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Abstract

How does a single interconnected neural population perform multiple tasks, each
with its own dynamical requirements? The relation between task requirements
and neural dynamics in Recurrent Neural Networks (RNNs) has been investigated
for single tasks. The forces shaping joint dynamics of multiple tasks, however,
are largely unexplored. In this work, we first construct a systematic framework
to study multiple tasks in RNNs, minimizing interference from input and output
correlations with the hidden representation. This allows us to reveal how RNNs
tend to share attractors and reuse dynamics, a tendency we define as the "simplicity
bias". We find that RNNs develop attractors sequentially during training, prefer-
entially reusing existing dynamics and opting for simple solutions when possible.
This sequenced emergence and preferential reuse encapsulate the simplicity bias.
Through concrete examples, we demonstrate that new attractors primarily emerge
due to task demands or architectural constraints, illustrating a balance between
simplicity bias and external factors. We examine the geometry of joint represen-
tations within a single attractor, by constructing a family of tasks from a set of
functions. We show that the steepness of the associated functions controls their
alignment within the attractor. This arrangement again highlights the simplicity
bias, as points with similar input spacings undergo comparable transformations
to reach the shared attractor. Our findings propose compelling applications. The
geometry of shared attractors might allow us to infer the nature of unknown tasks.
Furthermore, the simplicity bias implies that without specific incentives, modularity
in RNNs may not spontaneously emerge, providing insights into the conditions
required for network specialization.

1 Introduction

Consider the hand motions of a basketball player in a single game – dribbling, passing, receiving,
and shooting. Each motion has its own dynamics, and yet all are orchestrated by the same area in the
motor cortex. How can a single interconnected neural population give rise to a myriad of different
actions? A recent body of work examined the link between task performance and neural dynamics by
thinking of populations of neurons, especially in more cognitive and motor areas [5], as dynamical
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systems (see [31] for a full review). Trained Recurrent Neural Networks (RNNs) provide a natural
model for cortical areas [1, 12, 27]. Anatomically, the cortex is enriched with lateral connections,
making feedback the default architecture. Functionally, RNNs are universal approximators and can
thus be trained on tasks similar to those studied experimentally. The downside of trained RNNs is that,
as with any machine learning tool, they are often seen as a black box. Nevertheless, many advances
have been made on understanding both the dynamics of trained networks [3, 4, 5, 12, 19, 21, 23, 29]
and how these dynamics emerge through training [7, 26].

Most (but not all) of these investigations have been focused on one controlled task at a time. This
focus, although valuable, may not fully capture the complexity of an animal’s behavioral repertoire
which is dynamic, diverse, and often involves multiple simultaneous tasks [14]. Shifting the focus
from single to multiple tasks is a natural evolution in the field, aligning more closely with the
realities of an animal’s environment which is characterized by symmetries, regularities, and structures.
It is highly plausible that the neural circuits driving behavior have adapted to this structure by
developing efficient mechanisms to perform multiple tasks. This perspective has led to several studies
investigating the behavior of neural networks in multi-task settings [16, 17, 33]. Experimentally, [8]
demonstrated that different muscle activity patterns can be explained by neural activity modes in M1
that are task-independent.

Recent studies have begun to address the complex issue of multi-task performance using RNNs. [35]
trained single network models to perform an array of 20 cognitive tasks that encompass working
memory, decision making, categorization, and inhibitory control. They discovered that after training,
recurrent units can develop into clusters that are functionally specialized for different cognitive
processes. [6] further extended this line of research by identifying an algorithmic neural substrate
for compositional computation. They conducted dynamical systems analyses of networks and
found computational strategies that mirrored the modular subtask structure of the task-set used for
training. Key dynamical motifs, such as attractors, decision boundaries, and rotations, were reused
across different task computations. Their work contributes to the understanding of compositional
computation, presenting dynamical motifs as a fundamental unit of computation that allows for
flexibility and generalization of previously learned computations.

Our work offers a complementary approach to these pioneering studies. Instead of working from
common tasks towards their implementation, we take a step back to consider the most fundamental
dynamical objects typically found in RNNs. We ask from first principles: How can a single neural
population combine these disparate objects into a joint representation? And under what conditions do
these representations become shared or separate?

To explore these questions, we use RNNs as our computational tool and introduce a novel framework
that disentangles cognitive computation from sensory and motor processes. By ensuring that all
tasks operate under identical input and output statistics, our approach simplifies the concept of task-
similarity, rendering it amenable for systematic analysis. Our results reveal a bias toward developing
shared representations, which we term "simplicity bias". This tendency persists regardless of the
number of tasks or the nature of the dynamical objects involved, be they fixed points, limit cycles,
line- or plane- attractors. We link this bias to the sequential emergence of attractors during training,
and show how external factors can resist this bias and create more complex dynamical objects. We
continue to explore the inner structure of these shared attractors. By limiting the discussion to tasks
that require line attractors, and re-conceptualizing tasks as functions, we show that the steepness of
the computation, and not the computation itself, are responsible for shaping the attractor itself.

Our results can be used to infer hidden capabilities of networks by observing their activity geometries.
The results also shed light on the conditions for the emergence of modularity in RNNs, and more
generally provide a framework for understanding complex tasks in terms of dynamical building
blocks.

2 The systematic study of multiple tasks

To systematically study multiple tasks, it is critical to ensure that our experimental design does not
artificially influence the divergence or convergence of the network’s representations. Our methodology
is twofold:
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First, we standardize the input and output structure across all tasks and use a consistent network
architecture. This approach ensures that any observed differences in representations can be attributed
to intrinsic task complexities, rather than artificial variations in input-output structure or network
design. This methodology is inspired by the discussion in [34], which highlights that single-layer
RNNs, unlike the brain, simultaneously implement sensory, cognitive, and motor elements. This
all-in-one implementation makes it challenging to attribute different parts of the computation to
distinct elements. By standardizing the input-output structure and network design, we aim to sidestep
this issue and gain a clearer understanding of the nature of task representations.

Secondly, to guard against artificial convergence in representations, we assign individual input and
output channels for each task. This design choice ensures that any observed overlap or similarity
in representations results from shared computational requirements or reused dynamics across tasks,
rather than imposed sharing of input or output channels. Following these principles, we outline our
experimental setup as detailed below.

2.1 Model description

We use a discrete-time recurrent neural network (RNN), with N hidden units. The state at each time
step t is given by:

ht+1 = tanh(Wrecht +Winut + brec) (1)
where Wrec is the recurrent weight matrix, ht is the hidden state at time t, Win is the input weight
matrix, and ut is the input at time t, and brec is a bias term. The network output, yt, is:

yt = Woutht + bout (2)

where Wout is the output weight matrix and bout is the bias term. For full details about the training
process see supplementary 2.

2.2 Task structure

For more details see supplementary section 1.

We consider a set of tasks designed to elicit certain dynamical objects in the trained network [28].
The input sequence for each task consists of pulses with variable amplitude, interspersed with periods
of no input. Tasks are defined based on the output during the intervals between inputs (Fig. 1A). For
instance, requiring the network to maintain one of two discrete values (Fig. 1A, top) results in the
network producing two fixed point (Fig. 1B, top). In a similar manner, different input-output demands
result in limit cycles, line attractors, or plane attractors (second, third and fourth rows respectively).

Formally, the network receives a sequence of input values (a1, ...an−1, an, ...) at corresponding times
(t1, ...tn−1, tn, ...) such that:

∀i ≥ 0 : ai ∈ [vmin, vmax], ti+1 − ti ∈ [dmin, dmax] (3)

The output at time t maps the recent history (an, an−1, ..., tn, tn−1, .., t) onto the interval
[vmin, vmax]. The specifics of this mapping influence the type and size of working memory re-
quired by the task, with any dependence on t determining the temporal structure of the output. In
the neuroscience literature, line attractors are commonly associated with analog working memory
[11, 20], fixed points with decision making [32], and limit cycles with motor patterns [22]. In general,
however, there is more than one way to implement a given task [30].

2.3 Architecture and training procedure

For full details see supplementary section 2.

Our main objective in multi-task learning is to investigate the internal representations formed by the
RNN. The choice of architecture can have a dramatic effect on these representations. For instance,
if two tasks share a common output, then the internal state of the network has to be different for
different tasks by construction. In contrast, if each task has an independent output, then the internal
representation may utilize similar states and it may utilize different states. We focus on an architecture
that maintains this freedom, but note that recognizing and characterizing these architectural biases is
also an important research direction. Our setup includes separate input and output channels for each
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Figure 1: Multi-task learning of dynamical objects. A Tasks used in the paper consist of a series of
pulses of varying amplitudes (solid lines). The targets are denoted by dashed lines. B Dynamical
objects created by the various tasks. Examples of trajectories (or fixed points) in the first two principal
components. From the top: two fixed points, two limit cycles, a line attractor, and a plane attractor. C
Network architecture. A recurrent network receives two inputs and produces two outputs. D Training
regimes. In the gated (∅) and orthogonal (⊥) settings only one task is active at a time, with the other
output being irrelevant (gated) or zero (orthogonal). In the parallel (∥) setting, every trial combines
both tasks in random times.

task, so that Win ∈ RN×Ntasks and Wout ∈ RNtasks×N (Fig. 1C). We will denote by N the number
of hidden units.

Apart from the network architecture, the trial structure of multi-task training also has several degrees
of freedom. We consider three regimes: gated, orthogonal, and parallel (Fig. 1D, marked respectively
with ∅, ⊥, ∥). In the gated scenario, every trial has inputs from only one task, and the loss is computed
for the output of that task alone, ignoring (or gating) the other task outputs. For the orthogonal case,
inputs are still separated in each trial but the output of the irrelevant tasks has to be zero. Finally, in
the parallel setting, both tasks are presented simultaneously within the same trial.

3 RNNs representations show a simplicity bias

We trained 30 networks on pairs of tasks in the gated and orthogonal settings (Fig. 2, parallel settings
were tested for some of the combinations, see supplementary 5) . For visualization purposes, we
projected the states ht onto their leading two principal components. We found that in the gated
setting, the attractors of the two tasks shared similar representations, whereas in the orthogonal case
the attractors were much more separated. When the two tasks demanded similar objects (columns
1, 4, 6 and 7) the gated setting resulted in a complete overlap between the tasks. Even when the
attractors differed qualitatively, we still observed that they reside in similar areas of phase space. To
quantify this effect, we trained a linear classifier to separate the neural trajectories of one task from
those of the other one. For the gated setting, classification failed in nearly all networks (Fig. 2B, see
supplementary 3.3), suggesting that the networks generated a single attractor with parts of it serving
each task. This was also evident in the ratio of variances between and within tasks (F-factor, Fig. 2C,
see supplementary 3.4). In contrast, the orthogonal setting resulted in separate attractors for each
task. Overall, we conclude that network dynamics evolve according to a "simplicity bias", where the
simplest dynamical structure that is sufficient for the joint solution of all tasks is the one that will
emerge. This bias is present even for attractors that might seem incongruent, such as limit cycles and
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Figure 2: Simplicity bias. A Networks were trained on pairs of tasks in the gated or orthogonal
settings. Neural activity in the first two principal components is shown for an example network of
each combination. Note that gated (∅) networks reuse the same attractors for both tasks. B Fraction of
networks for which the attractors of the two tasks could be linearly separated in phase space. C The
F-factor is the ratio of the variance between attractors and within attractors. D Number of unstable
modes of the connectivity matrix.

fixed points. To demonstrate that a bias, and not a hard constraint, we used the orthogonal solutions
as initial conditions for training in the gated setting. Retraining in the gated setting with added noise
did not shift the solution from that of the orthogonal one.

Because dynamics stem from the recurrent connectivity, we hypothesized that the elaboration of the
dynamics in the orthogonal setting is reflected in the spectrum of the connectivity matrix. Indeed,
we found that the number of unstable eigenvalues was larger in the orthogonal setting for all tasks
(Fig. 2D, see supplementary 3.5).

The above results lead to a simple hypothesis regarding the origin of the simplicity bias (Fig. 3).
Consider a pair of tasks both requiring fixed points. Initially, only the origin is stable, and the inputs
from both tasks lead to states that converge to the origin. The resulting loss modifies the recurrent
connectivity and dynamics. Eventually, a stable fixed point will emerge away from the origin. Once
this happens, the inputs from both tasks will lead to states that converge to this new fixed point.
Crucially, the recurrent dynamics cause the states to mostly depend on the task-agnostic attractors,
and less on the task-specific inputs. If the loss to both tasks can be reduced within this attractor, then
learning is not expected to generate another one. Importantly, even if another attractor is needed (as
in the fixed point and limit cycle combination), we expect it to emerge in the vicinity of the existing
attractor. This is because gradient descent is proportional to the state of the network, modifications to
the connectivity will be proportional to this state . In the orthogonal setting, the two attractors have to
be orthogonal to each other, forcing the network to separate them.

We verify this hypothesis by following the attractor landscape of networks as they train. To better
characterize the dynamics, we use a low-rank network [13]: Wrec = mnT , where m,n ∈ RN×2

are the only parameters trained via gradient descent, constraining connectivity to be of rank 2. A
consequence of this connectivity is that dynamics can be visualized in a two-dimensional space given
by the projections κi(t) = nTht (the definition is slightly different from that of [13] because of the
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Figure 3: Sequential emergence of attractors underpins simplicity bias. A Cartoon illustrating the
hypothesis. Inputs from both tasks undergo the same recurrent dynamics. Once an attractor forms
from one task, the second task’s activity gravitates towards it. New dynamical objects only form
when task conditions require another attractor. B The number of unstable directions of the dynamics
at the origin (eigenvalues of Wrec with norm larger than 1) as a function of the number of tasks (bits)
trained on. Gated networks, with their shared attractors, only develop a single unstable eigenvector.
Orthogonal and parallel networks show a correlation between the number of attractors and unstable
eigenvalues. C Reduction of error (red) and evolution of eigenvalues (black) over the course of
training. Three rank-two networks were trained on a two-bit fixed point task using different setups.
Note that the drops in error are accompanied by an eigenvalue obtaining a norm larger than one
(becoming unstable). D Snapshots from the training process for two fixed-point tasks in the parallel
settings (as in C-right, snapshots correspond to gray stripes there). Each snapshot shows the state
space in two dimensions (κ). Gray shadings denote slow areas of the dynamics. Colored arrows
denote input directions. Insets show the two eigenvalues, with the unit circle marking the stability
border.

differences in the definitions of the dynamics). See also supplementary 3.6. We follow the evolution
of the dynamics for such a network trained on two fixed-point tasks in the parallel setting (Fig. 3D).
Initially, only the origin is stable, as reflected in the two eigenvalues of Wrec being inside the unit
circle. Eventually, the origin destabilizes, and a single unstable eigenvalue emerges along with a pair
of stable fixed points (due to symmetry of the dynamics). With more training, the second eigenvalue
leaves the unit circle, and shortly after another pair of stable fixed points emerge, leading to the final
attractor landscape with four basins of attraction.

We repeated this analysis for a two-task version (all fixed points) in all three settings (Fig. 3B). We
show the loss for each task and the spectrum of eigenvalues. In the parallel and orthogonal settings,
one can see the clear sequential emergence of two outliers, accompanied by decreases in loss for each
sub-task. The gated setting is solved with a single outlier, as all tasks share a common attractor.

A systematic analysis of many such tasks (sets of fixed points, from 2 to 6 simultaneously) shows
that the number of outliers is proportional to the number of tasks for the orthogonal and parallel, but
not for the gated setting. We repeated this analysis for both GRU networks and Vanilla networks
initialized with a rich output regime and obtained similar results. See supplementary 3.7 for details.

6



𝑤!"#$

𝑤!"#%

task space representation space

𝜙!

𝜙"
𝑅"

𝑅!

𝑞(ℎ) ≪ 1
attractor

A B

𝑣

𝜙
(𝑣
)

Figure 4: Task-Representation Relationship Analysis. A An abstract depiction of the task space
(left) and representation space (right). Within the task space, two tasks (colored in red and blue) are
illustrated, while their corresponding representations are delineated in the representation space. B
Tasks are conceptualized as functions, and their representation is envisaged as a location on a joint
line attractor. On the left, two 1D functions are valued on a uniform grid. On the right, the possible
joint representation of these functions is shown along the joint attractor, with dots indicating the
locations of the input grid.

4 Task similarity to representational similarity

Having established how RNNs tend to implement a shared attractor for all tasks, we aim to explore
the principles that govern how multiple tasks will occupy the same attractor. In particular, how
distances in task space translate to distances in representation space (Fig. 4A). To test this, we focus
on a family of tasks that all require a line attractor.

4.1 Tasks as Functions

In line with our task structure (Section 2.2), the output of each task is a mapping ϕ : [vmin, vmax] →
[vmin, vmax], which operates on the most recently seen input an. This form enables us to conceptu-
alize a set of tasks as a family of 1D parametric functions ϕi. An example for two such functions
can be seen in 4B (left). Transitioning to a function space allows us to define measurable quantities
mathematically and observe how they translate into representation.

4.2 Neural representation of tasks

To probe the relationship between task similarity and representation similarity, we trained rank-2
RNNs on six such tasks:

ϕ(v) = (1− v)4, (1− v)2, 1− v, v, v2, v4

and generated the input similarly to what was explained in Section 2.2. Utilizing the rank-2 constraint,
we are able to visualize the joint representation of all six tasks for two network realizations. The
contour lines of Fig. 5A denote the velocity of the RNN dynamics (q = |ht+1 − ht|, indicating the
position of the line attractor. In both realizations, all of the tasks (colored dots) occupy the same
attractor, consistent with the results of the previous section (illustrated in Fig. 4B).

4.3 Arc length parameterization of the attractor

To quantify the similarity of representations, we parameterize positions along the line attractor. For
any given task i, we define its representation Ri, as the ensemble of all achievable steady states.
For each value v, uniformly spaced between vmin and vmax, we examine the corresponding steady
state, denoted by Ri(v) that belongs to RN . This results in a curve {Ri(v)}v, a one-dimensional
attractor embedded within an N-dimensional space. Because these are rank-2 networks, it is actually
embedded in a 2-dimensional space, but we don’t rely on it for this analysis.

Consider the entirety of points across all attractors {rj}i, which are sorted w.r.t. their distance to a
given starting point r0. This arc length is determined as:

s(r0) = 0, s(rj+1) = s(rj) + ∥rj+1 − rj∥2

7



arc length (s) arc length (s)

A

B

C

D

six-task training two-task training

0.25
0.5
1

𝑞 level 
curves

Figure 5: The joint representation of multiple tasks as a line attractor.A. Two exemplar kappa-
projections of all attractors, with differing grey shades (from dark to light) representing different
level curves of the q-function ([28], see supplementary 2.2). B Attractor projections into a 1D space
using arc-length parameterization, stacked upon one another and aligned to the generating functions
on the left. The points are colored w.r.t. the task output. C pairwise distance between each pair of
task representations in every network, binned w.r.t. l2 distance. On the left we show the results for
networks trained on six tasks, and on the right for networks that were trained only on two tasks at a
time. D same but binned w.r.t. the steepness distance.

After this computation, the resultant arc lengths are normalized to fit within the [0, 1] range. This
normalization produces the arc length function s(Ri(v)) which signifies the position of Ri(v) on the
unified one-dimensional curve.

In Fig. 5B we stack the 1D projection of the curves of each task, where on the left the corresponding
functions appear. One can clearly see a gradual change in the functions, paralleling a gradual change
in their representation.

4.4 Task distance

The functions in Fig. 5B seem to be ordered, but it is not immediately clear what is the metric
underlying this ordering. A priori, there isn’t one correct way to define the distance between tasks.
When working with functions, the default way is to consider the l2 distance between the corresponding
functions:

dl2(ϕ1, ϕ2) =

∫ vmax

vmin

∥ϕ1(v)− ϕ2(v)∥22dv (4)

Observing the ordering emerging from the networks, an alternative way is measuring the similarity
between the steepness of the functions:

dsteepness(ϕ1, ϕ2) =

∫ vmax

vmin

∥|ϕ′
1(v)| − |ϕ′

2(v)|∥22dv (5)

In practice, we approximate these integrals using Reimanns sum formula.

4.5 Representational distance

Representational distance quantifies the overlap between two distinct task representations. Leveraging
the arc length function s, the distance is defined as:

d(R1, R2) = 1− |{s(R1(v)}v ∩ {s(R2(v)}v|
|{s(R1(v)}v ∪ {s(R2(v)}v|

(6)

8



𝑣 ↦ ℎ ↦ 𝑦
non-
linear linear

(1 − 𝑣)! 𝑣! 1 − 𝑣!

𝑣

ℎ

A

B

C

Figure 6: Intuition for symmetries in attractor representations, using a simplified 1D depiction. A A
task defined by the function y = v4 (middle) and two functions obtained by horizontal and vertical
reflections. B The same three functions, now depicted as a function of h. The red lines are reflections
of the transformed v4, where it is evident that only the vertical reflection is conserved. C The
nonlinear transformation from v to h (which includes the dynamics of the network) is the reason that
horizontal reflections of a task yield different representation.

4.6 Function steepness shapes representations

To asses which task similarity correlates more with the representation similarity, we compute all
pairwise distances between tasks - both in task space, and in representation space. The left columns
of Fig. 5C,D show the relationship between either function-distance (C) or derivative distance (D)
and the representation distance. The derivative distance is much more predictive, although not perfect.
The existence of six simultaneous tasks could explain some of the spread in these graphs, so we
also analyzed a simpler scenario. We trained full-rank networks on one pair of tasks at a time
(right columns of Figure Fig. 5C,D). In this case the correlation between derivative distance is much
stronger.

4.7 Symmetries in attractor representations

Why is it that steepness controls task alignment within attractors? A different perspective is to
consider symmetries and invariances in task- and in representation- space [9]. Consider one specific
function, y = v4, depicted in the center of Fig. 6A. One can apply two different symmetry operations
on it to obtain different functions. We know from the results of Fig. 5C,D that only the vertical
reflection will preserve steepness, and hence is expected to lead to a similar representation. To gain
intuition on why this happens, consider the transformations from input to output (Fig. 6C). Input
undergoes a nonlinear transformation to hidden state – both due to static nonlinearities and due to the
dynamics leading to the corresponding fixed point. From the hidden state to the output, however, is a
linear transformation. We ignore the different input and output directions, and the curvature of the
attractor and encapsulate the entire transformation as some nonlinear function – for instance, the one
in Fig. 6C. If we now replot the three functions in terms of their relation to the hidden state (Fig. 6B),
we see why only transformations that respect steepness lead to similar representations.

5 Discussion

We showed that recurrent neural networks trained on multiple tasks exhibit a simplicity bias in terms
of the dynamical objects formed during training. Unless prevented, networks will form the minimal
number of objects needed to solve the task. We demonstrated that this bias is a consequence of
recurrent dynamics and the sequential formation of attractors. First, attractors are generated one at a
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time. Second, once an attractor forms, the recurrent dynamics will converge to this attractor for all
tasks.

Our analysis focused on an architecture with separate input and output channels for each task, and
without an explicit context channel. Furthermore, the input and output statistics were identical
for all tasks. Several studies of multi-task learning used different architectures. [10] showed how
modular representations can emerge from multi-task learning in feed forward networks. Their single
input - many output configuration results in a joint representation of all tasks, with the nature of
this representation being the object of study. Specifically, they showed that random classification
tasks disentangle the representation. RNNs trained on many cognitive tasks with more complex input
and output structures also show shared attractors [6, 35]. The task-set analyzed there is closer to
neuroscience experiments, making it easier to compare to data. On the other hand, these tasks have
a correlation between their input-output structure and their cognitive demands. Here, we opted for
simpler tasks, using fundamental dynamical objects, and with identical input-output structure for all
tasks. This allowed a systematic study of how dynamical objects arise during training and relate to
one another.

Our choice for simple and systematic tasks also comes with several limitations. The tasks are not
as close to biology as those in previous works [2, 35]. On the mahine learning side, the tasks and
architectures are very far from state of the art. While we did examine GRU architectures and lazy
vs rich initializations, the focus here was on the systematicity and to remain close to elementary
dynamical objects.

The underlying mechanism for the simplicity bias is the sequential emergence of attractors, and the
reduction of loss once enough attractors have emerged. This is reminiscent of several results showing
the emergence of various network properties at different rates. Connectivity in deep linear networks
is affected by leading modes of the data covariance faster than other modes [25]. RNNs trained on
fixed point tasks develop rank-1 connectivity faster than higher ranks [26]. Gradient descent first
learns low moments, and then high cumulants of the data [18]. In modular feed forward networks,
different pathways through the network race with each other, leading to a reduced effective network
[24].

The simplicity bias has several intriguing applications. First, reusing an existing representation leads
to faster learning of tasks. This feature was most evident in the gated scenario, in which only one
task is processed at a time. [15] highlighted a similar phenomenon as a possible normative reason
for the limited capacity of cognitive control. Second, our results suggest that observing a modular
representation is an indicator of some constraint on the architecture. Finally, an attractor shared
between tasks is not identical to an attractor that was formed in response to a single task. For instance,
if a task with constant output has an oscillatory component to its neural activity, it might suggest that
the same circuit is also capable of generating such an oscillation in another context. One can imagine
recording the neural activity of a subject dribbling a basketball, and being able to predict whether
that subject also knows how to shoot.
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