
Optimize Planning Heuristics to Rank, not to Estimate
Cost-to-Goal

Leah Chrestien
Czech Technical University in Prague
leah.chrestien@aic.fel.cvut.cz

Tomás̆ Pevný
Czech Technical University in Prague,

and Gen Digital, Inc.
pevnytom@fel.cvut.cz

Stefan Edelkamp
Czech Technical University in Prague

edelkste@fel.cvut.cz

Antonín Komenda
Czech Technical University in Prague
antonin.komenda@fel.cvut.cz

Abstract

In imitation learning for planning, parameters of heuristic functions are optimized
against a set of solved problem instances. This work revisits the necessary and
sufficient conditions of strictly optimally efficient heuristics for forward search
algorithms, mainly A* and greedy best-first search, which expand only states on
the returned optimal path. It then proposes a family of loss functions based on
ranking tailored for a given variant of the forward search algorithm. Furthermore,
from a learning theory point of view, it discusses why optimizing cost-to-goal h∗ is
unnecessarily difficult. The experimental comparison on a diverse set of problems
unequivocally supports the derived theory.

1 Introduction

Automated planning finds a sequence of actions that will reach a goal in a model of the environment
provided by the user. It is considered to be one of the core problems in Artificial Intelligence and it is
behind some of its successful applications [39, 27, 46]. Early analysis of planning tasks [31] indicated
that optimizing the heuristic function steering the search for a given problem domain towards the goal
can dramatically improve the performance of the search. Automated optimization of the heuristic
function therefore becomes a central request in improving the performance of planners [6, 13].

Learning in planning means optimizing heuristic functions from plans of already solved problems
and their instances. This definition includes the selection of proper heuristics in a set of pattern
databases [17, 22, 33, 12], a selection of a planner from a portfolio [25], learning planning operators
from instances [32, 56], learning for macro-operators and entanglements [9, 29], and learning heuristic
functions by general function approximators (e.g. neural networks) [45, 19, 16, 5].

The majority of research [45, 53, 19, 16] optimizes the heuristic function to estimate the cost-to-goal,
as it is well known that it is an optimal heuristic for many best-first heuristic search algorithms
including A* or IDA* [21, 28]. These works optimize the heuristic function to solve regression
problems. But even a true cost-to-goal h∗ does not guarantee that the forward search will find the
optimal solution while expanding the minimal number of states. This paper defines a stricter version
of optimally efficiency [10, 24] as follows. Forward search (or its heuristic) is called strictly optimally
efficient iff it expands only states on one optimal solution path returned by the search, i.e., if this
optimal solution path has l + 1 states, the search will expand only l states.

This work focuses exclusively on a forward search with merit functions. It presents theoretical
arguments as to why the order (rank) of states provided by the heuristic function is more important

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



than the precise estimate of the cost-to-goal and it formalizes the necessary and sufficient condition
for strictly optimally efficient search. It also argues why learning to rank is a simpler problem than
regression estimating the cost-to-goal from a statistical learning theory point of view. The main
motivation of the paper is similar to that in [38], but the derived theory and implementation are much
simpler. The sufficiency of optimizing the rank has been already recognized in [59] for a beam-search
and in [18] for greedy best-first search (GBFS), though, unlike this work, it cannot guarantee strict
optimal efficiency.

We emphasize that this work neither deals with nor questions the existence of a strictly optimally
efficient heuristic function with the forward search. It is assumed that the space of possible heuristic
functions is sufficiently large, such that there exist one that is sufficiently good. The theoretical results
are supported by experimental comparisons to the prior art on eight domains.

The contributions of this paper are as follows.

1. We state necessary and sufficient conditions for strictly optimally efficient heuristic functions
for forward search algorithms in deterministic planning.

2. We show that when optimizing a heuristic function, it is better to solve the ranking problem.

3. We argue, why learning to rank is easier than regression used in learning the cost-to-goal.

4. We instantiate it for A* and GBFS searches leading to two slightly different loss functions.

5. We experimentally demonstrate on eight problems (three grid and five PDDL) that optimizing
rank is always better.

2 Preliminaries

A search problem instance is defined by a directed weighted graph Γ = ⟨S, E , w⟩, a distinct node
s0 ∈ S and a distinct set of nodes S∗ ⊆ S. The nodes S denote all possible states s ∈ S of
the underlying transition system representing the graph. The set of edges E contains all possible
transitions e ∈ E between the states in the form e = (s, s′). s0 ∈ S is the initial state of the problem
instance and S∗ ⊆ S is a set of allowed goal states. Problem instance graph weights (alias action
costs) are mappings w : E → R≥0.

A path (alias a plan) π = (e1, e2, . . . , el), ei = (si−1, si) ∈ E , of length l solves a task Γ
with s0 and S∗ iff π = ((s0, s1), (s1, s2), . . . , (sl−1, sl)) and sl ∈ S∗. An optimal path π∗

is defined as a path minimizing the cost of a problem instance Γ, s0,S∗, its value as f∗ =

w(π∗) =
∑l

i=1 w(ei). When cost function w(e) = 1 optimal path corresponds to the shortest
one. π:i = ((s0, s1), (s1, s2), . . . , (si−1, si)) denotes subplan of a plan π containing its first i actions.
Sπ = {si}li=0 denotes the set of states from the path π = ((s0, s1), (s1, s2), . . . , (sl−1, sl)), and
correspondingly Sπ:i denotes the set of states in a subplan π:i.

2.1 Forward search algorithm

To align notation, we briefly review the forward search algorithm, of which A* and GBFS are special
cases. As we apply full duplicate detection in all of our algorithms, there is a bijection of search tree
nodes to planning states. Forward Search for consistent heuristics, where h(s)− h(s′) ≤ w(s, s′) for
all edges (s, s′) in the w-weighted state space graph, mimics the working of Dijkstra’s shortest-path
algorithm [11]. It maintains two sets: the first called Open list, O, contains generated but not
expanded nodes; the second called Closed list, C, contains already expanded nodes. Parameters α
and β of a merit function f(s) = αg(s) + βh(s) used to sort states in Open list allow to conveniently
describe different variants of the algorithm as described in detail shortly below. The forward search
works as follows.

1. Initialise Open list as O0 = {s0}.

2. Set g(s0) = 0

3. Initiate the Closed list to empty, i.e. C0 = ∅.
4. For i ∈ 1, . . . until Oi = ∅

(a) Select the state si = argmins∈Oi−1
αg(s) + βh(s)

2



(b) Remove si from Oi−1, Oi = Oi−1 \ {si}
(c) If si ∈ S∗, i.e. it is a goal state, go to 5.
(d) Insert the state si to Ci−1, Ci = Ci−1 ∪ {si}
(e) Expand the state si into states s′ for which hold (si, s

′) ∈ E and for each
i. set g(s′) = g(si) + w(si, s

′)
ii. if s′ is in the Closed list as sc and g(s′) < g(sc) then sc is reopened (i.e., moved

from the Closed to the Open list), else continue with (e)
iii. if s′ is in the Open list as so and g(s′) < g(so) then so is updated (i.e., removed

from the Open list and re-added in the next step with updated g(·)), else continue
with (e)

iv. add s′ into the Open list
5. Walk back to retrieve the solution path.

In the above algorithm, g(s) denotes a function assigning an accumulated cost w for moving from
the initial state (s0) to a given state s. During its execution, it always expands nodes with the lowest
f(s) = αg(s) + βh(s). Different settings of α and β give rise to different algorithms: for A*,
α = β = 1; for GBFS α = 0 and β = 1.

Consistent heuristics, which are of special interest, are called monotone because the estimated cost
of a partial solution f(s) = g(s) + h(s) is monotonically non-decreasing along the best path to
the goal. More than this, f is monotone on all edges (s, s′), if and only if h is consistent as we
have f(s′) = g(s′) + h(s′) ≥ g(s) + w(s, s′) + h(s)− w(s, s′) = f(s). For the case of consistent
heuristics, no reopening (moving back nodes from Closed to Open) in A* is needed, as we essentially
traverse a state-space graph with edge weights w(s, s′) + h(s′)− h(s) ≥ 0. For the trivial heuristic
h0, we have h0(s) = 0 and for perfect heuristic h∗, we have f(s) = f∗ = g(s) + h∗(s) for all
nodes s. Both heuristics h0 and h∗ are consistent. For GBFS and other variants, reopening is usually
neglected. Even if the heuristic is not consistent, best-first algorithms without the reopening, remain
complete i.e., they find a plan if there is one. Plans might not be provably optimal but are often good
for planning practice [14].

3 Conditions on strictly optimally efficient heuristic

Let Oi be an Open list in the ith iteration of the forward search expanding only states on the optimal
path π. Below definition defines a perfect ranking heuristic as a heuristic function where state on
some optimal path in the Open list, Sπ:i ∩ Oi, has always strictly lower merit value than other states
in the Open list off the optimal path, Oi \ Sπ:i . The intersection Sπ:i ∩ Oi contains always exactly
one state.
Definition 1 (Perfect ranking heuristic). A heuristic function h(s) is a perfect ranking in forward
search with a merit function f(s) = αg(s) + βh(s) for a problem instance Γ = (⟨S, E , w⟩, s0,S∗)
if and only if there exists an optimal plan π = ((s0, s1), (s1, s2), . . . , (sl−1, sl)) such that

• g(s) is the cost from s0 to s in a search-tree created by expanding only states on the optimal
path π;

• ∀i ∈ {1, . . . , l} and ∀sj ∈ Oi \ Sπ:i we have f(sj) > f(si).

As an example consider a search-tree in Figure 1a with an optimal path ((s0, s1), (s1, s2), (s2, s3))
and states {s4, s5, s6, s7} off the optimal path. Then the Open list after expanding s0 is O1 =
{s1, s4, s5} and that after expanding s1 is O2 = {s2, s4, s5, s6, s7}. The set of states on the optimal
sub-path are Sπ:1 = {s0, s1}, Sπ:2 = {s0, s1, s2}. States on the optimal path in the Open lists
are Sπ:1 ∩ O1 = {s1} and Sπ:2 ∩ O2 = {s2}. States off the optimal path in the Open lists are
O1 \ Sπ:1 = {s4, s5} and O2 \ Sπ:2 = {s4, s5, s6, s7}. Function f is perfectly ranking problem
instance in Figure 1a iff following inequalities holds:

f(s1) < f(s4), f(s2) < f(s4), f(s2) < f(s6),

f(s1) < f(s5), f(s2) < f(s5), f(s2) < f(s7).

Notice that the heuristic values of states on the optimal path are never compared. This is because if
the forward search expands only states on the optimal path, then its Open list always contains only

3



s4 s5

s6 s7

s0

s1

s2

s3

(a) An example of a search tree created by
expanding only states on the optimal path
(s0, s1, s2, s3). Grey nodes denote states
on the optimal path and pink nodes denote
states off the optimal path.

A

10
B
3

C

8

D

4

0

E

2

8

4

3

4

(b) Problem instance where perfect heuristic is not
strictly optimally efficient with GBFS. Numbers on the
edges denote the cost of action and red numbers next to
nodes denote the minimal cost-to-goal.

one state from the optimal path. The definition anticipates the presence of multiple optimal solutions
and even multiple goals, which requires the heuristic to break ties and have a perfect rank with respect
to one of them.
Theorem 1. The forward search with a merit function f(s) = αg(s) + βh(s) and a heuristic h
is strictly optimally efficient on a problem instance (⟨S, E , w⟩, s0,S∗) if and only if h is a perfect
ranking on it.

Proof. Sufficiency: If the conditions of a perfect ranking heuristic hold, then there exists an optimal
path such that a state on it that is in the Open list always has the strictly lowest heuristic value.
Therefore, forward search will never move off the optimal path and is, therefore, strictly optimally
efficient.

Necessity: If h is a strictly optimally efficient heuristic, then the forward search always selects the
state on the optimal path, which means that the state has the lowest heuristic value of all the states in
the Open list, which is precisely the condition of a perfect ranking heuristic.

Theorem 1, despite being trivial, allows certifying that the forward search with a given heuristic in
a given problem instance is strictly optimally efficient. This property has been discussed in [59]
for Beam search, but the conditions stated there are different because Beam search prunes states in
the Open list. Recall that the complexity class of computing a perfect ranking heuristic function is
the same as solving the problem because one implies the other. We now remind the reader that the
popular cost-to-goal does not always lead to a strictly optimally efficient forward search.
Example 1. While cost-to-goal h∗ is the best possible heuristic for algorithms like A* (up to
tie-breaking) in terms of nodes being expanded, for GBFS, h∗ does not necessarily yield optimal
solutions.

See Figure 2 for a counterexample. The complete proof is in the Appendix. Appendix 8.4 also gives
an example of a problem instance, where an optimally efficient heuristic for GBFS returning the
optimal solution does not exist.

4 Loss functions

4.1 Ranking loss function

Let’s now design a loss function minimizing the number of violated conditions in Definition 1 for
a problem instance (Γ, s0,S∗) and its optimal plan π. Assuming a heuristic function h(s, θ) with
parameters θ ∈ Θ, the number of violated conditions can be counted as

L01(h,Γ, π) =
∑

si∈Sπ

∑
sj∈Oi\Sπ:i

Jr(si, sj , θ) > 0K, (1)

where
r(si, sj , θ) = α(g(si)− g(sj)) + β(h(si, θ)− h(sj , θ)), (2)

4



Oi, Sπ:i as used in Definition 1, J·K denotes Iverson bracket being one if the argument is true and
zero otherwise, and α and β are parameters controlling the type of search, as introduced above.

In imitation learning, we assume that we have a training set T trn consisting of tuples of problem
instances and optimal plans T trn = {(⟨Si, Ei, wi⟩, s0,i,S∗

i , πi)}ni=1. To optimize parameters θ of a
heuristic function h(s, θ), we propose to minimize the number of wrongly ranked states over all the
problem instances in the training set,

argmin
θ∈Θ

∑
(Γ,π)∈T trn

L01(h,Γ, π). (3)

In practice, one often wants to solve problem (3) by efficient gradient optimization methods. To do
so, the Iverson bracket J·K (also called 0-1 loss) is usually replaced by a convex surrogate such as the
hinge-loss or the logistic loss used in the Experimental section below, in which case Equation (3)
becomes

argmin
θ∈Θ

∑
(Γ,π)∈T trn

∑
si∈Sπ

∑
sj∈S̄i

log(1 + exp(r(si, sj , θ))). (4)

While optimization of the surrogate loss might look as if one optimizes a different problem, it has
been shown that for certain classes of functions, optimization of surrogate losses solves the original
problem (3) as the number of training samples approach infinity [50, 35] .

4.2 Regression loss function

For the sake of comparison, we review a loss function used in the majority of works optimizing
the cost-to-goal in imitation learning for planning (some notable exceptions are in the related work
section). The optimization problem with L2 loss function is defined as

argmin
θ∈Θ

∑
(Γ,π)∈T trn

∑
si∈Sπ

(h(si, θ)− h∗(si)
2, (5)

where h∗(si) is the true cost-to-goal. The optimal solution of the optimization is the heuristic function
h∗. What is important for the discussion below is that the L2 loss function uses only states on the
optimal path and the heuristic function is optimized to solve the regression problem. Other variants
of regression loss, such as asymmetric L1 in [51], do not solve issues of regression losses discussed
in this paper.

4.3 Advantages and disadvantages of loss functions

Cost-to-goal provides a false sense of optimality It has been already mentioned above that A*
with h∗ is strictly optimally efficient up to resolving states with the same value of g(s) + h∗(s). This
means that for problems with a large (even exponential) number of optimal solutions of equal cost
(see [23] for examples), A* will be very inefficient unless some mechanism for breaking ties is used.
Moreover, since learning is inherently imprecise, a heuristic close but not equal to h∗ will likely be
less efficient than the one close to a perfect-ranking heuristic.

Size of the solution set The set of all functions satisfying Equation (5) is likely smaller than that
satisfying Equation (3), because the solution set of (3) is invariant to transformations by stricly
monotone functions, unlike the solution set of (5). From that, we conjecture that finding the solution
of (5) is more difficult. The precise theorem is difficult to prove since the solution of (5) is not a
solution of (3) due to tie resolution in Definition 1.

Optimizing cost-to-goal does not utilize states off the solution path Assume a problem instance
(⟨S, E , w⟩, s0,S∗) and an optimal solution path π = ((s0, s1), (s1, s2), . . . , (sl−1, sl)). Loss function
optimized in (5) uses only states {si}li=0 on the optimal path. This means that even when the loss is
zero, the search can be arbitrarily inefficient if states S\Sπ off the optimal path will have heuristic
values smaller than mins∈Sπ h(s). The proposed ranking loss (3) uses states on and off the optimal
path and therefore, does not suffer from this problem. This issue can be fixed if the training set
is extended to contain heuristic values for all states off the optimal path (states {s4, s5, s6, s7} in
Figure 1a), as has been suggested in [5, 49]. With respect to the above definitions, this is equal to
adding more problem instances to the training set sharing the same graph Γ and set of goal states S∗,
but differing in initial states. Solving all of them to obtain true cost-to-goal greatly increases the cost
of creating the training set.

5



Heuristic value for dead-end states should be sufficiently high to ensure they are never selected.
An infinity in the L2 loss would always lead to an infinite gradient in optimization. In practice, the
∞ is replaced by a sufficiently large value, but too large values can cause large gradients of L2,
which might negatively impact the stability of convergence of gradient-based optimization methods.
Proposed ranking losses do not suffer this problem.

Goal-awareness The drawback of the heuristic function h(s, θ) obtained by optimizing ranking
losses is that they are not goal-aware unlike the heuristic optimizing the estimate of cost-to-goal.

Speed of convergence against the size of training set From classical bounds on true error [54]
and [7], we can derive (see Appendix for details) that the excess error of ranking loss converges

to zero at a rate
√

lnnp√
np

, which is slightly faster than that of regression
√
lnns√

ns−
√
lnns

, where ns and
np denotes the number of states and state pairs respectively in the training set. But, the number of
state pairs in the training set grows quadratically with the number of states; therefore, the excess
error of ranking loss for the number of states ns can be expressed as

√
2 lnns

ns
, which would be by

at least 1√
ns

factor faster than that of regression. Note though that these rates are illustrative since
the independency of samples (and sample pairs) is in practice, violated since even samples from the
same problem instance are not independent.

Conflicts in training set Unlike regression loss, the proposed family of ranking losses is potentially
sensitive to conflicts in the training set, which occur when the training set contains examples of two
(or more) different solution paths of the same problem instance. This might prevent achieving a zero
loss. The effect on the heuristic depends on the composition of the training set. Either solution paths
more frequent in the training set will be preferred, or there will be ties, but their resolution do not
affect optimally efficiency. Appendix 8.5 provides an illustrative example.

5 Related Work

The closest work to ours is [36, 38], which adjusts heuristic value by a policy estimated from the
neural network. The theory therein has the same motivation, to minimize the number of expanded
states, though it is more complicated than the theory presented here. For efficiency, [38] needs to
modify the GBFS such that search nodes store policy and probability of reaching the node from the
start. Moreover, in some variants (used in the experimental comparison below) the neural network
has to estimate both heuristic value and policy.

Inspired by statistical surveys of heuristic functions in [57, 58], [18] proposes to optimize the rank of
states preserving order defined by the true cost-to-goal. The formulation is therefore valid only for
GBFS and not for A* search. Ties are not resolved, which means the strict optimal efficiency cannot
be guaranteed. Similarly, heuristic values for domains where all actions have zero cost cannot be
optimized. Lastly and importantly, the need to know the true cost-to-goal for all states in the training
set greatly increases the cost of its construction as discussed above. From Bellman’s equation [49]
arrives at the requirement that the smallest heuristic value of child nodes has to be smaller than that
of the parent node. The resulting loss is regularized with L1 forcing the value of the heuristic to be
close to cost-to-goal.

In [5], A* is viewed as a Markov Decision Process with the Q-function equal to the number of steps
of A* reaching the solution. This detaches the heuristic values from the cost-to-goal cost, but it does
not solve the problem with dead-ends and ties, since the optimization is done by minimizing L2 loss.

Symmetry of L2 (and of L1) loss are discussed in [51], as it does not promote the admissibility of the
heuristic. It suggests asymmetric L1 loss with different weights on the left and right parts, but this
does not completely solve the problem of estimating cost-to-goal (for example with ties, dead-ends).

Parameters of potential heuristics [41] are optimized by linear programming for each problem instance
to meet admissibility constraints while helping the search. On contrary, this work focuses on the
efficiency of the search for many problem instances but cannot guarantee admissibility in general.

Combining neural networks with discrete search algorithms, such that they become an inseparable
part of the architecture is proposed in [55] and [60]. The gradient with respect to parameters has to be

6



propagated through the search algorithm which usually requires both approximation and the search
algorithm to be executed during every inference.

A large body of literature [46, 20, 15, 2] improves the Monte Carlo Tree Search (MCTS), which
has the advantage to suppress the noise in estimates of the solution costs. These methods proposed
there are exclusive to MCTS and do not apply to variants of the forward search algorithm. Similarly,
a lot of works [45, 53, 61, 19, 8, 16, 5] investigate architectures of neural networks implementing
the heuristic function h(s, θ), ideally for arbitrary planning problems. We use [45, 8] to implement
h(s, θ), but remind our readers that our interest is the loss function minimized when optimizing θ.

Finally, [1] proposes to construct a training set similarly to pattern databases [12] by random backward
movements from the goal state and to adapt A* for multi-core processors by expanding k > 1 states
in each iteration. These improvements are independent of those proposed here and can be combined.

6 Experiments

The experimental protocol was designed to compare the loss functions while removing all sources
of variability. It therefore uses imitation learning in planning [18, 19] and leaves more interesting
bootstrap protocol for future work [3]. The goal was not to deliver state-of-the-art results, therefore
the classical solvers were omitted, but their results are in the Appendix for completeness.

The proposed ranking losses are instantiated with the logistic loss function as in Equation (4) for A*
search by setting α = β = 1 in (2), called L∗, and for GBFS, by setting α = 0, β = 1 in (2), called
Lgbfs. L2 is used as defined in Equation (5). Since the heuristics used in this paper are not admissible,
A* search will not provide optimal solutions. It was included in the comparison to demonstrate that
heuristics optimized with respect to Lgbfs might be inferior in A* search. To observe the advantage
of ranking over regression, we defined a Lrt loss function

Lrt(h,Γ, π) =
∑

(si−1,si)∈π

log(1 + exp(h(si, θ)− h(si−1, θ))) (6)

comparing only states on the optimal trajectory. We also compare to the loss function proposed in [49]
defined as Lbe(h,Γ, π) =

∑
s∈Sπ max{1 + mins′∈N (s) h(s

′, θ) − h(s, θ) , 0} + max{0, h∗(s) −
h(s, θ)} + max .{0, h(s, θ) − 2h∗(s)}, where N (s) denotes child-nodes of state s. Furthermore,
we compare to the policy-guided heuristic search [38] (denoted as Lle) with GBFS modified for
efficiency as described in the paper while simultaneously adapting the neural network to provide the
policy and heuristic value.

The heuristic function h(s, θ) for a given problem domain was optimized on the training set containing
problem instances and their solutions, obtained by SymBA* solver [52] for Sokoban and Maze with
teleports and [42] 1 for Sliding Tile. Each minibatch in SGD contained states from exactly a
single problem instance needed to calculate the loss. This means that for L2, Lrt, Lle, only states
on the solution trajectory were included; for L∗, Lgbfs, and Lbe there were additional states of
distance one (measured by the number of actions) from states on the solution trajectory. Optimized
heuristic functions were always evaluated within A* and GBFS forward searches, such that we can
analyze how the heuristic functions specialize for a given search. To demonstrate the generality,
experiments contained eight problem domains of two types (grid and general PDDL) using two
different architectures of neural networks described below.

Neural network for grid domains States in Sokoban, Maze with teleports, and Sliding-puzzle can
be easily represented in a grid (tensor). The neural network implementing the heuristic function
h(s, θ) was copied from [8]. Seven convolution layers, P1 . . . P7 of the same shape 3× 3 with 64
filters are followed by four CoAT blocks (CoAT block contains a convolution layer followed by a
multi-head attention operation with 2 heads and a positional encoding layer). Convolution layers in
CoAT blocks have size 3× 3 and have 180 filters. The network to this stage preserves the dimension
of the input. The output from the last block is flattened by mean pooling along x and y coordinates
before being passed onto a fully connected layer (FC) predicting the heuristic. All blocks have skip
connections.

1runs the "LAMA 2011 configuration" of the planner

7



Neural network for PDDL domains For Blocksworld, Ferry, Spanner, N-Puzzle, and Elevators,
where the state cannot be easily represented as a tensor, we have used Strips-HGN [44] and we
refer the reader therein for details. Strips-HGN was implemented in Julia [4] using PDDL.jl [62]
extending [30]. Importantly, we have used the hyper-graph reduplication proposed in [48] to im-
prove computational efficiency. Since we did not know the precise architecture (unlike in the grid
domain), we performed a grid-search over the number of hyper-graph convolutions in {1, 2, 3},
dimensions of filters in {4, 8, 16}, and the use of residual connections between features of vertices.
The representation of vertices was reduced by mean and maximum pooling and passed to a two-layer
feed-forward layer with hidden dimension equal to the number of filters in hyper-graph convolutions.
All non-linearities were of relu type. The best configuration was selected according to the number of
solved problems in the validation set. Forward search algorithms were given 5s to solve each problem
instance chosen in a manner to emphasize differences between loss functions. All experiments were
repeated 3 times. All experiments on the PDDL domains including development took 17724 CPU
hours. Optimizing heuristic for a single problem instance took approximately 0.5 CPU/h except
Gripper domain, where the training took about 8h due to large branch factors. The rest of this
subsection gives further details about domains.

Sokoban The training set for the Sokoban domain contained 20000 mazes of grid size 10 × 10
with a single agent and 3 boxes. The testing set contained 200 mazes of the same size 10× 10, but
with 3, 4, 5, 6, 7 boxes. Assuming the complexity of to be correlated with the number of boxes, we
can study generalization to more difficult problems. The problem instances were generated by [40].

Maze with teleports The training set contained 20000 mazes of size 15× 15 with the agent in the
upper-left corner and the goal in the lower-right corner. The testing set contained 200 mazes of size
50× 50, 55× 55, and 60× 60. Therefore, as in the case of Sokoban, the testing set was constructed
such that it evaluates the generalization of the heuristic to bigger mazes. The mazes were generated
using an open-source maze generator [47], where walls were randomly broken and 4 pairs of teleports
were randomly added to the maze structure.

Sliding puzzle The training set contained 20000 puzzles of size 5× 5. The testing set contained
200 mazes of size 5× 5. These puzzles were taken from [37]. Furthermore, we tested our approach
on puzzles of higher dimensions such 6× 6 and 7× 7, all of which were generated with [37]. Thus,
in total, the testing set contained 200 sliding tile puzzles for each of the three dimensions.

Blocksworld, N-Puzzle, Ferry, Elevators, and Spanner The problem instances were copied
from [44] (Blocksworld, N-Puzzle, and Ferry) and from [34] (elevators-00-strips). Problem
instances of Spanner were generated by [43]. Blocksworld contained 732 problem instances of size
3–15, N-Puzzle contained 80, Ferry contained 48, Elevators contained 80, and Spanner contained
440. Table 5 in Appendix shows the fraction of -olved mazes by breadth-first search for calibration of
the difficulty. The problem instances were randomly divided into training, validation, and testing sets,
each containing 50% / 25% / 25% of the whole set of problems. The source code of all experiments
is available at https://github.com/aicenter/Optimize-Planning-Heuristics-to-Rank with MIT license.

6.1 Experimental results

Table 1 shows the fraction of solved mazes in percent for all combinations of search algorithms (A*
and GBFS) and heuristic functions optimized against compared loss functions. The results match the
above theory, as the proposed ranking losses are always better than the L2 regression loss.

For A* search, the heuristic function optimized against the L∗ is clearly the best, as it is only once
inferior to Lrt and Lbe on the Ferry domain. As expected, heuristic functions optimized with respect
to Lgbfs behave erratically in A* search, because they were optimized for a very different search.

For GBFS, heuristic functions optimized against the L∗ or against Lgbfs behave the best. It can be
shown (the proof is provided in Apendix) that since each action has a constant and positive cost, the
heuristic function optimizing L∗ optimizes Lgbfs as well, but the opposite is not true.

Heuristic functions optimized against L2 estimating cost-to-goal deliver most of the time the worst
results. Heuristic functions optimized against other ranking losses Lrt and Lbe frequently perform
well, most of the time better than L2, but sometimes (Elevators, Sokoban, Sliding puzzle) are much

8

https://github.com/aicenter/Optimize-Planning-Heuristics-to-Rank


A* GBFS
problem complx. L∗ Lgbfs Lrt L2 Lbe L∗ Lgbfs Lrt L2 Lbe Lle

Blocks 100 100 100 99 100 100 100 100 100 100 99
Ferry 98 98 100 92 100 98 100 100 100 98 98
N-Puzzle 89 87 88 83 89 92 89 89 89 92 88
Spanner 100 89 100 84 92 100 100 100 100 100 100
Elevators 91 85 75 36 66 92 85 79 76 67 58

Sokoban 3 boxes 99 98 96 97 92 98 100 94 95 92 98
4 boxes 89 89 85 81 82 87 91 84 83 84 84
5 boxes 80 75 72 72 73 78 77 74 72 72 73
6 boxes 76 69 59 51 53 73 71 56 51 54 64
7 boxes 55 49 47 42 45 51 49 48 43 45 49

Maze w. t. 50× 50 92 91 88 87 87 89 90 89 84 85 89
55× 55 78 75 73 72 74 74 75 74 72 75 74
60× 60 49 37 35 32 31 42 48 36 34 32 42

Sliding puzzle 5× 5 88 83 84 80 82 86 87 84 84 84 85
6× 6 51 48 49 45 46 47 49 45 43 46 48
7× 7 39 35 36 32 34 35 36 35 32 34 35

Table 1: Fraction of solved problem instances in percent from the testing set. The top row denotes
the type of the search and the second top row denotes the loss function against which the heuristic
function was optimized. The complexity is explicitly shown for grid domains. Standard deviations
are most of the times smaller than one percent and are provided in Table in the Appendix.

worse than proposed losses. These experiments further confirm the [57, 18, 59] stating that optimizing
the exact estimate of cost-to-goal is unnecessary, but they also show the advantage of including states
off the optimal path in the loss function. Finally, the method combining policy and heuristic in GBFS,
Lle, [38] performs better that L2, but worse than the proposed ranking losses. Since both approaches
are derived from the same motivation, we attribute this to difficulties in training neural networks with
two heads. Ranking losses optimize just the heuristic which is directly used in the search, which
seems to us to be simpler. Additional statistics, namely the average number of expanded states
(Table 6) and the average length of plans (Table 8) are provided in the Appendix.

7 Conclusion

The motivation of this paper stemmed from the observation that even the cost-to-goal, considered
to be an optimal heuristic, fails to guarantee a strictly optimally efficient search. Since a large body
of existing research optimizes this quantity, we are effectively lost with respect to what should be
optimized. To fill this gap, we have stated the necessary and sufficient conditions guaranteeing the
forward search to be strictly optimally efficient. These conditions show that the absolute value of
the heuristic is not important, but that the ranking of states in the Open list is what controls the
efficiency. Ranking can be optimized by minimizing the ranking loss functions, but its concrete
implementation needs to correspond to a variant of the forward search. In case of mismatch, the
resulting heuristic can perform poorly, which has been demonstrated when the heuristic optimized
for BGFS search was used with A* search. The other benefit of ranking losses is that from the point
of view of statistical learning theory, they solve a simpler problem than ubiquitous regression in
estimating the cost-to-goal.

The experimental comparisons on eight problem domains convincingly support the derived theory.
Heuristic functions optimized with respect to ranking loss L∗ instantiated for A* search perform
almost always the best with A* search (except for one case where it was the second best). In the case
of GBFS, heuristic functions optimizing ranking losses Lgbfs and L∗ instantiated for GBFS and A*
worked the best. This is caused by the fact that the heuristic optimizing L∗ for A* optimizes Lgbfs for
GBFS as well.

We do not question the existence of a strictly optimally efficient heuristic. Given our experiments, we
believe that if the space of heuristic functions over which the loss is optimized is sufficiently rich, the
result will be sufficiently close to the optimal for the needs of the search.

9



7.1 Acknowledgements

This work has been supported by project numbers 22-32620S and 22-30043S from Czech Science
Foundation and OP VVV project CZ.02.1.01/0.0/0.0/16_019/0000765 "Research Center for Infor-
matics". This work has also received funding from the European Union’s Horizon Europe Research
and Innovation program under the grant agreement TUPLES No 101070149.

References
[1] Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. Solving the rubik’s

cube with deep reinforcement learning and search. Nature Machine Intelligence, 1(8):356–363,
2019.

[2] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning
and tree search. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 5360–5370, 2017.

[3] Shahab Jabbari Arfaee, Sandra Zilles, and Robert C Holte. Learning heuristic functions for
large state spaces. Artificial Intelligence, 175(16-17):2075–2098, 2011.

[4] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

[5] Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian Scherer. Learning heuristic search via
imitation. In Conference on Robot Learning, pages 271–280. PMLR, 2017.

[6] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence. 2001 Jun;
129 (1-2): 5-33., 2001.

[7] Vladimir Cherkassky, Xuhui Shao, Filip M Mulier, and Vladimir N Vapnik. Model complexity
control for regression using vc generalization bounds. IEEE transactions on Neural Networks,
10(5):1075–1089, 1999.

[8] Leah Chrestien, Tomáš Pevný, Antonín Komenda, and Stefan Edelkamp. Heuristic search
planning with deep neural network using imitation, attention and curriculum learning. In
PRL-IJCAI workshop, 2021.

[9] Lukás Chrpa. Combining learning techniques for classical planning: Macro-operators and
entanglements. In ICTAI, pages 79–86. IEEE Computer Society, 2010.

[10] Rina Dechter and Judea Pearl. The optimality of A* revisited. In Michael R. Genesereth, editor,
AAAI, pages 95–99. AAAI Press, 1983.

[11] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[12] Stefan Edelkamp. Automated creation of pattern database search heuristics. In Model Checking
and Artificial Intelligence, pages 35–50, 2006.

[13] Stefan Edelkamp and Stefan Schrödl. Heuristic Search - Theory and Applications. Academic
Press, 2012.

[14] Ariel Felner, Uzi Zahavi, Robert Holte, Jonathan Schaeffer, Nathan Sturtevant, and Zhifu Zhang.
Inconsistent heuristics in theory and practice. Artificial Intelligence, 175(9):1570–1603, 2011.

[15] Dieqiao Feng, Carla P. Gomes, and Bart Selman. Solving hard AI planning instances using
curriculum-driven deep reinforcement learning. In Christian Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
2198–2205. ijcai.org, 2020.

[16] Patrick Ferber, Malte Helmert, and Jörg Hoffmann. Neural network heuristics for classical
planning: A study of hyperparameter space. In ECAI, pages 2346–2353. IOS Press, 2020.

10



[17] Santiago Franco, Álvaro Torralba, Levi H. S. Lelis, and Mike Barley. On creating complementary
pattern databases. In IJCAI, pages 4302–4309, 2017.

[18] Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning to rank for
synthesizing planning heuristics. page 3089–3095, 2016.

[19] Edward Groshev, Aviv Tamar, Maxwell Goldstein, Siddharth Srivastava, and Pieter Abbeel.
Learning generalized reactive policies using deep neural networks. 2018.

[20] Arthur Guez, Théophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan
Wierstra, Rémi Munos, and David Silver. Learning to search with mctsnets. In International
conference on machine learning, pages 1822–1831. PMLR, 2018.

[21] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

[22] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig. Domain-independent
construction of pattern database heuristics for cost-optimal planning. In AAAI, pages 1007–1012,
2007.

[23] Malte Helmert and Gabriele Röger. How good is almost perfect? In AAAI, pages 944–949.
AAAI Press, 2008.

[24] Robert C. Holte and Sandra Zilles. On the optimal efficiency of cost-algebraic A. In The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, pages 2288–2295. AAAI
Press, 2019.

[25] Michael Katz, Shirin Sohrabi, Horst Samulowitz, and Silvan Sievers. Delfi: Online planner
selection for cost-optimal planning. IPC-9 planner abstracts, pages 57–64, 2018.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

[27] Donald E Knuth and Ronald W Moore. An analysis of alpha-beta pruning. Artificial intelligence,
6(4):293–326, 1975.

[28] Richard E. Korf. Iterative-deepening-A*: An optimal admissible tree search. In IJCAI, pages
1034–1036. Morgan Kaufmann, 1985.

[29] Richard E Korf. Macro-operators: A weak method for learning. Artificial intelligence, 26(1):35–
77, 1985.

[30] Šimon Mandlík, Matěj Račinskỳ, Viliam Lisỳ, and Tomáš Pevnỳ. Jsongrinder. jl: automated
differentiable neural architecture for embedding arbitrary json data. Journal of Machine
Learning Research, 23(298):1–5, 2022.

[31] Drew V. McDermott. A heuristic estimator for means-ends analysis in planning. In AIPS, pages
142–149. AAAI, 1996.

[32] David Ménager, Dongkyu Choi, Mark Roberts, and David W. Aha. Learning planning operators
from episodic traces. In 2018 AAAI Spring Symposia. AAAI Press, 2018.

[33] Ionut Moraru, Stefan Edelkamp, Santiago Franco, and Moisés Martínez. Simplifying automated
pattern selection for planning with symbolic pattern databases. In KI, pages 249–263, 2019.

[34] Christian Muise. Collection of pddl files of classical problems. https://github.com/AI-Planning/
classical-domains, 2023.

[35] XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. On surrogate loss functions
and f-divergences. The Annals of Statistics, pages 876–904, 2009.

[36] Laurent Orseau, Levi Lelis, Tor Lattimore, and Théophane Weber. Single-agent policy tree
search with guarantees. Advances in Neural Information Processing Systems, 31, 2018.

11

https://github.com/AI-Planning/classical-domains
https://github.com/AI-Planning/classical-domains


[37] Laurent Orseau and Levi HS Lelis. Implementation of the algorithms described in "policy-
guided heuristic search with guarantees" by l. orseau and l. lelis, published at aaai’21. https:
//github.com/levilelis/h-levin, 2021.

[38] Laurent Orseau and Levi HS Lelis. Policy-guided heuristic search with guarantees. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 12382–12390,
2021.

[39] Arthur L Samuel. Some studies in machine learning using the game of checkers. ii—recent
progress. IBM Journal of research and development, 11(6):601–617, 1967.

[40] Max-Philipp B. Schrader. gym-sokoban. https://github.com/mpSchrader/gym-sokoban, 2018.

[41] Jendrik Seipp, Florian Pommerening, and Malte Helmert. New optimization functions for
potential heuristics. In ICAPS, 2015.

[42] Jendrik Seipp and Silvan Sievers. Fast downward stone soup 2023.

[43] Jendrik Seipp, Álvaro Torralba, and Jörg Hoffmann. PDDL generators. https://doi.org/10.5281/
zenodo.6382173, 2022.

[44] William Shen. Strips-hgn. https://github.com/williamshen-nz/STRIPS-HGN, 2021.

[45] William Shen, Felipe Trevizan, and Sylvie Thiébaux. Learning domain-independent planning
heuristics with hypergraph networks. In ICAPS, volume 30, pages 574–584, 2020.

[46] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

[47] Kristian Smith. Maze creator / solver. https://github.com/ravenkls/Maze-Generator-and-Solver,
2022.

[48] Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezny, Steven Schockaert, and Ondrej Kuzelka.
Lifted relational neural networks: Efficient learning of latent relational structures. Journal of
Artificial Intelligence Research, 62:69–100, 2018.

[49] Simon Ståhlberg, Blai Bonet, and Hector Geffner. Learning general optimal policies with
graph neural networks: Expressive power, transparency, and limits. In Akshat Kumar, Sylvie
Thiébaux, Pradeep Varakantham, and William Yeoh, editors, Proceedings of the Thirty-Second
International Conference on Automated Planning and Scheduling, ICAPS 2022, Singapore
(virtual), June 13-24, 2022, pages 629–637. AAAI Press, 2022.

[50] Ingo Steinwart. Consistency of support vector machines and other regularized kernel classifiers.
IEEE transactions on information theory, 51(1):128–142, 2005.

[51] Takeshi Takahashi, He Sun, Dong Tian, and Yebin Wang. Learning heuristic functions for
mobile robot path planning using deep neural networks. In ICAPS, volume 29, pages 764–772,
2019.

[52] Alvaro Torralba, Vidal Alcázar, Daniel Borrajo, Peter Kissmann, and Stefan Edelkamp.
SymBA*: A symbolic bidirectional A* planner. In International Planning Competition, pages
105–108, 2014.

[53] Sam Toyer, Sylvie Thiébaux, Felipe Trevizan, and Lexing Xie. Asnets: Deep learning for
generalised planning. Journal of Artificial Intelligence Research, 68:1–68, 2020.

[54] Vladimir Vapnik. Principles of risk minimization for learning theory. Advances in neural
information processing systems, 4, 1991.

[55] Marin Vlastelica, Michal Rolinek, and Georg Martius. Neuro-algorithmic policies enable
fast combinatorial generalization. In International Conference on Machine Learning, pages
10575–10585. PMLR, 2021.

12

https://github.com/levilelis/h-levin
https://github.com/levilelis/h-levin
https://github.com/mpSchrader/gym-sokoban
https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173
https://github.com/williamshen-nz/STRIPS-HGN
https://github.com/ravenkls/Maze-Generator-and-Solver


[56] Xuemei Wang. Learning planning operators by observation and practice. In Kristian J. Ham-
mond, editor, AIPS, pages 335–340. AAAI, 1994.

[57] Christopher Wilt and Wheeler Ruml. When does weighted A* fail? In International Symposium
on Combinatorial Search, volume 3, 2012.

[58] Christopher Makoto Wilt and Wheeler Ruml. Effective heuristics for suboptimal best-first
search. J. Artif. Intell. Res., 57:273–306, 2016.

[59] Yuehua Xu, Alan Fern, and Sungwook Yoon. Learning linear ranking functions for beam search
with application to planning. Journal of Machine Learning Research, 10(7), 2009.

[60] Ryo Yonetani, Tatsunori Taniai, Mohammadamin Barekatain, Mai Nishimura, and Asako
Kanezaki. Path planning using neural A* search. In International Conference on Machine
Learning, pages 12029–12039. PMLR, 2021.

[61] Ziqi Zhang and Florian Geißer. Extending graph neural networks for generalized stochastic
planning. In Bridging the Gap Between AI Planning and Reinforcement Learning. 2021.

[62] Tan Zhi-Xuan. PDDL. jl: An Extensible Interpreter and Compiler Interface for Fast and
Flexible AI Planning. PhD thesis, Massachusetts Institute of Technology, 2022.

[63] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon
Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in
observed gradients. Advances in neural information processing systems, 33:18795–18806,
2020.

13



8 Appendix

8.1 Speed of convergence against the size of training set:

We use the classical results of statistical learning theory to show that estimating the cost-to-go
converges more slowly with respect to the size of the training set than estimating the rank.

From Equation (1) in the main text it should be obvious that ranking is in its essence a classification
problem if one considers a pair of states (s, s′) as a single sample. For classification/ranking problems,
a following bound on true error rate [54] holds with probability 1− η

Rc ≤ R̂c +

√
1

np

[(
1 + κ ln

2np

κ

)
− ln η

]
,

where Rc denotes the true loss (Equation (1) in the main text) and R̂c, its estimate from np state pairs
(si, sj), and κ, the Vapnik-Chervonenkis dimension [54] of the hypothesis space.

Optimizing h(s, θ) with respect to cost-to-goal (Equation (5) in the main text) is a regression problem
for which a different generalization bound on prediction error [7] holds with probability 1− η

Rr ≤ R̂r

[
1−

√
1

ns

[
κ
(
1 + ln

ns

κ

)
− ln η

]]−1

+

where again Rr is the error of the estimator of cost-to-go and R̂r is its estimate from ns states
(Equation (5) in the main text),2 and [x]+ is a shorthand for max{0, x}.

From the above, we can see that excess error in the ranking case converges to zero at a rate
√

lnnp√
np

,

which is slightly faster than that of regression
√
lnns√

ns−
√
lnns

. But, the number of state pairs in the
training set grows quadratically with the number of states; therefore, the convergence rate of the
ranking problem for the number of states ns can be expressed as

√
2 lnns

ns
, which would be by at least

1√
ns

factor faster than that of regression. We note that bounds are illustrative, since the independency
of samples is in practice violated, since samples from the same problem-instance are not independent.

8.2 Suboptimality of perfect heuristic in GBFS

A

10

B

3

C

8

D

4

0

E

2

8

4

3

4

Figure 2: Problem instance where perfect heuristic is not strictly optimally efficient with GBFS.
Numbers on the edges denote the cost of action and red numbers next to nodes denote the minimal
cost-to-go.

Example 2. While cost-to-goal h∗ is the best possible heuristic for algorithms like A* (up to
tie-breaking) in terms of nodes being expanded, for GBFS, h∗ does not necessarily yield optimal
solutions.

Proof. A* explores all the nodes with f(s) < f∗(s) = g(s)+h∗(s) and some with f(s) = f∗(s) =
g(s) + h∗(s), so nodes can only be saved with optimal f∗(s) = g(s) + h∗(s). In fact, when given

2The formulation in [7] contains constants c and a, but authors argue they can be set to a = c = 1 and
hasubve been therefore omitted here.

14



h∗as the heuristic, only nodes s with f(s) = f∗(s) are expanded. Depending on the strategy of
tie-breaking, the solution path can be found in the minimal number of node expansions or take
significantly longer (e.g., in lower g-value first exploration of the search frontier). Any heuristic other
than h∗ is either overestimating, and, therefore, may lead to either non-optimal solutions in A*, or
weaker than h∗, leading to more nodes being expanded.

Even if h∗ is given, GBFS is not guaranteed to be optimal. Consider the following graph with five
nodes A,B,C,D,E, and w(A,B) = 8, w(B,E) = 3, w(A,C) = 2, w(C,D) = 4, w(D,E) = 4,
and h∗(A) = 10, h∗(B) = 3, h∗(C) = 8, h∗(D) = 4, h∗(E) = 0 (see Figure 2), initial node
s0 = A, goal node E ∈ S∗. The numbers are the actual costs and the red numbers are the exact
heuristic function. For finding a path from node A to node E, GBFS would return (A,B,E) following
the heuristic function. However, the path (A,C,D,E) has cost 10 instead of 11.

8.3 Theory

Below, we prove the claim in made in Experimental section stating that if a heuristic h is strictly
optimally efficient for A* search, then it is also strictly optimally efficient for GBFS.
Theorem 2. Let a heuristic h is a perfect ranking for A* search on a problem instance Γ =
(⟨S, E , w⟩, s0,S∗) with a constant non-negative cost of actions ((∃c ≥ 0) (∀e ∈ E) (w(e) = c)).
Then h is a perfect ranking for GBFS on Γ.

Proof. Let π = ((s0, s1), (s1, s2), . . . , (sl−1, sl)) be an optimal plan such that ∀i ∈ {1, . . . , l} and
∀sj ∈ {sj | ∃(sk, sj) ∈ E ∧ sk ∈ Sπ:i−1 ∧ sj /∈ Sπ:i} we have g(sj) + h(sj) > g(si) + h(si),
where g(s) is the distance from s0 to s in a search-tree created by expanding only states on the
optimal path π. We want to proof that if all actions have the same positive costs, then h(sj) > h(si)
as well.

We carry the proof by induction with respect to the number of expanded states.

At the initialization (step 0) the claim trivially holds as the Open list contains just a root node and the
set of inequalities is empty.

Let’s now make the induction step and assume the theorem holds for the first i− 1 step. We divide
the proof to two parts. At first, we prove the claim for (O)i \ N (si−1) and then we proof the claim
for N (si−1), where N (s) denotes child states of the state s.

1) Assume sj ∈ (O)i \ N (si−1). Since h is strictly optimally efficient for A*, it holds that

g(sj) + h(sj) >g(si) + h(si)

h(sj) >(g(si)− g(sj)) + h(si)

h(sj) >h(si),

where the last inequality is true because g(si)− g(sj) ≥ 0.

Assume (sj ∈ N (si−1))(sj ̸= si). Since h is strictly optimall efficient for A*, it holds that

g(sj) + h(sj) > g(si) + h(si). (7)

Since g(sj) = w((si−1, sj)) = w((si−1, si)) = g(si), it holds

h(sj) > h(si), (8)

which finishes the proof of the theorem.

8.4 Optimally efficient heuristic might not exists for GBFS

Consider the following graph in Figure 3 with four nodes A,B,C,D,, and w(A,B) = 1, w(B,D) =
1, w(A,C) = 1, w(A,D) = 9, w(B,C) = 9, and h∗(A) = 0, h∗(B) = 1, h∗(C) = 1, h∗(D) = 2
where A is the goal state and D is the initial state.

We can see that for GBFS, the perfect heuristic does not exist for D. On expansion, the GBFS
algorithm will put A and B to the open list with heuristic values h(A) = 0 and h(B) = 1. GBFS takes
A from the open list and checks if it is a goal state. Since A is goal state, GBFS terminates returning

15



A

0

B

1

C

1

D 2A

1

1

99

1

Figure 3: Problem instance where optimally efficient heuristic does not exists for GBFS.

path (D,A) as a solution. However, this is not the optimal path as a better (optimal) solution exists (D,
B, A). Since the definition of optimal ranking requires the inequalities to hold for this optimal path,
in GBFS, the perfect heuristic does not exist for all initial states.

The problem can be fixed if the definition of optimal ranking is changed to consider two cases in the
merit function f(s) = αg(s) + βh(s): α > 0 and β > 0 and α = 0 and β > 0 . In the first case, the
optimal ranking should be defined with respect to the "optimal path" (this is the A*); in the latter
case, it should be the path with minimal number of expansions. With GBFS, the user simply wants to
find a solution but not care about its optimality. With this change, the heuristic function will exist for
Figure 3.

8.5 Training set with multiple solution paths with the same length of the plan

The behavior of the learned heuristic function depends on the composition of the training set, which
is illustrated below on a simple grid problem. The agent starts at position (4,4) and has to move to the
goal position (0,0). There are no obstacles and the agent can only move one tile down or one tile left
(the effects on his positions are either (-1,0) or (0,-1)), the cost of the action is one. The number of
different solutions path grows exponentially with the size of the grid and all solution path has the
same cost (for problem of size 5x5, there are 70 solutions). This problem is interesting, since merit
function in A* with optimal heuristic function (cost to goal) is constant, equal to 8, for all states.

For the size of the grid (4,4), the heuristic is determined by a table with 25 values. Below, these values
are determined by minimizing the proposed loss for A* algorithm with logistic loss surrogate by
BFGS (with all zeros as initial solution). Since the loss function is convex, BFGS finds the solution
quickly.

In the first case, the training set contains one solution path ([4, 4], [3, 4], [2, 4], [1, 4], [0, 4], [0, 3],
[0, 2], [0, 1], [0, 0]), where the agent first goes left and then down. The learnt heuristic values h is
shown in Table 2.

y/x 0 1 2 3 4
4 -191.53 -131.99 -76.94 -31.25 0.0
3 0.0 31.25 76.94 131.99 191.53
2 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0

Table 2: Table showing one solution path.

An A* search using these heuristic values will first always take action moving the agent to left and
then down. When moving down, the agent does not have another choice. Notice that the heuristic
values of many states are not affected by the optimization, because they are not needed to effectively
solve the problem.

16



In the second case, the training set contains two solution paths: the first is in Table 2 and in the
second table 3, the agent goes first down and then left. The learnt heuristic values are shown in 3.

y/x 0 1 2 3 4
4 -95.76 -66.0 -38.47 80.14 0.0
3 0.0 15.62 38.47 131.99 80.14
2 0.0 0.0 0.0 38.47 -38.47
1 0.0 0.0 0.0 15.62 -66.0
0 0.0 0.0 0.0 0.0 -95.76

Table 3: Table showing two solution paths.

An A* search will now face tie at state (4,4), since states (3,4) and (4,3) have the same heuristic value.
But the presence of the tie does not affect the optimal efficiency of the search, as A* will always
expand states on one of the optimal path from the training set.

Finally let’s consider a case, where all 70 possible solutions are in the training set. The learned
heuristic values are shown in Table 4.

y/x 0 1 2 3 4
4 3.74 92.62 134.66 163.17 0.0
3 -46.61 2.35 91.93 134.38 163.17
2 -167.96 -47.7 1.94 91.93 134.66
1 -210.03 -168.66 -47.7 2.35 92.62
0 0.0 -210.03 -167.96 -46.61 3.74

Table 4: Table showing multiple solution paths.

Rank of heuristic values "roughly" corresponds to cost to goal. The reason, why some states are
preferred over the others despite their true cost-to-goal being the same is that they appear in more
solution paths. As shown in Table 4, the A* search with learnt heuristic values is strictly optimally
efficient.

8.6 Baseline Comparison to breadth-first search

The fraction of solved problems for breadth-first search (5s time limit as used by solvers in the paper)
is shown in Table 5.

domain fraction
blocks 0.35
ferry 0.31

npuzzle 0.14
spanner 0.63
elevators 0.32

Table 5: Fraction of solved mazes by breadth-first search.

8.7 Training Details

For the grid domains, ADAM [26] training algorithm was run for 100 × 20000 steps for the grid
domains.The experiments were conducted in the Keras-2.4.3 framework with Tensorflow-2.3.1 as
the backend. While all solvers were always executed on the CPU, the training used an NVIDIA
Tesla GPU model V100-SXM2-32GB. Forward search algorithms were given 10 mins to solve each
problem instance.

For the PDDL domains, the training consumed approximately 100 GPU hours and evaluation
consumed 1000 CPU hours.All training and evaluation were done on single-core Intel Xeon Silver
4110 CPU 2.10GHz with a memory limit of 128GB. The training algorithm AdaBelief [63] was

17



allowed to do 10000 steps on the CPU. We emphasize though, that the training time does not include
the cost of creating the training set.

A* GBFS
problem complx. L∗ Lgbfs Lrt L2 Lbe L∗ Lgbfs Lrt L2 Lbe Lle

blocks 37 54 27 137 54 33 28 29 32 32 127
ferry 53 43 36 339 20 48 34 31 33 20 51

npuzzle 294 660 843 1936 641 297 311 333 591 272 418
spanner 55 546 53 807 416 61 56 53 117 65 148

elevators 33 35 52 657 310 33 33 43 115 198 73

Sokoban 3 boxes 14 14 14 17 14 14 14 14 17 14 14
4 boxes 32 35 37 44 35 34 32 36 43 35 33
5 boxes 61 67 68 72 63 65 62 66 77 64 61
6 boxes 171 179 180 210 177 175 179 181 214 180 174
7 boxes 643 651 653 755 654 645 641 640 754 655 643

Maze w. t. 50× 50 34 37 34 41 40 34 33 35 43 40 35
55× 55 51 59 52 63 60 54 52 55 65 61 58
60× 60 72 78 75 83 78 73 71 77 89 79 84

Sliding puzzle 5× 5 1521 1558 1534 1559 1545 1524 1539 1533 1556 1544 1531
6× 6 2322 2353 2334 2439 2388 2321 2326 2329 2334 2329 2329
7× 7 3343 3375 3347 3431 3411 3421 3356 3449 3512 3448 3379

Table 6: Average number of expanded states.

18



A
*

G
B

FS
pr

ob
le

m
co

m
pl

x.
SB

A
*

FD
SS

L
∗

L
g
b
fs

L
rt

L
2

L
b
e

L
∗

L
g
b
fs

L
rt

L
2

L
b
e

L
le

bl
oc

ks
10

0
10

0
1
0
0
±

0
1
0
0
±

1
1
0
0
±

0
9
9
±

1
1
0
0
±

0
1
0
0
±

0
1
0
0
±

0
1
0
0
±

0
1
0
0
±

0
1
0
0
±

0
9
9
±

1
fe

rr
y

10
0

95
9
8
±

3
9
8
±

3
1
0
0
±

0
9
2
±

8
1
0
0
±

0
9
8
±

3
1
0
0
±

0
1
0
0
±

0
1
0
0
±

0
9
8
±

4
9
8
±

3
np

uz
zl

e
10

0
89

8
9
±

1
8
7
±

2
8
8
±

0
8
3
±

4
8
9
±

1
9
2
±

5
8
9
±

1
8
9
±

1
8
9
±

1
9
2
±

7
8
8
±

3
sp

an
ne

r
10

0
90

1
0
0
±

0
8
9
±

2
1
0
0
±

0
8
4
±

6
9
2
±

6
1
0
0
±

0
1
0
0
±

0
1
0
0
±

0
1
0
0
±

0
1
0
0
±

0
1
0
0
±

0
el

ev
at

or
s

10
0

37
9
1
±

2
8
5
±

1
0

7
5
±

8
3
6
±

6
6
6
±

3
9
2
±

3
8
5
±

1
1

7
9
±

8
7
6
±

3
6
7
±

4
5
8
±

1
1

So
ko

ba
n

3
bo

xe
s

10
0

10
0

9
9
±

0
9
8
±

0
9
6
±

0
9
7
±

0
9
2
±

0
9
8
±

0
1
0
0
±

0
9
4
±

0
9
5
±

0
9
2
±

0
9
8
±

0
4

bo
xe

s
10

0
81

8
9
±

2
8
9
±

1
8
5
±

2
8
1
±

0
8
2
±

3
8
7
±

2
9
1
±

1
8
4
±

4
8
3
±

3
8
4
±

3
8
4
±

3
5

bo
xe

s
97

67
8
0
±

1
7
5
±

2
7
2
±

2
7
2
±

1
7
3
±

0
7
8
±

1
7
7
±

1
7
4
±

3
7
2
±

3
7
2
±

2
7
3
±

1
6

bo
xe

s
55

49
7
6
±

2
6
9
±

1
5
9
±

3
5
1
±

0
5
3
±

3
7
3
±

1
7
1
±

1
5
6
±

0
5
1
2

5
4
±

0
6
4
±

1
7

bo
xe

s
46

31
5
5
±

4
4
9
±

3
4
7
±

4
4
2
±

3
4
5
±

5
5
1
±

3
4
9
±

3
4
8
±

3
4
3
±

2
4
5
±

2
4
9
±

3

M
az

e
w

.t
.

50
×

50
92

75
9
2
±
0

9
1
±
0

8
8
±
1

8
7
±

1
8
7
±

0
8
9
±

0
9
0
±

1
8
9
±

1
8
4
±

0
8
5
±

1
8
9
±

0
55

×
55

52
50

7
8
±
1

7
5
±
4

7
3
±
1

7
2
±

3
7
4
±

3
7
4
±

0
7
5
±

3
7
4
±

2
7
2
±

3
7
5
±

3
7
4
±

2
60

×
60

0
0

4
9
±
1

3
7
±
0

3
5
±
3

3
2
±

2
3
1
±

1
4
2
±

3
4
8
±

1
3
6
±

3
3
4
±

3
3
2
±

2
4
2
±

0

Sl
id

in
g

pu
zz

le
5
×
5

-
1

8
8
±

1
8
3
±

3
8
4
±

3
8
0
±

2
8
2
±

0
8
6
±

3
8
7
±

1
8
4
±

0
8
4
±

1
8
4
±

1
8
5
±

1
6
×
6

-
-

5
1
±

2
4
8
±

3
4
9
±

2
4
5
±

4
4
6
±

3
4
7
±

3
4
9
±

3
4
5
±

2
4
3
±

3
6
6
±

2
4
8
±

3
7
×
7

-
-

3
9
±

3
3
5
±

3
3
6
±

3
3
2
±

3
3
4
±

3
3
5
±

3
3
6
±

3
3
5
±

3
3
2
±

3
3
4
±

3
3
5
±

3

Ta
bl

e
7:

A
ve

ra
ge

fr
ac

tio
n

of
so

lv
ed

pr
ob

le
m

in
st

an
ce

s
in

pe
rc

en
tw

ith
st

an
da

rd
de

vi
at

io
n.

SB
A

*
an

d
FD

SS
de

no
te

s
Fa

st
D

ow
nw

ar
d

St
on

e
So

up
,T

he
y

ar
e

do
m

ai
n

in
de

pe
nd

en
tp

la
nn

er
s.

19



A* GBFS
problem complx. L∗ Lgbfs Lrt L2 Lbe L∗ Lgbfs Lrt L2 Lbe Lle

blocks 21.6 22.7 21.4 22.5 22.9 21.8 22.7 22.1 22.5 23.1 34.1
ferry 16.8 16.9 16.7 16.8 16.8 16.8 16.9 16.8 16.8 16.8 16.9

npuzzle 19.2 23.5 18.2 17.5 17.3 37.6 36.4 39.6 35.1 34.1 124.6
spanner 49.1 49.2 49.2 49.2 49.1 49.0 49.2 49.1 49.2 49.3 49.1

elevators 16.1 16.4 14.7 17.9 15.8 19.4 16.6 15.9 18.0 16.1 21.4

Sokoban 3 boxes 13.1 13.3 13.8 13.2 13.4 13.1 13.2 13.2 13.5 13.2 13.2
4 boxes 15.4 15.2 16.1 15.7 16.8 16.7 15.1 16.1 15.6 16.3 15.8
5 boxes 20.1 19.2 21.3 22.1 20.9 19.8 20.4 21.3 22.1 19.9 20.1
6 boxes 29.6 29.3 27.7 28.2 26.8 28.3 28.1 29.6 29.4 29.9 30.1
7 boxes 31.9 31.4 35.4 33.1 34.1 30.1 33.3 35.2 32.7 34.0 35.5

Maze w. t. 50× 50 24.1 25.3 25.1 24.3 24.3 24.3 24.5 25.4 24.3 25.4 24.7
55× 55 34.1 33.2 35.0 34.2 33.9 33.2 33.1 34.6 34.6 36.5 36.3
60× 60 41.2 42.9 41.4 43.2 42.8 42.1 43.6 44.2 45.2 45.3 45.1

Sliding puzzle 5× 5 150.1 153.7 155.2 154.6 154.5 154.5 153.5 153.9 155.0 151.1 152.1
6× 6 252.3 254.2 253.8 254.8 254.0 255.9 256.4 255.3 256.2 254.9 256.3
7× 7 321.1 324.1 322.2 324.3 320.4 322.9 324.1 323.4 327.1 324.6 323.7

Table 8: Average number of length of the solution. The average is computed only over problem
instances solved by all 11 variants of forward search.

20


	Introduction
	Preliminaries
	Forward search algorithm

	Conditions on strictly optimally efficient heuristic
	Loss functions
	Ranking loss function
	Regression loss function
	Advantages and disadvantages of loss functions

	Related Work
	Experiments
	Experimental results

	Conclusion
	Acknowledgements

	Appendix
	Speed of convergence against the size of training set:
	Suboptimality of perfect heuristic in GBFS
	Theory
	Optimally efficient heuristic might not exists for GBFS
	Training set with multiple solution paths with the same length of the plan
	Baseline Comparison to breadth-first search
	Training Details


