
Efficient Online Clustering with Moving Costs

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this work we consider an online learning problem, called Online k-Clustering1

with Moving Costs, at which a learner maintains a set of k facilities over T rounds2

so as to minimize the connection cost of an adversarially selected sequence of3

clients. The learner is informed on the positions of the clients at each round t only4

after its facility-selection and can use this information to update its decision in5

the next round. However, updating the facility positions comes with an additional6

moving cost based on the moving distance of the facilities. We present the first7

O(log n)-regret polynomial-time online learning algorithm guaranteeing that the8

overall cost (connection + moving) is at most O(log n) times the time-averaged9

connection cost of the best fixed solution. Our work improves on the recent result10

of Fotakis et al. [30] establishing O(k)-regret guarantees only on the connection11

cost.12

1 Introduction13

Due to their various applications in diverse fields (e.g. machine learning, operational research, data14

science etc.), clustering problems have been extensively studied. In the well-studied k-median15

problem, given a set of clients, k facilities should be placed on a metric with the objective to minimize16

the sum of the distance of each client from its closest center [54, 14, 13, 66, 6, 43, 51, 64, 50, 15, 53, 3].17

In many modern applications (e.g., epidemiology, social media, conference, etc.) the positions of the18

clients are not static but rather evolve over time [56, 55, 63, 58, 23, 5]. For example the geographic19

distribution of the clients of an online store or the distribution of Covid-19 cases may drastically20

change from year to year or respectively from day to day [30]. In such settings it is desirable to21

update/change the positions of the facilities (e.g., compositions of warehouses or Covid test-units) so22

as to better serve the time-evolving trajectory of the clients.23

The clients’ positions may change in complex and unpredictable ways and thus an a priori knowledge24

on their trajectory is not always available. Motivated by this, a recent line of research studies25

clustering problems under the online learning framework by assuming that the sequence of clients’26

positions is unknown and adversarially selected [18, 28, 16, 30]. More precisely, a learner must27

place k facilities at each round t ≥ 1 without knowing the positions of clients at round t which are28

revealed to the learner only after its facility-selection. The learner can use this information to update29

its decision in the next round; however, moving a facility comes with an additional moving cost that30

should be taken into account in the learner’s updating decision, e.g. moving Covid-19 test-units31

comes with a cost [18, 28].32

Building on this line of works, we consider the following online learning problem:33

Problem 1 (Online k-Clustering with Moving Costs). Let G(V,E,w) be a weighted graph with34

|V | = n vertices and k facilities. At each round t = 1, . . . , T :35

1. The learner selects Ft ⊆ V , with |Ft| = k, at which facilities are placed.36

2. The adversary selects the clients’ positions, Rt ⊆ V .37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

3. The learner learns the clients’ positions Rt and suffers38

cost =
∑
j∈Rt

min
i∈Ft

dG(j, i)︸ ︷︷ ︸
connection cost of client j

+ γ ·MG(Ft−1, Ft)︸ ︷︷ ︸
moving cost of facilities

where dG(j, i) is the distance between vertices i, j ∈ V ; MG(Ft−1, Ft) is the minimum overall39

distance required to move k facilities from Ft−1 to Ft; and γ ≥ 0 is the facility-weight.40

An online learning algorithm for Problem 1 tries to minimize the overall (connection + moving)41

cost by placing k facilities at each round t ≥ 1 based only on the previous positions of clients42

R1, . . . , Rt−1. To the best of our knowledge, Problem 1 was first introduced in [18]1. If for any43

sequence of clients, the overall cost of the algorithm is at most α times the overall connection cost of44

the optimal fixed placement of facilities F ∗ then the algorithm is called α-regret, while in the special45

case of α = 1 the algorithm is additionally called no-regret.46

Problem 1 comes as a special case of the well-studied Metrical Task System by considering each of47

the possible
(
n
k

)
facility placements as a different state. In their seminal work, [11] guarantee that the48

famous Multiplicative Weights Update algorithm (MWU) achieves (1 + ϵ)-regret in Problem 1 for49

any ϵ > 0. Unfortunately, running the MWU algorithm for Problem 1 is not really an option since it50

requires O(nk) time and space complexity. As a result, the following question naturally arises:51

Q. Can we achieve α-regret for Problem 1 with polynomial-time online learning algorithms?52

Answering the above question is a challenging task. Even in the very simple scenario of time-invariant53

clients, i.e. Rt = R for all t ≥ 1, an α-regret online learning algorithm must essentially compute an54

α-approximate solution of the k-median problem. Unfortunately the k-median problem cannot be55

approximated with ratio α < 1+2/e ≃ 1.71 (unless NP ⊆ DTIME[nlog logn] [42]) which excludes56

the existence of an (1+2/e)-regret polynomial-time online learning algorithm for Problem 1. Despite57

the fact that many O(1)-approximation algorithms have been proposed for the k-median problem58

(the best current ratio is 1 +
√
3 [53]), these algorithms crucially rely on the (offline) knowledge of59

the whole sequence of clients and most importantly are not designed to handle the moving cost of the60

facilities [54, 14, 13, 66, 6, 43, 51, 64, 50, 15, 53, 3].61

In their recent work, Fotakis et al. [30] propose an O(k)-regret polynomial-time online learning62

algorithm for Problem 1 without moving costs (i.e. the special case of γ = 0). Their approach is63

based on designing a no-regret polynomial-time algorithm for a fractional relaxation of Problem 164

and then using an online client-oblivious rounding scheme in order to convert a fractional solution to65

an integral one. Their analysis is based on the fact that the connection cost of any possible client is at66

most O(k) times its fractional connection cost. However in order to establish the latter guarantee67

their rounding scheme performs abrupt changes on the facilities leading to huge moving cost.68

Our Contribution and Techniques. In this work, we provide a positive answer to question (Q), by69

designing the first polynomial-time online learning algorithm for Online k-Clustering with Moving70

Costs that achieves O (log n)-regret for any γ ≥ 0. The cornerstone idea of our work was to realize71

that O(1)-regret can be established with a polynomial-time online learning algorithm in the special72

case of G being a Hierarchical Separation Tree (HST). Then, by using the standard metric embedding73

result of [25], we can easily convert such an algorithm to an O(log n)-regret algorithm for general74

graphs. Our approach for HSTs consists of two main technical steps:75

1. We introduce a fractional relaxation of Problem 1 for HSTs. We then consider a specific76

regularizer on the fractional facility placements, called Dilated Entropic Regularizer [26],77

that takes into account the specific structure of the HST. Our first technical contribution78

is to establish that the famous Follow the Leader algorithm [34] with dilated entropic79

regularization admits O(1)-regret for any γ ≥ 0.80

2. Our second technical contribution is the design of a novel online client-oblivious rounding81

scheme, called Cut&Round, that converts a fractional solution for HSTs into an integral82

one. By exploiting the specific HST structure we establish that Cut&Round, despite not83

1In [18], an easier version of Problem 1 with 1-lookahead is considered, meaning that the learner learns the
positions of the clients Rt before selecting Ft. Moreover, G is considered to be the line graph and γ = 1.

2

knowing the clients’ positions Rt, simultaneously guarantees that (i) the connection cost of84

each client j ∈ Rt is upper bounded by its fractional connection cost, and (ii) the expected85

moving cost of the facilities is at most O(1) times the fractional moving cost.86

Experimental Evaluation. In Section F of the Appendix we experimentally compare our algorithm87

with the algorithm of Fotakis et al. [30]. Our experiments verify that our algorithm is robust to88

increases of the facility weight γ while the algorithm of [30] presents a significant cost increase.89

We additionally experimentally evaluate our algorithm in the MNIST and CIFAR10 datasets. Our90

experimental evaluations suggest that the O(log n)-regret bound is a pessimistic upper bound and91

that in practise our algorithm performs significantly better.92

Related Work. As already mentioned, our work most closely relates with the work of Fotakis et al.93

[30] that provides anO(k)-regret algorithm running in polynomial-time for γ = 0. [16] also consider94

Problem 1 for γ = 0 with the difference that the connection cost of clients is captured through the95

k-means objective i.e. the sum of the squared distances. They provide an (1 + ϵ)-regret algorithm96

with O
(
(k2/ϵ2)2k

)
time-complexity that is still exponential in k. [18, 28] study the special case97

of Problem 1 in which G is the line graph and γ = 1 while assuming 1-lookahead on the request98

Rt. For k = 1, [18] provide an (1 + ϵ)-competitive online algorithm meaning that its cost is at99

most (1 + ϵ) times the cost of the optimal dynamic solution and directly implies (1 + ϵ)-regret. [28]100

extended the previous result by providing a 63-competitive algorithm for k = 2 on line graphs. Our101

work also relates with the works of [23] and [4] that study offline approximation algorithms for102

clustering problems with time-evolving metrics. Finally our work is closely related with the research103

line of online learning in combinatorial domains and other settings of online clustering. Due to space104

limitations, we resume this discussion in Section A of the Appendix.105

2 Preliminaries and Our Results106

Let G(V,E,w) be a weighted undirected graph where V denotes the set of vertices and E the set107

of edges among them. The weight we of an edge e = (i, j) ∈ E denotes the cost of traversing e.108

Without loss, we assume that we ∈ N and we ≥ 1 for all edges e ∈ E. The distance between vertices109

i, j ∈ V is denoted with dG(i, j) and equals the cost of the minimum cost path from i ∈ V to j ∈ V .110

We use n := |V | to denote the cardinality of G and DG := maxi,j∈V dG(i, j) to denote its diameter.111

Given a placement of facilities F ⊆ V , with |F | = k, a client placed at vertex j ∈ V connects to the112

closest open facility i ∈ F . This is formally captured in Definition 1.113

Definition 1. The connection cost of a set of clients R ⊆ V under the facility-placement F ⊆ V with114

|F | = k equals115

CR(F) :=
∑
j∈R

min
i∈F

dG(j, i)

Next, consider any pair of facility-placements F, F ′ ⊆ V such that |F | = |F ′| = k. The moving116

distance between F and F ′ is the minimum overall distance needed to transfer the k facilities from F117

to F ′, formally defined in Definition 2.118

Definition 2. Fix any facility-placements F, F ′ ⊆ V where |F | = |F ′| = k. Let Σ be the set of119

all possible matchings from F to F ′ , i.e. each σ ∈ Σ is a one-to-one mapping σ : F 7→ F ′ with120

σ(i) ∈ F ′ denoting the mapping of facility i ∈ F . The moving cost between F and F ′ equals121

MG(F, F
′) := min

σ∈Σ

∑
i∈F

dG(i, σ(i))

At each round t ≥ 1, an online learning algorithm A for Problem 1 takes as input all the previous122

positions of the clients R1, . . . , Rt−1 ⊆ V and outputs a facility-placement Ft := A(R1, . . . , Rt−1)123

such that Ft ⊆ V and |Ft| = k. The performance of an online learning algorithm is measured by the124

notion of regret, which we formally introduce in Definition 3.125

Definition 3. An online learning algorithm A for Problem 1 is called α-regret with additive regret β126

if and only if for any sequence of clients R1, . . . , RT ⊆ V ,127

E

[
T∑

t=1

CRt(Ft) + γ ·
T∑

t=2

MG(Ft−1, Ft)

]
≤ α · min

|F∗|=k

T∑
t=1

CRt(F
∗) + β ·

√
T

3

where Ft = A(R1, . . . , Rt−1) and α, β are constants independent of T .128

An online learning algorithm A selects the positions of the k facilities at each round t ≥ 1 solely129

based on the positions of the clients in the previous rounds, R1, . . . , Rt−1. If A is α-regret then130

Definition 3 implies that its time-averaged overall cost (connection + moving cost) is at most α131

times the time-averaged cost of the optimal static solution! 2 Furthermore, the dependency on
√
T is132

known to be optimal [11] and β is typically only required to be polynomially bounded by the size of133

the input, as for T →∞ the corresponding term in the time-averaged cost vanishes.134

As already mentioned, the seminal work of [11] implies the existence of an (1 + ϵ)-regret algorithm135

for Problem 1; however, this algorithm requires O(nk) time and space complexity. Prior to this work,136

the only polynomial time online learning algorithm for Problem 1 was due to Fotakis et al. [30], for137

the special case of γ = 0. Specifically, in their work the authors design an online learning algorithm138

with the following guarantee:139

Theorem (Fotakis et al. [30]). There exists a randomized online learning algorithm for Problem 1140

that runs in polynomial time (w.r.t. T , n and logDG) such that141

E

[
T∑

t=1

CRt(Ft)

]
≤ O(k) · min

|F∗|=k

T∑
t=1

CRt(F
∗) +O(k · n ·

√
log n ·DG) ·

√
T

Clearly, the algorithm of [30] has not been designed to account for charging the moving of facilities,142

as indicated by the absence of the moving cost in the above regret guarantee. The main contribution143

of this work is to obtain (for the first time) regret guarantees that also account for the moving cost.144

Theorem 1. There exists a randomized online learning algorithm for Problem 1 (Algorithm 2) that145

runs in polynomial time (w.r.t. T , n and logDG) and admits the following regret guarantee:146

E

[
T∑

t=1

CRt
(Ft) + γ ·

T∑
t=2

MG(Ft−1, Ft)

]
≤ O(log n) · min

|F∗|=k

T∑
t=1

CRt
(F ∗) + β ·

√
T

for β = O(k · n3/2 ·DG ·max(γ, 1)) and any γ ≥ 0.147

Remark 1. We remark that while our additive regret β is larger than the corresponding term in [30]148

by a factor of o(
√
n), our results apply to any γ ≥ 0 while the algorithm of [30] can generally suffer149

unbounded moving cost for γ →∞, as our experimental results verify.150

2.1 HSTs and Metric Embeddings151

In this section we provide some preliminary introduction to Hierarchical Separation Trees (HSTs),152

as they consist a key technical tool towards proving Theorem 1. A weighted tree T (V,E,w) is a153

weighted graph with no cycles. Equivalently, for any pair of vertices i, j ∈ V there exists a unique154

path that connects them. In Definition 4, we establish some basic notation for tree graphs.155

Definition 4. Fix any tree T (V,E,w). For every vertex u ∈ V , cld(u) ⊆ V denotes the set children156

vertices of u and p(u) denotes its unique parent, i.e. u ∈ cld(p(u)). The root r ∈ V of T is the157

unique node with p(r) = ∅ and the set L(T) := {u ∈ V : cld(u) = ∅} denotes the leaves of T .158

We use dpt(u) to denote the depth of a vertex u ∈ V , i.e. the length of the (unique) path from the root159

r to u, and h(T) := maxu∈L(T) dpt(u) to denote the height of T . We use lev(u) := h(T)− dpt(u)160

to denote the level of a vertex u ∈ V . Finally, T (u) ⊆ V denotes the set of vertices on the sub-tree161

rooted at u, i.e. the set of vertices that are descendants of u.162

Next, we proceed to define a family of well-structured tree graphs that constitute one of the primary163

technical tools used in our analysis.164

Definition 5. A Hierarchical Separation Tree (HST) is a weighted tree T (V,E,w) such that (i) for165

any node u and any of its children v ∈ cld(u), the edge e = (u, v) admits weight we = 2lev(v), and166

(ii) the tree is balanced, namely lev(u) = 0 for all leaves u ∈ L(T).167

In their seminal works, [10] and later [24] showed that HSTs can approximately preserve the distances168

of any graph G(V,E,w) within some logarithmic level of distortion.169

2Specifically, the time-averaged overall cost of A approaches this upper bound with rate β · T−1/2.

4

Theorem 2. For any graph G(V,E,w) with |V | = n and diameter D, there exists a polynomial-time170

randomized algorithm that given as input G produces an HST T with height h(T) ≤ ⌈logD⌉ s.t.171

1. L(T) = V , meaning that the leaves of T correspond to the vertices of G.172

2. For any u, v ∈ V , dG(u, v) ≤ dT (u, v) and E[dT (u, v)] ≤ O(log n) · dG(u, v).173

Theorem 2 states that any weighted graph G(V,E,w) can be embedded into an HST T with174

O(log n)-distortion. This means that the distance dG(u, v) between any pair of vertices u, v ∈ V can175

be approximated by their respective distance dT (u, v) in T within an (expected) factor of O(log n).176

Remark 2. We note that traditionally HSTs are neither balanced nor are required to have weights177

that are specifically powers of 2. However, we can transform any general HST into our specific178

definition, and this has been accounted for in the statement of the above theorem. The details are179

deferred to Section B of the Appendix.180

3 Overview of our approach181

In this section we present the key steps of our approach towards designing the O(log n)-regret online182

learning algorithm for Problem 1. Our approach can be summarized in the following three pillars:183

1. In Section 3.1 we introduce a fractional relaxation of Problem 1 in the special case of HSTs184

(Problem 2). Problem 2 is an artificial problem at which the learner can place a fractional185

amount of facility to the leaves of an HST so as to fractionally serve the arrived clients.186

Since the optimal static solution of Problem 2 lower bounds the optimal static solution187

of Problem 1 in the special case of HSTs, the first step of our approach is to design an188

O(1)-regret algorithm for Problem 2.189

2. In Section 3.2 we present the formal guarantees of a novel randomized rounding scheme,190

called Cut&Round, that is client-oblivious and converts any fractional solution for Prob-191

lem 2 into an actual placement of k facilities on the leaves of the HST with just an O(1)-192

overhead in the connection and the moving cost.193

3. In Section 3.3 we present how the fractional algorithm for Problem 2 together with the194

Cut&Round rounding naturally lead to an O(1)-regret online learning algorithm for Prob-195

lem 1 in the special case of HSTs (Algorithm 1). Our main algorithm, presented in Algo-196

rithm 2, then consists of running Algorithm 1 into an O(log n) HST embedding of input197

graph.198

3.1 A Fractional Relaxation for HSTs199

In this section we introduce a fractional relaxation for Problem 1, called Fractional k-Clustering with200

Moving Costs on HSTs (Problem 2). Fix any HST T (V,E,w) (in this section, V denotes the nodes201

of the HST). We begin by presenting a fractional extension of placing k facilities on the leaves of T .202

Definition 6. The set of fractional facility placements FP(T) consists of all vectors y ∈ R|V | such203

that204

1. yv ∈ [0, 1] for all leaves v ∈ L(T).205

2. yv =
∑

u∈cld(v)

yu for all non-leaves v /∈ L(T).206

3.
∑

v∈L(T) yv = k, i.e. the total amount of facility on the leaves equals k.207

For a leaf vertex v ∈ L(T), yv simply denotes the fractional amount of facilities that are placed on it.208

For all non-leaf vertices v /∈ L(T), yv denotes the total amount of facility placed in the leaves of the209

sub-tree T (v). Thus, any integral vector y ∈ FP(T) ∩N corresponds to a placement of k facilities210

on the leaves of T .211

In Definitions 7 and 8 we extend the notion of connection and moving cost for fractional facility212

placements. In the special case of integral facility placements, Definitions 7 and 8 respectively213

collapse to Definitions 1 and 2 (a formal proof is given in Claims 1 and 2 of Section C of the214

Appendix).215

5

Definition 7. The fractional connection cost of a set of clients R ⊆ L(T) under y ∈ FP(T) is216

defined as217

fR(y) :=
∑
j∈R

∑
v∈P (j,r)

2lev(v)+1 ·max (0, 1− yv)

where P (j, r) denotes the set of vertices in the (unique) path from the leaf j ∈ L(T) to the root r.218

Definition 8. The fractional moving cost between any y, y′ ∈ FP(T) is defined as219

||y − y′||T := γ ·
∑

v∈V (T)

2lev(v) · |yv − y′v|

We are now ready to present our fractional generalization of Problem 1 in the special case of HSTs.220

Problem 2 (Fractional k-Clustering with Moving Costs on HSTs). Fix any HST T . At each round221

t = 1, . . . , T :222

1. The learner selects a vector yt ∈ FP(T).223

2. The adversary selects a set of clients Rt ⊆ L(T).224

3. The learner suffers cost fRt(y
t) + ||yt − yt−1||T .225

In Section 4, we develop and present an O(1)-regret algorithm for Problem 2 (see Algorithm 3). To226

this end, we present its formal regret guarantee established in Theorem 3.227

Theorem 3. There exists a polynomial-time online learning algorithm for Problem 2 (Algorithm 3),228

such that for any sequence R1, . . . , RT ⊆ L(T), its output y1, . . . , yT satisfies229

T∑
t=1

fRt
(yt) +

T∑
t=2

||yt − yt−1||T ≤
3

2
· min
y∗∈FP(T)

T∑
t=1

fRt
(y∗) + β ·

√
T

for β = O
(
k · |L(T)|3/2 ·DT ·max(γ, 1)

)
.230

3.2 From Fractional to Integral Placements in HSTs231

As already mentioned, the basic idea of our approach is to convert at each round t ≥ 1 the fractional232

placement yt ∈ FP(T) produced by Algorithm 3 into an integral facility placement Ft ⊆ L(T)233

with |Ft| = k on the leaves of the HST. In order to guarantee small regret, our rounding scheme234

should preserve both the connection and the moving cost of the fractional solution within constant235

factors for any possible set of arriving clients. In order to guarantee the latter, our rounding scheme236

Cut&Round (Algorithm 4) uses shared randomness across different rounds. Cut&Round is rather237

complicated and is presented in Section 5. To this end, we present its formal guarantee.238

Theorem 4. There exists a linear-time deterministic algorithm, called Cut&Round (Algorithm 4),239

that takes as input an HST T , a fractional facility placement y ∈ FP(T) and a vector α ∈ [0, 1]|V |240

and outputs a placement of k facilities F ← Cut&Round(T , y, α) on the leaves of T (F ⊆ L(T)241

and |F | = k) such that242

1. Eα∼Unif(0,1) [CR(F)] = fR(y) for all client requests R ⊆ L(T).243

2. Eα∼Unif(0,1) [γ ·MT (F, F
′)] ≤ 4 · ||y − y′||T for all other fractional facility placements244

y′ ∈ FP(T) and F ′ ← Cut&Round(T , y′, α).245

Item 1 of Theorem 4 establishes that although Cut&Round is oblivious to the arrived set of clients246

Rt ⊆ L(T), the expected connection cost of the output equals the fractional connection cost under247

yt ∈ FP(T). Item 2 of Theorem 4 states that once the same random seed α is used into two248

consecutive time steps, then the expected moving cost between the facility-placements Ft and Ft+1249

is at most O(1)-times the fractional moving cost between yt and yt+1. Both properties crucially rely250

on the structure of the HST and consist one of the main technical contributions of our work.251

6

3.3 Overall Online Learning Algorithm252

We are now ready to formally introduce our main algorithm (Algorithm 2) and prove Theorem 1.253

First, we combine the algorithms from Theorems 3 and 4 to design an O(1)-regret algorithm for254

Problem 1 on HSTs (Algorithm 1). Up next we present how Algorithm 1 can be converted into an255

O(log n)-regret online learning algorithm for general graphs, using the metric embedding technique256

of Theorem 2, resulting to our final algorithm (Algorithm 2).257

Algorithm 1 O(1)-regret for HSTs.

1: Input: A sequence R1, . . . , RT ⊆ L(T).
2: The learner samples αv ∼ Unif(0, 1) for

all v ∈ V (T).
3: for each round t = 1 to T do
4: The learner places the k facilities to the

leaves of the HST T based on the output
Ft := Cut&Round(T , yt, α).

5: The learner learns Rt ⊆ L(T).
6: The learner updates yt+1 ∈ FP(T) by

running Algorithm 3 for Problem 2 with
input R1, . . . , Rt.

7: end for

Algorithm 2 O(log n)-regret for graphs.

1: Input: A sequence R1, . . . , RT ⊆ L(T).
2: The learner embeds G(V,E,w) into a (ran-

dom) HST T with L(T) = V via the pro-
cedure of Theorem 2.

3: for each round t = 1 to T do
4: The learner selects a facility-placement

Ft ⊆ V .
5: The learner learns Rt ⊆ V .
6: The learner updates Ft+1 by giving as in-

put R1, . . . , Rt ⊆ L(T) to Algorithm 1
for T .

7: end for

258

Theorem 5. For any sequence of client requests R1, . . . , RT ⊆ L(T), the sequence of facility-259

placements F1, . . . , FT ⊆ L(T) produced by Algorithm 1 satisfies260

E

[
T∑

t=1

CRt
(Ft) + γ ·

T∑
t=2

MT (Ft, Ft−1)

]
≤ 6 · min

|F∗|=k

T∑
t=1

CRt
(F ∗) + β ·

√
T

for β = O
(
k · |L(T)|3/2 ·DT ·max(γ, 1)

)
.261

Theorem 5 establishes that Algorithm 1 achieves constant regret in the special case of HSTs and its262

proof easily follows by Theorems 3 and 4. Then, the proof of Theorem 1 easily follows by Theorem 2263

and Theorem 5. All the proofs are deferred to Section C of the Appendix.264

4 O(1)-Regret for Fractional HST Clustering265

In this section we present the O(1)-regret algorithm for Problem 2, described in Algorithm 3, and266

exhibit the key ideas in establishing Theorem 3. Without loss of generality, we can assume that the267

facility-weight satisfies γ ≥ 13.268

Algorithm 3 is the well-known online learning algorithm Follow the Regularized Leader (FTRL)269

with a specific regularizer RT (·) presented in Definition 9. Our results crucially rely on the properties270

of this regularizer since it takes into account the HST structure and permits us to bound the fractional271

moving cost of FTRL.272

Definition 9. Given an HST T , the dilated entropic regularizer RT (y) over y ∈ FP(T) is defined273

as274

RT (y) :=
∑
v ̸=r

2lev(v) · (yv + δv) · ln
(

yv + δv
yp(v) + δp(v)

)
where δv := (k/n) · |L(T) ∩ T (v)| and n := |L(T)|.275

Algorithm 3 selects at each step t the facility placement yt ∈ FP(T) that minimizes a convex276

combination of the total fractional connection cost for the sub-sequence R1, . . . , Rt−1 and RT (y).277

The regularization term ensures the stability of the output, which will result in a bounded fractional278

moving cost.279

3If not, establishing our guarantees for γ = 1 will clearly upper bound the actual moving cost.

7

Algorithm 3 FTRL with dilated entropic regularization

1: Input: An adversarial sequence R1, . . . , RT ⊆ L(T).
2: for t = 1 to T do
3: The learner selects yt ∈ FP(T).
4: The learner suffers cost fRt(y

t) + ||yt − yt−1||T .

5: The learner updates yt+1 ← argminy∈FP(T)

[∑t
s=1 fRs(y) + (γ

√
nT) ·RT (y)

]
.

6: end for

Analysis of Algorithm 3. Due to space limitations, all proofs are moved to Section D of the280

Appendix. The primary reason for the specific selection of the regularizer at Definition 9 is that RT (·)281

is strongly convex with respect to the norm || · ||T of Definition 8, as established in Lemma 1 which282

is the main technical contribution of the section. We use D = DT for the diameter of T .283

Lemma 1. For any vectors y, y′ ∈ FP(T),284

RT (y
′) ≥ RT (y) + ⟨∇RT (y), y

′ − y⟩+
(
8kDγ2

)−1 · ||y − y′||2T

The strong convexity of RT (y) with respect to || · ||T is crucial since it permits us to bound the285

moving cost of Algorithm 3 by its fractional connection cost.286

Lemma 2. For any sequence R1, . . . , RT ⊆ L(T), the output of Algorithm 3 satisfies287

T∑
t=2

||yt − yt−1||T ≤
1

2
·

T∑
t=1

fRt
(yt) +O (γkD) ·

√
T

We remark that using another regularizer R(·) that is strongly convex with respect to another norm288

|| · || would still imply Lemma 1 with respect to || · ||. The problem though is that the fractional moving289

cost
∑T

t=1 ||yt−yt−1|| can no longer be associated with the actual moving cost
∑T

t=1 MT (Ft, Ft−1).290

It is for this reason that using a regularizer that is strongly convex with respect to || · ||T is crucial.291

Next, by adapting the standard analysis of FTRL to our specific setting, we derive Lemma 3292

establishing that Algorithm 3 admits bounded connection cost.293

Lemma 3. For any sequence R1, . . . , RT ⊆ L(T), the output of Algorithm 3 satisfies294

T∑
t=1

fRt(y
t) ≤ min

y∗∈FP

T∑
t=1

fRt(y
∗) +O

(
kn3/2Dγ

)
·
√
T

The proof of Theorem 3 directly follows by Lemma 2 and 3. We conclude the section by presenting295

how Step 5 of Algorithm 3 can be efficiently implemented, namely296

min
y∈FP(T)

Φt(y) :=

t∑
s=1

fRs
(y) + (γ

√
nT) ·RT (y).

Since Φt(y) is strongly convex and the set FP(T) is a polytope, one could use standard optimization297

algorithms such as the ellipsoid method or projected gradient descent to approximately minimize298

Φt(y) given access to a sub-gradient oracle for Φt(·). In Claim 11 of Section D of the Appendix,299

we establish that the sub-gradients of Φ(·) can be computed in polynomial time and thus any of the300

previous methods can be used to approximately minimize Φ(·). In Lemma 4 we establish the intuitive301

fact that approximately implementing Step 5 does not affect the guarantees of Theorem 3.302

Lemma 4. Let yt be the minimizer of Φt(·) in FP(T) and let zt ∈ FP(T) be any point such that303

Φt(z
t) ≤ Φt(y

t) + ϵ for some ϵ = O(T−1/2). Then,304

fRt(z
t) + ||zt − zt−1||T ≤ fRt(y

t) + ||yt − yt−1||T +O
(
kn3/2Dγ

)
· T−1/2

Remark 3. In our implementation of the algorithm, we approximately solve Step 5 of Algorithm 3 via305

Mirror Descent based on the Bregman divergence ofRT (·). This admits the same convergence rates306

as projected gradient descent but the projection step can be computed in linear time with respect to307

the size of the HST T . We present the details of our implementation in Section C of the Appendix.308

8

5 The Cut&Round Rounding309

In this section we present our novel rounding scheme (Algorithm Cut&Round) as well as the main310

steps that are required in order to establish Theorem 4. To ease notation, for any real number x ≥ 0311

we denote its decimal part as δ(x) = x− ⌊x⌋.312

Algorithm 4 Cut&Round.

1: Input: An HST T , a fractional placement
y ∈ FP(T) and thresholds αv ∈ [0, 1] for
all v ∈ V (T).

2: Yr ← k
3: for levels ℓ = h(T) to 1 do
4: for all nodes v with lev(v) = ℓ do
5: Yrem ← Yv

6: yrem ← yv
7: for all children u ∈ cld(v) do
8: Yu ← Alloc(yu, Yrem, yrem, αu)

9: Yrem ← Yrem − Yu

10: yrem ← yrem − yu
11: end for
12: end for
13: end for
14: return F := {u ∈ L(T) : Yu = 1}.

Algorithm 5 Alloc.

Input: Numbers yu, yrem ≥ 0, Yrem ∈ N
and αu ∈ [0, 1].
if Yrem == ⌊yrem⌋ then

if δ(yu) < δ(yrem) then
Yu ← ⌊yu⌋

else
Yu ← ⌊yu⌋+ 1

[
au ≤ δ(yu)−δ(yrem)

1−δ(yrem)

]
end if

else
if δ(yu) < δ(yrem) then

Yu ← ⌊yu⌋+ 1
[
au ≤ δ(yu)

δ(yrem)

]
else
Yu ← ⌊yu⌋+ 1

end if
end if
Return Yu.

313

On principle, Cut&Round (Algorithm 4) assigns to each vertex v an integer number of facilities314

Yv to be placed at the leaves of its sub-tree. Notice that due to sub-routine Alloc (Algorithm 5), Yv315

either equals ⌊yv⌋ or ⌊yv⌋ + 1. Cut&Round initially assigns k facilities to the set of leaves that316

descend from the root r, which is precisely L(T). Then, it moves in decreasing level order to decide317

Yv for each node v. Once Yv is determined (Step 5), the Yv facilities are allocated to the sub-trees of318

its children u ∈ cld(v) (Steps 7-10) via sub-routine Alloc using the thresholds αu, in a manner that319

guarantees that Yv =
∑

u∈cld(v) Yu (see Section E.1 of the Appendix). This implies the feasibility of320

Cut&Round, as exactly k facilities are placed in the leaves of T at the end of the process.321

Assuming that the set of thresholds αv is randomly drawn from the uniform distribution in [0, 1],322

sub-routine Alloc (Algorithm 5) guarantees that Yv either equals ⌊yv⌋ or ⌊yv⌋+1 while Eα [Yv] = yv .323

This is formally captured in Lemma 5 and is crucial in the proof of Theorem 4.324

Lemma 5. Consider Algorithm 4 given as input a vector y ∈ FP(T) and random thresholds325

αv ∼ Unif(0, 1). Then,326

Yv =

{
⌊yv⌋ with probability 1− δ(yv)
⌊yv⌋+ 1 with probability δ(yv)

By coupling Lemma 5 with the HST structure we are able to establish Theorem 4. The proof is327

technically involved and thus deferred to Section E of the Appendix.328

6 Conclusion329

In this work, we designed the first polynomial-time online learning algorithm for Online k-Clustering330

with Moving Costs that achieves O(log n)-regret with respect to the cost of the optimal static facility331

placement, extending the results of Fotakis et al. [30] for the special case of γ = 0. A interesting332

future direction is to investigate whether a polynomial-time online learning algorithm with O(1)-333

regret for the problem is theoretically possible or not.334

Limitations: Our current optimality guarantees are with respect to the optimal static facility place-335

ment. Going beyond the notion of regret, an intriguing future direction is establishing guarantees336

with respect to the optimal dynamic facility-placement that moves facilities from round to round by337

suffering the corresponding moving cost.338

9

References339

[1] Alekh Agarwal, Daniel J. Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E. Schapire.340

Taming the monster: A fast and simple algorithm for contextual bandits. In International341

Conference on Machine Learning, 2014.342

[2] Nir Ailon. Improved bounds for online learning over the permutahedron and other ranking343

polytopes. In Proceedings of the 17th International Conference on Artificial Intelligence and344

Statistics, AISTATS 2014, 2014.345

[3] Soroush Alamdari and David B. Shmoys. A bicriteria approximation algorithm for the k-center346

and k-median problems. In Workshop on Approximation and Online Algorithms, 2017.347

[4] Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility location via348

exponential clocks. ACM Trans. Algorithms, 13(2):21:1–21:20, 2017.349

[5] Tarique Anwar, Surya Nepal, Cecile Paris, Jian Yang, Jia Wu, and Quan Z. Sheng. Tracking350

the evolution of clusters in social media streams. IEEE Transactions on Big Data, pages 1–15,351

2022.352

[6] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka353

Pandit. Local search heuristic for k-median and facility location problems. In Proceedings of354

the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC ’01, page 21–29.355

Association for Computing Machinery, 2001.356

[7] Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive routing. J.357

Comput. Syst. Sci., 2008.358

[8] Maria-Florina Balcan and Avrim Blum. Approximation algorithms and online mechanisms for359

item pricing. In ACM Conference on Electronic Commerce, 2006.360

[9] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-361

competitive algorithm for the k-server problem. In Rafail Ostrovsky, editor, IEEE 52nd Annual362

Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October363

22-25, 2011, pages 267–276. IEEE Computer Society, 2011.364

[10] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.365

Proceedings of 37th Conference on Foundations of Computer Science, pages 184–193, 1996.366

[11] Avrim Blum and Carl Burch. On-line learning and the metrical task system problem. Mach.367

Learn., 39(1):35–58, 2000.368

[12] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry. k-369

server via multiscale entropic regularization. In Ilias Diakonikolas, David Kempe, and Monika370

Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of371

Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 3–16. ACM, 2018.372

[13] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for the facility location373

and k-median problems. In Proceedings of the 40th Annual Symposium on Foundations of374

Computer Science, FOCS ’99. IEEE Computer Society, 1999.375

[14] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor approxima-376

tion algorithm for the k-median problem (extended abstract). In Proceedings of the Thirty-First377

Annual ACM Symposium on Theory of Computing, STOC ’99, page 1–10. Association for378

Computing Machinery, 1999.379

[15] Moses Charikar and Shi Li. A dependent lp-rounding approach for the k-median problem.380

In Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012,381

volume 7391 of Lecture Notes in Computer Science, pages 194–205. Springer, 2012.382

[16] Vincent Cohen-Addad, Benjamin Guedj, Varun Kanade, and Guy Rom. Online k-means cluster-383

ing. In Arindam Banerjee and Kenji Fukumizu, editors, The 24th International Conference on384

Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event, volume385

130 of Proceedings of Machine Learning Research, pages 1126–1134. PMLR, 2021.386

10

[17] Aaron Cote, Adam Meyerson, and Laura J. Poplawski. Randomized k-server on hierarchical387

binary trees. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on388

Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 227–234.389

ACM, 2008.390

[18] Bart de Keijzer and Dominik Wojtczak. Facility reallocation on the line. In Proceedings of the391

Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, pages392

188–194, 2018.393

[19] Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed Sed-394

dighin. Stochastic k-server: How should uber work? In Ioannis Chatzigiannakis, Piotr Indyk,395

Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Lan-396

guages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of397

LIPIcs, pages 126:1–126:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.398

[20] Sina Dehghani, MohammadTaghi Hajiaghayi, Hamid Mahini, and Saeed Seddighin. Price of399

competition and dueling games. arXiv preprint arXiv:1605.04004, 2016.400

[21] Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, and401

Jennifer Wortman Vaughan. Oracle-efficient online learning and auction design. In 58th IEEE402

Annual Symposium on Foundations of Computer Science, FOCS 2017, 2017.403

[22] Miroslav Dudík, Daniel J. Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin,404

and Tong Zhang. Efficient optimal learning for contextual bandits. In Proceedings of the405

Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI 2011, 2011.406

[23] David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving metrics. In407

Automata, Languages, and Programming - 41st International ColloquiumICALP 2014, volume408

8573 of Lecture Notes in Computer Science, pages 459–470. Springer, 2014.409

[24] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary410

metrics by tree metrics. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of411

Computing, STOC ’03, page 448–455, New York, NY, USA, 2003. Association for Computing412

Machinery.413

[25] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary414

metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.415

[26] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Optimistic regret minimization416

for extensive-form games via dilated distance-generating functions. In Neural Information417

Processing Systems, 2019.418

[27] Hendrik Fichtenberger, Silvio Lattanzi, Ashkan Norouzi-Fard, and Ola Svensson. Consistent419

k-clustering for general metrics. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM420

Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021,421

pages 2660–2678. SIAM, 2021.422

[28] Dimitris Fotakis, Loukas Kavouras, Panagiotis Kostopanagiotis, Philip Lazos, Stratis Skoulakis,423

and Nikos Zarifis. Reallocating multiple facilities on the line. In Proceedings of the Twenty-424

Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, pages 273–279,425

2019.426

[29] Dimitris Fotakis, Thanasis Lianeas, Georgios Piliouras, and Stratis Skoulakis. Efficient online427

learning of optimal rankings: Dimensionality reduction via gradient descent. In Advances428

in Neural Information Processing Systems 33: Annual Conference on Neural Information429

Processing Systems 2020, NeurIPS 2020, 2020.430

[30] Dimitris Fotakis, Georgios Piliouras, and Stratis Skoulakis. Efficient online learning for dynamic431

k-clustering. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International432

Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,433

pages 3396–3406. PMLR, 18–24 Jul 2021.434

11

[31] Takahiro Fujita, Kohei Hatano, and Eiji Takimoto. Combinatorial online prediction via435

metarounding. In 24th International Conference on Algorithmic Learning Theory, ALT 2013,436

2013.437

[32] Dan Garber. Efficient online linear optimization with approximation algorithms. In Proceedings438

of the 30th International Conference on Neural Information Processing Systems, NIPS 2017,439

2017.440

[33] Xiangyu Guo, Janardhan Kulkarni, Shi Li, and Jiayi Xian. Consistent k-median: Simpler,441

better and robust. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th442

International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of443

Machine Learning Research, pages 1135–1143. PMLR, 13–15 Apr 2021.444

[34] Elad Hazan. Introduction to online convex optimization. CoRR, abs/1909.05207, 2019.445

[35] Elad Hazan, Wei Hu, Yuanzhi Li, and Zhiyuan Li. Online improper learning with an approxi-446

mation oracle. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and447

R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran448

Associates, Inc., 2018.449

[36] Elad Hazan and Satyen Kale. Online submodular minimization. J. Mach. Learn. Res., 2012.450

[37] Elad Hazan, Satyen Kale, and Shai Shalev-Shwartz. Near-optimal algorithms for online matrix451

prediction. In 25th Annual Conference on Learning Theory, COLT 2012, 2012.452

[38] Elad Hazan and Tomer Koren. The computational power of optimization in online learning. In453

Proceedings of the 48th Annual ACM Symposium on Theory of Computing, STOC 2016, 2016.454

[39] David P. Helmbold, Robert E. Schapire, and M. Long. Predicting nearly as well as the best455

pruning of a decision tree. In Machine Learning, 1997.456

[40] David P. Helmbold and Manfred K. Warmuth. Learning permutations with exponential weights.457

In Proceedings of the 20th Annual Conference on Learning Theory, COLT 2007, 2007.458

[41] Nicole Immorlica, Adam Tauman Kalai, Brendan Lucier, Ankur Moitra, Andrew Postlewaite,459

and Moshe Tennenholtz. Dueling algorithms. In Proceedings of the Forty-Third Annual ACM460

Symposium on Theory of Computing, STOC ’11, page 215–224, New York, NY, USA, 2011.461

Association for Computing Machinery.462

[42] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility463

location problems. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on464

Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 731–740. ACM,465

2002.466

[43] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location467

and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM,468

48(2):274–296, 2001.469

[44] Stefanie Jegelka and Jeff A. Bilmes. Online submodular minimization for combinatorial470

structures. In Proceedings of the 28th International Conference on Machine Learning, ICML471

2011, 2011.472

[45] Sham Kakade, Adam Tauman Kalai, and Katrina Ligett. Playing games with approximation473

algorithms. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing,474

STOC 2007, 2007.475

[46] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. In J.476

Comput. Syst. Sci. Springer, 2003.477

[47] Wouter M. Koolen, Manfred K. Warmuth, and Jyrki Kivinen. Hedging structured concepts. In478

the 23rd Conference on Learning Theory, COLT 2010, 2010.479

[48] Elias Koutsoupias. The k-server problem. Comput. Sci. Rev., 3(2):105–118, 2009.480

12

[49] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM, 42(5):971–481

983, 1995.482

[50] Amit Kumar. Constant factor approximation algorithm for the knapsack median problem. In483

Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA484

’12, page 824–832. Society for Industrial and Applied Mathematics, 2012.485

[51] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for486

clustering problems in any dimensions. J. ACM, 57(2), 2010.487

[52] Silvio Lattanzi and Sergei Vassilvitskii. Consistent k-clustering. In Doina Precup and Yee Whye488

Teh, editors, Proceedings of the 34th International Conference on Machine Learning, ICML489

2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine490

Learning Research, pages 1975–1984. PMLR, 2017.491

[53] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM J. Comput.,492

45(2):530–547, 2016.493

[54] Jyh-Han Lin and Jeffrey Scott Vitter. Approximation algorithms for geometric median problems.494

Information Processing Letters, 44(5):245 – 249, 1992.495

[55] M.E.J. Newman. The structure and function of complex networks. SIAM review, 45(2):167–256,496

2003.497

[56] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic Spreading in Scale-Free498

Networks. Physical Review Letters, 86(14):3200–3203, 2001.499

[57] Holakou Rahmanian and Manfred K. Warmuth. Online dynamic programming. In NIPS, 2017.500

[58] Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella, Jean-François Pinton,501

Marco Quaggiotto, Wouter Van den Broeck, Corinne Régis, Bruno Lina, and Philippe Vanhems.502

High-resolution measurements of face-to-face contact patterns in a primary school. PLOS ONE,503

6(8), 2011.504

[59] Matthew J. Streeter and Daniel Golovin. An online algorithm for maximizing submodular505

functions. In 22nd Annual Conference on Neural Information Processing Systems, NIPS 2008,506

2008.507

[60] Daiki Suehiro, Kohei Hatano, Shuji Kijima, Eiji Takimoto, and Kiyohito Nagano. Online508

prediction under submodular constraints. In Algorithmic Learning Theory, ALT 2012, 2012.509

[61] Eiji Takimoto and Manfred K. Warmuth. Predicting nearly as well as the best pruning of a510

planar decision graph. In Theoretical Computer Science, 2000.511

[62] Eiji Takimoto and Manfred K. Warmuth. Path kernels and multiplicative updates. J. Mach.512

Learn. Res., 2003.513

[63] Chayant Tantipathananandh, Tanya Berger-Wolf, and David Kempe. A framework for com-514

munity identification in dynamic social networks. In Proceedings of the 13th ACM SIGKDD515

International Conference on Knowledge Discovery and Data Mining, KDD ’07, page 717–726.516

Association for Computing Machinery, 2007.517

[64] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cam-518

bridge University Press, USA, 1st edition, 2011.519

[65] Shota Yasutake, Kohei Hatano, Shuji Kijima, Eiji Takimoto, and Masayuki Takeda. Online520

linear optimization over permutations. In Proceedings of the 22nd International Conference on521

Algorithms and Computation, ISAAC 2011, 2011.522

[66] Neal E. Young. K-medians, facility location, and the chernoff-wald bound. In Proceedings of523

the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, page 86–95.524

Society for Industrial and Applied Mathematics, 2000.525

13

Appendix526

A Further Related Work527

In this chapter of the appendix, we continue our discussion on the literature that relates to this work.528

Efficient Combinatorial Online Learning. There exists a long line of research studying efficient529

online learning algorithms in various combinatorial domains (e.g., selection of paths, permutations,530

binary search trees etc.) [39, 61, 62, 40, 7, 59, 44, 22, 41, 65, 37, 36, 1, 2, 20, 29]. Another related531

line of work studies black-box reductions converting any α-approximation (offline) algorithm to an532

O(α)-regret online learning algorithm for a specific class of combinatorial optimization problems533

called linear optimization problems [46, 8, 45, 47, 60, 31, 38, 57, 21, 32, 35]. We remark that a key534

difference of our setting with the aforementioned works is that in the latter case the learner is not535

penalized for switching actions from round to round with an additional moving/switching cost. In536

the context of Problem 1 this means that γ = 0 which is exactly the setting considered by [30]. As a537

result, apart from the fact that k-median does not belong in the class of linear optimization problems,538

the aforementioned black-box reductions do not apply to Problem 1 since they do not account for the539

moving cost.540

The k-server Problem. Our work also relates with the rich line of literature on the k-server problem541

[49, 17, 48, 9, 19, 12]. In this setting there exists only 1 client at each round, while 1-lookahead542

is assumed, i.e. the request Rt is revealed prior to the action of the algorithm at step t. Moreover543

in k-server a facility must be placed in the exact position of the request, leading to a simpler544

combinatorial structure with respect to Problem 14. However, in the k-server problem, instead of545

using the benchmark of regret, the more challenging metric of competitive ratio that measures the546

sub-optimality with respect to the optimal dynamic solution is used. Mostly related to ours is the work547

of [9] providing the first poly(log n)-competitive algorithm for k-server by reducing the problem548

to the special case of HSTs. [9] first design a poly(log n)-competitive algorithm for a fractional549

version of k-server at which facilities can be fractionally placed into the vertices of the HST. They550

then use a randomized rounding scheme to convert the fractional solution into an integral one. The551

basic difference of the randomized rounding scheme of [9] with the one that we introduce in this552

work (Algorithm Cut&Round) is that the first provides guarantees only for the moving cost of the553

facilities while Cut&Round provides guarantees both for the moving cost of the facilities as well as554

the connection cost of the clients.555

Consistent k-Clustering. Another setting of clustering in the presence of unknown clients is that556

of Consistent k-Clustering [52, 33, 27]. In this setting, given an unknown stream of clients, a set557

of k facilities has to be maintained over time so that at any round t, the selected facilities form an558

approximately optimal solution of the sub-instance consisting of clients appeared in the time interval559

{1, t}. A basic difference of Consistent k-Clustering with Problem 1 is that in the first case the560

moving cost is not penalized as long as the number of swaps does not exceed a certain threshold561

(O(k)).562

4Given offline access to the sequence of requests, the optimal solution for the k-server can be computed
in polynomial-time while the optimal static solution of Problem 1 cannot be approximated in polynomial-time
with ratio less than (1 + 2/e) even under a-priori knowledge of the request sequence (inapproximability of
k-median).

14

B Proof of Theorem 2563

In this chapter of the appendix we briefly discuss the details behind Theorem 2 and show how564

the results of [10] and [24] hold even for the specific definition of HSTs we have considered in565

Definition 5.566

Traditionally, HSTs are not required to be balanced nor are required to have weights that are567

specifically powers of 2. In fact, the seminal work of [10], later improved by [24], states that there568

exists a randomized procedure such that for every weighted graph G(V,E,w), it constructs (in569

polynomial-time) a tree T such that:570

1. There exists a perfect matching σ : V 7→ L(T) that maps the vertices of G to the leaves of571

T .572

2. For any vertices i, j ∈ V , their corresponding distance on T can only increase, i.e.573

dG(i, j) ≤ dT (σ(i), σ(j)).574

3. On expectation, distances between vertices are distorted only by a logarithmic factor, i.e.575

E [dT (σ(i), σ(j))] ≤ O(log |V |) · dG(i, j)576

4. The weight of any edge e = (v, u) between a vertex v ∈ V (T) and its parent vertex u is577

precisely diam(G) · 2−dpt(v).578

5. The height of T satisfies h(T) ≤ ⌈log (diam(G))⌉.579

The purpose of this section is to argue that one can easily transform such a tree T to match our notion580

of HSTs (Definition 5), while maintaining the same guarantees for the distortion of the distances.581

Recall that we have already assumed that the minimum edge weight of G is 1, i.e. mine∈E we = 1.582

Furthermore, we can also assume without loss of generality that the diameter of G is a power of 2; if583

not, simple scaling arguments suffice to transform G into such a graph by only distorting distances by584

a constant factor. Thus, we assume that diam(G) = 2d for some d ≥ 0.585

We start from the tree T that the algorithm of [24] generates. Recall that by definition, the weight586

of an edge e = (i, j) between some vertex i and its parent node j is 2d−dpt(i). In order to balance587

the tree, we take each leaf vertex u ∈ L(T) at depth dpt(u) and extend it downwards by adding new588

vertices until it reaches a new depth dpt′(u) = d. For every new edge that we add during this process,589

we maintain that the weight of the edge e = (i, j) from i to its parent j is diam(G) · 2−dpt(i).590

Let T ′ be used to denote our modified tree. Clearly, the above construction guarantees h(T ′) = d.591

Since by definition h(T) ≤ ⌈log (diam(G))⌉ = d, we know that all leaves initially lied at depth at592

most d, and thus by the end of the above process all leaves will lie at the same level of the tree and593

have depth d. Thus, we have indeed constructed a balanced tree. Furthermore, since by definition594

dpt(v) = h(T) − lev(v), we get that the weight of the edge e = (i, j) from i to its parent j is595

we = diam(G) · 2lev(i)−d = 2lev(i). So, the constructed tree indeed satisfies all the requirements of596

Definition 5 and is a valid HST (according to our definition).597

We will now argue that T ′ also satisfies all items of Theorem 2. Fist of all, the height of our new tree598

is precisely d, and thus it is true that h(T ′) ≤ ⌈log (diam(G))⌉. Furthermore, since we only added599

edges to the initial tree T , the distance between any two leaves can only increase. Thus, we get that600

for any vertices i, j ∈ V it holds601

dG(i, j) ≤ dT (i, j) ≤ dT ′(i, j)

Finally, it remains to upper bound the expected distortion on T ′. Recall that by construction of [24],602

we know that603

E [dT (σ(i), σ(j))] ≤ O(log |V |) · dG(i, j)
Since edge lengths decrease by a factor of 2 every time we move down the tree, we know that the604

total length of the path we added in order to move leaf i from depth dpt(i) to depth d is precisely605

1 + 2 + . . . 2dpt(i)−1 ≤ 2dpt(i). This implies that any distance on T ′ can be at most twice the606

corresponding distance on T , i.e.607

dT ′(σ(i), σ(j)) ≤ 2 · dT (σ(i), σ(j))

which completes the proof.608

15

C Proofs of Section 3609

In this chapter of the appendix we present all the omitted proofs from Section 3 concerning the basic610

algorithmic primitives we use in order to establish our main result in Theorem 1.611

Roadmap. In section C.1 we establish the connection between Problems 1 and 2 and show that612

our notion of fractional connection and moving cost collapses with our initial definitions in the613

case of integral facility placements. Then, in section C.2 we present the proof of Theorem 5 and in614

section C.3 we present the proof of Theorem 1.615

C.1 Establishing the relation between Problems 1 and 2616

Fix any HST T and let FP(T) be the corresponding set of fractional facility placements. In this617

section, we will establish that in the case of integral facility placements y ∈ FP(T)∩N, the notions618

of fractional connection cost and fractional moving cost (formally stated in Definitions 7 and 8)619

collapse to the notions of actual connection and moving costs (formally stated in Definitions 1 and 2)620

respectively.621

Let y ∈ FP(T) ∩N be an integral facility placement. Then, by definition, for each leaf v ∈ L(T)622

we have yv ∈ {0, 1} facilities that are placed on it, and the total amount of placed facilities is k, i.e.623 ∑
v∈L(T) yv = k. Thus, we can associate with any integral facility placement y a corresponding set624

F (y) = {v ∈ L(T) : yv = 1}

such that |F (y)| = k, meaning that F (y) is a valid facility placement of the leaves of the T .625

In Claim 1 we will establish that for any set of clients, the connection cost under F (y) is equal to the626

fractional connection cost under y. Then, in Claim 2 we will establish that the fractional moving cost627

between y and y′ gives us precisely the moving cost between facility placements F (y) and F (y′) on628

T .629

Claim 1. For any integral facility placement y ∈ FP(T) ∩N and any set of clients R ⊆ L(T), it630

holds that631

fR(y) = CR(F (y))

Proof. Fix any y ∈ FP(T) ∩N and any R ⊆ L(T). By definition of the connection cost (Defini-
tion 1), we have

CR(F) =
∑
j∈R

min
i∈F (y)

dT (i, j)

Let’s fix a particular client that lies on some leaf j ∈ L(T) of T . Let i∗ = argmini∈F (y) dT (i, j)

be the leaf closest to j that F (y) places a facility into. Since T is an HST and distances increase
by a factor of 2 as we move up the tree, it is not hard to see that i∗ is the leaf in F (y) whose lowest
common ancestor (lca) with j has the smallest level. Let l∗ = lca(j, i∗). Equivalently, l∗ is the
minimum-level vertex in P (j, r) such that yl∗ ≥ 1. Since T is balanced, we have that the connection
cost of client j under F (y) is precisely

C{j}(F (y)) = 2 · dT (j, l∗) = 2 ·
lev(l∗)−1∑

l=0

2l

and since by integrality we have that yv = 0 for any v ∈ P (j, l∗) \ {l∗} and yv ≥ 1 for all
v ∈ P (l∗, r), we have

C{j}(F) = 2 ·
∑

v∈P (j,r)

2lev(v) ·max(0, 1− yv)

Summing over all clients j ∈ R we get

CR(F (y)) =
∑
j∈R

∑
v∈P (j,r)

2lev(v)+1 ·max(0, 1− yv) = fR(y)

which concludes the proof.632

16

Claim 2. For any integral facility placements y, y′ ∈ FP(T) ∩N, it holds that633

||y − y′||T = γ ·MT (F (y), F (y′))

Proof. Fix any two integral facility placements y, y′ ∈ FP(T) ∩N. By definition of the moving634

cost (Definition 2), we have that635

MT (F (y), F (y′)) = min
σ∈Σ

∑
i∈F (y)

dT (i, σ(i))

where Σ is the set of all possible matchings from the facilities in F (y) to the facilities in F (y′).636

In general graphs, the minimum transportation cost can have a very complicated structure and637

typically requires solving a minimum transportation problem in order to compute it. However, in the638

special case of HSTs, we are actually able to obtain a very simple expression for this quantity.639

Recall that in an HST T , edge weights increase by a factor of 2 every time we move up a level on640

the tree. Thus, it is always in out interest to move facilities between leaves whose lowest common641

ancestor is as low as possible. In other words, the matching σ that minimizes the transportation cost642

from F (y) to F (y′) can be obtained by selecting an arbitrary leaf in F (y), matching it to the leaf in643

F (y′) with which it shares the lowest lowest common ancestor and then repeating the process for the644

rest of the leaves.645

Now fix any vertex v ∈ V (T). Recall that yv is equal to the number of facilities in F (y) that are646

placed in the descendant leaves of v (respectively for y′v). Thus, if we apply the above (optimal)647

transportation plan, the number of facilities that will end up traversing the edge from v to its parent648

vertex is going to be precisely |yv − y′v|. Since the weight of this edge is by definition 2lev(v), we get649

that650

MT (F (y), F (y′)) =
∑

v∈V (T)

2lev(v) · |yv − y′v|

and since651

||y − y′||T = γ ·
∑

v∈V (T)

2lev(v) · |yv − y′v|

we have proven the claim.652

653

C.2 Proof of Theorem 5654

We will now formally present the proof of Theorem 5, bounding the expected total cost of Algorithm 1.655

Fix any sequence of clients R1, . . . , RT . Since the random seed α is selected uniformly at random656

(Step 3 of Algorithm 1), by Item 1 of Theorem 4 we get that657

E [CRt(Ft)] = fRt(y
t)

Moreover since the same random seed α is used at all rounds t ≥ 1, Item 2 of Theorem 4 implies that658

γ · E [MT (Ft+1, Ft)] ≤ 4 · ||yt+1 − yt||T
Thus,659

E

[
T∑

t=1

CRt
(Ft) + γ ·

T∑
t=2

MT (Ft, Ft−1)

]
≤ 4 ·

(
T∑

t=1

fRt
(yt) +

T∑
t=2

||yt − yt−1||T

)

≤ 6 · min
y∗∈FP

T∑
t=1

fRt(y
∗) + β ·

√
T

where the last inequality follows by Theorem 3 for β = O
(
k · |L(T)|3/2 ·DT ·max(γ, 1)

)
. The660

proof is concluded by the fact that661

min
y∗∈FP

T∑
t=1

fRt
(y∗) ≤ min

|F∗|=k

T∑
t=1

CRt
(F ∗)

which is established in Claim 1 of Appendix C.1, stating that for any placement of k-facilities662

F ⊆ L(T) there exists a corresponding y ∈ FP(T) whose fractional connection cost is equal to F ’s663

under any client request.664

17

C.3 Proof of Theorem 1665

We will now formally present the proof of Theorem 1, bounding the regret of Algorithm 2.666

Let T be the HST that we randomly embed our graph G(V,E,w) into. Since V = L(T), we slightly667

abuse notation and use u to refer both to some vertex of G and to the corresponding leaf of T . From668

Theorem 5, we know that the output of Algorithm 1 satisfies669

E

[
T∑

t=1

CT
Rt
(Ft) + γ ·

T∑
t=2

MT (Ft, Ft−1)

]
≤6 · min

|F∗|=k

T∑
t=1

CT
Rt
(F ∗)

+O
(
k · |L(T)|3/2 ·DT ·max(1, γ)

)
·
√
T

where we use T in the connection and moving cost to indicate that all distances are measured on the670

HST. Here, the expectation is taken over the random choices of Algorithm 1.671

Next, notice that both the connection cost and the moving cost are defined as sum of distances. Thus,672

the results of Theorem 2 about the distance distortion from G to T clearly apply for these quantities673

as well, namely674

CG
Rt
(Ft) ≤ CT

Rt
(Ft) and E

[
CT

Rt
(Ft)

]
≤ O(log |V |) · CG

Rt
(Ft)

and675

MG(Ft, Ft−1) ≤MT (Ft, Ft−1) and E [MT (Ft, Ft−1)] ≤ O(log |V |) ·MG(Ft, Ft−1)

Thus, taking an expectation over the randomness of T , we finally get that676

E

[
T∑

t=1

CG
Rt
(Ft) + γ ·

T∑
t=2

MG(Ft, Ft−1)

]
≤ O(log |V |) · min

|F∗|=k

T∑
t=1

CG
Rt
(F ∗)

+O
(
k · |L(T)|3/2 ·DT ·max(1, γ)

)
·
√
T

Let n = |V | and D = diam(G). From the above, we get that Algorithm 2 is indeed α-regret for677

α = O(log n). Furthermore, we have that |L(T)| = |V | = n, and DT = 2 · (2h(T) − 1) ≤ 4D678

since h(T) ≤ ⌈logD⌉. Thus, setting β = O(k · n3/2 ·D ·max(1, γ)), we get that Algorithm 2 has679

β-additive regret, completing the proof of Theorem 1.680

18

D Analysis of FTRL (Proofs of Section 4)681

In this chapter of the appendix we present all the omitted proofs from Section 4 concerning our682

analysis of the Follow the Regularized Leader (FTRL) algorithm (Algorithm 3). To avoid repetition,683

from now on we fix an arbitrary HST T and use FP(T) to denote the set of all fractional placements684

of k facilities on the leaves of T . We use n = |L(T)| to denote the number of leaves of T , h = h(T)685

to denote its height and D = diam(T) to denote its diameter. Since T is an HST, we know that its686

diameter D, i.e. the maximum distance between any two leaves, is precisely D = 2 · (2h − 1).687

To ease notation, let wv = 2lev(v). For convenience, we remind the reader that our regularizer688

function RT : FP(T) 7→ R is defined as689

RT (y) =
∑
v ̸=r

wv · (yv + δv) · ln
(

yv + δv
yp(v) + δp(v)

)
where δv = k · |L(T) ∩ T (v)|/|L(T)| is the percentage of leaves that lie on the sub-tree rooted at690

vertex v multiplied by k and p(v) is the parent of node v. Also, recall that for any y ∈ FP(T) we691

have defined the norm692

||y||T = γ ·
∑

v∈V (T)

wv|yv|

Roadmap. In Section D.1 we prove Lemma 1, namely the strong convexity of RT with respect693

to || · ||T . Then, in Section D.2 we bound the moving cost of FTRL, proving Lemma 2. Next, in694

Section D.3 we bound the connection cost cost of FTRL, proving Lemma 3. Finally, in Section D.4695

we account for approximation errors in the computation of the regularized leader, proving Lemma 4.696

D.1 Strong Convexity (Proof of Lemma 1)697

The objective of this section is to prove Lemma 1, specifically that for any fractional facility place-698

ments y, y′ ∈ FP(T) it holds that699

RT (y
′) ≥ RT (y) + ⟨∇RT (y), y

′ − y⟩+ α||y − y′||2T
where α = (8kDγ2)−1.700

We begin by computing the gradient of RT on any fractional facility placement y ∈ FP(T).701

Claim 3. The partial derivatives of RT on any point y ∈ FP(T) are given by702

∂RT (y)

∂yv
=


−wv

2 for v = r

wv · ln
(

yv+δv
yp(v)+δp(v)

)
+ wv for v ∈ L(T)

wv · ln
(

yv+δv
yp(v)+δp(v)

)
+ wv

2 for v /∈ L(T) ∪ {r}

Proof. Clearly, RT is well-defined and differentiable on FP(T). For any v ̸= r, we compute the703

partial derivatives of RT (y) to obtain704

∂RT (y)

∂yv
= wv · ln

(
yv + δv

yp(v) + δp(v)

)
+ wv −

∑
v∈cld(u)

wu ·
yu + δu
yv + δv

Since y ∈ FP(T), we know yv =
∑

u∈cld(v) yu and by definition, δv =
∑

u∈cld(v) δu. Finally,705

recall that wu = wv/2 for any u ∈ cld(v). By plugging everything in we get706

∂RT (y)

∂yv
= wv · ln

(
yv + δv

yp(v) + δp(v)

)
+ wv −

wv

2
· 1[v /∈ L(T)]

for any v ̸= r. For the root vertex, using similar arguments we get707

∂RT (y)

∂yr
= −wr

2

708

19

Now that we have calculated the gradient of RT , we can substitute it into the definition of strong709

convexity. Specifically, by Claim 3, Lemma 1 states that710

∑
v ̸=r

wv · (y′v + δv) · ln

 y′
v+δv

y′
p(v)

+δp(v)

yv+δv
yp(v)+δp(v)

 ≥ 1

8kDγ2
· ||y′ − y||2T (1)

To ease the presentation, we define quantities711

f(y′, y) =
∑
v ̸=r

wv · (y′v + δv) · ln

 y′
v+δv

y′
p(v)

+δp(v)

yv+δv
yp(v)+δp(v)


and712

h(y′, y) =
∑
v ̸=r

wv · (yp(v) + δp(v)) · |
y′v + δv

y′p(v) + δp(v)
− yv + δv

yp(v) + δp(v)
|

We will prove that f(y′, y) ≥ (1/2kD) ·h2(y′, y) and that h(y′, y) ≥ (1/2γ) · ||y′−y||T in Claims 4713

and 5 respectively. Combining these claims, equation (1) clearly holds, completing the proof of714

Lemma 1.715

Claim 4. For any y, y′ ∈ FP(T), it holds that f(y′, y) ≥ 1
2kD · (h(y

′, y))
2.716

Proof. We begin by establishing some notation. For any v ̸= r, let717

µ′
v = wv · (y′p(v) + δp(v)) ·

y′v + δv
y′p(v) + δp(v)

and718

µv = wv · (y′p(v) + δp(v)) ·
yv + δv

yp(v) + δp(v)
.

Then, we have that719

f(y′, y) =
∑
v ̸=r

µ′
v · ln

(
µ′
v

µv

)

=
∑
v∈I

µ′
v · ln

(
µ′
v

µv

)
+
∑
v∈I′

µ′
v · ln

(
µ′
v

µv

)
where I = {v ̸= r : µ′

v ≥ µv} and I ′ = {v ̸= r : µ′
v < µv}. By applying the log-sum inequality in720

both of these terms, we obtain721

f(y′, y) ≥ (
∑
v∈I

µ′
v) · ln

(∑
v∈I µ

′
v∑

v∈I µv

)
+ (
∑
v∈I′

µ′
v) · ln

(∑
v∈I′ µ′

v∑
v∈I′ µv

)
Next, observe that722 ∑

v ̸=r

µ′
v =

∑
v ̸=r

wv · (y′v + δv) = 2k · (2h − 1) = k ·D

and also723 ∑
v ̸=r

µv =
∑
v ̸=r

wv · (y′p(v) + δp(v)) ·
yv + δv

yp(v) + δp(v)

=
∑

v/∈L(T)

wv

2
· (y′v + δv) ·

∑
u∈cld(v)

yu + δu
yv + δv


=

∑
v/∈L(T)

wv

2
· (y′v + δv)

=
1

2
· 2k · (2h+1 − 2)

= k ·D.

20

Let B′ =
∑

v∈I µ
′
v and B =

∑
v∈I µv . Then, we have shown that724

f(y′, y) ≥ B′ · ln
(
B′

B

)
+ (kD −B′) · ln

(
kD −B′

kD −B

)
(2)

Our next step is to apply Pinsker’s inequality to the above expression. Pinsker’s inequality states that725

for any p, q ∈ (0, 1), it holds that726

p · ln
(
p

q

)
+ (1− p) · ln

(
1− p

1− q

)
≥ 2 · (p− q)2

Since B ≤ kD and B′ ≤ kD, we can scale everything in inequality 2 and apply Pinsker’s inequality727

to obtain728

f(y′, y) ≥ 2

kD
· (B −B′)2 (3)

To complete the proof, we substitute729

B′ −B =
∑
v∈I

(µ′
v − µv)

=
∑
v∈I

wv · (y′p(v) + δp(v)) · (
y′v + δv

y′p(v) + δp(v)
− yv + δv

yp(v) + δp(v)
)

=
∑

v/∈L(T)

wv

2
· (y′v + δv) ·

∑
u∈cld(v)∩I

(
y′u + δu
y′v + δv

− yu + δu
yv + δv

)

=
1

2
·
∑

v/∈L(T)

wv

2
· (y′v + δv) ·

∑
u∈cld(u)

|y
′
u + δu
y′v + δv

− yu + δu
yv + δv

|

where the last equality follows from the fact that the ratio in the inner sum always sum to 1, and730

thus by only summing over the ones with positive difference we get half of the total sum of absolute731

differences. By swapping the summation order once again, we get732

B′ −B =
1

2
·
∑
v ̸=r

wv · (y′p(v) + δp(v)) · |
y′v + δv

y′p(v) + δp(v)
− yv + δv

yp(v) + δp(v)
|

=
1

2
· h(y′, y)

and from inequality (3) we finally get733

f(y′, y) ≥ 1

2kD
· (h(y′, y))2

as desired.734

Claim 5. For any y, y′ ∈ FP(T), it holds that ||y′ − y||T ≤ 2γ · h(y′, y).735

Proof. To prove the claim, we first need to establish some extra notation. For any y ∈ FP(T) and736

v ̸= r, let737

λv(y) :=
yv + δv

yp(v) + δp(v)

Furthermore, for any vertex v and any integer i ∈ [0, h− lev(v)], we use p(v, i) to denote the i-th738

ancestor of v on T , for example p(v, 0) = v, p(v, 1) = p(v) and p(v, h− lev(v)) = r.739

Recall that by definition, yr = δr = k. Thus, if we telescope these terms and let mv = h− lev(v)−1,740

we clearly have that741

yv + δv = 2k ·Πmv
i=0λp(v,i)(y)

21

which implies742

y′v − yv = 2k ·Πmv
i=0λp(v,i)(y

′)− 2k ·Πmv
i=0λp(v,i)(y)

= 2k ·
mv∑
i=0

λp(v,0)(y
′) · . . . · (λp(v,i)(y

′)− λp(v,i)(y)) · . . . · λp(v,mv)(y)

= 2k ·
mv∑
i=0

y′v + δv
y′p(v,i) + δp(v,i)

· (λp(v,i)(y
′)− λp(v,i)(y)) ·

yp(v,i+1) + δp(v,i+1)

2k

= (y′v + δv) ·
mv∑
i=0

yp(v,i+1) + δp(v,i+1)

y′p(v,i) + δp(v,i)
· (λp(v,i)(y

′)− λp(v,i)(y))

and from the triangular inequality743

|y′v − yv| ≤ (y′v + δv) ·
mv∑
i=0

yp(v,i+1) + δp(v,i+1)

y′p(v,i) + δp(v,i)
· |λp(v,i)(y

′)− λp(v,i)(y)| (4)

Plugging inequality (4) into the definition of norm || · ||T , we get744

||y′ − y||T ≤ γ ·
∑
v ̸=r

wv · (y′v + δv) ·

(
mv∑
i=0

yp(v,i+1) + δp(v,i+1)

y′p(v,i) + δp(v,i)
· |λp(v,i)(y

′)− λp(v,i)(y)|

)
and by carefully exchanging the summation order, we obtain745

||y′ − y||T ≤ γ ·
∑
v ̸=r

yp(v) + δp(v)

y′v + δv
· |λv(y

′)− λv(y)| ·

 ∑
u∈T (v)

wu(y
′
u + δu)


Finally, observe that

∑
u∈T (v) wuy

′
u ≤ 2wvy

′
v. To see this, fix the sub-tree T (v) rooted at vertex746

v and recall that since y′ ∈ FP(T), the total amount of facilities at each level is y′v. Furthermore,747

the weights wv decrease by a factor of 2 at every level. Using the same arguments, we obtain748 ∑
u∈T (v) wuδu ≤ 2wvδv . Combining everything, we finally get749

||y′ − y||T ≤ 2γ ·
∑
v ̸=r

wv · (yp(v) + δp(v)) · |λv(y
′)− λv(y)|

or equivalently, ||y′ − y||T ≤ 2γ · h(y′, y).750

D.2 Bounding the Moving Cost (Proof of Lemma 2)751

In this section we will upper bound the moving cost of FTRL by its connection cost. Fix any752

sequence of client requests R1, R2, . . . , RT ⊆ L(T). Recall that at each step t, FTRL selects a753

fractional facility placement yt given by754

yt = argmin
y∈FP(T)

Φt(y)

where Φt(y) =
∑t−1

s=1 fRs
(y) + 1

η ·RT (y) is the objective that FTRL minimizes over at step t for755

η = (γ ·
√
nT)−1. In this section, we prove Lemma 2, by arguing that756

T∑
t=2

||yt − yt−1||T ≤
1

2
·

T∑
t=1

fRt(y
t) +

η

2α
· T

since the proof follows easily by the definitions of η and α.757

From Lemma 1 we already know that RT is α-strongly convex with respect to || · ||T for α =758

(8kDγ2)−1. Furthermore, by definition the fractional connection cost759

fR(y) =
∑
j∈R

∑
v∈P (j,r)

2lev(v)+1 ·max (0, 1− yv)

22

is clearly convex for any client request R ⊆ L(T). Thus, it is straight-forward to argue that at any760

step t, the FTRL objective Φt is α
η -strongly convex with respect to || · ||T . Unfortunately, fR(y) is761

not differentiable on FP(T), but its sub-gradients are well-defined on any y ∈ FP(T). Thus, the762

strong convexity of Φt provides us with the following guarantee:763

Claim 6. Fix any pair of fractional facility placements y, y′ ∈ FP(T) and any time step t ∈ [T].764

Let gt ∈ ∂Φt(y) be any sub-gradient of Φt at y. Then, it holds that765

Φt(y
′) ≥ Φt(y) + ⟨gt, y′ − y⟩+ α

η
· ||y − y′||2T

Furthermore, since by definition yt is the (unique) minimizer of Φt, the first order optimality766

conditions on Φt imply that there exists some g∗t ∈ ∂Φt(y
t) such that ⟨g∗t , y − yt⟩ ≥ 0 for any767

y ∈ FP(T). Claim 6 for y = yt, y′ = yt−1 and gt = g∗t gives us768

Φt(y
t−1) ≥ Φt(y

t) +
α

η
· ||yt − yt−1||2T

Thus, we have769

||yt − yt−1||2T ≤
η

α
·
(
Φt(y

t−1)− Φt(y
t)
)

=
η

α
·
(
Φt−1(y

t−1) + fRt−1(y
t−1)− Φt−1(y

t)− fRt−1(y
t)
)

≤ η

α
·
(
fRt−1

(yt−1)− fRt−1
(yt)

)
where for the equality we used the fact that Φt(y) = Φt−1(y)+fRt−1(y) and for the second inequality770

we used the fact that yt−1 is by definition the minimizer of Φt−1. Finally, since fR(y) ≥ 0 for any771

client request R ⊆ L(T), we have772

||yt − yt−1||T ≤
√

η

α
· fRt−1

(yt−1)

≤ η

2α
+

1

2
· fRt−1(y

t−1)

where the last inequality follows from the Arithmetic Mean - Geometric Mean inequality. Summing773

over all t completes the proof of Lemma 2.774

D.3 Bounding the Connection Cost (Proof of Lemma 3)775

In this section we will upper bound the connection cost of FTRL by the connection cost of the776

optimal fractional facility placement in hindsight. This is a standard analysis found in many textbooks,777

and we present it just for the sake of completeness.778

Fix any sequence of client requests R1, R2, . . . , RT ⊆ L(T). Recall that at each step t, FTRL779

selects a fractional facility placement yt given by780

yt = argmin
y∈FP(T)

Φt(y)

where Φt(y) =
∑t−1

s=1 fRs
(y) + 1

η ·RT (y) is the objective that FTRL minimizes over at step t for781

η = (γ ·
√
nT)−1. Let y∗ be the optimal facility placement in hindsight, i.e.782

y∗ = argmin
y∈FP(T)

T∑
t=1

fRt
(y)

In this section we prove Lemma 3,by arguing that783

T∑
t=1

fRt
(yt) ≤

T∑
t=1

fRt
(y∗) +

knD

η
+ 32kn2Dη · T

and then the proof follows easily by definition of η.784

In the standard analysis of FTRL, the following quantities are of special interest as they appear in785

the final regret guarantees of the algorithm:786

23

• Let diam(RT) := maxy,y′∈FP(T) |RT (y)−RT (y
′)| be the diameter of the regularizer.787

• Let Gf be an upper bound on the dual norm of the sub-gradient of the fractional connection788

cost for any client request, i.e. for any R ⊆ L(T) and any y ∈ FP(T), there exists some789

sub-gradient g ∈ ∂fR(y) such that ||g||∗T ≤ Gf . Here, || · ||∗T denotes the dual norm of790

|| · ||T .791

We begin by presenting the standard analysis of FTRL and deriving an expression for the regret792

guarantee that depends on the above quantities. Recall that at any step t, the FTRL objective Φt793

doesn’t include fRt
since the client request Rt is not revealed to the algorithm at the time of decision.794

We begin by bounding the connection cost of a theoretical algorithm that has access to this information795

and thus at time t can pick facility placement yt+1.796

Claim 7. The output of FTRL satisfies797

T∑
t=1

fRt
(yt+1) ≤

T∑
t=1

fRt
(y∗) +

diam(RT)

η

Proof. We have798

Φt(y
t) = Φt−1(y

t) + fRt−1
(yt)

≥ Φt−1(y
t−1) + fRt−1

(yt)

where the equality holds by definition of Φt and the inequality holds from the optimality of yt−1 on799

Φt−1. Similarly, we obtain800

Φt−1(y
t−1) ≥ Φt−2(y

t−2) + fRt−2
(yt−1)

If we keep applying this rule, we finally get that801

Φt(y
t) ≥

t−1∑
s=1

fRs
(ys+1) + Φ1(y

1)

Furthermore, we have Φ1(y
1) = RT (y1)/η and Φt(y

∗) ≥ Φt(y
t) for all t. Thus, we get802

ΦT+1(y
∗) ≥

T∑
t=1

fRt
(yt+1) +

1

η
·RT (y

1)

or equivalently (by substituting ΦT+1’s definition) we have803

T∑
t=1

fRt
(yt+1) ≤

T∑
t=1

fRt
(y∗) +

RT (y
∗)−RT (y

1)

η

The claim follows from the definition of diam(RT).804

Next, we proceed by bounding the increase in the connection cost that we suffer by choosing yt805

instead of yt+1 at time t.806

Claim 8. For any t ≥ 0, it holds that fRt
(yt) ≤ fRt

(yt+1) + ηG2
f/α.807

Proof. For any client request R ⊆ L(T), the fractional connection cost function fR(y) is clearly808

convex and its sub-gradients are well-defined on FP(T). By definition of Gf , we know that there809

exists some sub-gradient g ∈ ∂fRt
(yt) such that ||g||∗T ≤ Gf . Using this sub-gradient, we get810

fRt
(yt) ≤ fRt

(yt+1) + ⟨g, yt − yt+1⟩
≤ fRt(y

t+1) + ||g||∗T · ||yt − yt+1||T
≤ fRt

(yt+1) +Gf · ||yt − yt+1||T

24

where the first inequality is derived from the convexity of the fractional connection cost, the second811

inequality is an application of Holder’s inequality and the third inequality is from Gf ’s definition.812

As we have already argued in section D.2, we know that for any step t, the FTRL objective Φt is813

α/η-strongly convex with respect to || · ||T . Using the definition of strong convexity, this implies that814

Φt+1(y
t) ≥ Φt+1(y

t+1) + ⟨g, yt − yt+1⟩+ α

η
· ||yt − yt+1||2T

for any sub-gradient g ∈ ∂Φt+1(y
t+1). Furthermore, since yt+1 is the minimizer of Φt+1, we815

know from the first order optimality conditions that we can select g ∈ ∂Φt+1(y
t+1) such that816

⟨g, y − yt+1⟩ ≥ 0 for any y ∈ FP(T). Using such a sub-gradient, we get817

||yt − yt+1||2T ≤
η

α
·
(
Φt+1(y

t)− Φt+1(y
t+1)

)
=

η

α
·
(
Φt(y

t) + fRt
(yt)− Φt(y

t+1)− fRt
(yt+1)

)
≤ η

α
·
(
fRt

(yt)− fRt
(yt+1)

)
where we just expanded Φt+1’s definition and used the fact that yt is the minimizer of Φt.818

Combining everything, we finally obtain819

fRt(y
t)− fRt(y

t+1) ≤ Gf ·
√

η

α
· (fRt(y

t)− fRt(y
t+1))

and the claim follows.820

We complete the analysis of FTRL by combining Claims 7 and 8 in order to obtain the following821

regret guarantee:822

Claim 9. The output of FTRL satisfies823

T∑
t=1

fRt
(yt) ≤

T∑
t=1

fRt
(y∗) +

diam(RT)

η
+

ηG2
f

α
· T

It remains to substitute the specific values of the parameters that appear in the regret guarantee.824

We have already proven in section D.1 that RT is α-strongly convex with respect to || · ||T for825

α = (8kDγ2)−1. Next, we provide an upper bound for the diameter of the regularizer.826

Claim 10. It holds that diam(RT) ≤ knD.827

Proof. Fix any y ∈ FP(T). Be definition, we know that yv ≤ yp(v) and δv ≤ δp(v) for any v ̸= r.
Thus, the expressions inside the logarithms of the regularizer are always at most 1, which implies that
RT (y) ≤ 0. Furthermore, for any α, β > 0 it holds that α− β ≤ α · ln (α/β). Using this inequality,
we get that

RT (y) ≥
∑
v ̸=r

wv · (yv + δv − yp(v) − δp(v))

Fix any level l ∈ [0, h− 1] and let Vl = {v ∈ V (T) : lev(v) = l} denote the set of vertices of the828

HST at level l. Since y ∈ FP(T), we know that
∑

v∈Vl
yv = k, and by definition of δ’s we know829

that
∑

v∈Vl
δv = k as well. Furthermore, we know that

∑
v∈Vl

yp(v) ≤ n ·
∑

v∈Vl+1
yv = n · k since830

any vertex v can have at most n (i.e. the total number of leaves) children. Using the same argument,831

25

we have
∑

v∈Vl
δp(v) ≤ n ·

∑
v∈Vl+1

yv = n · k. Thus, combining everything we obtain832

RT (y) ≥
∑
v ̸=r

wv · (yv + δv − yp(v) − δp(v))

=

h−1∑
l=0

∑
v∈Vl

2l · (yv + δv − yp(v) − δp(v))

≥
h−1∑
l=0

2l · (2k − 2kn)

= 2k(1− n)(2h − 1)

= k(1− n)D.

which proves our claim.833

Finally, we only need to find an upper bound for Gf . We begin by computing a set of sub-gradients834

for the fractional connection cost function.835

Claim 11. Fix any client request R ⊆ L(T) and any y ∈ FP(T). Define the vector gR,y ∈ R|V (T)|836

such that837

gR,y
v =

{
0 if yv ≥ 1
−2lev(v)+1 · |T (v) ∩R| if yv < 1

Then, gR,y ∈ ∂fR(y), i.e. gR,y is a sub-gradient of fR on point y.838

Proof. Fix any client request R ⊆ L(T). By definition of the fractional connection cost on facility839

placement y ∈ FP(T), we have840

fR(y) =
∑
j∈R

∑
v∈P (j,r)

2lev(v)+1 ·max (0, 1− yv)

where P (j, r) denotes the unique path from leaf j ∈ L(T) to the root r. This is clearly a convex841

function on FP(T) and thus the sub-gradients of fR are well-defined. Fix any v ∈ V (T). We842

distinguish between two cases.843

• If yv < 1, then the partial derivative of fR(y) is well-defined and given by844

∂fR(y)

∂yv
= −2lev(v)+1 · |T (v) ∩R|

where T (v) is the set of vertices on the sub-tree rooted at vertex v.845

• If yv ≥ 1, then clearly it doesn’t contribute to fR(y). Using standard calculus, it is not hard846

to argue that in this case there exists a sub-gradient of fR(y) whose coordinate corresponding847

to v is 0. Thus, we have argued that that gR,y is a valid sub-gradient of fR on point y.848

849

Finally, we provide an upper bound on the dual-norm of the sub-gradients that we computed on850

Claim 11.851

Claim 12. For any y ∈ FP(T) and any R ⊆ L(T), it holds that ||gR,v||∗T ≤ 2n
γ .852

Proof. Recall that we have defined the moving cost norm as853

||y||T = γ ·
∑

v∈V (T)

wv · yv

26

which is basically a weighted l1-norm with weights γ · wv. It is well-known that the dual of the854

l1-norm is the l∞ norm. Similarly, the dual of the weighted l1-norm is a weighted l∞ norm with855

inverse weights, i.e. || · ||∗ = l∞((γw)−1). Thus, we have856

||x||∗T = max
v

|xv|
γ · wv

Using the calculation of the sub-gradients from Claim 11 and that R ⊆ L(T) and thus |R| ≤ n, we857

immediately get the claim.858

Claim 10 provides us with an expression for diam(RT) and Claim 12 provides us with an expression859

for Gf . Plugging everything in into Claim 9, we complete the proof of Lemma 3.860

D.4 Incorporating approximation errors (Proof of Lemma 4)861

Fix any sequence of client requests R1, R2, . . . , RT ⊆ L(T). Recall that at each step t, FTRL862

selects a fractional facility placement yt given by863

yt = argmin
y∈FP(T)

Φt(y)

where Φt(y) =
∑t−1

s=1 fRs
(y) + 1

η ·RT (y) is the objective that FTRL minimizes over at step t for864

η = (γ ·
√
nT)−1.865

Now, assume that instead of minimizing Φt(y) over FP(T) to compute yt, we are only able to866

compute a fractional facility placement zt ∈ FP(T) such that Φt(z
t) ≤ Φt(y

t) + ϵ for some ϵ > 0.867

Claim 13. For any step t, it holds that868

||zt − yt||T ≤
√

ϵ · η
α

Proof. As we have already argued in section D.2, we know that for any step t, the FTRL objective869

Φt is α/η-strongly convex with respect to || · ||T . Combining this with the first order optimality870

condition for Φt on yt, we get871

Φt(z
t) ≥ Φt(y

t) +
α

η
· ||zt − yt||2T

which implies that872

||zt − yt||T ≤
√

ϵ · η
α

873

Using Claim 13, we can easily bound both the connection and the moving cost of the approximated874

FTRL solutions.875

• For the connection cost, recall that the fractional connection cost function fRt at step t is876

convex, which implies that877

fRt
(zt) ≤ fRt

(yt) + ⟨g, zt − yt⟩
for some g ∈ ∂fRt(z

t). Using Holder’s inequality to upper bound the inner-product and878

using the upper bound of Claim 12 for the dual norm of the sub-gradients of fRt
, we get that879

fRt
(zt) ≤ fRt

(yt) +
2n

γ
· ||zt − yt||T

and finally from Claim 13 we get that880

fRt
(zt) ≤ fRt

(yt) +
2n

γ
·
√

ϵ · η
α

27

• For the moving cost, recall it suffices to use the triangular inequality that || · ||T (as a norm)881

satisfies:882

||zt − zt−1||T ≤ ||zt − yt||T + ||yt − yt−1||T + ||yt−1 − zt−1||T

≤ ||yt − yt−1||T + 2 ·
√
ϵ · η

α

The proof of Lemma 4 follows easily by plugging in η = (γ ·
√
nT)−1, α = (8kDγ2)−1 and883

ϵ = O(1/
√
T).884

D.5 Implementation of Projected Mirror Descent885

We conclude this section by considering the Projected Mirror Descent update step, namely886

y′ = argmin
y∗∈FP(T)

[η · ⟨c, y∗⟩+ ·DRT (y
∗, y)]

that takes as input a fractional facility placement y ∈ FP(T) and returns some other y′ ∈ FP(T)887

that minimizes a linear cost under vector c plus the Bregman Divergence between the initial and888

the new point under regularizer RT . Here, η > 0 is a tuning parameter that balances the dynamics889

between the linear cost and the Bregman Divergence.890

By letting c be the sub-gradient of the fractional connection cost over the observed sequence of891

clients, we can use this update step in order to approximate the FTRL objective; this is, in fact, the892

implementation we did for our experimental evaluation of Algorithm 2. In this section we will argue893

that the special structure of RT allows us to compute the update step in linear (to the size of the HST)894

time.895

By definition of the Bregman Divergence, we have896

DRT (x, y) = RT (x)−RT (y)− ⟨∇RT (y), x− y⟩

Substituting everything, we get that the update step of Projected Mirror Descent can be written as897

y′ = argmin
y∗∈FP(T)

F (y∗)

for898

F (y∗) = η ·
∑
v

cv · y∗v +
∑
v ̸=r

wv · (y∗v + δv) · ln

(
y∗v + δv

y∗p(v) + δp(v)

)

−
∑
v ̸=r

wv · (yv + δv) · ln
(

yv + δv
yp(v) + δp(v)

)

−
∑
v ̸=r

(
wv · ln

(
yv + δv

yp(v) + δp(v)

)
+

wv

2
+

wv

2
· 1[v ∈ L(T)]

)
(y∗v − yv)

− wr

2
(y∗r − yr)

It is always the case that we update y′ from some y ∈ FP(T), so we can simplify the above899

expression to get900

F (y∗) = η ·
∑
v

cv · y∗v +
∑
v ̸=r

wv · (y∗v + δv) · ln

 y∗
v+δv

y∗
p(v)

+δp(v)

yv+δv
yp(v)+δp(v)


−
∑
v

wv

2
· (1 + 1[v ∈ L(T)]) · (y∗v − yv)

28

Recall that by definition, FP(T) is the polytope901

FP(T) =

y ∈ R|V (T)| :
yv =

∑
u∈cld(v) yu v /∈ L(T)

yv ∈ [0, 1] v ∈ L(T)
yr = k

Since our objective is to minimize function F (·) over FP(T), we can write down the KKT optimality902

conditions to obtain the following conditions about the minimizer y∗:903

y∗v + δv
y∗p(v) + δp(v)

=
yv + δv

yp(v) + δp(v)
· exp

(
1

wv
(µp(v) − µv − ηcv)

)
where µv is the Lagrange multiplier for constraint yv =

∑
u∈cld(v) yu and µv = 0 for v ∈ L(T). To904

complete our computation of y∗, it remains to compute the Lagrange multipliers µ.905

Since y∗ ∈ FP(T), it is not hard to verify that for any v /∈ L(T) it holds906 ∑
u∈cld(v)

y∗u + δu
y∗v + δv

= 1

and using the KKT optimality condition, this implies that for any v /∈ L(T)907

∑
u∈cld(v)

yu + δu
yv + δv

· exp
(

1

wu
(µv − µu − ηcu)

)
= 1

or equivalently, since wv = 2wu for all u ∈ cld(v),908

µv = −wv

2
· ln

 ∑
u∈cld(v)

yu + δu
yv + δv

· exp
(
−µu + ηcu

wu

)
Thus, starting from µv = 0 on the leaves, this expression provides as a bottom-up algorithm to909

compute all the Lagrange multipliers µ. Using these multipliers and the KKT optimality conditions,910

we can then easily compute the ratios911

y∗v + δv
y∗p(v) + δp(v)

=
yv + δv

yp(v) + δp(v)
· exp

(
1

wv
(µp(v) − µv − ηcv)

)
for all vertices v ̸= r. Finally, we can start from the root vertex r, for which we know that y∗r = k,912

and cascade these ratios downwards until we reach the leaves and we have compute all entries of y∗.913

Clearly, this is all done in linear time to the number of vertices.914

Intuitively, this update step can be interpreted as an application of the Multiplicative Weights Update915

algorithm on every parent vertex v that decides how its mass should be split to its children. We repeat916

this process in a bottom-up manner, and then we simply start with k facilities on the root and begin917

splitting them based on these ratios while moving downwards.918

29

E Analysis of Cut&Round (Proofs of Section 5)919

In this chapter of the appendix we present all the omitted proofs from Section 5 concerning our online920

rounding scheme Cut&Round. To avoid repetition, from now on we fix an arbitrary HST T and use921

FP(T) to denote the set of all fractional placements of k facilities on the leaves of T .922

Roadmap. In section E.1, we argue about the correctness of Cut&Round; namely, we show that923

no matter the input, Cut&Round always returns a set of k-leaves of T where the facilities are placed.924

Then, in section E.2 we establish the main property of Cut&Round and prove Lemma 5. Finally, in925

section E.3 we analyze the expected connection cost of Cut&Round’s output and prove Item 1 of926

Theorem 4 (Lemma 6) while in section E.4 we analyze the expected moving cost of Cut&Round’s927

output and prove Item 2 of Theorem 4 (Lemma 7).928

E.1 Correctness of Cut&Round929

We begin by proving the correctness of Cut&Round. Fix any y ∈ FP(T) and any set of thresholds930

α ∈ [0, 1]|V (T)|. Let F = Cut&Round(T , y, α). In this section, we will prove that |F | = k, i.e.931

we will argue that Cut&Round always returns a set of k leaves at which facilities must be placed,932

as it is expected to. In order to show this, we will need to analyze the Yv variables produced by933

Cut&Round.934

Claim 14. For any leaf v ∈ L(T), it holds that Yv ∈ {0, 1}.935

Proof. Observe that for any v ∈ V (T), sub-routine Alloc sets Yv to either ⌊yv⌋ or ⌊yv⌋ + 1. By936

definition of FP(T), we have yv ∈ [0, 1] for each leaf v ∈ L(T). We distinguish between two937

different cases. If yv ∈ [0, 1), then clearly Yv ∈ {0, 1}. If yv = 1, then δ(yv) = 0 and thus Alloc938

will always set Yv = ⌊yv⌋ = 1. Thus, the claim holds for all leaves v ∈ L(T).939

Claim 15. Let v /∈ L(T) be any non-leaf vertex. Then, Yv =
∑

u∈cld(v) Yu.940

Proof. Fix any non-leaf vertex v /∈ L(T). We will analyze the inner loop of Cut&Round that941

iterates over v’s children. Initially, Cut&Round sets Yrem = Yv and yrem = yv . Then, we proceed942

to itteratively call Alloc, once per child vertex of v. Each time Alloc assigns some value Yu to a child943

vertex u ∈ cld(v), we update Yrem to Yrem − Yu; thus, to prove our claim it suffices to argue that944

after we update the last child vertex, we have Yrem = 0.945

Since by definition of sub-routine Alloc we know that Yv ∈ {⌊yv⌋, ⌊yv⌋+ 1}, we know that initially946

(before any child vertex is assigned a value Yu) it holds that Yrem ∈ {⌊yrem⌋, ⌊yrem⌋+ 1}. In fact,947

a simple case analysis over the decision tree of sub-routine Alloc suffices to see that this invariant948

holds not only at the beginning, but even after we begin assigning values to the child vertices and949

update Yrem and yrem.950

Since y ∈ FP(T), we know that yv =
∑

u∈cld(v) yu and thus yrem = yu at the time we iterate951

over the last child vertex u ∈ cld(v). Furthermore, from the above discussion we know that952

Yrem ∈ {⌊yu⌋, ⌊yu⌋ + 1}. Since δ(yu) = δ(yrem), it is easy to verify that in any case Alloc sets953

Yu = Yrem and thus after the last update we have Yrem = 0, as desired.954

Proof of Correctness. Recall that by definition, the output of Cut&Round is F = {v ∈ L(T) :955

Yv = 1}. Since from Claim 14 we know that Yv ∈ {0, 1} for all v ∈ L(T), this implies that956

|F | =
∑

v∈L(T) Yv. We apply Claim 15 to the root vertex r, then again to each u ∈ cld(r) and so957

on until we reach the leaves. This gives us that Yr =
∑

v∈L(T) Yv and thus |F | = Yr. Since by958

definition Cut&Round sets Yr = k, we have proven that |F | = k as desired.959

30

E.2 Proof of Lemma 5 (Computing the Allocation Probabilities)960

In this section, we formally prove the main property of algorithm Cut&Round, as stated in Lemma 5.961

Fix any fractional facility placement y ∈ FP(T) and let αv ∼ Unif(0, 1) be independent uniformly962

random thresholds for all v ∈ V (T). Let F = Cut&Round(T , y, α) be the output of algorithm963

Cut&Round on this set of inputs. Recall that algorithm Cut&Round sets the variables Yv during its964

execution, for all v ∈ V (T). As we have already discussed, Yv is the total number of facilities in F965

on the leaves of the sub-tree rooted at v, i.e. Yv = |T (v) ∩ F |. We will prove that for any v ∈ V (T),966

we have967

Yv =

{
⌊yv⌋ with probability 1− δ(yv)
⌊yv⌋+ 1 with probability δ(yv)

We begin by writing down the following property for sub-routine Alloc:968

Claim 16. Fix any fractional facility placement y ∈ FP(T) and let αv ∼ Unif(0, 1) for all969

v ∈ V (T). For any vertex u ∈ V (T) of T , let Yu = Alloc(yu, yrem, Yrem, αu) be the number of970

facilities assigned to the sub-tree of u by Line 8 of Algorithm Cut&Round (Algorithm 4). Then,971

Pα [Yu = ⌊yu⌋] =


1 if Yrem = ⌊yrem⌋and δ(yu) ≤ δ(yrem)
1−δ(yu)

1−δ(yrem) if Yrem = ⌊yrem⌋and δ(yu) > δ(yrem)

0 if Yrem ̸= ⌊yrem⌋and δ(yu) > δ(yrem)
δ(yrem)−δ(yu)

δ(yrem) if Yrem ̸= ⌊yrem⌋and δ(yu) ≤ δ(yrem)

Proof. This claim is a direct consequence of sub-routine Alloc’s description (Algorithm 5) and the972

fact that αv ∼ Unif(0, 1) for all v ∈ V (T).973

Using this claim, we are now ready to prove Lemma 5.974

Proof of Lemma 5. We prove the lemma via a top-down induction on the vertices of T (decreasing975

level order). For the root vertex, we know that since y ∈ FP(T) we have yr = k and also by976

definition of Cut&Round we have Yr = k. Thus, we get that Yr = yr = ⌊yr⌋ with probability977

1−δ(yr) = 1 and the claim holds. Now, fix any non-leaf vertex v /∈ L(T) and assume that Yv = ⌊yv⌋978

with probability 1− δ(yv) and Yv = ⌊yv⌋+ 1 with probability δ(yv). To complete our induction, we979

will now proceed to prove the claim for all the children vertices of v.980

We begin by proving the claim for the first child of vertex v, and then we will show how the same981

arguments extend for all its children. Let u ∈ cld(v) be the first child vertex of v that Cut&Round982

iterates over. Then, by definition of Cut&Round we have that Yrem = Yv and yrem = yv. Using983

the inductive hypothesis on v, this implies that Yrem = ⌊yrem⌋ with probability 1 − δ(yrem) and984

Yrem = ⌊yrem⌋+ 1 with probability δ(yrem). Conditioning on the value of Yrem, we get985

Pα [Yu = ⌊yu⌋] = Pα [Yu = ⌊yu⌋ | Yrem = ⌊yrem⌋] · (1− δ(yrem))

+Pα [Yu = ⌊yu⌋ | Yrem = ⌊yrem⌋+ 1] · δ(yrem)

We distinguish between two different cases based on whether δ(yu) ≤ δ(yrem) or δ(yu) > δ(yrem).
In any case, we can use Claim 16 to substitute the conditional probabilities on the above expression
and easily get that

Pα [Yu = ⌊yu⌋] = 1− δ(yu)

Thus, we have already proven the claim for the first child of v. However, to complete our induction,986

we need to prove the claim for all children of v and not just the first one. The only property that we987

used and holds specifically for the first child was that Yrem = ⌊yrem⌋ with probability 1− δ(yrem)988

and Yrem = ⌊yrem⌋ + 1 with probability δ(yrem). Let Y ′
rem and y′rem be the updated remaining989

facilities after the value Yu of the first child has been assigned. If we can prove that Y ′
rem = ⌊y′rem⌋990

with probability 1− δ(y′rem) and Y ′
rem = ⌊y′rem⌋+ 1 with probability δ(y′rem), then we can keep991

applying the same argument and inductively prove the claim for all the children of v.992

By definition, we have that Y ′
rem = Yrem − Yu and y′rem = yrem − yu. Once again, we distinguish993

between two different cases.994

31

• Let δ(yu) ≤ δ(yrem). In that case, we get that ⌊y′rem⌋ = ⌊yrem⌋ − ⌊yu⌋ and also that995

δ(y′rem) = δ(yrem) − δ(yu). Since we know that Yrem ∈ {⌊yrem⌋, ⌊yrem⌋ + 1} and996

Yu ∈ {⌊yu⌋, ⌊yu⌋+ 1}, this implies that997

Pα[Y
′
rem = ⌊y′rem⌋] = Pα[Yrem = ⌊yrem⌋ ∩ Yu = ⌊yu⌋]

+Pα[Yrem = ⌊yrem⌋+ 1 ∩ Yu = ⌊yu⌋+ 1]

Using conditional probabilities and the inductive hypothesis on the distribution of Yrem, we998

obtain999

Pα [Y ′
rem = ⌊y′rem⌋] = Pα [Yu = ⌊yu⌋ | Yrem = ⌊yrem⌋] · (1− δ(yrem))

+Pα [Yu = ⌊yu + 1⌋ | Yrem = ⌊yrem⌋+ 1] · δ(yrem)

Using Claim 16 to substitute the conditional probabilities, we finally get
Pα [Y ′

rem = ⌊y′rem⌋] = 1− δ(yrem) + δ(yu) = 1− δ(y′rem)

as desired.1000

• Let δ(yu) > δ(yrem). In that case, we get that ⌊y′rem⌋ = ⌊yrem⌋ − ⌊yu⌋ − 1 and also that
δ(y′rem) = 1 + δ(yrem)− δ(yu). Since we know that Yrem ∈ {⌊yrem⌋, ⌊yrem⌋+ 1} and
Yu ∈ {⌊yu⌋, ⌊yu⌋+ 1}, this implies that

Pα [Y ′
rem = ⌊y′rem⌋] = Pα [Yrem = ⌊yrem⌋ ∩ Yu = ⌊yu⌋+ 1]

Using conditional probabilities and the inductive hypothesis on the distribution of Yrem, we
obtain

Pα [Y ′
rem = ⌊y′rem⌋] = Pα [Yu = ⌊yu⌋+ 1 | Yrem = ⌊yrem⌋] · (1− δ(yrem))

Using Claim 16 to substitute the conditional probabilities, we finally get
Pα [Y ′

rem = ⌊y′rem⌋] = δ(yu)− δ(yrem) = 1− δ(y′rem)

as desired.1001

Thus, we have concluded the proof of Lemma 5.1002

E.3 Proof of Item 1 in Theorem 4 (Bounding the Expected Connection Cost)1003

Lemma 6. Let F = Cut&Round(y, α) where for all v ∈ V (T), αv ∼ Unif(0, 1) independently.1004

Then,1005

Eα[CR(F)] = fR(y) for any R ⊆ L(T)

Proof. Fix any y ∈ FP(T) and let α ∈ [0, 1]|V (T)| be a set of thresholds such that for each1006

v ∈ V (T), αv is drawn independently at random from the uniform distribution, i.e. αv ∼ Unif(0, 1).1007

Let F = Cut&Round(T , y, α). We will prove that for any set of clients R ⊆ L(T), it holds that1008

Eα[CR(F)] = fR(y).1009

Recall that the Yv variables set by Cut&Round denote the total number of facilities in F that are1010

placed on the sub-tree rooted at vertex v, i.e. Yv = |F ∩ T (v)|. As argued in section E.1, we know1011

that Y ∈ FP(T)∩N, i.e. Y is a valid integral facility placement. Thus, from Claim 1 of section C.1,1012

we know that CR(F) = fR(Y). This implies that by definition of the fractional connection cost1013

under client request R, we have that1014

CR(F) =
∑
j∈R

∑
v∈P (j,r)

2lev(v)+1 ·max (0, 1− Yv)

Thus, we get1015

Eα[CR(F)] =
∑
j∈R

∑
v∈P (j,r)

2lev(v)+1 ·Eα[max (0, 1− Yv)]

=
∑
j∈R

∑
v∈P (j,r)

2lev(v)+1 ·Pα[Yv = 0]

32

where the first equality holds by linearity of expectation, and the second equality holds by the fact1016

that Yv ∈ N for all v ∈ V (T). Since Yv ∈ {⌊yv⌋, ⌊yv⌋ + 1}, we know that for any v ∈ V (T), Yv1017

can be 0 only if yv ∈ [0, 1). Furthermore, from Lemma 5, we know that in the case of uniformly1018

random thresholds, this happens with probability precisely 1− yv. Combining these facts, we get1019

Pα[Yv = 0] = max(0, 1− yv) and thus1020

Eα[CR(F)] =
∑
j∈R

∑
v∈P (j,r)

2lev(v)+1 ·max(0, 1− yv)

= fR(y)

concluding the proof of Lemma 6.1021

E.4 Proof of Item 2 in Theorem 4 (Bounding the Expected Moving Cost)1022

Lemma 7. Let F = Round&Cut(y, α) and also let F ′ = Round&Cut(T , y′, α) where αv ∼1023

Unif(0, 1) for all v ∈ V (T). Then,1024

γ · Eα [MT (F, F
′)] ≤ 4 · ||y − y′||T

Proof. Fix any pair of fractional facility placements y, y′ ∈ FP(T) and let corresponding outputs of1025

Cut&Round be denoted as F = Cut&Round(T , y, α) and F ′ = Cut&Round(T , y′, α). Observe1026

that the same set of (uniformly random) thresholds αv is used in both cases, as this will play a crucial1027

part in our analysis. To prove Lemma 7, we need to prove that1028

γ · Eα [MT (F, F
′)] ≤ 4 · ||y − y′||T

where the expectation is taken over the value of the uniformly random thresholds αv .1029

The proof of Lemma 7 is technically involved, and thus we will break down our approach into smaller1030

sections to ease the presentation. We begin by proving the Lemma in the special case where the1031

transition from y to y′ has a very simple structure, which we now proceed to define:1032

Definition 10. We say that two fractional facility placements y, y′ ∈ FP(T) are ϵ-neighboring if1033

there are two leaves s, t ∈ L(T) with least common ancestor p ∈ V (T) such that the following hold:1034

1. y′v = yv − ϵ for all v ∈ P (s, p) \ {p}.1035

2. y′v = yv + ϵ for all v ∈ P (t, p) \ {p}.1036

3. y′v = yv for all other v ∈ V (T).1037

Furthermore, we say that y, y′ are strictly ϵ-neighboring if ϵ is sufficiently small to satisfy1038

1. ϵ ≤ δ(yv) for all v ∈ P (s, p) \ {p} with δ(yv) > 0.1039

2. ϵ ≤ 1− δ(yv) for all v ∈ P (t, p) \ {p} with δ(yv) > 0.1040

3. ϵ < 1.1041

Basically, if y and y′ are ϵ-neighboring then y′ is obtained by pushing ϵ-mass on y from s to t along1042

the unique path that connects these two leaves. Furthermore, if ϵ is sufficiently small so that for any1043

v ∈ V (T) either ⌊yv⌋ = ⌊y′v⌋ or |yv−y′v| ≤ 1 and at least one of the two is integral, then we say that1044

the two fractional facility placements are strictly ϵ-neighboring. As we will shortly argue, Lemma 71045

holds in the special case where y, y′ are strictly ϵ-neighboring.1046

Claim 17. If y, y′ ∈ FP(T) are strictly ϵ-neighboring for some ϵ ≥ 0, then1047

γ · Eα [MT (F, F
′)] ≤ 4 · ||y − y′||T .

Before proving Claim 17, let us first show why it suffices to argue about the general case and prove1048

Lemma 7. Let y, y′ ∈ FP(T) be any two fractional placements. Recall that ||y − y′||T captures1049

precisely the minimum transportation cost from y to y′ on T . If we break down this transportation1050

plan into small movements of masses between leaves, then we can view it as a sequence of transitions1051

between strictly ϵ-neighboring placements. This is formalized in the following claim:1052

33

Claim 18. For any y, y′ ∈ FP(T), there exists a finite sequence y0, y1, . . . , ym ∈ FP(T) of1053

fractional facility placements with y = y0 and y′ = ym such that1054

1. yj , yj+1 are strictly ϵ-neighboring for some ϵ ≥ 0 for j = 0, 1, . . . ,m− 1.1055

2. ||y − y′||T =
∑m

j=1 ||yj − yj−1||T .1056

We will now prove Lemma 7. Let Fj = Cut&Round(T , yj , α) be the corresponding output of1057

Cut&Round on yj using the same (uniformly random) thresholds αv . Then,1058

γ · Eα [MT (F, F
′)] ≤ γ ·Eα

m−1∑
j=0

MT (Fj , Fj+1)


= γ ·

m−1∑
j=0

Eα [MT (Fj , Fj+1)]

≤ 4 ·
m−1∑
j=0

||yj − yj+1||T

= 4 · ||y − y′||T
In the above calculation, the first inequality holds from the fact that the minimum transportation cost1059

satisfies the triangular inequality. The first equality holds from linearity of expectation. The second1060

inequality holds from Claim 17 and the second equality holds from Claim 18.1061

Thus, we have shown that proving Lemma 7 for the special case of strictly ϵ-neighboring fractional1062

facility placements y, y′ suffices to prove Lemma 7 for the general case of any y, y′ ∈ FP(T) and1063

conclude this section. The rest of this section is dedicated to proving Claim 17, which is the main1064

technical challenge towards proving Lemma 7.1065

Proof of Claim 17. Fix any pair of strictly ϵ-neighboring fractional facility placements y, y′ ∈
FP(T) and let the corresponding outputs of Cut&Round be F = Cut&Round(T , y, α) and
F ′ = Cut&Round(T , y′, α). In section E.1 we have already shown that F, F ′ ⊆ L(T) are valid
facility placements since |F | = |F ′| = k. Let Y, Y ′ ∈ FP(T) be used to denote the corresponding
integral placements, i.e.

Yv := |L(T) ∩ F | = number of facilities in F placed on the leaves of the sub-tree rooted at v

and

Y ′
v := |L(T) ∩ F ′| = number of facilities in F ′ placed on the leaves of the sub-tree rooted at v

Recall that Y and Y ′ are precisely the values of the Y -variables that algorithm Cut&Round sets. As
shown in Claim 2 of Section E.4, we know that γ ·MT (F, F

′) = ||Y − Y ′||T . Thus, in order to
prove Claim 17, we need to show that

Eα [||Y − Y ′||T] ≤ 4 · ||y − y′||T

Since y, y′ are strictly ϵ-neighboring fractional facility placements, we know that there exist two1066

leaves s, t ∈ L(T) with lowest common ancestor p ∈ V (T) such that |yv − y′v| is ϵ among vertices1067

on the (unique) path from s to t (excluding vertex p) and is 0 otherwise. Let L = lev(p). Then, by1068

definition of || · ||T we have1069

||y − y′||T =
∑

v∈V (T)

2lev(v) · |yv − y′v| = 2ϵ ·
L−1∑
l=0

2l = 2ϵ · (2L − 1) (5)

Furthermore, recall that from Lemma 5, Cut&Round rounds yv to either Yv = ⌊yv⌋ + 1 with1070

probability δ(yv) or to ⌊yv⌋ with probability 1 − δ(yv). Since ϵ is sufficiently small so that either1071

⌊yv⌋ = ⌊y′v⌋ or |yv − y′v| ≤ 1 and at lowest one of the two is integral (and it is thus always rounded1072

to itself), we get that |Yv − Y ′
v | ≤ 1 for all v ∈ V (T). This implies that1073

34

Eα [||Y − Y ′||T] = Eα

 ∑
v∈V (T)

2lev(v) · |Yv − Y ′
v |


=

∑
v∈V (T)

2lev(v) ·Eα [|Yv − Y ′
v |]

=
∑

v∈V (T)

2lev(v) ·Pα [|Yv − Y ′
v | = 1]

Let l ∈ [0, h(T)] be any level on the HST T and let Cl be used to denote the expected number of
vertices at level l that are rounded to different values, i.e.

Cl := Eα [|{v ∈ V (T) : lev(v) = l and Yv ̸= Y ′
v}|]

Then, the above imply that1074

Eα [||Y − Y ′||T] =
h(T)∑
l=0

2l · Cl (6)

It remains to compute Cl for all l ∈ [0, h(T)]. This is done in Claim 19, where we prove that Cl = 01075

for l ≥ L (the level of s and t’s lowest common ancestor) and Cl ≤ 4ϵ ·(L− l) otherwise. Combining1076

this claim with equations (5) and (6) immediately implies that1077

Eα [||Y − Y ′||T] ≤ 4 · ||y − y′||T
which completes the proof of Claim 17.1078

Claim 19. For any l ≥ L, Cl = 0. For any l < L, Cl ≤ 4ϵ · (L− l).1079

Proof. Recall that for fixed thresholds αv , the output of Cut&Round is deterministic. Since L is the1080

level of vertex p (the lowest common ancestor of leaves s, t) and by definition of strictly ϵ-neighboring1081

placements y, y′ we know yv = y′v for any vertex v such that lev(v) ≥ L, we immediately get that1082

Cl = 0 for any l ≥ L.1083

We will now proceed to analyze Cl for any l < L. We partition the set of vertices v ∈ V (T) with1084

lev(v) = l into three sets:1085

• A vertex v is called active if it lies on the (unique) path between leaves s and t.1086

• A vertex v is called inactive if it is not a descendant of p (the lowest common ancestor of1087

leaves s and t).1088

• A vertex v is called affected if it is not active and is a descendant of p.1089

Obviously, each vertex v with lev(v) = l must lie in exactly one of these sets.1090

Inactive Vertices. We will prove that for every inactive vertex v, Pα[Yv ̸= Y ′
v] = 0. Since the1091

same set of thresholds α is used to round both y and y′, the output of Cut&Round is deterministic.1092

Furthermore, if a vertex v is inactive, then we know that yv = y′v and also yu = y′u for any ancestor1093

vertex of u of v (by Definition 10 of neighboring facility placements). Thus, this immediately implies1094

that Yv = Y ′
v with probability 1 and thus we do not need to account for inactive vertices when1095

computing Cl.1096

Active Vertices. We will prove that for every active vertex v, Pα[Yv ̸= Y ′
v] = ϵ. Recall that any1097

active vertex is either an ancestor of leaf s or leaf t. We will only prove the claim in the case when v1098

is an ancestor of t; the other case is completely analogous. A formal proof by induction is given in1099

Claim 20, presented at the end of this section. As a direct corollary, since there are only two active1100

vertices per level, the expected number of active vertices in level l that are rounded two different1101

values is precisely 2ϵ.1102

35

Affected Vertices. Finally, we will now analyze the affected vertices. By definition, we know that1103

each affected vertex v will have a unique active ancestor (also counting p). We partition the set of1104

affected vertices on level l into 2(L− l− 1)+ 1 groups, based on their corresponding active ancestor.1105

The main argument we need to establish is that by definition of Round&Cut, at most one vertex in1106

each of these groups can be rounded to a different value.1107

To see this, observe that Round&Cut is monotone, in the sense that if y′v ≥ yv and also y′u ≥ yu1108

for all ancestors u of v, then (assuming the same set of thresholds is used), we know that Y ′
v ≥ Yv.1109

Using this fact on the vertices of a group, since all of them can either only increase or decrease, in1110

order to maintain balance at most one of them can change, otherwise we would get a change of 2 or1111

more on the parent node which cannot happen.1112

Furthermore, for a specific group, if both the common active ancestor and its child u with yu ̸= y′u1113

end up rounded to the same value, we get (from the fact that the same thresholds are used) that all the1114

vertices in the group will be rounded to the same value. Thus, in order for a (unique) vertex in any1115

group to change, at least one of two active vertices must change, which happens with probability at1116

most 2ϵ. Since there are 2(L− l − 1) + 1 groups, we get as a corollary that the expected number of1117

affected vertices at level l that get rounded to a different value is at most 2ϵ · (2L− 2l − 1).1118

Combining everything, we get that Cl ≤ 0 + 2ϵ+ 2ϵ · (2L− 2l − 1) = 4ϵ · (L− l).1119

Claim 20. Let v be any active vertex that is an ancestor of t. Then, Pα[Yv ̸= Y ′
v] = ϵ.1120

Proof. In fact, we will in fact prove the following stronger claim,1121

• Pα[Yv = ⌊yv⌋ and Y ′
v = ⌊yv⌋] = 1− δ(yv)− ϵ.1122

• Pα[Yv = ⌊yv⌋ and Y ′
v = ⌊yv⌋+ 1] = ϵ.1123

• Pα[Yv = ⌊yv⌋+ 1 and Y ′
v = ⌊yv⌋] = 01124

• Pα[Yv = ⌊yv⌋+ 1 and Y ′
v = ⌊yv⌋+ 1] = δ(yv)1125

which clearly implies Claim 20.1126

Once again, we will prove the claim via induction, starting from the highest active ancestor of t1127

at level l = L − 1 and moving towards the leaf t at level l = 0. We begin by mentioning that for1128

vertex p (s and t’s lowest common ancestor at level L) we know for sure that Yp = Y ′
p since yp = y′p1129

and yu = y′u for any u such that lev(u) ≥ L; thus, since the same set of thresholds α is used, the1130

execution of Cut&Round will be identical up to this point.1131

We assume that the first child of any vertex v visited by Alloc is always the active child; this can be1132

done without loss of generality as the order that Alloc visits the vertices hasn’t played any part on1133

our analysis yet.1134

Base of the induction. For the base of the induction, let v be the (unique) child of p that is an1135

ancestor of t; i.e. let v be the highest active ancestor of t. We have already mentioned that Yp = Y ′
p1136

with probability 1. Thus, it can either be the case that Yp = Y ′
p = ⌊yp⌋ of Yp = Y ′

p = ⌊yp⌋+1. From1137

Lemma 5 we know that the first happens with probability 1− δ(yp) and the latter with probability1138

δ(yp). We distinguish between the following cases:1139

• Let δ(yv) < δ(yp). Then, if Yp = Y ′
p = ⌊yp⌋ we know from the description of Alloc that1140

Yv = Y ′
v = ⌊yv⌋with probability 1. On the other hand, if Yp = Y ′

p = ⌊yp⌋+1, we know that1141

Yv = ⌊yv⌋+1 if αv ≤ δ(yv)/δ(yp) and likewise Y ′
v = ⌊yv⌋+1 if αv ≤ (δ(yv)+ϵ)/(δ(yp)).1142

Thus, by conditioning on the values of Yp and Y ′
p , we get1143

1. Pα[Yv = ⌊yv⌋ and Y ′
v = ⌊yv⌋] = (1−δ(yp))·1+δ(yp)·(1− δ(yv)+ϵ

δ(yp)
) = 1−δ(yv)−ϵ.1144

2. Pα[Yv = ⌊yv⌋ and Y ′
v = ⌊yv⌋+ 1] = (1− δ(yp)) · 0 + δ(yp) · (δ(yv)+ϵ

δ(yp)
− δ(yv)

δ(yp)
) = ϵ.1145

3. Pα[Yv = ⌊yv⌋+ 1 and Y ′
v = ⌊yv⌋] = (1− δ(yp)) · 0 + δ(yp) · 0 = 0 .1146

36

4. Pα[Yv = ⌊yv⌋+ 1 and Y ′
v = ⌊yv⌋+ 1] = (1− δ(yp)) · 0 + δ(yp) · δ(yv)

δ(yp)
= δ(yv).1147

• Let δ(yv) ≥ δ(yp). Then, if Yp = Y ′
p = ⌊yp⌋+ 1 we know from the description of Alloc1148

that Yv = Y ′
v = ⌊yv⌋ + 1 with probability 1. On the other hand, if Yp = Y ′

p = ⌊yp⌋, we1149

know that Yv = ⌊yv⌋+1 if αv ≤ (δ(yv)− δ(yp))/(1− δ(yp)) and likewise Y ′
v = ⌊yv⌋+11150

if αv ≤ (δ(yv) + ϵ− δ(yp))/(1− δ(yp)). Thus, by conditioning on the values of Yp and1151

Y ′
p , we get1152

1. Pα[Yv = ⌊yv⌋ and Y ′
v = ⌊yv⌋] = (1 − δ(yp)) · (1 − δ(yv)+ϵ−δ(yp)

1−δ(yp)
) + δ(yp) · 0 =1153

1− δ(yv)− ϵ.1154

2. Pα[Yv = ⌊yv⌋ and Y ′
v = ⌊yv⌋] = (1−δ(yp)) ·(δ(yv)+ϵ−δ(yp)

1−δ(yp)
− δ(yv)−δ(yp)

1−δ(yp)
)+δ(yp) ·1155

0 = ϵ.1156

3. Pα[Yv = ⌊yv⌋+ 1 and Y ′
v = ⌊yv⌋] = (1− δ(yp)) · 0 + δ(yp) · 0 = 1− δ(yv) = 0.1157

4. Pα[Yv = ⌊yv⌋+ 1 and Y ′
v = ⌊yv⌋] = (1− δ(yp)) · δ(yv)−δ(yp)

1−δ(yp)
+ δ(yp) · 1δ(yv).1158

So in both cases, the base of the induction holds.1159

Inductive Step. Using the exact same approach, we can prove the claim for any active ancestor1160

u of t, assuming that the claim holds for u’s father v = p(u). The only difference, is that now we1161

can’t claim that Yv = Y ′
v with probability 1. Instead, there are three different cases that we need to1162

consider; namely1163

1. Yv = Y ′
v = ⌊yv⌋ with probability 1− ϵ− δ(yv).1164

2. Yv = Y ′
v = ⌊yv⌋+ 1 with probability δ(yv).1165

3. Yv = ⌊yv⌋ and Y ′
v = ⌊yv⌋+ 1 with probability ϵ.1166

where the probabilities hold from the inductive hypothesis on the parent vertex v. Next, we will need1167

to once again consider the case of whether δ(yu) < δ(yv) or not (notice that the same relation will1168

hold for y′u and y′v) and use the description of Alloc to get the assignment probabilities. Since this is1169

a simple matter of arithmetic, the details are omitted.1170

37

F Experimental Evaluation1171

In this section we experimentally evaluate the performance of Algorithm 2 with respect to the best1172

fixed facility placement and compare it with the respective performance of the algorithm proposed by1173

[30]. In all the following experiments the step-size of Algorithm 3 (subroutine of Algorithm 2) is set1174

to η := max(γ, 1)
√
nT . All the code was written in Python and is included in the supplementary1175

material.1176

Periodically Moving Clients. We first present a simple setting to indicate the inefficiency of the1177

online learning algorithm of [30] in handling moving costs. In this experiment the underlying graph1178

is the 0.01-discretization of [0, 1]× [0, 1]. At each round t ≥ 1, we periodically select one of four1179

balls of radius R = 0.2 depicted in Figure 1 and then a client arrives uniformly at random on the1180

selected ball. In Figure 1 and Table 1 we present the overall cost of Algorithm 2 and the algorithm of1181

[30] for different values of facility-weight γ, k = 3 facilities and T = 4000 time-steps. In all cases,1182

the facilities of Algorithm 2 eventually converge to three of the four ball-centers, which is the optimal1183

fixed facility placement. As the experiment reveals, the algorithm of [30] admits significantly larger1184

cost as the facility-weight increases while Algorithm 2 is robust to the increase.

Figure 1: We plot the evolution of the approximation ratio for Algorithm 2 (red curve) and the
algorithm from [30] (blue curve) compared to the hindsight optimal facility placement for facility
weights γ = 0, γ = 1 and γ = 10. Both scales are logarithmic. The bottom-right plot depicts the
facilities eventually placed by our Algorithm 2 which coincides with the optimal configuration

1185

Table 1: Ratio of the overall cost of both algorithms with respect to to the hindsight optimal (20 runs).

MovingClients γ = 0 γ = 1 γ = 10

[30] 1.297± 0.045 1.943± 0.466 3.388± 1.335

Algorithm 2 1.083± 0.001 1.091± 0.001 1.343± 0.014

38

Real-World Datasets. We evaluate the performance of Algorithm 2 on the MNIST and CIFAR101186

datasets. We randomly sample N = 10000 images and construct a graph where each image1187

corresponds to a vertex with the edge weights given by the Euclidean distance of the respective1188

images. At each round t, an image is sampled uniformly at random and a client arrives in the1189

corresponding vertex. We then evaluate Algorithm 2 in the latter setting for T = 3000 rounds and1190

k = 10 facilities. In Table 2 we present the ratio of the overall cost of Algorithm 2 over the ratio cost1191

of the fractional hindsight optimal5. As our experiments indicate, the sub-optimality of Algorithm 21192

is way smaller than the theoretical O(log n) upper bound on the regret.1193

Table 2: The ratio of the cost of Algorithm 2 with respect to the cost of the fractional hindsight
optimal facility placement (20 runs).

Algorithm 2 γ = 0 γ = 1 γ = 10

MNIST 1.118± 0.01 1.403± 0.04 1.5631± 0.03

CIFAR10 1.113± 0.01 1.189± 0.04 1.59± 0.31

5The cost of the fractional hindsight optimal can be efficiently computed [30] and lower bounds the cost of
the optimal facility placement. As a result, the presented ratios in Table 2 are upper bounds on the actual ratio of
Algorithm 2 and the optimal facility-placement.

39

	Introduction
	Preliminaries and Our Results
	HSTs and Metric Embeddings

	Overview of our approach
	A Fractional Relaxation for HSTs
	From Fractional to Integral Placements in HSTs
	Overall Online Learning Algorithm

	O(1)-Regret for Fractional HST Clustering
	The CutAndRound Rounding
	Conclusion
	Further Related Work
	Proof of Theorem 2
	Proofs of Section 3
	Establishing the relation between Problems 1 and 2
	Proof of Theorem 5
	Proof of Theorem 1

	Analysis of FTRL (Proofs of Section 4)
	Strong Convexity (Proof of Lemma 1)
	Bounding the Moving Cost (Proof of Lemma 2)
	Bounding the Connection Cost (Proof of Lemma 3)
	Incorporating approximation errors (Proof of Lemma 4)
	Implementation of Projected Mirror Descent

	Analysis of CutAndRound (Proofs of Section 5)
	Correctness of CutAndRound
	Proof of Lemma 5 (Computing the Allocation Probabilities)
	Proof of Item 1 in Theorem 4 (Bounding the Expected Connection Cost)
	Proof of Item 2 in Theorem 4 (Bounding the Expected Moving Cost)

	Experimental Evaluation

