kA max(kA, kB)) to a much more
practical O(kAkB) by a reformulation of the variance term. We demonstrate the impact of type II
unbiased algorithm selection for community detection on a social network dataset and clustering on
images of handwritten digits and human faces.

2 Generalized information theoretic clustering comparison measures

A clustering A of N data points is a partition of the set {1, . . . , N} into disjoint subsets A =
{A1, . . . , AkA

}. Ai denotes the set of points in the i-th cluster of size ai := |Ai| and kA is the
number of clusters in A. Clustering comparison measures quantify the similarity between two
clusterings A and B, and can be expressed as a function of the contingency table (Table 1).

Table 1: Contingency table for clusterings A,B with kA and kB clusters respectively. Lower case ai
and bj denote the cluster size of the i-th and j-th clusters in A and B, while nij represents the size
of their overlap. Clustering comparison measures can be expressed in terms of the elements of this
contingency table.

B
b1 · · · bj · · · bkB

a1 n11 · · · · · · · n1kB

...
...

...
...

A ai · nij ·
...

...
...

...
akA

nkA1 · · · · · · · nkAkB

While many clustering comparison methods exist in the literature [2, 9], many well-known methods
like the Variation of Information, Mirkin Index, or Rand Index belong to the family of generalized
information-theoretic clustering comparison measures [30, 31]. When adjusted for chance, these
measures reduce to the mutual information with Tsallis q-entropy [35], which will be the focus of
this work.
Definition 2.1 (Tsallis q-entropy). Let q ∈ R+, and A be a clustering. Then, the Tsallis q-entropy is

Hq(A) = −
kA∑
i=1

(ai
N

)q

logq
ai
N

, (1)

with the q-logarithm logq(y) := (y1−q − 1)/(1 − q) if q ̸= 1 and the natural logarithm for q = 1,
where x log1(x) = 0 for x = 0.

The generalized mutual information is defined in analogy to the mutual information but with Tsallis
q-entropy replacing the Shannon entropy.
Definition 2.2 (Generalized mutual information). Let A,B be two clusterings of the set {1, . . . , N}
and q ∈ R+, then the generalized mutual information is

MIq(A,B) = Hq(A) +Hq(B)−Hq(A,B). (2)
Here Hq(A,B) denotes the joint q-entropy Hq({Ai ∩Bj |Ai ∈ A ∧Bj ∈ B}).

3 Adjustment for chance

The bare MIq has limited value as a clustering comparison measure. When comparing two clusterings
directly with one another, it is biased towards larger or smaller clusters, depending on the value of
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q (type I bias) [19, 25]. But even after adjusting for type I bias, there is another, more subtle bias
when multiple clusterings are compared via a single ground truth [29] (Figure 1). In Section 3.2, we
introduce the p-value as an adjustment to the latter type II bias.

3.1 Type I bias

It is well known throughout the literature that the MI1 is biased towards smaller clusters in direct
clustering comparisons [19, 25]. To make this precise, Gösgens et al. [9] defined a family of clustering
distributions for which the expected similarity to a reference clustering should be constant:

Definition 3.1 (Element-symmetric distribution). A distribution over clusterings B is element-
symmetric if every two clusterings B and B′ with the same cluster sizes have the same probability.

An example of an element-symmetric distribution is the uniform distribution over all clusterings of
N elements into k clusters. If the clustering is random, a comparison measure should not favor one
particular k over another. If it does, we call it type I biased [9].

Definition 3.2 (Type I unbiased). A clustering measure V is type I unbiased if there is a constant c,
such that for any clustering A with 1 < kA < N and every element-symmetric distribution B the
expected value EB∼B[V (A,B)] = c is constant.

In other words, type I unbiased means that when comparing a fixed clustering A to all permutations
of any clustering B, the average metric value is the same for all A. As the MIq has this type I bias, it
is commonly adjusted by subtracting its expected value under random permutation, yielding a type I
unbiased measure [30].

AMIq(A,B) :=
MIq(A,B)− Eσ∈SN

[MIq(A, σ(B))]
1
2 (Hq(A) +Hq(B))− Eσ∈SN

[MIq(A, σ(B))]
. (3)

SN denotes the symmetric group and 1
2 (Hq(A)+Hq(B)) is an upper bound to the MIq such that the

AMIq is normalized to c = 0 for random clusterings and upper bounded by 1 [25, 30]. Adjustments
with respect to other random models are possible [8, 18]. However, the random permutation model
remains the most popular and is the focus of this work. Due to the generalization using Tsallis
entropy, the AMI2 corresponds to the Adjusted Rand Index [11, 30].

3.2 Type II bias

However, in a typical external validation scenario, a single absolute value of the AMIq is of little help.
While it is easy to understand that an AMIq of zero means a clustering algorithm is no better than
random and a value of one means optimal agreement, the scale of the range in between is unclear.
Therefore, the AMIq values of multiple candidate solutions with a reference are typically compared
against each other to find the best algorithm for a given dataset.

As a toy model for this scenario, we uniformly generate 5000 clusterings of N = 500 elements for
each number of clusters kB ∈ {2, 6, 10, 14, 18, 22} [29]. We compare them to a fixed clustering A
with kA = 10 evenly sized clusters and plot the selection probabilities for the RI,MI, and AMIq for
q ∈ {1, 2} (Figures 1a, b, d and e). The bare MI and RI and their adjusted variants AMIq are biased
towards certain values of kB .

We generalize and formalize this observation by demanding a clustering comparison measure to favor
no element-symmetric distribution over another.

Definition 3.3 (Type II unbiased). Let V be a clustering comparison measure and B,B′ be element-
symmetric clustering distributions. V is type II unbiased if

EB∼B,B′∼B′ [θ(V (A,B)− V (A,B′))] =
1

2
(4)

for any clustering A with 1 < kA < N , where θ denotes the Heaviside step function with θ(0) = 1/2.

Intuitively, Type I bias means that certain cluster sizes receive higher metric values. Type II bias,
on the other hand, gives a higher relative rank to certain cluster sizes when multiple clusterings are
compared with a ground truth.
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Figure 1: We compare a fixed reference clustering with kA = 10 even clusters, to random clusterings
with kB ∈ {2, 6, 10, 14, 18, 22} clusters. The plot shows the selection probabilities of each kB
for the MI and RI and its adjusted (AMIq) and our p-value adjusted (PMIq) variants after 5000
repetitions. The RI,MI, and AMIq are type II biased, while our PMIq selects each cluster size with
equal probability.

Romano et al. [29] introduced standardization to correct for type II bias

SMIq(A,B) :=
MIq(A,B)− Eσ∈SN

[MIq(A, σ(B))]√
Eσ∈SN

[MIq(A, σ(B))]2 − Eσ∈SN
[MIq(A, σ(B))2]

. (5)

They observed in numerical simulations that in the toy model above (Figure 1), the SMIq selects each
kB with approximately equal probability [30].

However, the MIq is not normally distributed under random permutation (Figure 2a), and standardiza-
tion is only an approximation to the true p-value (Figure 2b). The p-value quantifies what percentage
of all permutations of the data would have led to higher mutual information, and we propose to use it
for clustering comparison.
Definition 3.4 (p-value adjusted, generalized mutual information). Let A,B be two partitions of the
set {1, . . . , N}, q ∈ R+. Assuming the random permutation model, the p-value adjusted, generalized
mutual information is

PMIq :=Eσ∈SN
[θ(MIq(A,B)−MIq(σ(A), B))]. (6)

Note that as the marginal entropies are independent of the permutation,
PMIq = Eσ∈SN

[θ(Hq(σ(A), B) − Hq(A,B))]. For q = 1, this is the p-value of the mu-
tual information and the variation of information by definition. For q ̸= 1 the PMIq further simplifies
to Eσ∈SN

[θ(n′q
ij − nq

ij)] for q > 1 and Eσ∈SN
[θ(nq

ij − n′q
ij)] for q < 1 with n′

ij being the elements
of the contingency table for σ(A), B. In a sense, the details of the generalized mutual information
don’t matter under p-value adjustment, except the exponent q of the contingency matrix elements. In
fact, the p-value of the Rand Index is equivalent to the PMI2 by a very similar argument.

In the experiment in Figure 1, we observe that the PMI1 and PMI2 select each kB with approximately
equal probability.
Proposition 3.1. The PMIq is type I and type II unbiased.

We formally prove this result in Appendix A.
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Figure 2: The probability of obtaining a particular MI2 under random permutation for two fixed
clusterings A,B each of 100 elements. Our PMI2 (blue bars in a)) takes the true distribution
of the MI2 into account, whereas the SMI2 (shaded blue region in b)) is based on a continuous
normal approximation. However, when normalized with the normal CDF Φ, the SMI2 is a good
approximation of the PMI2 as shown in Figure c). Here, we sampled 1000 pairs of clusterings
uniformly at random for different numbers of elements N . We plot the absolute difference between
Monte Carlo estimates of the PMI2 and normalized SMI2 values as a function of the two-sided
p-value. The larger the dataset size N , the better Φ(SMI2) approximates the true PMI2.

4 Monotonicity

When one clustering is changed to resemble another more, any clustering similarity measure should
increase. A major drawback of the SMI1(A,B) is its non-monotonous behavior as the number of
pairs of elements that agree in A and B increases [9]. We show that the PMIq , on the other hand, is
monotonous for q ≥ 2.

4.1 Definition of monotonicity

The atomic operations that add new pairs of agreeing elements in two clusterings are the perfect split
and the perfect merge [9].

Definition 4.1 (Perfect split). B′ is a perfect split of B with respect to A if it splits a single cluster
B1 ∈ B into B′

1, B
′
2 ∈ B′ such that for all i either Ai ∩B1 ⊂ B′

1 or Ai ∩B1 ⊂ B′
2.

Definition 4.2 (Perfect merge). B′ is a perfect merge of B with respect to A if B′ is obtained by
merging two clusters B1, B2 ∈ B with B1, B2 ⊂ Ai for some i.

Gösgens et al. [9] require that any clustering similarity measure increases monotonically for any
combination of perfect splits and perfect merges.

Definition 4.3 (A-consistent improvement). B′ is an A-consistent improvement of B iff there exists
a series of perfect splits and perfect merges that change B into B′.

Definition 4.4 (Monotonicity). A symmetric clustering comparison measure V is monotonous if for
every A,B with 1 < kA < N and any A-consistent improvement B′ of B, V (A,B′) > V (A,B).

We show that the PMIq is monotonous for q ≥ 2, making it the first known clustering comparison
measure to be both type II unbiased and monotonous. The case q = 2 is particularly interesting as it
corresponds to the well-known Rand Index.

4.2 Proof of monotonicity for PMIq with q ≥ 2

The proof can be broken down into monotonicity under perfect splits and perfect merges. We first
show that the joint q-entropy increases under any split that is not perfect.
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Lemma 4.1. Let A,B be clusterings with 1 < kA < n and B′ be obtained by splitting a cluster
Bj ∈ B into non-empty clusters B′

j1
, B′

j2
. Then Hq(A,B′) = Hq(A,B) + ∆Hq with ∆Hq ≥ 0

and equality iff the split is perfect with respect to A.

This statement is a direct consequence of the subadditivity of the q-entropy [7]. In particular
hq : p 7→ pq logq p is a strictly convex function with hq(0) = 0 and hence strictly superadditive, i.e.
hq(p1 + p2) ≥ hq(p1) + hq(p2) for any p1, p2 ≥ 0 with equality iff p1 = 0 ∨ p2 = 0.

Proof of Lemma 4.1. We express ∆Hq as

∆Hq =
∑
i

[(nij

N

)q

logq

(nij

N

)
−

(
n′
ij1

N

)q

logq

(
n′
ij1

N

)
−
(
n′
ij2

N

)q

logq

(
n′
ij2

N

)]

=
∑
i

hq

(nij

N

)
− hq

(
n′
ij1

N

)
− hq

(
n′
ij2

N

)
. (7)

From nij = n′
ij1

+ n′
ij2

and the strict superadditivity of hq follows ∆Hq ≥ 0 with equality iff
n′
ij1

= 0 ∨ n′
ij2

= 0, i.e. when the split is perfect.

Conversely, a perfect merge maximizes the difference in joint entropy.

Lemma 4.2. Let A,B,B′ and ∆Hq be as in Lemma 4.1, then for q ≥ 2, ∆Hq is maximal iff B is a
perfect merge of B′ with respect to A.

Proof of Lemma 4.2. When B is a perfect merge of B′ with respect to A, then

∆Hperfect
q = hq

(
bj
N

)
− hq

(
b′j1
N

)
− hq

(
bj − b′j1

N

)
. (8)

To show that ∆Hperfect
q is superadditive as a function of bj , we take its second derivative

d2

db2j
∆Hperfect

q =
q

Nq

(
bq−2
j − (bj − b′j1)

q−2
)
≥ 0 for q ≥ 2 and bj > b′j1 > 0. (9)

For q > 2, it is strictly convex and thus strictly superadditive. For q = 2 and bj = 0, the difference
∆Hperfect

q = −b2j1 is negative and thus ∆Hperfect
2 is also strictly superadditive. Now consider Ã such

that B is not a perfect merge with respect to Ã. Then at least two Ãi1 , Ãi2 have non-vanishing overlap
ñi1j , ñi2j > 0 with Bj such that

∆Hperfect
q >

∑
i

hq

(
ñij

N

)
− hq

(
b′j1
N

)
− hq

(
ñij − b′j1

N

)
for q ≥ 2. (10)

With the superadditivity of hq follows Hperfect
q > Hnot perfect

q (Compare Eq. 7).

Now that we know how the joint entropy behaves under perfect splits and perfect merges, we can put
together the proof of the monotonicity of the PMIq .

Theorem 4.3. Let A,B be clusterings with 1 < kA < n and B′ an A-consistent improvement of B.
Then PMIq(A,B′) > PMIq(A,B) for q ≥ 2.

Proof of Theorem 4.3. It suffices to show monotonicity for B′ a perfect split or perfect merge since
any A-consistent improvement of B can be obtained by a sequence of perfect splits and perfect
merges.

Case 1. B′ is a perfect split.
Since A is not a singleton cluster, a permutation σ exists such that B′ is not a perfect split with
respect to σ(A) and with Lemma 4.1 it follows

PMIq(A,B′) > Eσ∈SN
[θ(Hq(σ(A), B)−Hq(A,B′))]. (11)
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Figure 3: Runtime of the Monte Carlo PMI2 and the SMI2 for random clusterings of a) N elements
into kA = kB = 10 clusters and of b) random clusterings with N = 1000 and varying approximation
error a. The SMI1 calculation, as proposed in [29], is prohibitively expensive for medium-sized
datasets. Our exact reformulation of the SMI2 and the Monte Carlo PMI2 maintain practical runtimes
for high N . The Φ(SMI2) is faster, while the Monte Carlo PMI2 allows for higher accuracy.

However, B′ is a perfect split of B with respect to A and equality holds in Lemma 4.1

PMIq(A,B′) > Eσ∈SN
[θ(Hq(σ(A), B)−Hq(A,B))] = PMIq(A,B). (12)

Case 2. B′ is a perfect merge.
Let b1, b2 ∈ B denote the merged clusters that form b′1 ∈ B′. Using Lemma 4.2, we find

PMIq(A,B′) = Eσ∈SN
[θ(Hq(σ(A), B)−Hq(A,B) +∆Hσ(A)

q −∆HA
q )] > PMIq(A,B), (13)

as there is at least one permutation σ for which the merge is not perfect.

5 Approximations and runtime

A limitation of the PMIq is its computational complexity. Its exact calculation is intractable even for
small datasets, as it requires a sum over all contingency tables with given marginals. To mitigate this
limitation, we propose two approximation schemes:

1. Standardized approximation (q = 2): We approximate the true, discrete distribution
of MIq with a continuous normal distribution that matches its first and second statistical
moments (See Figure 2a and b). While this approximation is particularly fast for q = 2, it
does not preserve the theoretical guarantees of the PMIq .

2. Monte Carlo approximation: Given two clusterings A and B, we sample contingency
tables with the same cluster sizes. The fraction of tables with MIq lower than MIq(A,B)
approximates the true p-value. In this approach, the theoretical guarantees hold up to a
tunable approximation error at the cost of higher runtime.

5.1 The standardized Rand Index

We approximate the PMIq with the SMIq , normalized with the normal CDF Φ (Figure 2b). This can
be seen as a truncated, second-order Gram Charlier A series of the PMIq, and while this could be
continued for higher statistical moments, it is difficult to find an exact error term [37]. A more cautious
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normalization permits the lower bound PMIq(A,B) ≥ 1− 1
1+(SMIq(A,B)))2 for SMIq(A,B) > 0,

but has little practical significance in the context of this work [30]. Therefore, we evaluate the
approximation quality experimentally1 on 1000 pairs of clusterings drawn uniformly from the set of
all clusterings with N ∈ {50, 100, 200, 500, 1000} using a method described in [16]. We compare
Φ(SMI2) := (1 + erf (SMI2 /

√
2))/2 with a Monte Carlo estimate of the PMI2 with approximation

error 0.001 in Figure 2c. The values are highly correlated (rPearson = 0.9983 for N = 50), and the
approximation improves with larger values of N (rPearson = 0.9995 for N = 1000). So although
Φ(SMIq) itself is not monotonous, it closely matches the PMIq , which is monotonous for q ≥ 2.

While Φ(SMIq) is a simplification over the PMIq, its computational complexity
O(N3kA max(kA, kB)) for general q is far from practical [15, 30]. In this work, we con-
tribute a novel algorithm for the special case q = 2 that improves the computational complexity.
Proposition 5.1. The computational complexity of SMI2 is O(kAkB).

The proof is in Appendix C. This special case q = 2 is of particular interest because of the correspon-
dence with the well-known Rand Index and the monotonicity of PMI2. Our improved algorithm for
the SMI2 allows comparisons of moderately sized clusterings N ≈ 10,000 that are computationally
out of reach for, e.g., the SMI1 (Figure 3a).

5.2 Monte Carlo approximation

The standardized approximation has two limitations:

• It is computationally inefficient only for q ̸= 2.
• There is no guarantee that it preserves the desirable theoretical properties of the PMI2.

We address both of these limitations by introducing a Monte Carlo approximation at the cost of
increased runtime. For two clusterings A,B, the method samples contingency tables uniformly
from all tables with their respective cluster sizes a1, . . . , akA

; b1, . . . , bkB
(Compare Table 1), using

the algorithms proposed in [4, 26]. The fraction of samples with MIq lower than MIq(A,B) is an
unbiased estimator of the PMIq. The sampling procedure terminates when a given approximation
error a is reached. This way, the theoretical properties of the PMIq are preserved up to the tunable
approximation error.

However, lower approximation errors require more samples:
Proposition 5.2. The computational complexity of the Monte Carlo PMIq is
O(min(N, kAkB logN)/a2), with the desired approximation error a.

The proof is in Appendix B, and Figure 3 shows an experimental study of the runtime compared
to the standardized approximation. The Monte Carlo approach is computationally more expensive,
especially for larger datasets. Therefore, the standardized approach is for choice when q = 2 and
moderate approximation quality is acceptable. The Monte Carlo method should be used if q ̸= 2 or
theoretical guarantees are required.

6 Algorithm selection on real-world datasets

6.1 k-means clustering on image datasets

As a first example, we mimic the synthetic experiment in Figure 1. For several numbers of clusters
k, we apply k-means clustering [21] with 1000 different random seeds. We select the clustering
with the highest RI, AMI2, and PMI2, approximated by Φ(SMI2) and denote the corresponding
number of clusters kselected. Figure 4a shows the selection probabilities of kselected when compared
with a ground truth with ktrue clusters for a handwritten digit dataset [6] and Figure 4b for a dataset of
human faces [27]. Naturally, all measures favor solutions where kselected > ktrue, as a higher number
of clusters increases the chances of k-means matching the reference decision boundaries. However,
the RI and AMI2 additionally suffer from type II bias, leading to a higher overestimation of kselected

1The experiments were executed on an AMD Ryzen 9 5950X. The code for all experiments is available at
https://github.com/mad-lab-fau/pmi-experiments.
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Figure 4: We apply k-means clustering [21] with varying k to a) the UCI handwritten digit dataset
[6] and b) the Olivetti faces dataset [27] and select the solution with the highest similarity to the
ground truth. We repeat this experiment 1000 times with different random seeds and plot the
selection probability under the RI,AMI2, and normal approximation of the PMI2. The PMI2 selects
candidates where kselected is closer to the true number of clusters ktrue on average (dashed lines)
compared to the RI and AMI2. In c), we select a connected subset of ktrue = 30 communities from
the email EU core dataset [20] and detect communities using five algorithms with 22 parameter
configurations. The RI,AMI2, and PMI2 select the best solution, and we plot the selection probability
for kselected after 100 repetitions. The PMI2 prefers the Leiden algorithm, which produces kselected
on the order of ktrue. The AMI2 gives a higher probability for Louvain Map Equation, and the RI
sometimes selects low-quality Label Propagation results.

(compare with Figure 1). The difference between the AMI2 and the PMI2 is subtle, but this is
expected. Type II bias correction is just one step forward in clustering comparison and does not turn
existing assessments based on metrics like the AMI2 on its head. In practice, much wider ranges of
kselected can arise from different clustering algorithms which could potentially amplify the effect. Two
additional experiments with spectral clustering instead of k-means can be found in Appendix E.

6.2 Community detection in social networks

In social networks, detecting communities is ubiquitous and can help to detect fraud, deliver person-
alized content, or target ads [13]. As a result, many community detection algorithms are known in
the literature [3, 28, 34]. However, community detection is inherently unsupervised, and it is a priori
unclear which algorithm with which parameters will perform best for a given application. In practice,
human experts often annotate a subset of the dataset, and an unsupervised algorithm is selected via a
clustering comparison measure on that subset.

We simulate this procedure on a network of email conversations between European research insti-
tutions, where each institution is a ground truth cluster [20]. We select a connected subset with
ktrue = 30 institutions and detect communities using Degree Ordered Label Propagation, Label
Propagation, Leiden, Louvain, and Louvain Map Equation [32] with 22 parameter configurations
(Appendix D). We then select the most similar algorithm to the ground truth using RI, AMI2, and
PMI2 ≈ Φ(SMI2). This process is repeated for 100 subsets per dataset, and the resulting probabili-
ties are shown in Figure 4c. Label propagation is a fast but inaccurate method [28] and overestimates
ktrue by almost an order of magnitude in our experiment. During algorithm selection, RI was the
only metric to choose Label Propagation in some cases. The PMI2 differs from the AMI2 in that it
selected Leiden more frequently over the Louvain Map Equation, both of which are improvements
over the original Louvain method [14, 34]. However, Leiden comes closer to the true number of
clusters ktrue, and in that sense, PMI2 led to a better choice of algorithm.
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Table 2: Comparison of the PMIq to the clustering comparison metrics in the systematic review by
Gösgens et al. [9]. Examples for type II biasedness can be found in Appendix A. We consider a
metric computationally tractable if its asymptotic complexity is linear in the number of data points
N but not necessarily in the numbers of clusters kA, kB . The rationale is that in many cases, the
number of clusters is much lower than the number of data points and metrics like the AMI1 with
O(N max{kA, kB}) are widely used in practice [27, 29]. The PMI2 is the first metric to be Type II
unbiased and monotonous and, while computationally demanding, has efficient approximations.
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Type I unbiased ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Type II unbiased ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ○␣ ○␣ ✓ ✓

Monotonicity ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓
Comp. tractable ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ○␣ ○␣

7 Conclusion and outlook

Table 2 summarizes our findings for the PMIq and compares its theoretical properties to 17 clustering
comparison measures from the systematic review by Gösgens et al. [9]. We introduce the first
type II unbiased and monotonous cluster comparison method, the p-value adjusted Rand Index
(PMI2). Existing methods that addressed type II bias, namely the Standardized Mutual Information
(SMI1) and the Standardized Rand Index (SMI2) are not monotonous, meaning clusterings closer
to the ground truth can score worse. In addition, the SMI1 has high computational complexity,
making it unsuitable in practice. For the SMI2 we showed that an efficient algorithm exists and
we leverage this algorithm for an efficient approximation of the proposed PMI2. However, our
analysis of the errors in this standardized approximation is limited to experimental observations,
leaving a theoretical analysis for future work. We devised a Monte Carlo approximation for the
PMI2 with tunable approximation error, for when theoretical guarantees are required. To validate our
theoretical findings, synthetic experiments confirm that the presented PMI2 selects different cluster
sizes with equal probability and is not subject to type II bias. In practice, the PMI2 chooses better
clustering algorithms from a set of candidates when a ground truth reference is available. Thanks to
its monotonicity and computational efficiency, the PMI2 is a practical candidate for evaluating cluster
similarity without type II bias. While we investigated p-value adjustment for the family of generalized
information-theoretic clustering comparison measures, further research is required to understand if
other comparison measures, like the Jaccard Index, could benefit from a similar adjustment.
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Appendix
A Type II Bias

We show that the PMIq is both type I and type II unbiased:

Proof of Proposition 3.1. The choice of θ(0) = 1
2 allows us to use θ(x) = 1− θ(−x) such that

PMIq(A,B) = Eσ∈SN
[θ(Hq(A,B)−Hq(σ(A), B))] =

Eσ̃∈SN
[θ(Hq(σ̃(A), B̃)−Hq(A, B̃))] =

1− Eσ̃∈SN
[θ(Hq(A, B̃)−Hq(σ̃(A), B̃))],

(14)

with B̃ = σ−1(B) and σ̃ = σ−1. Now in the definition of type I unbiasedness, B is element-
symmetric, such that B̃ ∈ B and

EB∼B[PMIq(A,B)] = 1− EB̃∼B[PMIq(A, B̃)] =
1

2
. (15)

Hence, PMIq is type I unbiased.

For type II unbiasedness, B,B′ are element symmetric and with Eq. 14 we get

EB∼B,B′∼B′ [θ(PMIq(A,B)− PMIq(A,B′))] =

1−EB∼B,B′∼B′ [θ(PMIq(A,B′)− PMIq(A,B))] =

1−EB̃∼B,B̃′∼B′ [θ(PMIq(A, B̃)− PMIq(A, B̃′))] =
1

2
.

(16)

For all other clustering comparison measures in Table 2, the proof or a counterexample to type I
unbiasedness are given in [9]. Here, we provide an example for their type II bias. For N = 4
data points, we compare the clustering A = {{1, 4}, {2, 3}} with all clusterings with 2 clusters,
distributed uniformly B. We also compare A to all clusterings from the uniform distribution B′ of
N = 4 data points into 3 clusters. All comparison measures except the PMI2 prefer either 2 or 3
clusters in the sense that their expectation value in Eq. 4 is not equal to 1/2, and are thus type II
biased (See Table 3).

Table 3: Example for type II bias of other clustering comparison measures. For A = {{1, 4}, {2, 3}}
and B,B′ the uniform distribution of all clusterings with 4 elements into 2, 3 clusters respectively,
the expected value EB∼B,B′∼B′ [θ(V (A,B)− V (A,B′))] ̸= 1

2 and hence these measures are type II
biased.
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B Monte Carlo PMIq

Proof of proposition 5.2. Random contingency tables with fixed marginals can be generated in
O(min(N, kAkB logN)) [4, 26]. The error a =

√
PMIq(1− PMIq)/Nsamples decreases with the

inverse square root of the number of Monte Carlo samples Nsamples. Hence we need Nsamples ≤ a−2/4
samples to reach the approximation error a.
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C The standardized Rand Index

For the proof of the runtime complexity of the SMI2, we use the fact that it is equivalent to the SRI
(Corollary 2 in [30])

SRI :=
RI−E[RI]√

Var[RI]
=

∑
ij

(
nij

2

)
− E

[∑
ij

(
nij

2

)]
E
[(∑

ij

(
nij

2

))2
]
− E

[∑
ij

(
nij

2

)]2 = SMI2 . (17)

Proof of Proposition 5.1. Hubert and Arabie [11] derived the expected value under random permuta-
tion as

E

∑
ij

(
nij

2

) =
∑
ij

(
ai

2

)(
bj
2

)(
N
2

)2 . (18)

For the variance, we also need the second moment. While Romano et al. [30] give a general formula
in Eq. (13), it is impractical in the given form as the authors themselves note the runtime complexity
is O(N3kA max(kA, kB)). We observe that in the special case of the SRI, the higher moments can
be simplified by leveraging the identity [39]

E
[(

nij

2

)m∣∣∣∣nij ∼ Hyp(ai, bj , N)

]
=

min(N,2m)∑
l=2

S2,2(m, l)

2m

l−1∏
p=0

(ai − p)(bj − p)

N − p
, (19)

with the generalized Stirling Number S2,2(m, k) [22] and the hypergeometric distribution Hyp. Note
that the right-hand side is completely independent of nij . Hence the expected values under the
hypergeometric distributions in Eq. (13) in [30] can be calculated in O(max {kA, kB}) time, giving

E

∑
ij

(
nij

2

)2
 =

2γa

kB∑
j=1

(N − bj)(N − 3(bj − 1))(bj − 1)bj

+

kA∑
i=1

a2i (ai − 1)

kB∑
j=1

(4N − 5bj + 3)(bj − 2)(bj − 1)bj

+

kA∑
i=1

a3i (ai − 1)

kB∑
j=1

(bj − 3)(bj − 2)(bj − 1)bj

+ (γ2
a − γa,2)

kB∑
j=1

bj(bj − 1)(bj − 2)(bj − 3)

+ (γ2
b − γb,2)

kA∑
i=1

ai(ai − 1)(ai − 2)(ai − 3)

+ (γ2
a − γa,2)(γ

2
b − γb,2)

)
1

4 (N(N − 1)(N − 2)(N − 3))
,

(20)

for the most general case N ≥ 4 and no cluster larger than N − 2, with

γa =

N∑
i=1

ai(ai − 1) γa,2 =

N∑
i=1

a2i (ai − 1)2 γb =

N∑
j=1

bj(bj − 1) γb,2 =

N∑
j=1

b2j (bj − 1)2.

(21)

The other cases can be treated analogously using Eq. (19). Hence the dominant factor for the
runtime complexity of the SRI is the RI itself with O(kAkB) for the sum over all contingency matrix
elements.
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D Community detection parameter configurations

For the experiment in Figure 4c, we compared five community detection algorithms implemented
in networkit [32]. Label Propagation and Degree Ordered Label Propagation do not have any
parameters. The parameter choices for the other algorithms is listed in Table 4.

Table 4: Parameter configurations for the experiment on the email EU core dataset. For Leiden, we
used all combinations of γ and randomize.

Algorithm Parameters
Louvain γ ∈ {0.001, 0.01, 0.1, 1.0}
Louvain Map Equation hierarchical ∈ {True,False}
Leiden γ ∈ {1× 10−6, 1× 10−5, 0.0001, 0.001, 0.01, 0.1, 1.0}

randomize ∈ {True,False}

E Spectral clustering on image datasets

We conducted two additional experiments similar to the ones in Section 6.1, but using spectral
clustering instead of k-means. We apply spectral clustering with varying number of clusters k to
the UCI image segmentation dataset [6] and a texture classification dataset from OpenML [36]. We
compare each clustering solution with the ground truth labels and select the clustering with the
highest RI,AMI2 and PMI2. Figure 5 shows the selection frequency of each number of clusters
kselected after 1000 trials with different random seeds. In the case of the image segmentation dataset,
different subsets of 1000 samples were chosen for each trial, due to the steep runtime requirements of
spectral clustering. The results align with the k-means experiment in Section 6.1: The PMI2 selects
clusterings in a less biased way, in the sense that the selected number of clusters kselected is closer to
the true number of clusters ktrue than for RI and AMI2.

4 5 6 7 8 9 10

kselected

0.0

0.2

0.4

0.6

a)
E[kselected] P (kselected)

RI
AMI2
PMI2
ktrue

RI
AMI2
PMI2

7 8 9 10 11 12 13 14 15 16

kselected

0.0

0.1

0.2

0.3

b)

Figure 5: We apply spectral clustering to a) the UCI image segmentation dataset and b) a texture
classification dataset. The number of clusters parameter k is set to eleven values between ktrue/2
and 3ktrue/2. We compare the resulting clusterings with the ground truth via RI,AMI2, and PMI2
and select the best clustering kselected according to each metric. We repeat the experiment with 1000
different random seeds and plot the selection probabilities of kselected for each metric. The PMI2
selects candidates where the number of clusters is closer to the true number of clusters ktrue on average
(dashed lines) compared to the RI and AMI2.
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