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Abstract

Recently, the Segment Anything Model (SAM) emerged as a powerful vision
foundation model which is capable to segment anything in 2D images. This paper
aims to generalize SAM to segment 3D objects. Rather than replicating the data
acquisition and annotation procedure which is costly in 3D, we design an efficient
solution, leveraging the Neural Radiance Field (NeRF) as a cheap and off-the-
shelf prior that connects multi-view 2D images to the 3D space. We refer to the
proposed solution as SA3D, for Segment Anything in 3D. It is only required to
provide a manual segmentation prompt (e.g., rough points) for the target object
in a single view, which is used to generate its 2D mask in this view with SAM.
Next, SA3D alternately performs mask inverse rendering and cross-view self-
prompting across various views to iteratively complete the 3D mask of the target
object constructed with voxel grids. The former projects the 2D mask obtained by
SAM in the current view onto 3D mask with guidance of the density distribution
learned by the NeRF; The latter extracts reliable prompts automatically as the
input to SAM from the NeRF-rendered 2D mask in another view. We show in
experiments that SA3D adapts to various scenes and achieves 3D segmentation
within minutes. Our research reveals a potential methodology to lift the ability
of a 2D vision foundation model to 3D, as long as the 2D model can steadily
address promptable segmentation across multiple views. Our code is available at
https://github.com/Jumpat/SegmentAnythingin3D.

1 Introduction

The computer vision community has been pursuing a vision foundation model that can perform basic
tasks (e.g., segmentation) in any scenario and for either 2D or 3D image data. Recently, the Segment
Anything Model (SAM) [25] emerged and attracted a lot of attention, due to its ability to segment
anything in 2D images, but generalizing the ability of SAM to 3D scenes remains mostly uncovered.
One may choose to replicate the pipeline of SAM to collect and semi-automatically annotate a large
set of 3D scenes, but the costly burden seems unaffordable for most research groups.

We realize that an alternative and efficient solution lies in equipping the 2D foundation model (i.e.,
SAM) with 3D perception via a 3D representation model. In other words, there is no need to establish
a 3D foundation model from scratch. However, there is a prerequisite: the 3D representation model
shall be capable to render 2D views and register 2D segmentation results to the 3D scene. Thus, we
use the Neural Radiance Fields (NeRF) [38, 53, 3] as an off-the-shelf solution. NeRF is a family
of algorithms that formulates each 3D scene into a deep neural network that serves as a 3D prior
connecting multiple 2D views.
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1st step
Render a view

2nd step
Input prompts

3rd step
Get the 3D object

Figure 1: Given any pre-trained NeRF, SA3D takes prompts from one single rendered view as input
and outputs the 3D segmentation result for the specific target.

As shown in Figure 1, our solution is named Segment Anything in 3D (SA3D). Given a NeRF trained
on a set of 2D images, SA3D takes prompts (e.g., click points on the object) in a single rendered
view as input, which is used to generate a 2D mask in this view with SAM. Next, SA3D alternately
performs two steps across various views to iteratively complete the 3D mask of the object constructed
with voxel grids. In each round, the first step is mask inverse rendering, in which the previous
2D segmentation mask obtained by SAM is projected onto the 3D mask via density-guided inverse
rendering offered by the NeRF. The second step is cross-view self-prompting, in which NeRF is
used to render the 2D segmentation mask (which may be inaccurate) based on the 3D mask and the
image from another view, then a few point prompts are automatically generated from the rendered
mask and fed into SAM to produce a more complete and accurate 2D mask. The above procedure is
executed iteratively until all necessary views have been sampled.

We conduct various (e.g., object, part-level) segmentation tasks on the Replica [51] and NVOS [47]
datasets. Without re-training/re-designing SAM or NeRF, SA3D easily and efficiently adapts to
different scenarios. Compared to existing approaches, SA3D enjoys a simplified pipeline that typically
completes 3D segmentation within minutes. SA3D not only offers an efficient tool for segmenting
anything in 3D, but also reveals a generic methodology to lift 2D foundation models to the 3D space.
The only prerequisite lies in the ability to steadily address promptable segmentation across multiple
views, and we hope it becomes a general property of 2D foundation models in the future.

2 Related Work

2D Segmentation Since FCN [36] has been proposed, research on 2D image segmentation has
experienced a rapid growth. Various sub-fields of segmentation have been explored deeply by
numerous studies [18, 24, 4, 71]. With transformers [58, 10] entering the field of segmentation,
many new segmentation architectures [72, 7, 6, 52, 63] have been proposed and the whole field
of segmentation has been further developed. A recent significant breakthrough in this field is the
Segment Anything Model (SAM) [25]. As an emerging vision foundation model, SAM is recognized
as a potential game-changer, which aims to unify the 2D segmentation task by introducing a prompt-
based segmentation paradigm. An analogous model to SAM is SEEM [75], which also exhibits
impressive open-vocabulary segmentation capabilities.

3D Segmentation Numerous methods have explored various types of 3D representations to perform
3D segmentation. These scene representations include RGB-D images [60, 62, 64, 8], point clouds [44,
45, 70] and grid space such as voxels [21, 55, 35], cylinders [74] and bird’s eye view space [67, 16].
Although 3D segmentation has been developed for a period of time, compared with 2D segmentation,
the scarcity of labeled data and high computational complexity make it difficult to design a unified
framework similar to SAM.

Lifting 2D Vision Foundation Models to 3D To tackle the limitation of data scarcity, many
previous studies [23, 43, 9, 17, 69, 31, 65, 22] explored lifting 2D foundation models to 3D. In
these studies, the most relevant work to SA3D is LERF [23], which trains a feature field of the
Vision-Language Model (i.e., CLIP [46]) together with the radiance field. Compared with SA3D,
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LERF focuses on coarsely localizing the specific objects with text prompts but not fine-grained 3D
segmentation. The reliance on CLIP features makes it insensitive to the specific location information
of the target object. When there are multiple objects with similar semantics in the scene, LERF
cannot perform effective 3D segmentation. The remaining methods mainly focus on point clouds. By
connecting the 3D point cloud with specific camera poses with 2D multi-view images, the extracted
features by 2D foundation models can be projected to the 3D point cloud. The data acquisition of
these methods is more expensive than ours, i.e., acquiring multi-view images for NeRFs.

Segmentation in NeRFs Neural Radiance Fields (NeRFs) [38, 53, 3, 1, 40, 19, 13, 61, 30, 12]
are a series of 3D implicit representation. Inspired by their success in 3D consistent novel view
synthesis, numerous studies have delved into the realm of 3D segmentation within NeRFs. Zhi
et al. [73] proposes Semantic-NeRF, a method that incorporates semantics into appearance and
geometry. They showcase the potential of NeRFs in label propagation and refinement. NVOS [47]
introduces an interactive approach to select 3D objects from NeRFs by training a lightweight multi-
layer perception (MLP) using custom-designed 3D features. Other approaches, e.g. N3F [57],
DFF [27], LERF [23] and ISRF [15], aim to lift 2D visual features to 3D through training additional
feature fields. These methods are required to re-design/-train NeRF models and usually involve
additional feature-matching processes. There are also some other instance segmentation and semantic
segmentation approaches [50, 41, 11, 68, 34, 20, 2, 14, 59, 28] combined with NeRFs.

The most closely related approach to our SA3D is MVSeg [39], a component of SPIn-NeRF [39],
which focuses on NeRF inpainting. MVSeg adopts video segmentation techniques to propagate a 2D
mask across different views and employs these masks as labels for training a Semantic-NeRF model.
However, video segmentation models lack explicit 3D structure information, which are hard to handle
significant occlusions in complex scenes. Our method aims at building NeRF-driven consistency
across views based on self-prompting and lifting 2D masks to robust 3D masks.

3 Method

In this section, we first give a brief review of Neural Radiance Fields (NeRFs) and the Segment
Anything Model (SAM). Then we introduce the overall pipeline of SA3D. Finally, we demonstrate
the design of each component in SA3D in detail.

3.1 Preliminaries

Neural Radiance Fields (NeRFs) Given a training dataset I of multi-view 2D images, NeRFs [38]
learn a function fθ : (x,d) → (c, σ), which maps the spatial coordinates x ∈ R3 and the view
direction d ∈ S2 of a point into the corresponding color c ∈ R3 and volume density σ ∈ R. θ
denotes the learnable parameters of the function f which is usually represented by a multi-layer
perceptron (MLP). To render an image Iθ, each pixel undergoes a ray casting process where a ray
r(t) = xo + td is projected through the camera pose. Here, xo is the camera origin, d is the ray
direction, and t denotes the distance of a point along the ray from the origin. The RGB color Iθ(r) at
the location determined by ray r is obtained via a differentiable volume rendering algorithm:

Iθ(r) =

∫ tf

tn

ω(r(t))c(r(t),d)dt, (1)

where ω(r(t)) = exp(−
∫ t

tn
σ(r(s))ds) · σ(r(t)), and tn and tf denote the near and far bounds of

the ray, respectively.

Segment Anything Model (SAM) SAM [25] takes an image I and a set of prompts P as input,
and outputs the corresponding 2D segmentation mask MSAM in the form of a bitmap, i.e.,

MSAM = s(I,P). (2)

The prompts p ∈ P can be points, boxes, texts, and masks.

3.2 Overall Pipeline

We assume that we already have a NeRF model trained on the dataset I. Throughout this paper,
unless otherwise specified, we opt to employ the TensoRF [3] as the NeRF model, considering its
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Figure 2: The overall pipeline of SA3D. Given a NeRF trained on a set of multi-view 2D images,
SA3D first takes prompts in a single view for the target object as input and uses SAM to produce a 2D
mask in this view with these prompts. Then, SA3D performs an alternated process of mask inverse
rendering and cross-view self-prompting to complete the 3D mask of the target object constructed
with voxel grids. Mask inverse rendering is performed to project the 2D mask obtained by SAM
onto the 3D mask according to the learned density distribution embedded in the NeRF. Cross-view
self-prompting is conducted to extract reliable prompts automatically as the input to SAM from the
NeRF-rendered 2D mask given a novel view. This alternated process is executed iteratively until we
get the complete 3D mask.

superior efficiency of training and rendering. As shown in Figure 2, an image Iin from a specific
view is first rendered with the pre-trained NeRF model. A set of prompts (e.g., in this paper, we often
use a set of points), Pin, is introduced and fed into SAM along with the rendered image. The 2D
segmentation mask Min

SAM of the according view is obtained, which is then projected onto the 3D mask
V ∈ R3 constructed voxel grids with the proposed mask inverse rendering technique (Section 3.3).
Then a 2D segmentation mask M(n) from a novel view is rendered from the 3D mask. The rendered
mask is usually inaccurate. We propose a cross-view self-prompting method (Section 3.4) to extract
point prompts P(n) from the rendered mask and further feed them into SAM. Thus a more accurate
2D mask M

(n)
SAM in this novel view is produced and also projected onto the voxel grids to complete the

3D mask. The above procedure is executed iteratively with more views traversed. Meanwhile, the 3D
mask become more and more complete. The whole process bridges 2D segmentation results with 3D
ones efficiently. Noting that no neural network needs to be optimized except the 3D mask.

3.3 Mask Inverse Rendering

As shown in Equation (1), the color of each pixel in a rendered image is determined by a sum of
weighted colors along the corresponding ray. The weight ω(r(t)) reveals the object structure within
the 3D space, where a high weight indicates the corresponding point close to the object’s surface.
Mask inverse rendering aims to project the 2D mask to the 3D space to form the 3D mask based on
these weights.

Formally, the 3D mask is represented as voxel grids V ∈ RL×W×H , where each grid vertex stores a
zero-initialized soft mask confidence score. Based on these voxels grids, each pixel of the 2D mask
from one view is rendered as

M(r) =

∫ tf

tn

ω(r(t))V(r(t))dt, (3)

where r(t) is the ray casting through the mask pixel, ω(r(t)) is inherited from density values of the
pre-trained NeRF, and V(r(t)) denotes the mask confidence score at the location r(t) obtained from
voxel grids V1. Denote MSAM(r) as the corresponding mask generated by SAM. When MSAM(r) = 1,

1V(r(t)) is computed by trilinearly interpolating vertex values of the 3D mask grids.
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the goal of mask inverse rendering is to increase V(r(t)) with respect to ω(r(t)). In practice, this can
be optimized using the gradient descent algorithm. For this purpose, we define the mask projection
loss as the negative product between MSAM(r) and M(r):

Lproj = −
∑

r∈R(I)

MSAM(r) ·M(r), (4)

whereR(I) denotes the ray set of the image I.

The mask projection loss is constructed based on the assumption that both the geometry from the
NeRF and the segmentation results of SAM are accurate. However, in practice, this is not always the
case. We append a negative refinement term to the loss to optimize the 3D mask grids according to
multi-view mask consistency:

Lproj = −
∑

r∈R(I)

MSAM(r) ·M(r) + λ
∑

r∈R(I)

(1−MSAM(r)) ·M(r), (5)

where λ is a hyper-parameter to determine the magnitude of the negative term. With this negative
refinement term, only if SAM consistently predicts a region as foreground from different views,
SA3D marks its corresponding 3D region as foreground. In each iteration, the 3D mask V is updated
via V← V − η

∂Lproj

∂V with gradient descent, where η denotes the learning rate.

3.4 Cross-view Self-prompting

Mask inverse rendering enables projecting 2D masks into the 3D space to form the 3D mask of a
target object. To construct accurate 3D mask, substantial 2D masks from various views need to
be projected. SAM can provide high-quality segmentation results given proper prompts. However,
manually selecting prompts from every view is time-consuming and impractical. We propose a
cross-view self-prompting mechanism to produce prompts for different novel views automatically.

Specifically, we first render a novel-view 2D segmentation mask M(n) from the 3D mask grids V
according to Equation (3). This mask is usually inaccurate, especially at the preliminary iteration of
SA3D. Then we obtain some point prompts from the rendered mask with a specific strategy. The
above process is named cross-view self-prompting. While there are multiple possible solutions for
this strategy, we present a feasible one that has been demonstrated to be effective.

Self-prompting Strategy Given an inaccurate 2D rendered mask M(n), the self-prompting strategy
aims to extract a set of prompt points Ps from it, which can help SAM to generate 2D segmentation
result as accurate as possible. It is important to note that M(n) is not a typical 2D bitmap, but rather a
confidence score map computed using Equation (3). Since each image pixel p corresponds to a ray r
in a rendered view, we use p for an easier demonstration of the prompt selection strategy on images.

As Ps is initialized to an empty set, the first prompt point p0 is selected as the point with the highest
mask confidence score: p0 = argmaxp M(n)(p). To select new prompt points, we first mask out
square shaped regions2 on M(n) centered with each existing point prompt p̂ ∈ Ps. Considering the
depth z(p) can be estimated by the pre-trained NeRF, we transform the 2D pixel p to the 3D point
G(p) = (x(G(p)), y(G(p)), z(G(p))):

(
x(G(p))
y(G(p))
z(G(p))

)
= z(p)K−1

(
x(p)
y(p)
1

)
(6)

where x(p), y(p) denote the 2D coordinates of p, and K denotes the camera intrinsics. The new
prompt point is expected to have a high confidence score while being close to existing prompt points.
Considering the two factors, we introduce a decay term to the confidence score. Let d(·, ·) denote the
min-max normalized Euclidean distance. For each remaining point p in M(n), the decay term is

∆M(n)(p) = min{M(n)(p̂) · d(G(p),G(p̂)) | p̂ ∈ Ps}. (7)

Then a decayed mask confidence score M̃(n)(p) is computed as

M̃(n)(p) = M(n)(p)−∆M(n)(p). (8)

2The side length of the region is set as the radius of a circle whose area is equal to the rendered mask M(n).
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Figure 3: Some visualization results in different scenes (LERF-donuts [23], LERF-figurines, Replica-
room0 [51] and 360-kitchen [1]).

The remaining point with the highest decayed score, i.e., p∗ = argmaxp/∈Ps
M̃(n)(p), is added to

the prompt set: Ps = Ps ∪ {p∗}. The above selection process is repeated until either the number of
prompts |Ps| reaches a predefined threshold np or the maximum value of M̃(n)(p) is smaller than 0.

IoU-aware View Rejection When the target object is rendered in heavily occluded views, SAM
may produce incorrect segmentation results and degrades the quality of the 3D mask. To avoid such
situations, we introduce an additional view rejection mechanism based on the intersection-over-union
(IoU) between the rendered mask M(n) and the SAM prediction M

(n)
SAM. If the IoU falls below a

predefined threshold τ , it indicates a poor overlap between the two masks. The prediction from SAM
is rejected, and the mask inverse rendering step is skipped in this iteration.

4 Experiments

In this section, we quantitatively evaluate the segmentation ability of SA3D on various datasets. Then,
we qualitatively demonstrate the versatility of SA3D, which can conduct instance segmentation, part
segmentation, and text-prompted segmentation etc.

4.1 Datasets

For quantitative experiments, we use the Neural Volumetric Object Selection (NVOS) [47], SPIn-
NeRF [39], and Replica [51] datasets. The NVOS [47] dataset is based on the LLFF dataset [37],
which includes several forward-facing scenes. For each scene, NVOS provides a reference view
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with scribbles and a target view with 2D segmentation masks annotated. Similar to NVOS, SPIn-
NeRF [39] annotates some data manually to evaluate interactive 3D segmentation performance. These
annotations are based on some widely-used NeRF datasets [37, 38, 29, 26, 13]. The Replica [51]
dataset provides high-quality reconstruction ground truths of various indoor scenes, including clean
dense geometry, high-resolution and high-dynamic-range textures, glass and mirror surface infor-
mation, semantic classes, planar segmentation, and instance segmentation masks. For qualitative
analysis, we use the LLFF [37] dataset and the 360◦ dataset [1]. SA3D is further applied to the
LERF [23] dataset, which contains more realistic and challenging scenes.

4.2 Quantitative Results

Table 1: Quantitative results on NVOS.

Method mIoU (%) mAcc (%)

Graph-cut (3D) [48, 47] 39.4 73.6
NVOS [47] 70.1 92.0
ISRF [15] 83.8 96.4
SA3D (ours) 90.3 98.2

NVOS Dataset For fair comparisons, we fol-
low the experimental setting of the original
NVOS [47]. We first scribble on the reference
view (provided by the NVOS dataset) to conduct
3D segmentation, and then render the 3D seg-
mentation result on the target view and evaluate
the IoU and pixel-wise accuracy with the pro-
vided ground truth. Note that the scribbles are
preprocessed to meet the requirements of SAM.
More details can be found in the supplement.
As shown in Table 1, SA3D outperforms previous approaches by large margins, i.e., +6.5 mIoU over
the previous SOTA ISRF and +20.2 mIoU over the NVOS.

Table 2: Quantitative results on the SPIn-NeRF dataset.

Scenes Single view MVSeg [39] SA3D (ours)

IoU (%) Acc (%) IoU (%) Acc (%) IoU (%) Acc (%)

Orchids 79.4 96.0 92.7 98.8 83.6 96.9
Leaves 78.7 98.6 94.9 99.7 97.2 99.9
Fern 95.2 99.3 94.3 99.2 97.1 99.6
Room 73.4 96.5 95.6 99.4 88.2 98.3
Horns 85.3 97.1 92.8 98.7 94.5 99.0
Fortress 94.1 99.1 97.7 99.7 98.3 99.8

Fork 69.4 98.5 87.9 99.5 89.4 99.6
Pinecone 57.0 92.5 93.4 99.2 92.9 99.1
Truck 37.9 77.9 85.2 95.1 90.8 96.7
Lego 76.0 99.1 74.9 99.2 92.2 99.8

mean 74.6 95.5 90.9 98.9 92.4 98.9

SPIn-NeRF Dataset We follow SPIn-NeRF [39] to conduct label propagation for evaluation. Given
a specific reference view of a target object, the 2D ground-truth mask of this view is available. The
prompt input operation is omitted, while the 2D ground-truth mask of the target object from the
reference view is directly used for the initialization of the 3D mask grids. This is reasonable since in
most situations users can refine their input prompts to help SAM generate a 2D mask as accurately
as possible from the reference view. Once the 3D mask grids are initialized, the subsequent steps
are exactly the same as described in Section 3. With the 3D mask grids finalized, the 2D masks in
other views are rendered to calculate the IoU with the 2D ground-truth masks. Results can be found
in Table 2. SA3D is demonstrated to be superior in both forward-facing and 360◦ scenes.

In Tables 2 and 3, “Single view” refers to conducting mask inverse rendering exclusively for the 2D
ground-truth mask of the reference view. This process is equivalent to mapping the 2D mask to the
3D space based on the corresponding depth information, without any subsequent learnable/updating
step. We present these results to demonstrate the gain of the alternated process in our framework. As
shown in Table 2, SA3D outperforms MVSeg [39] in most scenes, especially +5.6 mIoU on Truck
and +17.3 mIoU on Lego. Besides, compared with the “Single view” model, a significant promotion
is achieved, i.e. +17.8 mIoU, which further proves the effectiveness of our method.
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Table 3: Quantitative results on Replica (mIoU).

Scenes office0 office1 office2 office3 office4 room0 room1 room2 mean

Single view 68.7 56.5 68.4 62.2 57.0 55.4 53.8 56.7 59.8
MVSeg [39] 31.4 40.4 30.4 30.5 25.4 31.1 40.7 29.2 32.4
SA3D (ours) 84.4 77.0 88.9 84.4 82.6 77.6 79.8 89.2 83.0

Text:
“The table”

Text:
“The vase”

Text:
“The bonsai”

Figure 4: 3D segmentation results of SA3D with the text prompts in 360-garden [1].

Replica Dataset We use the processed Replica data with 2D instance labels provided by Zhi et
al. [73] to evaluate the segmentation performance of SA3D. We retrieve all views containing each
object and specify one reference view. With a similar setting of experiments on the SPIn-NeRF
dataset, we use the ground-truth mask of the reference view and perform SA3D to conduct label
propagation for evaluation. For each scene in Replica, around 20 objects are chosen for evaluation.
Refer to the supplement for more details. As shown in Table 3, the mean IoU (mIoU) is reported for
all available objects in different scenes. We exclude the pixel-wise accuracy metric since an object
only appears in a few views in the indoor scenes of Replica, where the pixel-wise accuracy is too
high to serve as a reliable metric.

In complex indoor scenes of Replica, MVSeg’s strategy based on video segmentation proves to be inef-
fective, which generates numerous inaccurate 2D pseudo-labels, even using the Semantic-NeRF [73]
for refinement. Consequently, the final 3D segmentation results of MVSeg even underperform those
achieved by the “Single view” method. In contrast, SA3D accurately captures segmented objects in
complex 3D scenes. Visualization results are shown in Figure 3.

4.3 Qualitative Results

We conduct three kinds of segmentation tasks: object segmentation, part segmentation and text-
prompting segmentation. The first two are the core functions of SA3D. As shown in Figure 3, SA3D
demonstrates its capability to segment diverse 3D objects across different scenes, even when the
objects are of small scales. Besides, SA3D can also handle challenging part segmentation. The last
row of the figure showcases SA3D’s precise segmentation of the bucket, small wheel, and dome light
of the Lego bulldozer. Figure 4 demonstrates the potential of SA3D in combining with language
models. Given a text phrase, the corresponding object can be accurately cut out. The text-prompting
segmentation is built upon Grounding-DINO [33], a model capable of generating bounding boxes
for objects based on text prompts. These bounding boxes serve as input prompts for SA3D in the
segmentation process.

Table 4: Ablation on different numbers of views for 3D mask generation. Numbers in parentheses
represent the view percentage of total training views.

Number of Views 5 (10%) 9 (20%) 21 (50%) 43 (100%)

IoU on Fortress (forward facing) 97.8 98.3 98.3 98.3
Time Cost (s) 7.6 12.8 29.0 59.0

Number of Views 11 (10%) 21 (20%) 51 (50%) 103 (100%)

IoU on Lego (360◦) 84.5 84.8 91.5 92.2
Time Cost (s) 23.5 43.5 103.8 204.9

8



4.4 Ablation Study

Number of Views The process of mask inverse rendering and cross-view self-prompting is alter-
nated across different views. By default, we utilize all available views in the training set I. However,
to expedite the 3D segmentation procedure, the number of views can be reduced. As shown in
Table 4, We perform experiments on two representative scenes from the SPIn-NeRF [39] dataset to
demonstrate this characteristic. The views are uniformly sampled from the sorted training set. In
forward facing scenes where the range of the camera poses is limited, satisfactory results can be
achieved by selecting only a few views. On an Nvidia RTX 3090 GPU, the 3D segmentation process
with 5 views can be completed within 10 seconds. On the contrary, in scenes where the range of
camera poses is wider, a larger number of views are required to yield greater improvements. Note
that even with 50 views, the segmentation task can still be completed in less than 2 minutes.

Hyper-parameters SA3D involves three hyper-parameters: the IoU rejection threshold τ , the loss
balance coefficient λ in Equation (5), and the number of self-prompting points np. As shown in
Table 6, too small τ values lead to unstable SAM predictions, introducing noises to the 3D mask;
too large τ values impede the 3D mask from getting substantial information. Table 7 indicates
slightly introducing a negative term with the λ factor can reduce noise for mask projection. However,
a too-large negative term may make the mask completion process unstable and causes degraded
performance. The selection of np depends on the specific segmentation target, as SAM tends to
produce over-segmented results that capture finer details of objects. As shown in Figure 5, for objects
with a relatively large scale and complex structures, a bigger np produces better results. Empirically.
setting np to 3 can meet the requirements of most situations.

Self-prompting Strategy Without the 3D distance based confidence decay (Equation (7)), our
self-prompting strategy degrades to a simple 2D NMS (Non-Maximum Suppression), which selects a
prompt point with the highest confidence score and then masks out a region around it. To showcase the
efficacy of our design, we conduct experiments using the NVOS benchmark and presented per-scene
results for in-depth analysis.

Table 5: Ablation on the confidence decay term of the self-prompting strategy.

Scenes w/ Confidence Decay Term w/o Confidence Decay Term

IoU (%) Acc (%) IoU (%) Acc (%)

Fern 82.9 94.4 82.9 94.4
Flower 94.6 98.7 94.6 99.7
Fortress 98.3 99.7 98.4 99.7
Horns (center) 96.2 99.3 96.2 99.3
Horns (Left) 90.2 99.4 88.8 99.3
Leaves 93.2 99.6 93.2 99.6
Orchids 85.5 97.3 85.4 97.3
Trex 82.0 97.4 64.0 93.3

mean 90.3 98.2 87.9 97.7

Table 5 shows that a simple NMS self-prompting is enough for most cases. But for hard cases
like ‘LLFF-trex’ (a trex skeleton, as shown in Figure 5), where a large number of depth jumps, the
confidence decay term contributes a lot. In such a situation, inaccurate masks bleed through gaps in
the foreground onto the background. If the self-prompting mechanism generates prompts on these
inaccurate regions, SAM may produce plausible segmentation results that can cheat the IoU-rejection
mechanism and finally the segmentation results will involve unwanted background regions.

2D Segmentation Models In addition to SAM, we also incorporate four other prompt-based 2D
segmentation models [75, 49, 32, 5] into our framework to demonstrate the generalization ability of
SA3D. The evaluation results on the NVOS dataset is shown in Table 8.

5 Discussion
On top of the experimental results, we hope to deliver some insights from our preliminary study of
integrating SAM and NeRF, i.e., a 2D foundation model and a 3D representation model.
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Table 6: Ablation on different IoU-aware rejection
threshold τ on the Replica office0.

τ 0.3 0.4 0.5 0.6 0.7

mIoU 74.9 79.7 84.4 81.3 82.0

Table 7: Ablation on different negative term coef-
ficient λ on the Replica office0.

λ 0.05 0.1 0.15 0.3 0.5

mIoU 79.1 82.9 84.4 84.9 83.3

Table 8: Ablation on different 2D segmentation models.

SEEM [75] SimpleClick [32] RITM [49] FocalClick [5]

mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%)

86.0 97.0 87.7 97.8 81.2 96.3 88.9 98.1

3 self-prompting pointsInput image with prompts 10 self-prompting points6 self-prompting points

Figure 5: Results of different self-prompting points numbers np on the LLFF-trex [37] scene.

SAM prediction SA3D prediction

Figure 6: The 2D segmentation result by SAM and the 3D segmentation result by SA3D of the
LLFF-fern [37] scene. SA3D produces more details that are missing in the SAM segmentation result.

First, NeRF improves the segmentation quality of SAM. In Figure 6, we show that SA3D can eliminate
segmentation errors of SAM and effectively capture details such as holes and edges. Perceptually,
SAM, as well as other 2D perception models, is often sensitive to the viewpoint, and NeRF offers
the ability of 3D modeling and hence complementariness to assist recognition. Additionally, SA3D
inspires us that using NeRF or other 3D structural priors is a resource-efficient method to lift a vision
foundation model from 2D to 3D, as long as the foundation model has the ability to self-prompt. This
methodology can save many resources because collecting a large corpus of 3D data is often costly.
We look forward to research efforts to enhance the 3D perception ability of 2D foundation models
(e.g., injecting a 3D-aware loss into 2D pre-training).

Limitation SA3D has limitations in panoptic segmentation. First, the current paradigm relies on the
first-view prompt. If some objects do not appear in the view for prompting, they will be omitted in the
subsequent segmentation process. Second, the same part in the scene may be segmented into different
instances with similar semantics in different views. This ambiguity cannot be easily eliminated under
the current mechanism design and lead to unstable training. We leave these issues as future work.

6 Conclusion
In this paper, we propose SA3D, a novel framework that generalizes SAM to segment 3D objects
with neural radiance fields (NeRFs) as the structural prior. Based on a trained NeRF and a set of
prompts in a single view, SA3D performs an iterative procedure that involves rendering novel 2D
views, self-prompting SAM for 2D segmentation, and projecting the segmentation back onto 3D
mask grids. SA3D can be efficiently applied to a wide range of 3D segmentation tasks. Our research
sheds light on a resource-efficient methodology that lifts vision foundation models from 2D to 3D.
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Appendix

The appendix includes the following contents:

1. Implementation details (Section A);
2. A segmentation refinement strategy (Section B);
3. The scribble to point strategy for the evaluation of NVOS (Section C);
4. An analysis about vanilla NeRF [38] used in SA3D (Section D);
5. More information about the object filtering of Replica [51] (Section E);
6. A further illustration of the self-prompting strategy (Section F);
7. An analysis about the effect of different kinds of occlusion in NeRF (Section G);
8. More visualization results with different kinds of input prompts (Section H).

A Implementation Details

We implement SA3D using PyTorch [42] with reference to the code provided by DVGOv2 [54]. The
SA3D model is built and trained on a single Nvidia Geforce RTX3090 GPU. For our NeRF model,
we primarily employ TensoRF [3], utilizing the VM-48 representation to store the radiance latent
vectors. The radiance fields are pre-trained for most datasets with 40,000 iterations. For the LLFF
dataset [37] and the 360 dataset [1], the radiance fields are trained with 20,000 iterations.

B Refinement with A Two-pass Segmentation Mechanism

SAM may produce segmentation masks containing undesired parts. The IoU-aware view rejection is
hard to handle this issue when the mis-classified region gradually expands.

We propose a two-pass segmentation mechanism to further refine the segmentation result. After
completing 3D segmentation introduced in the main manuscript, we get a 3D mask V. To detect
the mis-classified region from V, we re-render the 2D segmentation mask Mu of the user-specific
reference view and compare it with the original SAM segmentation result Mu

SAM.

Subsequently, we reset the original 3D mask V to be a zero tensor and introduce another 3D mask
V′ ∈ R3 that specifically indicates the mis-classified regions. The 3D segmentation process is
then repeated, with the key difference being the incorporation of negative prompt points during the
self-prompting phase. In other words, the prompts obtained from V′ serve as negative prompts for V,
and vice versa. This incorporation of negative prompts enables SAM to gain a better understanding of
the user’s requirements and refine the segmentation accordingly (shown in Figure B7). It is important
to note that while this two-pass segmentation mechanism holds promise, it was not utilized in our
main experiments due to considerations of efficiency.

Vanilla SA3D Two-pass Segmentation

Figure B7: The effect of the two-pass segmentation refinement.

C The Scribble to Points Strategy for The Evaluation of NVOS

The NVOS [47] dataset provides a reference view and the corresponding scribbles for each scene
(shown in Figure C8). In practice, since the scribbles usually contain tens of thousands of dense
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Figure C8: Some scribbles on the reference views provided by NVOS and the corresponding
segmentation results of SA3D. Blue scribbles are positive and red scribbles are negative.

points, SAM [25] cannot directy take such scribbles as input. The abundance of points in the scribbles
hinders SAM’s performance when directly utilizing them as prompts, which is an inherent limitation
of SAM.

For fair comparison, we extract positive and negative prompt points from the provided positive and
negative scribbles, respectively. For input scribbles, we first skeletonize them and then select 2%
points from the skeletonized positive scribbles as the positive prompts and 0.5% points from the
skeletonized negative scribbles as the negative prompts.

D The Effect of Different NeRFs Used in SA3D

We adapt SA3D to the vanilla NeRF [38] to showcase its generalizability. We present visualization
results on the LLFF dataset. As illustrated in Figure D9, SA3D with the vanilla NeRF exhibits
excellent performance without the need for additional modifications.

E Object Filtering for The Replica Dataset

The Replica dataset contains many objects in each scene. However, it is important to note that
many of these objects exhibit low quality, as depicted in Figure E10, making them unsuitable for
evaluating 3D segmentation. Generally, these instances exhibit the following issues: some instances
are not present in the training frames provided by Zhi et al. [73]; some instances are too small to
be effectively segmented, such as thin slits in doors; and some instances consist of unrecognizable,
low-resolution pixels, such as blurred tags, which are not suitable for accurate instance segmentation.
Accordingly, we carefully select approximately 20 representative instances from each scene for the
evaluation. The list of instance IDs for each scene can be found in Table E10. We have also included
the quantitative results without object filtering in Table E9. Even without object filtering, SA3D
demonstrates improvements compared to the single-view baseline.

Table E9: Quantitative results on Replica (mIoU) without object filtering.

Scenes office0 office1 office2 office3 office4 room0 room1 room2 mean

Single view 58.8 53.1 61.2 54.2 56.7 51.0 58.6 58.3 56.49
SA3D (ours) 65.1 59.8 69.7 61.4 63.8 56.8 68.4 72.2 64.65

F An Illustration for The Proposed Self-prompting Strategy

We offer an illustration (Figure F11) to assist readers in gaining a clearer understanding of the
self-prompting strategy.
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Figure D9: 3D Segmentation results based on the vanilla NeRF on the LLFF dataset.
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Figure E10: Some ground-truth masks (shown in green) and their corresponding instances from the
Replica dataset. These unreasonable segmentation targets are filtered out in evaluation.

Table E10: The selected id lists of Replica.

Scenes ID list

office0 3,4,7,8,9,10,12,14,17,19,21,23,26,28,29,30,36,37,40,42,44,46,54,55,57,58,61

office1 3,7,9,11,13,14,15,17,23,24,29,32,33,36,37,39,42,44,45,46

office2 0,2,8,9,13,14,17,19,23,27,40,41,47,49,51,54,58,60,65,67,70,71,72,73,78,85,90,92,93

office3 3,8,11,14,15,18,19,25,29,30,32,33,38,39,43,51,54,55,61,65,72, 76,78,82,87,91,95,96,
101,111

office4 1,2,6,7,9,11,17,22,23,26,33,34,39,47,49,51,52,53,55,56

room0 5,6,7,10,13,14,16,25,32,33,35,46,51,53,55,60,64,67,68,83,86,87,92

room1 1,2,4,6,7,9,10,11,16,18,24,28,32,36,37,44,48,52,54,56

room2 3,5,6,7,8,9,11,12,16,18,22,26,27,37,38,39,40,43,49,55,56

In the self-prompting strategy, prompt points Ps are derived from an incomplete 2D rendered mask
M(n), which is represented as a confidence score map. Initially, the selected prompt points set Ps

is empty, and the first prompt point p0 is selected as the one with the highest confidence score in
the mask M(n). For subsequent points, square regions centered around existing prompt points are
masked out on M(n). The depth z(p), estimated by the pre-trained NeRF, helps convert 2D pixel
p into a 3D point G(p). The new prompt point is expected to have a high confidence score while
being close to existing prompt points. Hence, a distance-aware decay term is introduced to compute
the confidence score. The remaining point with the highest decayed score is added to the prompt
set. This selection process is repeated until either the number of prompts |Ps| reaches a predefined
threshold np or the maximum value of the remaining points is less than 0. Please refer to Section 3.4
of the main manuscript for more details.

G The Effect of Occlusion in NeRF

There are two cases of occlusion in NeRFs: part of the target object does not appear in some views
(but appear in other views), or it does not appear at all. For the former case, SA3D can recover it
using information from other views; for the latter case, there can be parts missing in the target object
(see Figure G12). This is an interesting future direction (e.g., applying generative models such as
diffusion models).

H More Visualization Results

We present additional visualization results in Figure H13 and Figure H15, showcasing the effectiveness
of SA3D across various input prompts. We also provide some visualization of extracted meshes of
the segmented objects (Figure H14) to show the extracted 3D geometry. Please note that the quality
of these meshes can be further improved by applying more effective NeRF2Mesh methods [56, 66].
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2, 3D distance-based 
confidence decay

3, Select  a new point with the highest confidence

1, Mask out a square region

Mask out square regions

Equation (6),(7),(8)

Figure F11: An illustration of the self-prompting strategy.

Occluded but seen in other views

Never seen in any views

Figure G12: The effect of different kinds of occlusion in NeRF.

“The sheep”

“The paper”

“The apple” “The cup”

“The bag” “The dish”

Figure H13: Text prompt based visualization results on the LERF figurines dataset.

Figure H14: Some visualization results of the extracted meshes of the segmented objects.
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Figure H15: More visualization results on the LLFF dataset and the 360 dataset (based on point and
box prompts).
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