
A Broader Impact455

Our proposed INVERT method significantly contributes to enhancing the transparency and safety456

of deep neural networks. By providing human understandable and interpretable explanations for457

neurons in black-box models, our approach offers valuable insights into their internal operations,458

improving understanding. Moreover, our method is able to identify potentially harmful representations459

through concept augmentation, which can be easily extended to cover a wider range of concepts.460

An important advantage of our method is its notable reduction in computational cost compared to461

previous approaches. This reduction not only improves efficiency but also minimizes the harmful462

environmental impact associated with excessive GPU usage.463

It is important to note that we cannot make definitive claims regarding specific groups of people464

benefiting from or being disadvantaged by our method. The general applicability and potential465

implications of our approach should be explored further and with caution.466

B Prior work467

Let’s consider a function, g : D ! Rk⇥k, that signifies a convolutional neuron within a model that468

produces activation maps of dimensions k⇥ k, along with a concept c 2 C. Both Network Dissection469

[20] and Compositional Explanations of Neurons [22] methodologies make use of the Intersection470

over Union (IoU) similarity metric to measure the degree of correlation between a function and a471

concept. A prerequisite for these methodologies are segmentation masks pertaining to the concepts,472

meaning for every concept c 2 C, there exists a corresponding function M : D ! {0, 1}h⇥w, which473

generates a binary mask for the specific concept, of the same size as the original input.474

To evaluate the correlation between function g and concept c, the multi-dimensional outputs from g are475

subjected to thresholding based on neuron-specific percentiles (i.e., values above chosen percentiles476

are converted to 1 and the remaining to 0), and upscaled to match the dimensions of the original477

image. We can define the resulting function that produces binary masks of the same size as the input478

as G : D ! {0, 1}h⇥w. The final similarity (IoU) score between g and c can be computed as the479

Intersection over Union score between concept masks M and function G :480

dIoU (g, c) =

P
x2D 1 (M(x) \G(x))P
x2D 1 (M(x) [G(x))

. (4)

Given that previous methodologies were able to procure explanations solely from convolutional481

neurons, we carried out a comparison with INVERT by computing INVERT explanations through482

the mean of the activations across the activation maps of convolutional neurons. Specifically, in483

section 4.2, the method of Compositional Explanations of neurons was applied using a 7x7 input map484

for each feature. Conversely, the INVERT approach uses a strategy that computes a scalar value by485

calculating the average of the input map.486

C INVERT algorithm487

Given a neural representation f : D �! R, a dataset D ⇢ D, and a set of concepts C 2 C,488

the INVERT approach seeks to identify a compositional concept '⇤, which is formed as a logical489

operation on the concepts, to optimize AUC similarity d(f,'⇤(C). For this purpose, we utilized an490

optimization process similar to that of the CompExpl methodology [22], employing Beam search to491

find the optimal compositional concept.492

This method requires the configuration of certain parameters, namely the predetermined formula493

length L 2 N, the beam size B 2 N, and additionally, the threshold T 2 (0, 1/2). Beam search494

intends to iteratively combine concepts, starting with the atomic concepts (primitives) from C. At495

every iteration of the process, the top B best-performing compositional concepts are selected, and496

all feasible formulas are computed with primitives. Subsequently, only the top B best-performing497

concepts are selected, and the process continues until the formula reaches the predetermined length.498

In detail, firstly, we define a set of primitives �̄ — a set of compositional concepts that correspond to499

the set of concepts C and their negation. The set �̄ comprises 2k compositional concepts, with each500
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concept corresponding to either the base concept or its negation. Next, all 2k concepts are evaluated in501

terms of AUC similarity with a given function, and the top B best performing compositional concepts,502

that satisfy p('(C)) � T are selected, leading to the formation of the set �⇤ where |�⇤| = B,503

referred to as a Beam. These are the top B best-performing compositional concepts with a length504

of 1, satisfying the requisite condition on their positive fraction in the dataset. Subsequently, the505

following operations are iteratively performed until the predetermined formula length L is met:506

1. Each of the B compositional concepts in the beam �⇤ is combined with all primitives using507

either the AND or OR operation, thereby augmenting the formula length by 1, resulting in508

a total of 4Bk new formulas.509

2. All newly generated formulas are evaluated based on their similarity to the representation,510

and the beam �⇤ is updated to include the top B performing formulas, which satisfy the511

condition p('(C)) � T .512

Upon reaching the predetermined formula length L, the Beam-Search procedure concludes by513

identifying the compositional concept '⇤ with the highest observed AUC.514

D Comparing Fuzzy Logic operators515

Fuzzy logic operators [38] serve as essential instruments within the domain of fuzzy logic, a mathe-516

matical construct designed for modeling and handling data that is imprecise or vague. This contrasts517

with conventional logic where an element strictly either belongs to a set or not; fuzzy logic allows for518

the degree of membership to vary from 0 to 1, thereby allowing for partial membership.519

In the present study, our objective was to contrast different categories of fuzzy logic operators and520

examine their behavior concerning the proposed AUC metric. To fulfill this aim, we employed four521

distinct deep learning image classification models: AlexNet [33], DenseNet161 [34], EfficientNet522

B4 [35], and ViT 16 L [36]. Each of these models was pre-trained on the ImageNet dataset. We523

focused on 1000 neural representations in the output logit (pre-SoftMax) layer for each model, for524

which we recognized the ’ground-truth’ concept — the corresponding ImageNet class. For fuzzy525

logic operators’ testing, we mapped the output of each individual representation to the set [0, 1] by526

normalizing each representation’s output using their corresponding mean and standard deviation527

across ImageNet dataset and applied a Sigmoid transformation. We tested four different Fuzzy logic528

operators, specifically Gödel, Product, Łukasiewicz, and Yager with parameter p = 2, as illustrated529

in Table 2.530

For performance evaluation, we generated random compositional concepts of a given length and531

computed the AUC similarity between fuzzy logic norms applied to functions corresponding to532

these concepts. For instance, given the random compositional concept ' = ci OR cj , we derive533

compositional representations as per each of the four examined methods (e.g., the Gödel operator534

produces function hG = max(fi, fj)). These compositional representations are then evaluated in535

terms of AUC similarity with the compositional concept.536

We conducted the evaluation in two modes, that is, assessing the performance of the OR (T-conorm)537

operator and the performance of the AND (T-norm) operator. For each mode, we assembled 1000538

random compositional concepts by sampling L concepts without replacement and calculated the539

AUC between compositional concepts. Note that for the second mode, AND (T-norm), random540

compositional concepts were assembled using the AND NOT operation, given the mutual exclusivity541

of ImageNet labels.542

Figures 8 and 9 depict the mean AUC similarity between random compositional concepts of varying543

lengths and the corresponding compositional representations, which were assembled using four544

distinct fuzzy logic operators. From these figures, it becomes evident that Gödel fuzzy logic operators545

demonstrate the most significant robustness to the length of the formula, consistently attaining546

superior AUC in contrast to other operators. Consequently, we can infer that Gödel’s operator547

emerges as the optimal choice for implementing fuzzy logic operations on these representations.548
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Figure 8: Average AUC similarity between random compositional OR concepts and corresponding
compositional representations employing various Fuzzy logic operators (Higher is better) evaluated
across four distinct models.

Figure 9: Average AUC similarity between random compositional AND NOT concepts and corre-
sponding compositional representations employing various Fuzzy logic operators (Higher is better)
evaluated across four distinct models.

Table 2: List of different fuzzy operators

NOT(a) AND(a, b) (T-norm) OR(a, b) (T-conorm)

Gödel 1� a min(a, b) max(a, b)
Product a · b a+ b� a · b

Łukasiewicz max(a+ b� 1, 0) min(a+ b, 1)
Yager, p = 2 max(1� ((1� a)2 + (1� b)2)

1
2 , 0) min((a2 + b2)

1
2 , 1)
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