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Abstract

The differential equation (DE) approach for convex optimization, which relates1

optimization methods to specific continuous DEs with rate-revealing Lyapunov2

functionals, has gained increasing interest since the seminal paper by Su–Boyd–3

Candès (2014). However, the approach still lacks a crucial component to make4

it truly useful: there is no general, consistent way to transition back to discrete5

optimization methods. Consequently, even if we derive insights from continuous6

DEs, we still need to perform individualized and tedious calculations for the7

analysis of each method. This paper aims to bridge this gap by introducing a new8

concept called “weak discrete gradient” (wDG), which consolidates the conditions9

required for discrete versions of gradients in the DE approach arguments. We then10

define abstract optimization methods using wDG and provide abstract convergence11

theories that parallel those in continuous DEs. We demonstrate that many typical12

optimization methods and their convergence rates can be derived as special cases13

of this abstract theory. The proposed unified discretization framework for the14

differential equation approach to convex optimization provides an easy environment15

for developing new optimization methods and achieving competitive convergence16

rates with state-of-the-art methods, such as Nesterov’s accelerated gradient.17

1 Introduction18

In this paper, we consider unconstrained convex optimization problems:19

min
x∈Rd

f(x). (1)

Various optimization methods, such as standard gradient descent and Nesterov’s accelerated gradient20

methods (Nesterov, 1983), are known for these problems. The convergence rates of these methods21

have been intensively investigated based on the classes of objective functions (L-smooth and/or µ-22

strong convex). We focus on the convergence rate of function values f
(
x(k)

)
− f⋆, while the rates for23

∥∇f
(
x(k)

)
∥ or ∥x(k)−x⋆∥ have also been discussed. Topics particularly relevant to this study include24

the lower bound of convergence rates for first-order methods (see Remark 4.3 for the relationship25

between our framework and first-order methods) for convex and strongly convex functions: O
(
1/k2

)
26

for L-smooth and convex functions (cf. Nesterov (2018)) and O
(
(1−

√
µ/L)2k

)
for L-smooth and27

µ-strongly convex functions (Drori and Taylor, 2022). These lower bounds are tight, as they are28

achieved by some optimization methods, such as Nesterov (1983) for convex functions and Van Scoy29

et al. (2018); Taylor and Drori (2022a) for strongly convex functions. In these studies, the discussion30

is typically conducted for each method, utilizing various techniques accumulated in the optimization31

research field.32
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Whereas, it has long been known that some optimization methods can be related to continuous33

differential equations (DEs). Early works on this aspect include the following: the continuous34

gradient flow ẋ = −∇f(x) as a continuous optimization method was discussed in Bruck (1975).35

Similar arguments were later applied to second-order differential equations (Alvarez, 2000; Alvarez36

et al., 2002; Cabot et al., 2009). An important milestone in this direction was Su et al. (2014), where37

it was shown that Nesterov’s famous accelerated gradient method (Nesterov, 1983) could be related38

to a second-order system with a convergence rate-revealing “Lyapunov functional.” The insights39

gained from this relationship have been useful in understanding the behavior of the Nesterov method40

and in considering its new variants. This success has followed by many studies, including Wilson41

(2018); Wilson et al. (2021). The advantage of the DEs with Lyapunov functional approach (which we42

simply call the “DE approach” hereafter) is that the continuous DEs are generally more intuitive, and43

convergence rate estimates are quite straightforward thanks to the Lyapunov functionals. However,44

the DE approach still lacks one important component; although we can draw useful insights from45

continuous DEs, there is no known general way to translate them into a discrete setting. Consequently,46

we still need to perform complex discrete arguments for each method. This limitation was already47

acknowledged in Su et al. (2014): “... The translation, however, involves parameter tuning and tedious48

calculations. This is the reason why a general theory mapping properties of ODEs into corresponding49

properties for discrete updates would be a welcome advance.”50

In this paper we attempt to provide this missing piece by incorporating the concept of “discrete51

gradients” (DGs) from numerical analysis, which is used to replicate some properties of continuous52

DEs in discrete settings. We demonstrate that a relaxed concept of DG, which we call “weak discrete53

gradient” (wDG), can serve a similar purpose in the optimization context. More precisely, we54

show that for known DEs in the DE approach, if we define abstract optimization methods using55

wDGs analogously to the DEs, their abstract convergence theories can be obtained by following the56

continuous arguments and replacing gradients with wDGs. The tedious parts of the case-specific57

discrete arguments are consolidated in the definition of wDG, which simplifies the overall arguments:58

we can now consider “simple continuous DE arguments” and “case-specific discrete discussions59

summarized in wDG” separately. We demonstrate that many typical existing optimization methods60

and their rate estimates, previously done separately for each method, can be recovered as special cases61

of the abstract methods/theories, providing a simpler view of them. Any untested combination of a62

known DE and wDG presents an obvious new method and its rate, further expanding the potential for63

innovation in the optimization field. Creating a new wDG leads to a series of optimization methods64

by applying it to known DEs. One simply needs to verify if the wDG satisfies the conditions for wDG65

(Theorem 4.2) and reveal the constants of the wDG. If, in the future, a new DE with a rate-revealing66

Lyapunov functional is discovered, it should be possible to achieve similar results. We suggest first67

defining an abstract wDG method analogous to the DE and then examining whether the continuous68

theory can be translated to a discrete setting, as demonstrated in this paper.69

The aforementioned paper (Su et al., 2014) concludes in the following way (continued from the70

previous quote) “Indeed, this would allow researchers to only study the simpler and more user-friendly71

ODEs.” Although there is still room for minor adjustments (see the discussion on limitations below),72

we believe the wDG framework substantially reduces the complexity of discussions in discrete73

methods, allowing researchers to focus on more accessible and intuitive aspects of optimization.74

We consider the problems (1) on the d-dimensional Euclidean space Rd (d is a positive integer)75

with the standard inner product ⟨·, ·⟩ and the induced norm ∥·∥, where f : Rd → R represents a76

differentiable convex objective function. We assume the existence of the optimal value f⋆ and the77

optimal solution x⋆. In the following discussion, we use the inequality78

µ

2
∥y − x∥2 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩, (2)

which holds for any x, y ∈ Rd when f is µ-strongly convex and differentiable.79

Remark 1.1. Although the scope of this paper is limitted due to the restriction of space, the framework80

can be naturally extended to more general cases. Extension to the objective functions satisfying the PŁ81

condition is provided in Appendix H. The framework can be extended to constrained optimizations82

by the DE approach for mirror descent methods (cf. Krichene et al. (2015); Wilson et al. (2021)),83

which the authors have already confirmed. Stochastic methods such as the stochastic gradient descent84

can be handled by considering random compositions of wDGs, which is left as our future work.85

2



2 Short summary of the differential equation approach86

Let us first consider the gradient flow:87

ẋ = −∇f(x), x(0) = x0 ∈ Rd. (3)

It is easy to see that88

d

dt
f(x(t)) = ⟨∇f(x(t)), ẋ(t)⟩ = −∥∇f(x(t))∥2 ≤ 0. (4)

This means the flow can be regarded as a continuous optimization method. Notice that the proof is89

quite simple, once we admit the chain rule of differentiation, and the form of the flow itself (3); this90

will be quite important in the subsequent discussion.91

Despite its simplicity, the convergence rate varies depending on the class of objective functions.92

Below we show some known results. The following rates are proven using the so-called Lyapunov93

argument, which introduces a “Lyapunov functional” that explicitly contains the convergence rate.94

The proof is left to Appendix B (we only note here that, in addition to the two key tools the chain rule95

and the form of the flow we need the convexity inequality (2) to complete the proof.)96

Theorem 2.1 (Convex case). Suppose that f is convex. Let x : [0,∞) → Rd be the solution of the97

gradient flow (3). Then the solution satisfies98

f(x(t))− f⋆ ≤ ∥x0 − x⋆∥2

2t
.

Theorem 2.2 (Strongly convex case). Suppose that f is µ-strongly convex. Let x : [0,∞) → Rd be99

the solution of the gradient flow (3). Then the solution satisfies100

f(x(t))− f⋆ ≤ e−µt∥x0 − x⋆∥2.

An incomplete partial list of works using the Lyapunov approach includes, in addition to Su et al.101

(2014), Karimi and Vavasis (2016); Attouch et al. (2016); Attouch and Cabot (2017); Attouch et al.102

(2018); França et al. (2018); Defazio (2019); Shi et al. (2019); Wilson et al. (2021) (see also a103

comprehensive list in Suh et al. (2022)). A difficulty in this approach is that the Lyapunov functionals104

were found only heuristically. A remedy is provided in Suh et al. (2022); Du (2022), but its target is105

still limited.106

Next, we consider DEs corresponding to accelerated gradient methods, including Nesterov’s method.107

As is well known, the forms of accelerated gradient methods differ depending on the class of objective108

functions, and consequently, the DEs to be considered also change. In this paper, we call them109

accelerated gradient flows.110

When the objective functions are convex, we consider the following DE proposed in Wilson et al.111

(2021): let A : R≥0 → R≥0 be a differentiable strictly monotonically increasing function with112

A(0) = 0, and113

ẋ =
Ȧ

A
(v − x), v̇ = − Ȧ

4
∇f(x), (5)

with (x(0), v(0)) = (x0, v0) ∈ Rd × Rd.114

Theorem 2.3 (Convex case (Wilson et al. (2021))). Suppose that f is convex. Let (x, v) : [0,∞) →115

Rd × Rd be the solution of the DE (5). Then it satisfies116

f(x(t))− f⋆ ≤ 2∥x0 − x⋆∥2

A(t)
.

Remark 2.4. If we set A(t) = t2, this system coincides with a continuous limit DE of the accelerated117

gradient method for convex functions118

ẍ+
3

t
ẋ+∇f(x) = 0,

which is derived in Su et al. (2016).119
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Next, for strongly convex objective functions, let us consider the DE (again in Wilson et al. (2021)):120

ẋ =
√
µ(v − x), v̇ =

√
µ(x− v −∇f(x)/µ) (6)

with (x(0), v(0)) = (x0, v0) ∈ Rd × Rd. (Note that this system coincides with the continuous121

limit ODE of the accelerated gradient method for strongly convex functions by Polyak (1964):122

ẍ+ 2
√
µẋ+∇f(x) = 0.)123

Theorem 2.5 (Strongly convex case (Wilson et al. (2021); Luo and Chen (2022))). Suppose that f is124

µ-strongly convex. Let (x, v) : [0,∞) → Rd × Rd be the solution of (6). Then it satisfies125

f(x(t))− f⋆ ≤ e−
√
µt
(
f(x0)− f⋆ +

µ

2
∥v0 − x⋆∥2

)
.

3 Discrete gradient method for gradient flows (from numerical analysis)126

The remaining issue is how we discretize the above DEs. In the optimization context, it was done127

separately in each study. One tempting strategy for a more systematic discretization is to import128

the concept of “DG,” which was invented in numerical analysis for designing structure-preserving129

numerical methods for gradient flows such as (3) (Gonzalez (1996); McLachlan et al. (1999)). Recall130

that the automatic decrease of objective function came from the two keys: (i) the chain rule, and (ii)131

the gradient flow structure. The DG method respects and tries to imitate them in discrete settings.132

Definition 3.1 (Discrete gradient (Gonzalez (1996); Quispel and Capel (1996))). A continuous map133

∇df : Rd × Rd → Rd is said to be discrete gradient of f if the following two conditions hold for all134

x, y ∈ Rd:135

f(y)− f(x) = ⟨∇df(y, x), y − x⟩, ∇df(x, x) = ∇f(x). (7)

In the definition provided above, the second condition simply requires that ∇df approximates ∇f .136

On the contrary, the first condition, referred to as the discrete chain rule, is a critical requirement137

for the key (i). The discrete chain rule is a scalar equality constraint on the vector-valued function,138

and for any given f , there are generally infinitely many DGs. The following is a list of some popular139

choices of DGs. When it is necessary to differentiate them from wDGs, we call them strict DGs.140

Proposition 3.2 (Strict discrete gradients). The following functions are strict DGs.141

Gonzalez discrete gradient ∇Gf(y, x) (Gonzalez (1996)):142

∇f

(
y + x

2

)
+

f(y)− f(x)− ⟨∇f
(
y+x
2

)
, y − x⟩

∥y − x∥2
(y − x).

Itoh–Abe discrete gradient ∇IAf(y, x) (Itoh and Abe (1988)):143 
f(y1,x2,x3...,xd)−f(x1,x2,x3,...,xd)

y1−x1
f(y1,y2,x3...,xd)−f(y1,x2,x3,...,xd)

y2−x2

...
f(y1,y2,y3,...,yd)−f(y1,y2,y3...,xd)

yd−xd

 .

Average vector field (AVF) ∇AVFf(y, x) (Quispel and McLaren (2008)):144 ∫ 1

0

∇f(τy + (1− τ)x)dτ.

Suppose we have a DG for a given f . Then we can define a discrete scheme for the gradient flow (3):145

x(k+1) − x(k)

h
= −∇df

(
x(k+1), x(k)

)
, x(0) = x0,

where the positive real number h is referred to as the step size, and x(k) ≃ x(kh) is the numerical146

solution. The left-hand side approximates ẋ and is denoted by δ+x(k) hereafter. Note that the147

definition conforms to the key point (ii) mentioned earlier.148
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The scheme decreases f(x(k)) as expected:149 (
f
(
x(k+1)

)
− f

(
x(k)

))
/h =

〈
∇df

(
x(k+1), x(k)

)
, δ+x(k)

〉
= −

∥∥∥∇df
(
x(k+1), x(k)

)∥∥∥2 ≤ 0.

In the first equality we used the discrete chain rule, and in the second, the form of the scheme itself.150

Observe that the proof proceeds in the same manner as the continuous case (4). Due to the decreasing151

property, the scheme should work as an optimization method. Additionally, the above argument does152

not reply on the step size h, and it can be changed in every step (which will not destroy the decreasing153

property).154

In the numerical analysis community, the above approach has already been attempted for optimizations155

(Grimm et al. (2017); Celledoni et al. (2018); Ehrhardt et al. (2018); Miyatake et al. (2018); Ringholm156

et al. (2018); Benning et al. (2020); Riis et al. (2022)). Although they were successful on their own,157

this does not immediately provide the missing piece we seek for the following reasons. First, the158

DG framework does not include typical important optimization methods; it even does not include159

the steepest descent. Second, as noted above, the proofs of rate estimates in the continuous DEs160

(in Section 2) require the inequality of convexity (2). Unfortunately, however, existing DGs generally161

do not satisfy it; see Appendix C for a counterexample. Next, we show how to overcome these162

difficulties.163

Remark 3.3. Some members of in the optimization community may find the use of DGs peculiar,164

since it involves referring to two solutions x(k+1), x(k). However, in some sense, it is quite natural165

because the decrease of f occurs in a single step x(k) 7→ x(k+1). There may also be concerns about166

the computational complexity of DGs because the method becomes “implicit” by referring to x(k+1).167

In the field of structure-preserving numerical methods, however, it is widely known that in some168

highly unstable DEs, implicit methods are often advantageous, allowing larger time-stepping widths,169

while explicit methods require extremely small ones. In fact, it has been confirmed in Ehrhardt et al.170

(2018) that this also applies to the optimization context. The Itoh–Abe DG results in a system of171

d nonlinear equations, which is slightly less expensive. Moreover, note that the integral in the AVF172

can be evaluated analytically before implementation, when f is a polynomial.173

4 Weak discrete gradients and abstract optimization methods174

We introduce the concept of a weak discrete gradient (wDG), which is a relaxed version of the DG175

introduced earlier.176

Definition 4.1 (Weak discrete gradient). A gradient approximation1 ∇f : Rd × Rd → Rd is said to177

be weak discrete gradient of f if there exists α ≥ 0 and β, γ with β + γ ≥ 0 such that the following178

two conditions hold for all x, y, z ∈ Rd:179

f(y)− f(x) ≤
〈
∇f(y, z), y − x

〉
+ α∥y − z∥2 − β∥z − x∥2 − γ∥y − x∥2, ∇f(x, x) = ∇f(x).

(8)

The condition (8) can be interpreted in two ways. First, it can be understood as a discrete chain rule180

in a weaker sense. By substituting x with z, we obtain the inequality:181

f(y)− f(x) ≤
〈
∇f(y, x), y − x

〉
+ (α− γ)∥y − x∥2. (9)

Compared to the strict discrete chain rule (7), it is weaker because it is an inequality and allows an182

error term. Second, it can be interpreted as a weaker discrete convex inequality. By exchanging x and183

y and rearranging terms, we obtain another expression184

f(y)− f(x)−
〈
∇f(x, z), y − x

〉
≥ β∥y − x∥2 + γ∥y − z∥2 − α∥x− z∥2. (10)

Compared to the strongly convex inequality (2), the term (µ/2)∥y − x∥2 is now replaced with185

β∥y − x∥2 + γ∥y − z∥2, which can be interpreted as the squared distance between y and the point186

(x, z) where the gradient is evaluated. The term −α∥x− z∥2 is an error term.187

We now list some examples of wDGs (proof is provided in Appendix D). Notice that these exam-188

ples include various typical gradient approximations from the optimization and numerical analysis189

1Notice that we use the notation ∇ here, distinguishing it from ∇d denoted as the standard notation for strict
discrete gradients in numerical analysis.
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literature. Note that for ease of presentation, we simply write “µ-strongly convex function,” which190

includes convex functions by setting µ = 0.191

Theorem 4.2. Suppose that f : Rd → R is a µ-strongly convex function. Let (L) and (SC) denote192

the additional assumptions: (L) f is L-smooth, and (SC) µ > 0. Then, the following functions are193

wDGs:194

(i) If ∇f(y, x) = ∇f(x) and f satisfies (L), then (α, β, γ) = (L/2, µ/2, 0).195

(ii) If ∇f(y, x) = ∇f(y), then (α, β, γ) = (0, 0, µ/2).196

(iii) If ∇f(y, x) = ∇f(x+y
2 ) and f satisfies (L), then (α, β, γ) = ((L+ µ)/8, µ/4, µ/4).197

(iv) If ∇f(y, x) = ∇AVFf(y, x) and f satisfies (L), then (α, β, γ) = (L/6 + µ/12, µ/4, µ/4).198

(v) If ∇f(y, x) = ∇Gf(y, x) and f satisfies (L)(SC), then (α, β, γ) = ((L + µ)/8 +199

(L− µ)2/16µ, µ/4, 0).200

(vi) If ∇f(y, x) = ∇IAf(y, x) and f satisfies (L)(SC), then (α, β, γ) = (dL2/µ −201

µ/4, µ/2,−µ/4).202

Although we assumed the smoothness of f to simplify the presentation, the case (ii) does not demand203

it (see the end of Appendix D). Thus, it can handle non-smooth convex optimization. While the204

wDGs (i), (iii), (iv) only require (L), the wDGs (v) and (vi) demand (SC) (µ > 0). This implies that205

the latter wDGs might be fragile for small µ’s.206

We now define an abstract method using wDGs:207

x(k+1) − x(k)

h
= −∇f

(
x(k+1), x(k)

)
, x(0) = x0, (11)

which is analogous to the gradient flow (3). By “abstract,” we mean that it is a formal formula, and208

given a concrete wDG it reduces to a concrete method; see Table 1 which summarizes some typical209

choices. Observe that the abstract method covers many popular methods from both optimization and210

numerical analysis communities. The step size h may be selected using line search techniques, but211

for simplicity, we limit our presentation to the fixed step size in this paper (see Remark 5.1).212

Remark 4.3. Note that some wDGs are not directly connected to the original gradient ∇f ’s; the213

Itoh–Abe wDG (vi) does not even refer to the gradient. Thus, the concrete methods resulting from our214

framework do not necessarily fall into the so-called “first-order methods,” which run in a linear space215

spanned by the past gradients (Nesterov (1983)). This is why we use the terminology “gradient-based216

methods” in this paper, instead of first-order methods.217

Similar to the aforementioned, we can define abstract methods for (5) and (6). Details and theoretical218

results can be found in Theorems 5.4 and 5.5.219

We also introduce the next lemma, which is useful in expanding the scope of our framework.220

Lemma 4.4. Suppose f can be expressed as a sum of two functions f1, f2. If ∇1f1 and ∇2f2 are221

wDGs of f1 and f2 with parameters (α1, β1, γ1) and (α2, β2, γ2), respectively, then ∇1f1 +∇2f2222

is a weak discrete gradient of f with (α, β, γ) = (α1 + α2, β1 + β2, γ1 + γ2).223

This lemma allows us to consider the following discretization of the gradient flow:224

x(k+1) − x(k)

h
= −∇f1

(
x(k)

)
−∇f2

(
x(k+1)

)
(12)

within our framework. For instance, if f1 is L1-smooth and µ1-strongly convex, and f2 is µ2-strongly225

convex, then the right-hand side of (12) is a wDG with (α, β, γ) = (L1/2, µ1/2, µ2/2). In this case,226

the method is known as the proximal gradient method or the forward-backward splitting algorithm227

in optimization (cf. Bauschke and Combettes (2017)). Discretizing the accelerated gradient flows228

allows for obtaining accelerated versions. (Acceleration of the proximal gradient method has been229

studied for some time (Beck and Teboulle, 2009b,a).)230
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Table 1: Examples of wDGs and their corresponding convergence rates for a µ-strongly convex
and L-smooth function f on Rd. The numbers in the ∇f column correspond to the numbers in
Theorem 4.2. The line in the figure corresponding to the proximal gradient method is described in the
setting of (12). The notation (DG) represents a strict discrete gradient. The convergence rates shown
in the table are the best possible for the step sizes chosen in Theorems 5.3 and 5.5.

Opt. meth. Convergence rates

∇f (for (3)) Numer. meth. Theorem 5.3 Theorem 5.5

(i) steep. des. exp. Euler O

((
1− 2 µ

L+µ

)k)
O
((

1−
√

µ
L

)k)
(ii) prox. point imp. Euler 0 0

(i)+(ii) prox. grad. (splitting) O

((
1− 2 µ1+µ2

L1+µ1+2µ2

)k)
O

((
1−

√
µ1+µ2

L1+µ2

)k)
(iii) — imp. midpoint O

((
1− 8 µ

L+7µ

)k)
O

((
1−

√
4µ

L+3µ

)k)
(iv) — AVF (DG) O

((
1− 6 µ

L+5µ

)k)
O

((
1−

√
3µ

L+2µ

)k)
(v) — Gonzalez (DG) O

((
1− 8 µ2

L2+4µ2

)k)
O

((
1−

√
4µ2

L2+3µ2

)k)
(vi) — Itoh–Abe (DG) O

((
1− 2 µ2

4d2L2−µ2

)k)
O

((
1−

√
µ2

4dL2−2µ2

)k)

5 Convergence rates of abstract optimization methods231

We establish the discrete counterparts of Theorems 2.1 to 2.3 and 2.5. Although the proofs are left232

to Appendix E, we emphasize that they can be performed analogously to those of the continuous233

cases. The discrete theorems are established in four cases: the gradient flow (3) (for f convex and234

µ-strongly convex), and the accelerated flows (for f convex (5) and µ-strongly convex (6)). For ease235

of understanding, we summarize the results for µ-strongly convex cases in Table 1. A similar table236

for convex cases is included in Appendix A.237

Remark 5.1. The following theorems are presented under the assumption that the step size h is fixed238

for simplicity. However, if all varying step sizes satisfy the step size condition (with a finite number239

of violations allowed), the theorems still hold true. The step sizes must be bounded by a positive240

number from below to ensure the designated rates.)241

5.1 For the abstract method based on the gradient flow242

The abstract method is given in (11).243

Theorem 5.2 (Convex case). Let ∇f be a wDG of f and suppose that β ≥ 0, γ ≥ 0. Let f be a244

convex function that additionally satisfies the necessary conditions required by the wDG. Let
{
x(k)

}
245

be the sequence given by (11). Then, under the step size condition h ≤ 1/(2α), the sequence satisfies246

f
(
x(k)

)
− f⋆ ≤ ∥x0 − x⋆∥2

2kh
.

Let us demonstrate how to use the theorem using the proximal gradient method (12) as an example.247

Suppose that f1 is L1-smooth and convex, and f2 is convex. Then, ∇f(y, x) = ∇f1(x) +∇f2(y) is248

a wDG with the parameter (α, β, γ) = (L1/2, 0, 0) due to Theorem 4.2 and Lemma 4.4. Therefore,249

the proximal gradient method (12) satisfies the assumption of Theorem 5.2 and thus the convergence250

rate is O(1/k) under the step size condition h ≤ (1/L1).251

Theorem 5.3 (Strongly convex case). Let ∇f be a wDG of f and suppose that β+ γ > 0. Let f be a252

strongly convex function that additionally satisfies the necessary conditions that the weak DG requires.253

Let
{
x(k)

}
be the sequence given by (11). Then, under the step size condition h ≤ 1/(α+ β), the254
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sequence satisfies255

f
(
x(k)

)
− f⋆ ≤

(
1− 2(β + γ)h

1 + 2γh

)k

∥x0 − x⋆∥2.

In particular, the sequence satisfies256

f
(
x(k)

)
− f⋆ ≤

(
1− 2(β + γ)

α+ β + 2γ

)k

∥x0 − x⋆∥2,

when the optimal step size h = 1/(α+ β) is employed.257

5.2 For the abstract methods based on the accelerated gradient flows258

We consider abstract methods with wDGs based on the accelerated gradient flows (5) and (6), which259

will be embedded in the theorems below. We note one thing: when using (8) as an approximation of260

the chain rule, we can determine z independently of x and y, which gives us some degrees of freedom261

(thus allowing for adjustment.) Below we show some choices of z(k) that are easy to calculate from262

known values while keeping the decrease of the Lyapunov functional.263

Theorem 5.4 (Convex case). Let ∇f be a wDG of f and suppose that β ≥ 0, γ ≥ 0. Let f be264

a convex function that additionally satisfies the necessary conditions that the wDG requires. Let265 {(
x(k), v(k)

)}
be the sequence given by266 

δ+x(k) =
δ+Ak

Ak

(
v(k+1) − x(k+1)

)
,

δ+v(k) = −δ+Ak

4
∇f
(
x(k+1), z(k)

)
,

z(k) − x(k)

h
=

δ+Ak

Ak+1

(
v(k) − x(k)

)
with

(
x(0), v(0)

)
= (x0, v0), where Ak := A(kh). Then if Ak = (kh)2 and h ≤ 1/

√
2α, the267

sequence satisfies268

f
(
x(k)

)
− f⋆ ≤ 2∥x0 − x⋆∥2

Ak
.

Theorem 5.5 (Strongly convex case). Let ∇f be a wDG of f and suppose that β + γ > 0. Let f be269

a strongly convex function that additionally satisfies the necessary conditions that the wDG requires.270

Let
{(

x(k), v(k)
)}

be the sequence given by271 

δ+x(k) =
√
2(β + γ)

(
v(k+1) − x(k+1)

)
,

δ+v(k) =
√
2(β + γ)

(
β

β + γ
z(k) +

γ

β + γ
x(k+1) − v(k+1) −

∇f
(
x(k+1), z(k)

)
2(β + γ)

)
,

z(k) − x(k)

h
=
√
2(β + γ)

(
x(k) + v(k) − 2z(k)

)
with

(
x(0), v(0)

)
= (x0, v0). Then if h ≤ h :=

(√
2(
√
α+ γ −

√
β + γ)

)−1
, the sequence satisfies272

f
(
x(k)

)
− f⋆ ≤

(
1 +

√
2(β + γ)h

)−k(
f(x0)− f⋆ + β∥v0 − x⋆∥2

)
.

In particular, the sequence satisfies273

f
(
x(k)

)
− f⋆ ≤

(
1−

√
β + γ

α+ γ

)k(
f(x0)− f⋆ + β∥v0 − x⋆∥2

)
,

when the optimal step size h = h is employed.274

Remark 5.6. Time scaling can eliminate the factor
√
2(β + γ) from the scheme and simplify it, as275

shown in Luo and Chen (2022). However, we do not use time scaling here to match the time scale276

with the accelerated gradient method and to maintain correspondence with the continuous system.277
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6 Discussions including Limitations278

Relation to some other systematic/unified frameworks A systematic approach to obtaining279

optimization methods with convergence estimates was developed using the “performance estimation280

problems" (PEPs) technique , as seen in works such as Taylor et al. (2018); Taylor and Drori (2022b).281

While our framework unifies discussions in both the continuous and discrete settings, the design of282

methods is not automatic and requires finding a new WDG. In contrast, the PEP framework automates283

method design but separates discussions between the continuous and discrete settings. Combining284

these two approaches could be a promising research direction, such as applying our framework to the285

Lyapunov functionals obtained in Taylor and Drori (2022b).286

Another unified convergence analysis is presented in Chen and Luo (2021), where the authors cite the287

same passage in the Introduction from Su et al. (2016). However, this seems to focus on unifying288

discussions in the continuous setting, and it is still necessary to individualize the discretization for289

each method in the discrete setting.290

In Diakonikolas and Orecchia (2019), a unified method for deriving continuous DEs describing291

first-order optimization methods was proposed using the “approximate duality gap technique.” While292

this work is capable of finding new DEs, it does not provide insight into how to discretize the DEs for293

obtaining discrete optimization methods.294

Limitations of the proposed framework. Although we believe that the current framework provides295

an easy environment for working on the DE approach to optimization, it still has some limitations.296

First, methods that do not fall into the current framework exist, such as the following splitting method297

(cf. the Douglas–Rachford splitting method (Eckstein and Bertsekas, 1992)):298

x(k+1/2) − x(k)

h
= −∇1f1

(
x(k+1/2), x(k)

)
,

x(k+1) − x(k+1/2)

h
= −∇2f2

(
x(k+1), x(k+1/2)

)
.

The right-hand side cannot be written by a single wDG. Additionally, methods based on Runge–Kutta299

(RK) numerical methods (Zhang et al. (2018); Ushiyama et al. (2022)) appear difficult to be captured300

by wDG because RK methods cannot be expressed by DG in the first place. Investigating whether301

these methods can be captured by the concept of DG is an interesting future research topic.302

Second, there is still some room for adjustment in wDG methods. A typical example is z(k)303

in Section 5.2, which is chosen in the theorems to optimize efficiency and rates. Another example is304

the adjustment of time-stepping in the last phase of constructing a method to achieve a better rate or305

practical efficiency. Although these optimizations in the construction of optimization methods are306

standard in optimization studies, we feel that they are difficult to capture in the current framework,307

as they fall between the intuitive continuous argument and the discrete wDG arguments that aim to308

capture common structures.309

Third, some rates in the theorems are not optimal. For example, on strongly convex func-310

tions, the scheme proposed in Theorem 5.5 with the choice (i) achieves the convergence rate of311

O
(
(1−

√
µ/L)k

)
, which is not the optimal rate of O

(
(1−

√
µ/L)2k

)
. This is because the choice312

of the DE and Lyapunov functional used in this work is not optimal. A DE and Lyapunov functional313

for obtaining the optimal rate are known (Sun et al., 2020), but the DE is a so-called high-resolution314

DE (known as a “modified equation” in numerical analysis), which involves Hessian. Whether these315

DEs can be captured with the wDG perspective is an interesting future research topic.316

7 Concluding remaks317

In this paper, we proposed a new unified discretization framework for the DE approach to convex318

optimization. Our framework provides an easy environment for those working on the DE approach,319

and some new methods are immediate from the framework, both as methods and for their convergence320

estimates. For example, any combination of strict DGs with the accelerated gradient flows are321

new methods, and their rates are given by the theorems. Although we did not include numerical322

experiments in the main body owing to the space restrictions, some preliminary numerical tests323

confirming the theory can be found in Appendix I. These tests show that some new methods can be324

competitive with state-of-the-art methods, such as Nesterov’s accelerated gradient.325
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A Table summarizing the convex cases441

In contrast to the strongly-convex cases, in the convex cases the convergence rates are the same in the442

order, and the difference appears in its coefficients, which actually depends on the maximum step443

sizes allowed. See Theorems 5.2 and 5.4 for the rates. In the table below we summarize the step size444

information.445

Table 2: Examples of weak discrete gradients and resulting convergence rates when f is an L-smooth
function on Rd. The numbers in the ∇f column correspond to the numbers in Theorem 4.2. The line
of the proximal gradient method is described in the setting of (12). (DG) represents that this weak
discrete gradient is a strict discrete gradient.

Opt. meth. Max. step sizes

∇f (for (3)) Numer. meth. Theorem 5.3 Theorem 5.5

(i) steep. des. exp. Euler 1/L 1/
√
L

(ii) prox. point imp. Euler ∞ ∞
(i)+(ii) prox. grad. (splitting) 1/L1 1/

√
L1

(iii) — imp. midpoint 4/L 2/
√
L

(iv) — AVF (DG) 3/L
√

3/L

B Proofs of theorems in Section 2446

B.1 Proof of Theorem 2.1447

It is sufficient to show that a Lyapunov function448

E(t) := t(f(x(t))− f⋆) +
1

2
∥x(t)− x⋆∥2

is monotonically nonincreasing since449

f(x(t))− f⋆ ≤ E(t)

t
≤ E(0)

t
=

∥x(0)− x⋆∥2

2t
.

Indeed,450

Ė = t⟨∇f(x), ẋ⟩+ f(x)− f⋆ + ⟨x− x⋆, ẋ⟩
= −t∥∇f(x)∥2 + f(x)− f⋆ − ⟨∇f(x), x− x⋆⟩
≤ 0

holds. Here, at each line, we applied the Leibniz rule and the chain rule, substituted the ODE, and451

used the convexity of f in this order. ■452

B.2 Proof of Theorem 2.2453

It is sufficient to show a Lyapunov function454

E(t) := eµt
(
f(x(t))− f⋆ +

µ

2
∥x(t)− x⋆∥2

)
is monotonically nonincreasing and thus it is sufficient to show that Ẽ(t) := e−µtE(t) satisfies455

˙̃E ≤ −µẼ. Indeed,456

˙̃E = ⟨∇f(x), ẋ⟩+ µ⟨x− x⋆, ẋ⟩
= −∥∇f(x)∥2 − µ⟨∇f(x), x− x⋆⟩

≤ −∥∇f(x)∥2 − µ
(
f(x)− f⋆ +

µ

2
∥x− x⋆∥2

)
≤ −µẼ

holds. Here, at each line, we applied the chain rule, substituted the ODE, and used strong convexity457

of f in this order. ■458
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B.3 Proof of Theorem 2.3459

It is sufficient to show that460

E(t) := A(t)(f(x(t))− f⋆) + 2∥v(t)− x⋆∥2

is nonincreasing. Actually,461

Ė = Ȧ(f(x)− f⋆) +A
d

dt
(f(x)− f⋆) +

d

dt
(2∥v(t)− x⋆∥2)

= Ȧ(f(x)− f⋆) +A⟨∇f(x), ẋ⟩+ 4⟨v̇, v − x⋆⟩

= Ȧ(f(x)− f⋆) +A

〈
∇f(x),

Ȧ

A
(v − x)

〉
− 4

〈
Ȧ

4
∇f(x), v − x⋆

〉
= Ȧ(f(x)− f⋆ − ⟨∇f(x), x− x⋆⟩)
≤ 0

holds. Here, at each line, we applied the Leibniz rule, used the chain rule, substituted the ODE, and462

used the convexity of f in this order. ■463

B.4 Proof of Theorem 2.5464

It is sufficient to show that465

E(t) := e
√
µt
(
f(x)− f⋆ +

µ

2
∥v − x⋆∥2

)
is nonincreasing and thus it is sufficient to show that Ẽ(t) := e−

√
µtE(t) satisfies ˙̃E ≤ −√

µẼ.466

Actually,467

˙̃E = ⟨∇f(x), ẋ⟩+ µ⟨v̇, v − x⋆⟩
= ⟨∇f(x),

√
µ(v − x)⟩+ µ⟨√µ(x− v −∇f(x)/µ), v − x⋆⟩

=
√
µ(⟨∇f(x), x⋆ − x⟩ − µ⟨v − x, v − x⋆⟩)

=
√
µ
(
⟨∇f(x), x⋆ − x⟩ − µ

2
(∥v − x∥2 + ∥v − x⋆∥2 − ∥x− x⋆∥2)

)
≤ −√

µ
((

f(x)− f⋆ +
µ

2
∥v − x⋆∥2

)
− µ

2
∥v − x∥2

)
≤ −√

µẼ

holds. Here, at each line, we applied the chain rule, substituted the ODE, rearranged terms, decom-468

posed the inner product by the law of cosines (see Appendix F), and used the strong convexity of469

f . ■470

C Strict discrete gradients and convexity471

In this section, we describe that strict discrete gradients are not generally compatible with the convex472

inequality; this complements the discussion in Section 3. For example, let us consider imitating the473

discussion in Appendix B.1 by using a discrete gradient scheme δ+x(k) = −∇df
(
x(k+1), x(k)

)
.474

Then, since we use the inequality475

f(x)− f⋆ − ⟨∇f(x), x− x⋆⟩ ≤ 0

that holds due to the convexity of f , we should ensure that the discrete counterpart of the left-hand476

side477

f(x)− f⋆ − ⟨∇df(y, x), x− x⋆⟩
is nonpositive for any x, y ∈ Rd. However, there is a simple counterexample as shown below.478

Let us consider a quadratic and convex objective function f(x) = 1
2 ⟨x,Qx⟩, where Q ∈ Rd×d is a479

positive definite matrix. In this case, x⋆ = 0 and f⋆ = 0 hold. Then, when we choose a discrete480

gradient ∇df(y, x) = ∇Gf(y, x) = ∇AVFf(y, x) = Q
(
y+x
2

)
, we see481

f(x)− f⋆ − ⟨∇df(y, x), x− x⋆⟩ = 1

2
⟨x,Qx⟩ −

〈
Q

(
y + x

2

)
, x

〉
= −1

2
⟨y,Qx⟩,

which is positive when y = −x and x ̸= 0.482
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D Proof of Theorem 4.2483

(i) Since we assume f is L-smooth and µ-strongly convex,484

f(y)− f(z) ≤ ⟨∇f(z), y − z⟩+ L

2
∥y − z∥2,

f(z)− f(x) ≤ ⟨∇f(z), z − x⟩ − µ

2
∥z − x∥2

holds for any x, y, z ∈ Rd. By adding each side of these inequalities, we obtain485

f(y)− f(x) ≤ ⟨∇f(z), y − x⟩+ L

2
∥y − z∥2 − µ

2
∥z − x∥2. (13)

(This inequality is known as the three points descent lemma in optimization.)486

(ii) It follows immediately from the µ-strong convexity of f .487

(iii) By replacing z in (13) with θy + (1− θ)z, and invoking Lemma F.2, we have488

f(y)− f(x)− ⟨∇f(θy + (1− θ)z), y − x⟩

≤ L

2
∥y − (θy + (1− θ)z)∥2 − µ

2
∥θy + (1− θ)z − x∥2

=
L

2
(1− θ)2∥y − z∥2 − µ

2
(−θ(1− θ)∥y − z∥2 + (1− θ)∥z − x∥2 + θ∥y − x∥2).

Especially when θ = 1/2, (α, β, γ) = (L/8 + µ/8, µ/4, µ/4).489

(iv) By the same calculation as (iii), we obtain490

f(y)− f(x)−
〈∫ 1

0

∇f(τy + (1− τ)z)dτ , y − x

〉
=

∫ 1

0

[f(y)− f(x)− ⟨∇f(τy + (1− τ)z), y − x⟩] dτ

≤
∫ 1

0

[
L

2
(1− τ)2∥y − z∥2 − µ

2
(−τ(1− τ)∥y − z∥2 + (1− τ)∥z − x∥2 + τ∥y − x∥2)

]
dτ

=

(
L

6
+

µ

12

)
∥y − z∥2 − µ

4
∥z − x∥2 − µ

4
∥y − x∥2.

(v) By (13), we obtain491

f(y)− f(z)−
〈
∇f

(
y + z

2

)
, y − z

〉
≤ L

2

∥∥∥∥y − y + z

2

∥∥∥∥2 − µ

2

∥∥∥∥y + z

2
− z

∥∥∥∥2 =
L− µ

8
∥y − z∥2.

Since this inequality holds with y and z swapped, we have492 ∣∣∣∣f(y)− f(z)−
〈
∇f

(
y + z

2

)
, y − z

〉∣∣∣∣ ≤ L− µ

8
∥y − z∥2.

Thus,493

f(y)− f(x)− ⟨∇Gf(y, z), y − x⟩

= f(y)− f(x)−

〈
∇f

(
y + z

2

)
+

f(y)− f(z)−
〈
∇f
(
y+z
2

)
, y − z

〉
∥y − z∥2

(y − z), y − x

〉

≤ f(y)− f(x)−
〈
∇f

(
y + z

2

)
, y − x

〉
+

∣∣∣∣∣f(y)− f(z)−
〈
∇f
(
y+z
2

)
, y − z

〉
∥y − z∥2

∣∣∣∣∣|⟨y − z, y − x⟩|

≤ L

2

∥∥∥∥y − y + z

2

∥∥∥∥2 − µ

2

∥∥∥∥y + z

2
− x

∥∥∥∥2 + L− µ

8

(
L− µ

8µ
∥y − z∥2 + 2µ

L− µ
∥y − x∥2

)
=

L

8
∥y − z∥2 − µ

2

(
1

2
∥y − x∥2 + 1

2
∥z − x∥2 − 1

4
∥y − z∥2

)
+

(L− µ)2

16µ
∥y − z∥2 + µ

4
∥y − x∥2

=

(
L

8
+

µ

8
+

(L− µ)2

16µ

)
∥y − z∥2 − µ

4
∥z − x∥2
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holds, where the second inequality follows from the arithmetic-geometric means (AM-GM)494

inequality.495

(vi) In the following, for y, z ∈ Rd and k = 2, . . . , d, y1:k−1zk:d denotes a vector496

(y1, . . . , yk−1, zk, . . . , zd)
⊤ ∈ Rd, while y1:0z1:d and y1:dzd+1:d denote z and y, respectively.497

By the telescoping sum and µ-strong convexity of f , we obtain498

f(y)− f(x)− ⟨∇IAf(y, z), y − x⟩

= f(y)− f(x)−
d∑

k=1

f(y1:kzk+1:d)− f(y1:k−1zk:d)

yk − zk
(yk − xk)

= f(y)− f(x)−
d∑

k=1

f(y1:kzk+1:d)− f(y1:k−1zk:d)

yk − zk
(yk − zk + zk − xk)

= f(z)− f(x)−
d∑

k=1

f(y1:kzk+1:d)− f(y1:k−1zk:d)

yk − zk
(zk − xk)

≤ ⟨∇f(z), z − x⟩ − µ

2
∥z − x∥2

+

d∑
k=1


(∇f(y1:k−1zk:d))k(zk − yk)− µ

2 (zk − yk)
2

yk − zk
(zk − xk) if

zk − xk

yk − zk
> 0

(∇f(y1:kzk+1:d))k(yk − zk)− µ
2 (yk − zk)

2

zk − yk
(zk − xk) if

zk − xk

yk − zk
< 0

= ⟨∇f(z), z − x⟩ − µ

2
∥z − x∥2

−
d∑

k=1


(∇f(y1:k−1zk:d))k(zk − xk) +

µ
2 (yk − zk)(zk − xk) if

zk − xk

yk − zk
> 0

(∇f(y1:kzk+1:d))k(zk − xk) +
µ
2 (zk − yk)(zk − xk) if

zk − xk

yk − zk
< 0

=

d∑
k=1


((∇f(z))k − (∇f(y1:k−1zk:d))k)(zk − xk) if

zk − xk

yk − zk
> 0

((∇f(z))k − (∇f(y1:kzk+1:d))k)(zk − xk) if
zk − xk

yk − zk
< 0

− µ

2
∥z − x∥2 − µ

2

d∑
k=1

|zk − yk||zk − xk|.

To evaluate the first term of the most right-hand side, we use the following inequalities:499

|(∇f(z))k − (∇f(y1:k−1zk:d))k| ≤ L∥z − y1:k−1zk:d∥ ≤ L∥z − y∥,
|(∇f(z))k − (∇f(y1:kzk+1:d))k| ≤ L∥z − y1:kzk+1:d∥ ≤ L∥z − y∥,

which hold due to the L-smoothness of f , and also500

d∑
k=1

|zk − xk| ≤

√√√√d

d∑
k=1

|zk − xk|2 =
√
d∥z − x∥,

which holds due to Jensen’s inequality. Using them, we obtain501

f(y)− f(x)− ⟨∇IAf(y, z), y − x⟩

≤
√
dL∥z − y∥∥z − x∥ − µ

2
∥z − x∥2 − µ

2

d∑
k=1

|zk − yk||zk − xk|

≤ dL2

µ
∥z − y∥2 + µ

4
∥z − x∥2 − µ

2
∥z − x∥2 − µ

2

d∑
k=1

|zk − yk||zk − xk|,
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where the last inequality holds due to the AM-GM inequality. Finally, the last term is bounded502

by503

µ

2

d∑
k=1

|zk − yk||zk − xk| = −µ

4

d∑
k=1

(
|zk − yk|2 + |zk − xk|2 − ||zk − yk| − |zk − xk||2

)
≤ −µ

4

d∑
k=1

(
|zk − yk|2 + |zk − xk|2 − |yk − xk|2

)
= −µ

4

(
∥z − y∥2 + ∥z − x∥2 − ∥y − x∥2

)
.

This proves the theorem.504

■505

For (ii), as noted in the above proof, the assumption of differentiability of f is unnecessary, let alone506

L-smoothness. Since f is a proper convex function on Rd in our setting, the subdifferential ∂f(x) is507

nonempty for all x ∈ Rd. Thus we can use ∇f(y, x) ∈ ∂f(y) instead of ∇f(y, x) = ∇f(y). By508

definition of subgradients, we can recover the same parameters (α, β, γ) as the differentiable case.509

If µ = 0, the proofs for (v) and (vi) cease to work where we apply the AM-GM inequality to the510

inner product. This is also pointed out in the main body of the paper.511

E Proofs of theorems in Section 5512

E.1 Proof of Theorem 5.2513

It is sufficient to show that the discrete Lyapunov function514

E(k) := kh
(
f
(
x(k)

)
− f⋆

)
+

1

2

∥∥∥x(k) − x⋆
∥∥∥2

is nonincreasing. Actually,515

δ+E(k)

= kh
(
δ+f

(
x(k)

))
+ f

(
x(k+1)

)
− f⋆ + δ+

(
1

2

∥∥∥x(k) − x⋆
∥∥∥2)

≤ kh

(〈
∇f
(
x(k+1), x(k)

)
, δ+x(k)

〉
+ αh

∥∥∥δ+x(k)
∥∥∥2)+ f

(
x(k+1)

)
− f⋆ +

〈
x(k+1) − x⋆, δ+x(k)

〉
− h

2

∥∥∥δ+x(k)
∥∥∥2

= −kh(1− αh)
∥∥∥∇f

(
x(k+1), x(k)

)∥∥∥2 + f
(
x(k+1)

)
− f⋆ −

〈
∇f
(
x(k+1), x(k)

)
, x(k+1) − x⋆

〉
− h

2

∥∥∥δ+x(k)
∥∥∥2

≤ −kh(1− αh)
∥∥∥∇f

(
x(k+1), x(k)

)∥∥∥2 − (h

2
− αh2

)∥∥∥δ+x(k)
∥∥∥2

holds, and thus if h ≤ 1/(2α), the right-hand side is not positive. Here, at each line, we applied516

the discrete Leibniz rule, the weak discrete gradient condition (8), Lemma F.1 as the chain rule,517

substituted the scheme, and applied again (8) as the convex inequality. ■518

E.2 Proof of Theorem 5.3519

Let520

Ẽ(k) := f
(
x(k)

)
− f⋆ + (β + γ)

∥∥∥x(k) − x⋆
∥∥∥2.
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If δ+Ẽ(k) ≤ −cẼ(k+1) for c > 0, it can be concluded that E(k) = (1 + ch)kẼ(k) is nonincreasing,521

and hence f(x(k))− f⋆ ≤ (1 + ch)−kE(0). Actually,522

δ+Ẽ(k)

= δ+f
(
x(k)

)
+ δ+

(
(β + γ)

∥∥∥x(k) − x⋆
∥∥∥2)

≤
〈
∇f
(
x(k+1), x(k)

)
, δ+x(k)

〉
+ (α− γ)h

∥∥∥δ+x(k)
∥∥∥2 + 2(β + γ)

〈
x(k+1) − x⋆, δ+x(k)

〉
− (β + γ)h

∥∥∥δ+x(k)
∥∥∥2

= −(1− (α− γ)h+ (β + γ)h)
∥∥∥∇f

(
x(k+1), x(k)

)∥∥∥2 − 2(β + γ)
〈
x(k+1) − x⋆,∇f

(
x(k+1), x(k)

)〉
≤ −2(β + γ)

(
f
(
x(k)

)
− f⋆ + β

∥∥∥x(k) − x⋆
∥∥∥2 + γ

∥∥∥x(k+1) − x⋆
∥∥∥2)

−
(
1− (α− γ)h+ (β + γ)h− 2α(β + γ)h2

)∥∥∥∇f
(
x(k+1), x(k)

)∥∥∥2 (14)

holds. Here, after the second line we used the weak discrete gradient condition (8) as the chain rule,523

substituted the scheme and used (8) as the strongly convex inequality.524

Now we aim to bound
∥∥x(k) − x⋆

∥∥2 with
∥∥x(k+1) − x⋆

∥∥2. By the same calculation for525

δ+
∥∥x(k) − x⋆

∥∥2 as above, we get the evaluation526

δ+
∥∥∥x(k) − x⋆

∥∥∥2 ≤ −2(f(x(k+1))−f⋆+β
∥∥∥x(k) − x⋆

∥∥∥2+γ
∥∥∥x(k+1) − x(k)

∥∥∥2)−(h−2αh2)
∥∥∥∇f

(
x(k+1), x(k)

)∥∥∥2.
(15)

Thus, if h ≤ 1/(2α), we get
∥∥x(k+1) − x⋆

∥∥2 ≤
∥∥x(k) − x⋆

∥∥2. In this case, since the second term of527

(14) is nonpositive, it follows that528

δ+Ẽ(k) ≤ −2(β + γ)Ẽ(k+1).

To obtain a better rate which is included in the statement of the theorem, by directly using (15) for529

(14), we see530

δ+Ẽ(k) ≤ −2(β + γ)

1− 2βh

(
f(x(k+1))− f⋆ + (β + γ)

∥∥∥x(k+1) − x⋆
∥∥∥2)

−
(
1− 2αh

1− 2βh
2(β + γ)βh2 + 1− (α− γ)h+ (β + γ)h− 2α(β + γ)h2

)∥∥∥∇f
(
x(k+1), x(k)

)∥∥∥2.
Since the second term of the right-hand side is nonpositive under h ≤ 1/(α+ β), it can be concluded531

that532

δ+Ẽ(k) ≤ −2(β + γ)

1− 2βh
Ẽ(k+1).

In this case the convergence rate is533 (
1

1 + 2(β+γ)h
1−2βh

)k

=

(
1− 2(β + γ)h

1 + 2γh

)k

.

■534

E.3 Proof of Theorem 5.4535

It is sufficient to show that536

E(k) := Ak

(
f
(
x(k)

)
− f⋆

)
+ 2∥v(k) − x⋆∥2
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is nonincreasing. Actually,537

δ+E(k)

= (δ+Ak)
(
f
(
x(k+1)

)
− f⋆

)
+Ak

(
δ+f

(
x(k)

))
+ 2δ+

(∥∥∥v(k) − x⋆
∥∥∥2)

≤ (δ+Ak)
(
f
(
x(k+1)

)
− f⋆

)
+Ak

〈
∇f
(
x(k+1), z(k)

)
, δ+x(k)

〉
+ 4
〈
δ+v(k), v(k+1) − x⋆

〉
+

Ak

h
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − 2h
∥∥∥δ+v(k)∥∥∥2

≤ (δ+Ak)
(
f
(
x(k+1)

)
− f⋆

)
+Ak

〈
∇f
(
x(k+1), z(k)

)
,
δ+Ak

Ak

(
v(k+1) − x(k+1)

)〉
− 4

〈
δ+Ak

4
∇f
(
x(k+1), z(k)

)
, v(k+1) − x⋆

〉
+

Ak

h
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − 2h
∥∥∥δ+v(k)∥∥∥2

= (δ+Ak)
(
f
(
x(k+1)

)
− f⋆ −

〈
∇f
(
x(k+1), z(k)

)
, x(k+1) − x⋆

〉)
+

Ak

h
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − 2h
∥∥∥δ+v(k)∥∥∥2

≤ (δ+Ak)α
∥∥∥x(k+1) − z(k)

∥∥∥2 + Ak

h
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − 2h
∥∥∥δ+v(k)∥∥∥2

=
1

h

(
Ak+1α

∥∥∥x(k+1) − z(k)
∥∥∥2 − 2

∥∥∥v(k+1) − v(k)
∥∥∥2) =: (err).

Here, at each line, we used the discrete Leibniz rule, applied (8) and Lemma F.1 as the chain rule,538

substituted the scheme, and applied again (8) as the convex inequality.539

Now we define z(k) so that (err) ≤ 0 holds. When z(k) := x(k+1), (err) becomes nonpositive540

without step size constraints.541

Or, since using the scheme we can write542

∥∥∥x(k+1) − z(k)
∥∥∥2 =

∥∥∥∥Ak+1 −Ak

Ak+1
v(k+1) +

Ak

Ak+1
x(k) − z(k)

∥∥∥∥2,
by setting543

z(k) :=
Ak+1 −Ak

Ak+1
v(k) +

Ak

Ak+1
x(k),

we obtain544

h× (err) =

(
(Ak+1 −Ak)

2

Ak+1
α− 2

)∥∥∥v(k+1) − v(k)
∥∥∥2.

This choice of z(k) is shown in the theorem. When, for example, Ak = (kh)2, (err) ≤ 0, provided545

that h ≤ 1/
√
2α. Here we see that only up to a quadratic function is allowed as Ak if α > 0. ■546

E.4 Proof of Theorem 5.5547

It is sufficient to show that548

Ẽ(k) := f
(
x(k)

)
− f⋆ + (β + γ)

∥∥∥v(k) − x⋆
∥∥∥2
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satisfies δ+Ẽ(k) ≤ −
√
mẼ(k+1). To simplify notation, 2(β + γ) is written as m, and the error terms549

are gathered into (err). Then, we see550

δ+Ẽ(k) = δ+f
(
x(k)

)
+

m

2
δ+
∥∥∥v(k) − x⋆

∥∥∥2
≤
〈
∇f
(
x(k+1), z(k)

)
, δ+x(k)

〉
+

α

h

∥∥∥x(k+1) − z(k)
∥∥∥2 − β

h

∥∥∥z(k) − x(k)
∥∥∥2 − γh

∥∥∥δ+x(k)
∥∥∥2

+m
〈
δ+v(k), v(k+1) − x⋆

〉
− m

2
h
∥∥∥δ+v(k)∥∥∥2

=
〈
∇f
(
x(k+1), z(k)

)
,
√
m
(
v(k+1) − x(k+1)

)〉
+ (err)

+m

〈√
m

(
2β

m
z(k) +

2γ

m
x(k+1) − v(k+1) − 1

m
∇f
(
x(k+1), z(k)

))
, v(k+1) − x⋆

〉
=

√
m
〈
∇f
(
x(k+1), z(k)

)
, x⋆ − x(k+1)

〉
− 2

√
mβ
〈
v(k+1) − z(k), v(k+1) − x⋆

〉
− 2

√
mγ
〈
v(k+1) − x(k+1), v(k+1) − x⋆

〉
+ (err)

=
√
m
〈
∇f
(
x(k+1), z(k)

)
, x⋆ − x(k+1)

〉
−

√
mβ

(∥∥∥v(k+1) − z(k)
∥∥∥2 + ∥∥∥v(k+1) − x⋆

∥∥∥2 − ∥∥∥z(k) − x⋆
∥∥∥2)

−
√
mγ

(∥∥∥v(k+1) − x(k+1)
∥∥∥2 + ∥∥∥v(k+1) − x⋆

∥∥∥2 − ∥∥∥x(k+1) − x⋆
∥∥∥2)+ (err)

≤ −
√
m

(
f
(
x(k+1)

)
− f⋆ +

m

2

∥∥∥v(k+1) − x⋆
∥∥∥2)

+
√
m

(
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − β
∥∥∥v(k+1) − z(k)

∥∥∥2 − γ
∥∥∥v(k+1) − x(k+1)

∥∥∥2)+ (err)

= −
√
mẼ(k+1) + (err).

Here, the first inequality follows from (8) as the chain rule, the second equality from the substitution551

of the form of the method, and the second inequality follows from again (8) as the strongly convex552

inequality. In the second inequality, we also used553

−
〈
∇f
(
x(k+1), z(k)

)
, x(k+1) − x⋆

〉
+β
∥∥∥z(k) − x⋆

∥∥∥2+γ
∥∥∥x(k+1) − x⋆

∥∥∥2 ≤ −
(
f
(
x(k+1)

)
− f⋆

)
+α
∥∥∥x(k+1) − z(k)

∥∥∥2.
Now we define x(k) so that (err) ≤ 0. An obvious choice is z(k) := x(k+1), where (err) is554

nonpositive under any step size.555

To derive another definition of z(k), we proceed with the calculation of the error terms by substituting556

the form of the method:557

h× (err) = α
∥∥∥x(k+1) − z(k)

∥∥∥2 − β
∥∥∥z(k) − x(k)

∥∥∥2 − γ
∥∥∥x(k+1) − x(k)

∥∥∥2 − (β + γ)
∥∥∥v(k+1) − v(k)

∥∥∥2
+
√
mh

(
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − β
∥∥∥v(k+1) − z(k)

∥∥∥2 − γ
∥∥∥v(k+1) − x(k+1)

∥∥∥2)
= α(h+ 1)

∥∥∥x(k+1) − z(k)
∥∥∥2 − β

(∥∥∥z(k) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2 +√
mh
∥∥∥v(k+1) − z(k)

∥∥∥2)
− γ

(∥∥∥x(k+1) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2 +√
mh
∥∥∥v(k+1) − x(k+1)

∥∥∥2)
= α(h+ 1)

∥∥∥x(k+1) − z(k)
∥∥∥2

− β

(∥∥∥z(k) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2 +√
mh

∥∥∥∥x(k+1) +
x(k+1) − x(k)

√
mh

− z(k)
∥∥∥∥2
)

− γ

(∥∥∥x(k+1) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2 +√
mh

∥∥∥∥x(k+1) +
x(k+1) − x(k)

√
mh

− x(k+1)

∥∥∥∥2
)
.
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Hereafter,
√
mh is denoted by h̃. By using Lemma F.2, we have558

h̃

∥∥∥∥x(k+1) +
x(k+1) − x(k)

h̃
− z(k)

∥∥∥∥2
= h̃

(
h̃+ 1

h̃

)2∥∥∥∥∥ h̃

h̃+ 1

(
x(k+1) − z(k)

)
+

1

h̃+ 1

(
x(k+1) − x(k)

)∥∥∥∥∥
2

=

(
h̃+ 1

)2
h̃

 h̃

h̃+ 1

∥∥∥x(k+1) − z(k)
∥∥∥2 + 1

h̃+ 1

∥∥∥x(k+1) − x(k)
∥∥∥2 − h̃(

h̃+ 1
)2 ∥∥∥z(k) − x(k)

∥∥∥2


=
(
h̃+ 1

)∥∥∥x(k+1) − z(k)
∥∥∥2 + h̃+ 1

h̃

∥∥∥x(k+1) − x(k)
∥∥∥2 − ∥∥∥z(k) − x(k)

∥∥∥2.
Thus, we see559

h̃× (err) = (α− β)
(
h̃+ 1

)∥∥∥x(k+1) − z(k)
∥∥∥2 − (β + γ)

(
h̃+ 1

h̃

∥∥∥x(k+1) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2).
Here when we define z(k) := x(k), (err) is nonpositive under the condition560

(α− β)
(
h̃+ 1

)
− (β + γ)

h̃+ 1

h̃
≤ 0.

This condition reads as h̃ ≤ (β + γ)/(α− β), and the convergence rate is561 (
1 +

√
2(β + γ)

)−k

=
(
1 + h̃

)−k

≥
(
1− β + γ

α+ γ

)k

.

To obtain a better rate, we continue the computation of (err) without defining z(k). Let562

η =
1

h̃+1
h̃

+ 1
=

h̃

2h̃+ 1
,

and again by inserting the form of the method, and by using Lemma F.2,563

h̃+ 1

h̃

∥∥∥x(k+1) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2
=

h̃+ 1

h̃

∥∥∥x(k+1) − x(k)
∥∥∥2 + ∥∥∥∥x(k+1) +

x(k+1) − x(k)

h̃
− v(k)

∥∥∥∥2
=

h̃+ 1

h̃

∥∥∥x(k+1) − x(k)
∥∥∥2 +( h̃+ 1

h̃

)2∥∥∥∥∥x(k+1) − h̃

h̃+ 1
v(k) − 1

h̃+ 1
x(k)

∥∥∥∥∥
2

=
h̃+ 1

h̃

1

η

η
∥∥∥x(k+1) − x(k)

∥∥∥2 + (1− η)

∥∥∥∥∥x(k+1) − h̃

h̃+ 1
v(k) − 1

h̃+ 1
x(k)

∥∥∥∥∥
2


=
h̃+ 1

h̃

1

η

∥∥∥∥∥η(x(k+1) − x(k)
)
+ (1− η)

(
x(k+1) − h̃

h̃+ 1
v(k) − 1

h̃+ 1
x(k)

)∥∥∥∥∥
2

+η(1− η)

∥∥∥∥∥x(k+1) − x(k) −

(
x(k+1) − h̃

h̃+ 1
v(k) − 1

h̃+ 1
x(k)

)∥∥∥∥∥
2


=
h̃+ 1

h̃

2h̃+ 1

h̃

∥∥∥∥∥x(k+1) −

(
h̃+ 1

2h̃+ 1
x(k) +

h̃

2h̃+ 1
v(k)

)∥∥∥∥∥
2

+
h̃

2h̃+ 1

h̃+ 1

2h̃+ 1

(
h̃

h̃+ 1

)2∥∥∥v(k) − x(k)
∥∥∥2
 .
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Hence we obtain564

h̃× (err) = (α− β)
(
h̃+ 1

)∥∥∥x(k+1) − z(k)
∥∥∥2 − (β + γ)

h̃

2h̃+ 1

∥∥∥v(k) − x(k)
∥∥∥2

− (β + γ)
h̃+ 1

h̃

2h̃+ 1

h̃

∥∥∥∥∥x(k+1) − h̃+ 1

2h̃+ 1
x(k) − h̃

2h̃+ 1
v(k)

∥∥∥∥∥
2

.

If we set565

z(k) :=
h̃+ 1

2h̃+ 1
x(k) +

h̃

2h̃+ 1
v(k),

(err) is nonpositive under the condition566

(α− β)
(
h̃+ 1

)
− (β + γ)

h̃+ 1

h̃

2h̃+ 1

h̃
≤ 0.

The definition of z(k) is shown in the theorem. By solving the above inequality, we obtain the step567

size limitation568

h̃ ≤
√
β + γ

√
α+ γ −

√
β + γ

,

which is shown in the theorem. ■569

F Law of cosines and parallelogram identity570

This section summarizes some useful lemmas used in the preceding sections.571

In Hilbert spaces, especially in Euclidean spaces, the law of cosines holds:572

∥y − x∥2 = ∥y∥2 + ∥x∥2 − 2⟨y, x⟩.
In this paper, we use this formula as an error-containing discrete chain rule of the squared norm.573

Lemma F.1. For all x(k+1), x(k) ∈ Rd,574 ∥∥∥x(k+1)
∥∥∥2 − ∥∥∥x(k)

∥∥∥2 = 2⟨x(k+1), x(k+1) − x(k)⟩ −
∥∥∥x(k+1) − x(k)

∥∥∥2
Another famous identity for the Hilbert norm (especially the Euclidean norm) is the parallelogram575

identity:576 ∥∥∥∥x+ y

2

∥∥∥∥2 + ∥∥∥∥x− y

2

∥∥∥∥2 =
1

2
(∥x∥2 + ∥y∥2).

In this paper, we use a generalization of this identity. In the following lemma, we recover the577

parallelogram identity by setting α = 1/2.578

Lemma F.2. For all x, y ∈ Rd and α ∈ R,579

∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

Proof. The claim is obtained by adding each side of the following equalities:580

∥αx+ (1− α)y∥2 = α2∥x∥2 + (1− α)2∥y∥2 + 2α(1− α)⟨x, y⟩,
α(1− α)∥x− y∥2 = α(1− α)∥x∥2 + α(1− α)∥y∥2 − 2α(1− α)⟨x, y⟩.

■581

G Proofs of theorems in Section 6582

G.1 Proof of Theorem H.1583

It is sufficient to show that584

E(t) := f(x(t))− f⋆

satisfies Ė ≤ −2µE. Indeed,585

Ė = ⟨∇f(x), ẋ⟩ = −∥∇f(x)∥2 ≤ −2µ(f(x)− f⋆) = −2µE

holds. Here, we used the chain rule, the continuous system itself, the PŁ condition, and the definition586

of E in this order. ■587
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G.2 Proof of Theorem H.3588

By the PŁ condition, we observe that589

−
∥∥∇f(y, x)

∥∥ ≤ −
√
2µ(f(x)− f⋆) + ∥∇f(x)∥ −

∥∥∇f(y, x)
∥∥

≤ −
√
2µ(f(x)− f⋆) +

∥∥∇f(x)−∇f(y, x)
∥∥.

Thus, the evaluation of
∥∥∇f(y, x)−∇f(x)

∥∥ yields β.590

(i) From L-smoothness α = L/2 follows. By the definition β = 0.591

(ii) L-smoothness yields α = L/2 and β = L. (Note that the convexity of f would imply α = 0,592

but it is not assumed now. If we adopt the other definition (18) then β = 0.)593

(iii) By the same application of L-smoothness, we obtain α = L/8 and β = L/2.594

(iv) Since the discrete chain rule exactly holds, ∇AVFf satisfies α = 0. Then, by the L-smoothness595

of f ,596

∥∇AVFf(y, x)−∇f(x)∥ =

∥∥∥∥∫ 1

0

∇f(τy + (1− τ)x)dτ −∇f(x)

∥∥∥∥
≤
∫ 1

0

∥∇f(τy + (1− τ)x)−∇f(x)∥dτ

≤
∫ 1

0

L∥τy + (1− τ)x− x∥dτ

≤
∫ 1

0

Lτ∥y − x∥dτ

≤ L

2
∥y − x∥

holds, which implies β = L/2.597

(v) Similar to the case (iv), α = 0 holds. By the L-smoothness of f ,598

∥∇Gf(y, x)−∇f(x)∥ =

∥∥∥∥∥∇f

(
y + x

2

)
−

f(y)− f(x)−
〈
∇f
(
y+x
2

)
, y − x

〉
∥y − x∥2

(y − x)−∇f(x)

∥∥∥∥∥
≤
∥∥∥∥∇f

(
y + x

2

)
−∇f(x)

∥∥∥∥+ |f(y)− f(x)−
〈
∇f
(
y+x
2

)
, y − x

〉
|

∥y − x∥

≤ L

2
∥y − x∥+ L

8
∥y − x∥

=
5L

8
∥y − x∥,

which implies β = 5L/8.599
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(vi) Similar to the previous cases, α = 0 holds. Using the same notation as in Appendix D (vi), we600

obtain601

∥∇IAf(y, x)−∇f(x)∥ =

∥∥∥∥∥∥∥∥∥∥


f(y1,x2,x3...,xd)−f(x1,x2,x3,...,xd)

y1−x1
f(y1,y2,x3...,xd)−f(y1,x2,x3,...,xd)

y2−x2

...
f(y1,y2,y3,...,yd)−f(y1,y2,y3...,xd)

yd−xd

−∇f(x)

∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥

∂1f(θ1y1 + (1− θ1)x1, x2, x3 . . . , xd)
∂2f(y1, θ2y2 + (1− θ2)x2, x3 . . . , xd)

...
∂df(y1, y2, y3, . . . , θdyd + (1− θd)xd)

−∇f(x)

∥∥∥∥∥∥∥∥
=

√√√√ d∑
k=1

|(∇f(θky1:kxk+1:d + (1− θk)y1:k−1xk:d))k − (∇f(x))k|2

≤

√√√√ d∑
k=1

L2∥y − x∥2

=
√
dL∥y − x∥,

where θk ∈ [0, 1] is a constant by the mean value theorem. Therefore, β =
√
dL holds.602

■603

G.3 Proof of Theorem H.5604

Let605

Ẽ(k) := f
(
x(k)

)
− f⋆.

If δ+Ẽ(k) ≤ −cẼ(k) for c > 0, it can be concluded that E(k) = (1− ch)−kẼ(k) is nonincreasing606

and hence f
(
x(k)

)
− f⋆ ≤ (1− ch)kE(0). Before starting the computation of δ+Ẽ(k), we transform607

the weak discrete PŁ condition (17) into a more convenient form. By substituting the scheme into608

(17), we obtain609

−
∥∥∥∇f(x(k+1), x(k))

∥∥∥2 ≤ − γ

(1 + βh)2

(
f
(
x(k)

)
− f⋆

)
.

Thus, it follows from the weak discrete chain rule (16), the scheme, and the above inequality, that610

δ+Ẽ(k) = δ+f
(
x(k)

)
≤
〈
∇f
(
x(k+1), x(k)

)
, δ+x(k)

〉
+ αh

∥∥∥δ+x(k)
∥∥∥2

= −(1− αh)
∥∥∥∇f

(
x(k+1), x(k)

)∥∥∥2
≤ −(1− αh)

γ

(1 + βh)2

(
f
(
x(k)

)
− f⋆

)
= −γ

1− αh

(1 + βh)2
E(k).

Hence if h ≤ 1/α we have the convergence. ■611

H Extension to Polyak–Łojasiewicz type functions.612

The weak discrete gradients can be useful also for non-convex functions. Here we illustrate it by613

taking functions satisfying the Polylak–Łojasiewicz (PŁ) condition. A function f is said to satisfy614

the PŁ condition if615

−∥∇f(x)∥2 ≤ −2µ(f(x)− f⋆)
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holds for any x ∈ Rd. This was introduced as a sufficient condition for the steepest descent to616

converge Polyak (1963). The set of functions satisfying the PŁ condition contains all differentiable617

strongly convex functions and some nonconvex functions such as f(x) = x2 + 3 sin2(x).618

Theorem H.1 (Continuous systems). Suppose that f satisfies the PŁ condition. Let x : [0,∞) → Rd619

be the solution of the gradient flow (3). Then the solution satisfies620

f(x(t))− f⋆ ≤ e−µt∥x0 − x⋆∥2.

Let us define another weak discrete gradient for functions satisfying the PŁ condition. Recall that621

the first condition of weak discrete gradients (Definition 4.1) has two meanings: the discrete chain622

rule (9) and the discrete convex inequality (10). One could consider the PŁ condition instead of623

convexity.624

Definition H.2. A gradient approximation ∇f : Rd × Rd → Rd is said to be PŁ-type weak discrete625

gradient of f if there exists positive numbers α, β such that for all x, y ∈ Rd the following three626

conditions hold:627

∇f(x, x) = ∇f(x),

f(y)− f(x) ≤ ⟨∇f(y, x), y − x⟩+ α∥y − x∥2, (16)

−
∥∥∇f(y, x)

∥∥ ≤ −
√

2µ(f(x)− f⋆) + β∥y − x∥. (17)

Theorem H.3. If f is L-smooth and satisfies the PŁ condition with the parameter µ, the following628

functions are PŁ-type weak discrete gradients:629

(i) ∇f(y, x) = ∇f(x); then (α, β) = (L/2, 0).630

(ii) If ∇f(y, x) = ∇f(y), then (α, β) = (L/2, L).631

(iii) If ∇f(y, x) = ∇f(x+y
2 ), then (α, β) = (L/8, L/2).632

(iv) If ∇f(y, x) = ∇AVFf(y, x), then (α, β) = (0, L/2).633

(v) If ∇f(y, x) = ∇Gf(y, x), then (α, β) = (0, 5L/8).634

(vi) If ∇f(y, x) = ∇IAf(y, x), then (α, β) = (0,
√
dL).635

Remark H.4. The parameters α and β imply the magnitude of the discretization error. As the second636

condition in Definition H.2, we can adopt instead637

−
∥∥∇f(y, x)

∥∥ ≤ −
√

2µ(f(y)− f⋆) + β∥y − x∥. (18)

Then, we obtain better parameters for the implicit Euler method (ii).638

The proof of Theorem H.3 is postponed in Appendix G.2.639

Theorem H.5 (Discrete systems). Let ∇f be a PŁ-type weak discrete gradient of f . Let f be a640

function which satisfies the necessary conditions that the PŁ-type weak DG requires. Let
{
x(k)

}
be641

the sequence given by (11). Then, under the step size condition h ≤ 1/α, the sequence satisfies642

f
(
x(k)

)
− f⋆ ≤

(
1− 2µh

(1− αh)

(1 + βh)2

)k

(f(x0)− f⋆).

In particular, the sequence satisfies643

f
(
x(k)

)
− f⋆ ≤

(
1− µ

2(α+ β)

)k

(f(x0)− f⋆),

when the optimal step size h = 1/(2α+ β) is employed.644

I Some numerical examples645

In this section, we give some numerical examples to complement the discussion in the main body646

of this paper. Note that this is just to illustrate that we can actually easily construct new concrete647
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methods just by assuring the conditions of weak discrete gradients (weak DGs), and that the resulting648

methods in fact achieve the prescribed rates; we here do not intend to explore a method that beats649

known state-of-the-art methods. It is of course an ultimate goal of the unified framework project, but650

is left as an important future work.651

Below we consider some explicit optimization methods derived as special cases of the abstract weak652

DG methods. Here we pick up simple two-dimensional problems so that we can observe not only653

the decrease of the objective functions but also the trajectories of the points x’s for our intuitive654

understandings.655

First, we consider the case where the objective function is a L-smooth convex function. An explicit656

weak discrete gradient method is then found as657 

x(k+1) − x(k) =
2k + 1

k2

(
v(k+1) − x(k+1)

)
,

v(k+1) − v(k) = −2k + 1

4
h2∇f

(
z(k)

)
,

z(k) − x(k) =
2k + 1

(k + 1)2

(
v(k) − x(k)

)
.

(19)

We call this method (wDG-c). This is the simplest example of the abstract method in Theorem 5.4,658

where we choose Ak = (kh)2 and ∇f(y, x) = ∇f(x). The authors believe this method itself has659

not been explicitly pointed out in the literature, and is new. The expected rate is the one predicted in660

the theorem, O
(
1/k2

)
, under the step size condition h ≤ 1/

√
L (recall that α for the weak DG is661

L/2 as shown in Theorem 4.2). For comparison, we pick up Nesterov’s accelerated gradient method662

for convex functions663 
y(k+1) = x(k) − h2∇f

(
x(k)

)
,

x(k+1) = y(k+1) +
k

k + 3

(
y(k+1) − y(k)

)
.

(20)

We denote this method by (NAG-c). It is well-known that it achieves the same rate, under the same664

step size condition; we summarize these information in Table 3.665

As an objective function, we employ666

f(x) = 0.1x1
4 + 0.001x2

4, (21)

which is not strongly convex. (Strictly speaking, this is not L-smooth as well, but we consider in the667

following way: for each initial x we obtain the level set {x | f(x) = f(x(0))}. Then we consider the668

function (21) inside the region, and extend the function outside it appropriately; for example such669

that the function grows linearly as ∥x∥ → ∞.)670

Numerical results are shown in Figure 1. The top-left panel of the figure shows the convergence671

of the objective function f(x) when the optimal step size 1/
√
L is chosen. We see both methods672

achieve the predicted rate O
(
1/k2

)
(mind the dotted guide line). We also see that under this setting,673

(wDG-c) converges faster than (NAG-c). This suggests that the new framework can give rise to674

an optimization method that is competitive to state-of-the-art methods (as said before, we do not675

say anything conclusive on this point; in order to discuss practical performance, we further need to676

discuss other implementation issues such as stepping schemes.) The trajectories of x(k)’s are almost677

the same, for all the tested step sizes.678

Next, we consider methods for strongly-convex functions. We use the following explicit weak DG679

method:680 

x(k+1) − x(k) =
√
µh
(
v(k+1) − x(k+1)

)
,

v(k+1) − v(k) =
√
µh

(
z(k) − v(k+1) −

∇f
(
z(k)

)
µ

)
,

z(k) − x(k) =
√
µh
(
x(k) + v(k) − 2z(k)

)
.

(22)

We call this (wDG-sc). This can be obtained by setting ∇f(y, x) = ∇f(x) in Theorem 5.5.681

Since for this choice we have α = L/2 and β = µ/2 (Theorem 4.2), the step size condition is682
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Table 3: Step size limitations and convergence rates of the methods used in the experiments

scheme step size limitation convergence rate
NAG-c (20) 1/

√
L O

(
1
k2

)
wDG-c (19) 1/

√
L O

(
1
k2

)
NAG-sc (23) 1/

√
L O

((
1−

√
µ
L

)k)
wDG-sc (22) 1/(

√
L−√

µ) O
((

1−
√

µ
L

)k)
wDG2-sc (24)

√
µ/(L− µ) O

((
1− µ

L

)k)
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(a) Evolution of function values (h = 1/
√
L).
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(b) Trajectory (h = 1/
√
L).
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(c) Trajectory (h = 0.7/
√
L).
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(d) Trajectory (h = 0.4/
√
L)

Figure 1: Trajectories and function values by (wDG-c) and (NAG-c). The objective function is (21)
and the initial solution is (2, 4).
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h ≤ 1/(
√
L −√

µ), and the predicted rate is O
(
(1−

√
µ/L)k

)
(which is attained by the largest683

h = 1/(
√
L−√

µ)).684

As before, we compare this method with Nesterov’s accelerated gradient method for strongly convex685

functions (NAG-sc):686 
y(k+1) = x(k) − h2∇f

(
x(k)

)
,

x(k+1) = y(k+1) +
1−√

µh

1 +
√
µh

(
y(k+1) − y(k)

)
.

(23)

Here, in addition to these, we also consider a simpler method, where z(k) = x(k) is chosen to find687 
x(k+1) − x(k) =

√
µh
(
v(k+1) − x(k+1)

)
,

v(k+1) − v(k) =
√
µh

(
x(k) − v(k+1) −

∇f
(
x(k)

)
µ

)
.

(24)

We call this (wDG2-sc). This method is more natural as a numerical method for the accelerated688

gradient flow (6), compared to the methods above, and we expect it illustrates how “being natural as689

a numerical method” affects the performance. The rate and the step size limitation were revealed in690

the proof of Theorem 5.5 (Appendix E).691

We summarized the step size limitations and rates in Table 3. Notice that the predicted rate of692

(wDG-sc) is better than that of (wDG2-sc).693

The objective function is taken to be the quadratic function694

f(x) = 0.001(x1 − x2)
2 + 0.1(x1 + x2)

2 + 0.01x1 + 0.02x2, (25)

and results are shown is Figure 2. Again the top-left panel shows the convergence of the objective695

function. We see that (wDG-sc) and (NAG-sc) with each optimal step size show almost the same696

convergence, which is in this case much better than the predicted worst case rate (the dotted guide697

line). (wDG2-sc) slightly falls behind the other two, but it eventually achieves almost the same698

performance as k → ∞. The trajectories of the points x(k)’s are, however, quite different among the699

three methods, which is interesting to observe. The trajectory of (wDG2-sc) seems to suffer from700

wild oscillations, while (wDG-sc) generates milder trajectory. (NAG-sc) comes between these two.701

We need careful discussion to conclude which dynamics is the best as an optimization method, but if702

we consider such oscillations are not desirable (possibly causing some instability), it might suggest703

that (wDG-sc) is the first choice for this problem. In any case, in this way we can explore various704

concrete optimization method within the framework of the weak DG by varying the weak DG, which705

is exactly the main claim of this paper.706
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Figure 2: Trajectories and function values by (wDG-sc), (wDG2-sc) and (NAG-sc). The objective
function is (25) and the initial value is (2, 3).
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