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Abstract

Embodied AI is a crucial frontier in robotics, capable of planning and executing
action sequences for robots to accomplish long-horizon tasks in physical envi-
ronments. In this work, we introduce EmbodiedGPT, an end-to-end multi-modal
foundation model for embodied AI, empowering embodied agents with multi-modal
understanding and execution capabilities. To achieve this, we have made the follow-
ing efforts: (i) We craft a large-scale embodied planning dataset, termed EgoCOT.
The dataset consists of carefully selected videos from the Ego4D dataset, along
with corresponding high-quality language instructions. Specifically, we generate a
sequence of sub-goals with the "Chain of Thoughts" mode for effective embodied
planning. (ii) We introduce an efficient training approach to EmbodiedGPT for
high-quality plan generation, by adapting a 7B large language model (LLM) to the
EgoCOT dataset via prefix tuning. (iii) We introduce a paradigm for extracting
task-related features from LLM-generated planning queries to form a closed loop
between high-level planning and low-level control. Extensive experiments show
the effectiveness of EmbodiedGPT on embodied tasks, including embodied plan-
ning, embodied control, visual captioning, and visual question answering. Notably,
EmbodiedGPT significantly enhances the success rate of the embodied control
task by extracting more effective features. It has achieved a remarkable 1.6 times
increase in success rate on the Franka Kitchen benchmark and a 1.3 times increase
on the Meta-World benchmark, compared to the BLIP-2 baseline fine-tuned with
the Ego4D dataset. More demos, code, and dataset information can be found at our
homepage.

1 Introduction

Embodied AI tasks, e.g., embodied planning, embodied VQA, and embodied control, aim to imbue
robots with the ability to perceive, reason, and act within their environment, enabling them to
perform long-horizon plans and execute actions autonomously based on real-time observations.
Recently, large language models (LLMs) such as GPT4 [1] and PaLM-E [2], have shown promising
language understanding, reasoning, and "chain-of-thought" capabilities. Such advances may open new
possibilities for developing robots capable of processing natural language instructions, performing
multi-modal "chain-of-thought", and planning actions in physical environments.

Large-scale datasets play important roles in training large language models. For example, OpenCLIP
trains its ViT-G/14 model on the LAION-2B dataset [3], which contains 2B image-language pairs.
Unlike general-purpose visual language tasks that can get a huge amount of weakly labeled image-
caption pairs from the Internet, embodied AI tasks require egocentric data in robotics domains. Also,
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Assistant: In this video, a robot is engaged in a manipulation task in a kitchen environment. The scene features a white
robotic arm, a black platform with four gray-white circles representing the heating elements of an induction cooktop. A
white kettle with a handle can be seen in the bottom left corner of the platform, and a black microwave with a handle for
opening sits on the left side of the platform. Two blue-gray cabinets are positioned above the platform, with the left
cabinet having two doors with handles and the right cabinet featuring a sliding door with a handle. The video captures the
robotic arm in the process of opening the right cabinet's sliding door by first grabbing the handle and pulling it outwards.

Human: Can you write a detailed plan for the 
task the robot is performing?

Assistant: The task is opening the sliding door.
Step 1: Move to the left side of the platform.
Step 2: Grip the handle on the right side of the door.
Step 3: Pull it to the right.
Step 4: Hold the handle still while the door slides open.
Step 5: Release the handle when thedoor is open.

Human: Describe the video in detail.

Figure 1: EmbodiedGPT’s capabilities for video captioning, multi-turn question answering, embodied
planning, and low-level control. The plans given by EmbodiedGPT are highly executable and
incorporate task-specific features, leading to a significant improvement in the success rate of embodied
control tasks, outperforming both R3M [12] (a video-language contrastive learned model) and BLIP-
2 [13] (a multi-modal foundation model) on Franka Kitchen [14] and Meta-World [15] environments.

structured language instructions are needed for precise planning, which usually requires huge manual
efforts and costs. This poses a challenging problem in collecting high-quality embodied multi-modal
data. Some researchers [4, 5, 6, 7] explore creating large-scale embodied datasets with simulators,
but a significant gap remains between simulation and the real world. Recent works [8, 9, 10] also
explore adapting the pre-trained LLMs to a new domain by efficient tuning strategies like LoRA [11].
However, several open questions still remain: how to apply LLMs to the field of robotics which may
face large domain gaps; how to leverage the "chain-of-thought" capability for structured planning;
and how to use the output language plan for downstream manipulation tasks in an end-to-end manner.

To solve the above challenges, in this work, we first build a large-scale embodied planning dataset,
termed EgoCOT, which features chain-of-thought planning instructions. It contains carefully selected
egocentric videos from the Ego4D dataset [16] and corresponding high-quality step-by-step language
instructions, which are machine-generated, then semantics-based filtered, and finally human-verified.
Additionally, we also create the EgoVQA dataset as an extension of the Ego4D dataset, focusing on
egocentric human-object interaction video question answering tasks, which aims to offer a wider
range of egocentric multi-modal data.

Based on our EgoCOT and EgoVQA, we present an end-to-end multi-modal embodied foundation
model called EmbodiedGPT, which can interact with the physical world in a more natural and
intuitive manner, and perform many embodied tasks, as shown in Figure 1, such as embodied planning,
embodied VQA, and embodied control. EmbodiedGPT comprises four integrated modules that work
together, including i) a frozen vision model for encoding visual features of current observations,
ii) a frozen language model used to execute natural language for question answering, captioning,
and embodied planning tasks, iii) an embodied-former with a language mapping layer for aligning
the visual and embodied instructions and extracting task-relevant instance-level features with the
generated planning for low-level control, and iv) a policy network, which is responsible for producing
low-level actions based on the task-relevant features, enabling the agent to effectively interact
with the environment. To further enhance EmbodiedGPT ’s performance in generating reliable
planning containing sub-goal sequences, we implement prefix tuning on the frozen language model
to encourage the generation of more executable planning.

Our method possesses the following core advantages: i) the generated planning exhibits strong
executability and granularity at the object part level, such as the gripper of a robotic arm or the
handle of a door, manifested in sub-goal sequences. ii) the proposed EgoCOT dataset is built based
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on an open-source large-scale dataset, which offers greater scalability compared to the PaLM-E [2]
model trained on proprietary robot data. And both the EgoCOT dataset, and the EmbodiedGPT
model will be open-sourced. iii) EmbodiedGPT forms a closed-loop from high-level planning to
low-level control, which enables seamless integration of high-level planning and low-level control,
providing efficient task performance and adaptability to a wide range of tasks. To achieve this, we
utilize the embodied-former to query task-relevant instance-level features through cross-attention
between visual observations and generated embodied planning. This enables the policy network to
complete low-level control tasks with fewer than 25 demonstrations.

The contributions can be summarized as follows: (i) We build an end-to-end multi-modal foundation
model EmbodiedGPT for embodied AI, which is featured with "chain-of-thought" capability, em-
powering embodied agents to interact with the physical world in a more natural and intuitive manner.
(ii) We develop two datasets, EgoCOT and EgoVQA, consisting of 200M annotated videos from
the Ego4D dataset with corresponding detailed planning instructions and VQA data. The datasets
are first machine-generated, then semantics-based filtered, and finally human-verified for quality
control. (iii) We introduce EmbodiedGPT a cost-effective training approach and a paradigm for
extracting task-relevant features from LLM-generated planning queries, thereby forming a closed
loop between high-level planning and low-level control. We demonstrate our approach’s effectiveness
by achieving state-of-the-art or comparable performance on multiple embodied tasks, including
embodied control, embodied planning, video captioning, and video QA. Notably, in comparison to
BLIP-2 [17] fine-tuned on the Ego4D dataset and R3M [12] specifically designed for manipulation
tasks, EmbodiedGPT outperforms both models on the Franka Kitchen [14] benchmark with a margin
of 22.1% and 5.5%, respectively. Similarly, on the Meta-World [14] benchmark, EmbodiedGPT
surpasses both models with margins of 22.5% and 4.2%, respectively.

2 Related Work

2.1 Vision Language Pre-training with large scale foundation model

Vision-Language Pre-training focuses on strengthening the link between visual observation and
natural language. The goal is to develop models that can better understand and process visual
content, such as recognizing objects and actions, and generating descriptive text. As models become
larger, the computational expense for end-to-end pre-training rises, leading to the need for modular
vision-language pre-training methods. These methods smartly use pre-trained models, keeping them
‘frozen’ during vision language pre-training to save on computational costs. For example, models like
Uniter [18], Oscar [19], VinVL [20], and LiT [21] freeze the image encoder, while Frozen [22] and
VGPT [23] freeze the language model. Furthermore, Flamingo [24] and BLIP-2 [17] use both frozen
image encoders and language models, providing a balance between performance and computational
efficiency. Due to the lack of open-source data for multi-modal embodied planning, previous works
struggled to perform detailed task decomposition and lacked the ability to generate precise and
executable plans. To tackle this issue, we create the EgoCOT dataset and develop an embodied
chain-of-thought vision language pre-training framework to enhance the capacity of multi-modal
models for embodied reasoning and planning.

2.2 Egocentric Video Datasets.

Egocentric videos, which are captured using wearable cameras, provide a natural perspective of
daily activities and pose several challenging research questions [25, 26, 27]. Several egocentric
video datasets have been created over the years, including [28, 29, 30]. However, the collection of
egocentric videos is expensive, and previous datasets tend to be small-scale and domain-specific.
Recently, a massive egocentric video dataset, Ego4D [16], has been released and has been used for
embodied representation learning. The dataset comprises 3,670 hours of videos collected by 931
people from 74 locations across 9 countries, with videos accompanied by narrations. For embodied
AI tasks, learning from large and diverse egocentric human videos has emerged as a promising
approach to acquiring a generally useful visual representation for controlling such tasks. For example,
R3M [12] developed a sparse and compact visual representation using the Ego4D human video
dataset through a combination of time-contrastive learning and video-language alignment. VIP [31],
learns general-purpose reward functions for goal-conditioned robotic manipulation using the Ego4D
dataset.
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Figure 2: Overall framework of EmbodiedGPT. The black arrow shows the vision-language planning
process, while the red arrow represents that we leverage the queried language plans for better policy
learning in low-level control tasks.

2.3 Large Foundation Model Assistant System

Recent advancements in large-scale multi-modal language models (LLMs), such as GPT-3 [32] and
GPT-4 [1], have resulted in the creation of various models that can understand multiple modes of
information. Two main approaches are used in this field: systematic collaboration and end-to-end
trained models. Systematic collaboration approaches involve coordinating multiple vision models
or tools with language models to combine visual information with textual descriptions. Examples
include models like Visual ChatGPT [33], MM-REACT [34], and HuggingGPT [35]. However, this
approach is limited by the accuracy and capacity of fixed modular models, which can lead to an
accumulation of errors. On the other hand, end-to-end models aim to provide unified models for
multi-modal tasks. For example, Flamingo [24] combines vision and language by freezing pre-trained
vision encoders and language models. BLIP-2 [13] introduces Q-Former to align visual features
from frozen visual encoders with large language models. Recently, models such as MiniGPT-4 [36]
and LLaVA [37] align instruction-tuned language models with visual features from frozen visual
backbones. VideoChat[38], mPLUG-Owl [39] and X-LLM [40], further expand support for video
input. PaLM-E [41] is the first large embodied multi-modal model, which directly incorporates
features from sensor modalities to improve real-world performance and is trained with their large-
scale everyday robot data [42]. Compared to PaLM-E, EmbodiedGPT is more compact, with a size
of only 10B and offers additional support for video captioning, video QA and making planning
according to a demonstration video. Furthermore, we form a closed-loop system that spans from
high-level planning to low-level control.

3 Method

The goal of the embodied foundation model is to imitate human-like perception and interaction with
the environment by accurately perceiving the environment, identifying relevant objects, analyzing
their spatial relationships, and formulating a detailed task plan. To achieve this, the EmbodiedGPT
employs a pre-trained vision transformer as the visual encoder and a pre-trained LLaMA [43] model
as the language model. As shown in Figure 2, the embodied-former acts as a bridge between
the visual and language domains, it first extracts compact visual features from the output of the
vision model through attention-based interaction involving visual tokens, text queries, and learnable
embodied queries and then maps it to the language modality through a language mapping layer.
These embeddings are sent to the frozen LLaMA [43] language model for visual caption, visual
QA, and embodied planning. The generated planning is then used to query highly relevant features
from the general visual tokens encoded by the visual model via the embodied-former. These features
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are utilized to generate low-level control commands for task execution through the downstream
policy network. To enhance performance across a range of embodied tasks, we introduce a novel
video-language pre-training paradigm that leverages a cognitive chain of thought to produce embodied
planning from egocentric video inputs. We formulate this task as a standard VQA (Visual Question
Answering) task, using "how to do the task that + original caption" as the question and embodied
planning as the answer. This framework enriches the data of embodied planning and standard visual
QA tasks, encouraging the embodied-former to capture task-specific features that are more suitable
for embodied control tasks.

3.1 Framework

The training process consists of three stages, each designed to incrementally develop reasoning and
planning capabilities. The first two stages focus on pre-training in basic cognitive and responsive
skills, while the third stage involves training the embodied AI task with egocentric video-text data
on EgoCOT. In the first stage, we focus on image-text conversation alignment pre-training, which
involves using three datasets: COCO Caption [44], 595 thousand finely filtered image-text pairs from
CC3M [45], and 491 thousand filtered image-text pairs obtained by re-captioning LAION-400M
using BLIP-2 [17]. The primary goal of this stage is to pre-train the Embodied-former and language
projection while keeping the vision and language model parameters frozen to save computational
resources. In the second stage, our goal is to enhance the model’s ability to comprehend and generate
more complex sentences and improve its reasoning skills. We achieve this by updating the language
projection and prefix language adapter and utilizing the "Complex_Reasoning_77k" and multi-turn
conversation datasets provided by "LLaVA_Instruct_150K" [46].

Embodied "chain-of-thought" training with EgoCOT: During the third stage, we employ
Conv3D [47] to adapt the pre-trained vision model from stage 2 for video encoding, using a total
of eight evenly distributed keyframes from each video. Each keyframe is partitioned into three-
dimensional (3D) patches, which can be visualized as spatio-temporal cubes, adeptly capturing both
the visual content and the sequence of events within the video. These 3D patches are subsequently
encoded into visual tokens via the Conv3D module with a time offset of 2 and are then integrated
into the internal vision transformer. Then, we introduce the ’chain-of-thought’ vision language
pre-training paradigm where the model takes 8 keyframes of the video as input, along with the task
description, embodied planning, and structured verb-noun pairs summary to reason with a prompt,
such as Listing 1. To avoid overfitting, we provide a prompt set that has different instructions with
the same meaning. In this stage, we fine-tune the patch embedding, the language projection layer,
and the prefix language adapter to better capture temporal information. �
Watch this video , identify the actions and devise a plan using chain -of -thought. Extract

detailed actions using this schema:
Task: {"task description"}
Plan: {"plan with chain -of-thought"} Actions: {{"number"}: {’verb’}({’noun’})}.�

Listing 1: Prompt we used for chain-of-thought pre-training.

3.2 Model Architecture

The Embodied-former, denoted as E(·), serves as a bridge between visual input xvis and the frozen
language model, acting as an information bottleneck that delivers the most relevant visual data to
the language model. The Embodied-former consists of two sub-modules: one for extracting features
from the image input, denoted as Evis : xvis → yvis, and another for extracting features from the
text input, denoted as Etxt : xtxt → ytxt. We employ N learnable embodied query embeddings
yquery as the input of E to interact with xvis through cross-attention layers and with xtxt through
self-attention layers. We denote the output query representation as z ∈ RN×D, where D is the
dimensionality of the embeddings. The dimension of z is significantly smaller than that of the visual
features. The output query embeddings are then transformed to z

′ ∈ RN×D
′

, which have the same
dimensionality D

′
as the LLM’s text embedding in the language modality. This transformation

is performed by a mapping function denoted as M : z → z
′
, which is accomplished by a linear

projection via a fully-connected (FC) layer. The projected embeddings, z′, serve as "soft visual
prompts for the language model," decoupling the whole interaction into visual-query interaction and
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query-text interaction. The final embodied planning is inferred by the language model with z′ and
text prompt(shown as Listing 1) as input. For low-level control which aims to generate actions to
interact with the environment, the embodied plan xplan is used as input text for embodied-former to
query the task-relevant instance level features zinstance = E(xvis, xplan, yquery). Subsequently, the
agent is capable of generating control commands, such as the turning angle of the servo, represented
as a = g(zinstance, zglobal). This function combines both the instance-specific information zinstance
and the global context zglobal. The global context is inferred using a ResNet50 model [48] that has
been pre-trained on ImageNet [49], employing global average pooling. Here, g(·) represents the
policy network, which is a Multi-Layer Perceptron (MLP) [50] mapping function. The output of
the policy network consists of specific executable actions, such as positions and velocities in the
Cartesian coordinate system. More implementation details can be found in Appendix A.

3.3 Training Settings

We employ the same pre-trained image encoder as BLIP-2[17]. Specifically, we utilize the ViT-G/14
model from EVA-CLIP [51] and remove its last layer, using the output features of the second last
layer instead. For the frozen language model, we adopt a pre-trained LLaMA-7B [43] model and
fine-tune it using the ShareGPT dataset and a GPT-4 generated 52K English instruction-following
dataset [52]. We then utilize the well-fine-tuned language model as the frozen language model for
vision-language pre-training. Additionally, we convert the data type of parameters of the frozen
ViT [53] and language model to FP16 during pre-training to increase efficiency.

3.4 Creating EgoCOT and EgoVQA Dataset

For our EgoCOT dataset, we obtain basic data from the Ego4D dataset [16], which includes 9, 645
untrimmed videos of various durations ranging from 5 seconds to 7 hours. To prepare the data for
our purposes, we conducted two stages of data cleaning to prepare our data. In the first stage, we
filtered out videos with missing or very short narrations (which made up 7.4% and 0.9% of the text,
respectively), as well as those with unsure tags (which accounted for 4.0% of the text). We also
excluded videos without human-object interaction, such as watching TV or walking. After this stage,
we were left with 2.9 thousand hours of video, containing 3.85 million narrations, from 129 different
scenarios covering 2927 hours of video.

To generate pairs of captions, embodied plannings, and corresponding video segments with time
intervals, we utilized the EgoVLP framework [54] to segment the video. The narrations are organized
as a sequence of sentences T0, · · · , Tn with precise timestamps t0, · · · , tn that indicate when a
described event occurred. For each narration Ti with timestamp ti, we paired it with a clip Vi by
determining its start and end time points:

[tstarti , tendi ] = [ti − βi/2α, ti + βi/2α], (1)

where βi =
∑n−1

j=0 (tj+1 − tj) /n is an adjustable parameter equal to the average temporal distance
between consecutive narrations in a given video. Conversely, α is a scale factor computed as the
average of all βi across all videos in the EgoCOT dataset (α = 4.9 seconds). For each video segment,
we provide prompts and corresponding captions for ChatGPT [55] to generate a reasonable and
detailed embodied planning. The caption is typically a brief introduction such as "C opens a drawer."
We use the ChatGPT to generate a chain of thought according to the caption and organize it into a list
of verb-noun pairs, such as "plans: grasp the handle with the gripper and pull the handle; actions:
1. grasp(handle, gripper) 2. pull(handle)." The prompt we used to generate EgoCOT dataset is
shown in Listing 2. To enhance the diversity of generated chain of thoughts, we employ a temperature
parameter of 0.9 and a top-p parameter of 0.95. For each prompt, we perform five sampling iterations.

Post-procedure. To ensure the quality of the generated planning instructions, we perform the second
stage of data cleaning. We used the CLIP model [56] to assess the similarities between the video and
text pairs. For each video, we compared it against five potential embodied plans and selected the
one with the highest similarity as the corresponding label for the embodied plan. We then took our
data-cleaning process a step further by filtering out any video-caption-planning pairs with similarities
lower than the threshold. We eliminated both data with the low similarity between the video and
caption and between the video and planning to ensure the highest quality data for our EgoCOT
dataset. For each keyframe of the video segment, we use the CLIP model to encode both the text
data T and the image data I into a shared embedding space. The similarity is calculated using the
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�
You need to generate plans with chain of thought for each task , and then extract

detailed actions (collocation of nouns and verbs) from the plan.
The action can be of the following form:
[action_name], eg., turn left;
[action_name] argument1 , eg., pick up(apple);
[action_name] argument1 argument2 , eg., put(apple , table)
Task: pick up a cup on the table
plans: grasp the handle of the cup with the gripper and lift it up
Actions:
1. grasp(handle of the cup , gripper)
2. lift up(cup)�

Listing 2: Prompt we used for creating EgoCOT dataset.

cosine similarity function as S(yT , yI) = yT ·yI

∥yT ∥∥yI∥ , where S(yT , yI) denotes the similarity between
the text and image, and yT and yI are the respective embeddings. Given that each video contains
multiple keyframes, an ensemble of similarity scores is obtained for each video. This ensemble
strategy helps to alleviate the problem of variability among individual frames and ensures a more
robust and representative measure of overall similarity. The ensemble similarity score between a
video V with n keyframes and text data T is given by:

E(V, T ) =
1

n

n∑
i=1

S(yT i, yI i) (2)

where E(V, T ) is the ensemble similarity score, S(yT i, yI i) is the similarity score for the i-th
keyframe, and n is the total number of keyframes. We also created the EgoVQA dataset specifically
for egocentric human-object interaction video question answering tasks to enrich the training data.
For each caption in the Ego4D dataset, we used ChatGPT to generate five QA pairs. To ensure
relevance, we guided ChatGPT to focus on core key verbs and nouns by designing prompts as shown
in Listing 3. The sampling schema when crafting EgoVQA is the same to that as EgoCOT. �
Please ask some questions accroding to the verbs and nouns in the sentence.
For example , in this sentence "a man is picking up a cup", the verb is picking up and the

noun is cup , therefor questions can be "what is the object the man is picking up?"
or "what operation is performed on the cup?".

Then You need to give the answer.

input: a man is picking up a cup
question: What is the object the man is picking up
answer: The cup�

Listing 3: Prompt used for creating EgoVQA dataset.

4 Experiments

In this section, we present a comprehensive evaluation of multi-modal foundation models and
EmbodiedGPT, across various tasks including visual captioning, embodied planning, and control.

Evaluation on image input tasks. In order to evaluate the quality of generated captions and
planning with the given image, we conducted a user study with 30 participants. The study included
10 cases of image caption tasks from MS-COCO dataset [44], 5 embodied planning scenarios in
different embodied AI simulators, and 5 real-world scenes with accompanying embodied planning
tasks. Participants were asked to rate the generated captions from different end-to-end models on
five dimensions using a scoring system ranging from 1 to 10: object recognition accuracy, spatial

Model Object(↑) Spatial(↑) Redundancy(↓) Plan Reasonable(↑) Plan Executable(↑)
Minigpt4 5.6 4.8 4.4 4.5 4.8
LLaVA-7B 7.3 7.4 3.9 7.5 6.6
LLaVA-13B 8.5 8.6 3.4 8.4 7.6
EmbodiedGPT 8.4 8.8 2.6 8.8 8.4

Table 1: Generate Quality Evaluation on image input tasks.
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Human: Give a detailed explanation of the image, describe the scene and the observed objects, and 
spatial relationships. Where should I go if I wish to find a coat hanger?
EmbodiedGPT:
1. The image depicts a doorway leading into a bedroom, with a clock hanging on the wall beside it and a 
picture of a woman further to the right. 
2. There is a white closet suitable for storing clothes on the right side of the bedroom.
3. If one needs to hang a coat, the white closet on the left seem to be the logical choice.
Visual ChatGPT:
The image shows a bathroom with a clock on the wall and a toilet in the comer. The clock is white and has 
a black face with two hands owalls are tiled and there is a window in the room.
The image shows a bathroom with a clock and a toilet. There is no coat hanger visible in the image.

Figure 3: Comparison between EmbodiedGPT and VisualGPT in the question-answering task.

Human: describe this video in detail

Assistant: 
The video displays a red robotic arm, a red cylinder, and a ring. The cylinder is positioned on a flat surface, and 
the ring is positioned next to it, with their centers aligned. The robotic arm is then used to pick up the ring. 
Carefully, the center of the ring is aligned with the center of the cylinder, and the ring is slowly lowered onto the 
cylinder, joining the two together. The final step is to inspect the join using the robotic arm, ensuring that it is 
secure and without gaps.

Human: can you write a detailed plan 
for the task the robot is performing?

Assistant: 
1. Position the first object, a cylinder, on a flat surface.
2. Position the second object, a  ring, next to the red cylinder, with their centers aligned.
3. Use the robotic arm to pick up the ring.
4. Carefully align the center of the  ring with the center of the cylinder.
5. Slowly lower the  ring onto the cylinder, joining the two objects together.

Video:

Figure 4: Example of video input embodied AI tasks on Meta-World benchmark. EmbodiedGPT
accurately analyzes embodied control tasks in demonstration videos and provides precise planning.

relationship understanding, level of redundancy in the answer, and reasonability of the planning and
the executability of the planning. The average scores among all the participants for different models
are shown in Table 1. The results demonstrate that EmbodiedGPT achieves a comparable level of
object recognition and spatial relationship understanding as the LLaVA-13B model, despite having
only 7B parameters in the language model. Furthermore, EmbodiedGPT generates less redundant
content in relation to the given embodied AI task, and produces the most reasonable and executable
planning outputs. We also compared the performance of EmbodiedGPT with Visual ChatGPT [33],
which adopts a hierarchical approach by combining several pre-trained vision models and language
models to answer questions. In the Virtual-Home [57] benchmark, Visual ChatGPT uses a visual
caption model to generate dense captions that are subsequently passed into ChatGPT for deriving a
solution. As shown in Figure 3, Visual ChatGPT failed to find a coat hanger due to its limitations of
relying solely on the caption model for extracting visual information, resulting in poor performance
when compared to the end-to-end model like EmbodiedGPT. These findings highlight the advantages
of adopting a unified, end-to-end model over hierarchical approaches that rely on multiple stages.

Evaluation on video input embodied AI tasks. We evaluate the recognition ability of videos and
planning abilities of our model for embodied control tasks on standard embodied AI benchmarks,
Franka Kitchen [14] and Meta-World [15]. Meta-World provides a challenging set of tasks that
require complex object manipulation skills, including assembling a ring on a peg, picking and placing
a block between bins, pushing a button, opening a drawer, and hammering a nail. Franka Kitchen
benchmark focuses on tasks like sliding open the right door, opening the cabinet, turning on the light,
turning the stovetop knob, and opening the microwave. As shown in Figure 4, given a demonstration
video, EmbodiedGPT can accurately interpret the embodied control task and provide step-by-step
planning. The output planning is fed into the Embodied-former module of EmbodiedGPT to query
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(b) Performance comparison in Meta-World with only 10 demos.

Figure 5: Performance of EmbodiedGPT in low-level control tasks with 10 demonstration demos.
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(a) Performance comparison in Franka Kitchen with 25 demos.
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(b) Performance comparison in Meta-World with 25 demos.

Figure 6: Performance of EmbodiedGPT in low-level control tasks with 25 demonstration demos.

highly relevant features for use as inputs in the policy network and the low-level actions are generated
by the policy network to interact with the environment (see more visualizations in Appendix B).

Evaluation on embodied control tasks. For embodied control tasks, we compare our model with
R3M[12], which is the state-of-the-art method in these two benchmarks, and an ablation version called
’BLIP-2[Ego4D]’, which has the same structure and same amount of parameters as EmbodiedGPT,
and is only fine-tuned on the video caption task using the Ego4D dataset without incorporating
EgoCOT. In all experiments, the policy network is learned using few-shot learning on a small amount
of demonstration data. There are two settings, one of which utilizes 10 demonstrations, and the other
utilizes 25 demonstrations. We report the success rate in 100 random evaluations with only visual
observations in 5 tasks per benchmark over 5 seeds and 2 different camera views for each setting,
respectively. As shown in Figure 5 and Figure 6, EmbodiedGPT outperforms the baseline methods,
demonstrating the effectiveness of learning with EgoCOT.

Model Franka(10 demos) Franka(25 demos) Meta-World(10 demos) Meta-World(25 demos)
EmbodiedGPT 50.8% ±2.8 58.5% ±2.7 76.4% ±2.2 81.2%±2.0
- Close-loop 38.6% ±2.9 47.3% ±2.5 62.7% ±2.2 64.9% ±2.0
- COT 26.2% ±3.2 36.4% ±2.7 55.2% ±2.4 58.7% ±2.0

Table 2: Ablation on the closed-loop spans from planning to low-level control, and "chain-of-thought"
(COT) training with 25 and 10 demonstrations("-" symbol indicates "removing"). We report the
average success rate over 5 tasks and 2 camera views per benchmark.
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Human: You are the controller of the robot shown in this image,

now your task is put all the objects into the brown bag next to the

robot, please write a step by step plan:

EmbodiedGPT:
Step1. Move the robotic arm to the top of the gray bottle.

Step 2. Close the gripper and grasp the gray bottle.

Step 3. Move the arm to the brown bag.

Step 4. Release the bottle.

Step 5. Move the arm to the top of the cereal bag.

Step 6. Close the gripper and grasp the cereal bag.

Step 7. Move the arm to the brown bag.

Step 8. Finally, release the cereal bag. Franka Emika Panda arm with front facing camera

Figure 7: Generated plan by EmbodiedGPT for rearrangement task.

Figure 8: Real-world experiment on the Franka Emika robot arm.

Ablation study. We perform ablation studies to analyze the effectiveness of the "Chain-of-Thought"
training mode and the importance of a closed-loop design for embodied control. The results, as shown
in Table 2, demonstrate a significant improvement in success rate when using the EgoCOT approach
compared to training solely with the EGO4D caption task. Moreover, the closed-loop design is
necessary as the generated plans contained specific and relevant sub-goal information, which proved
crucial for control tasks. In summary, EmbodiedGPT exhibits a strong ability to generate reasonable
planning, accurately extract task-relevant features from visual inputs, as well as execute low-level
actions to interact with the environment. The ablation experiments demonstrate that both the training
paradigm based on EgoCOT and the closed-loop design from embodied planning to low-level control
significantly contribute to the performance improvement of EmbodiedGPT.

Real robot experiment. We also conducted a real-world experiment using the Franka Emika robot
arm, emphasizing a rearrangement task where the objective was to pack scattered bottles from a
table into a box. As depicted in Figures 7 and 8, model is capable of generating intricate plans and
executing of low-level actions based on 50 demonstration.

5 Conclusion

In this paper, we present EmbodiedGPT, an end-to-end multi-modal foundational model for embodied
AI that enables agents to perform step-by-step planning and execute low-level commands. To achieve
this, we create a large-scale embodied planning dataset called EgoCOT and develop an efficient
training approach that utilizes prefix tuning to generate high-quality plans with a "chain-of-thought".
Furthermore, our embodied control paradigm seamlessly coordinates high-level planning and low-
level control. Extensive experiments demonstrate the effectiveness of EmbodiedGPT on various
embodied tasks, achieving state-of-the-art or comparable performance. We believe that EmbodiedGPT
represents a significant step towards developing more intelligent embodied AI agents.
Future works and limitations: EmbodiedGPT freezes the parameters of the vision and language
model due to limited computational resources. Joint training with all modules and exploring other
modalities, such as speech, could be future works. We do not foresee obvious undesirable ethical or
social impacts at this moment.

Acknowledgement. This paper is partially supported by the National Key R&D Program of China
No.2022ZD0161000 and the General Research Fund of Hong Kong No.17200622. We would like
to express our appreciation to Dr. René Zurbrügg from ETH AI Center for his support on robot
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