
A Multi-armed bandits590

The Multi-Armed Bandit (MAB) setting is a problem from machine learning where a learner interacts591

with an environment over N rounds by following a policy π. At each round t the learner chooses592

one of the environment’s K arms, a ∈ A where K = |A|, after which the environment provides a593

reward Rt. Rewards for unplayed arms are not observed. The goal of the learner is to adopt a policy594

π that selects actions that lead to the largest cumulative reward over N rounds, R =
PN

t=1 Rt. In595

this work we assume a finite K and that the underlying reward distribution of each arm may have a596

variety of properties (e.g. stochasticity or stationarity) depending on the exact scenario, leading to597

different optimal policies [34].598

Adversarial MAB. The adversarial MAB setting assumes that the reward-generating process is599

controlled by an adversary. This assumption allows for modelling non-stationary and highly stochastic600

reward signals. We will later show why our FLAD formulation fits into this setting. Under this setting,601

it is assumed that an adversary is given access to the learner’s policy π and determines the sequence602

of rewards, (Ra,t)
N
t=1, for each arm prior to play [38]. At each turn π determines a distribution603

over actions, p(A), and an action is sampled from the distribution, a ∼ p(A). See Lattimore &604

Szepesvári [34] for further details.605

The EXP3 algorithm. The EXP3 algorithm (“Exponential-weight algorithm for Exploration and606

Exploitation”) targets the adversarial multi-armed bandit problem by choosing arms according to a607

Gibbs distribution based on the empirically determined importance-weighted rewards of arms [21].608

To allow for exploration, EXP3 mixes the Gibbs distribution with a uniform distribution.609

Formally, let the exploration rate be γ ∈ (0, 1]. At round t, π defines the probability of selecting a610

given arm, a ∈ A, as a linear combination of Gibbs and uniform distributions611

pt(a) = (1− γ)
exp(γR̂a,t−1/K)P
a′ exp(γR̂a′,t−1/K)

+
γ

K
(1)

where the importance weighted reward R̂a,t is calculated as612

R̂a,t = R̂a,t−1 +
Ra,t

pt−1(a)
(2)

and Ra,t denotes the observed reward. All unplayed arms, a′ ̸= a have unchanged importance613

weighted rewards; R̂a′,t = R̂a′,t−1.614

Algorithmically, EXP3 takes the following steps at each round: First, calculate the sampling distribu-615

tion pt and sample an arm from the distribution. Then a reward Ra,t is observed and the algorithm616

updates the importance weighted reward R̂a,t for the played arm.617

Informally, the use of an importance-weighted estimated reward compensates the rewards of actions618

that are less likely to be chosen, guaranteeing that the expected estimated reward is equal to the619

actual reward for each action. EXP3 is designed to be nearly optimal in the worst case, but due to the620

exploration rate it will select “bad” actions at a rate of γ/K. The exploration of EXP3 combined621

with importance-weighting allows the policy to handle non-stationary reward-generating processes.622

The UCB1 algorithm. While the adversarial setting makes almost no assumptions about the623

reward-generating process and therefore maintains its performance guarantees under almost any624

circumstances, it can be outperformed in settings that are constrained. In this section we assume625

that the reward-generating processes are stationary Gaussian distributions. A common policy used to626

solve this MAB setting is the Upper Confidence Bound (UCB1) algorithm, which assigns each arm a627

value called the upper confidence bound based on Hoeffding’s inequality [22]. The UCB1 algorithm628

is based on the principle of optimism in the face of uncertainty, meaning that with high probability629

the upper confidence bound assigned to each arm is an overestimate of the unknown mean reward.630

Formally, let the estimated mean reward of arm a after being played na times be R̂a and the true631

mean reward be Ra, then632

P
�
Ra ≥ R̂a +

s
2 ln(1/δ)

na

�
≤ δ ∀δ ∈ (0, 1)
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derived from Hoeffding’s inequality (following equation 7.1 of Lattimore & Szepesvári [34]), where633

δ is the confidence level that quantifies the degree of certainty in the arm. In this work we let δ = 1/t634

where t is the number of rounds played, shrinking the confidence bound over rounds. Thus, we define635

the upper confidence bound for arm a at turn t as636

UCBa,t =

(
∞, if na = 0

R̂a +
q

2 ln t
na

, otherwise
(3)

Algorithmically, UCB1 takes the following steps at each round. First, the UCB1 policy plays the arm637

with largest upper confidence bound, a∗ = argmaxa∈A UCBa,t. Next, a reward Ra∗,t is observed638

and the algorithm updates R̂a∗ (the estimated mean reward for a∗) and the upper confidence bounds639

for all a. Informally, this algorithm suggests that the learner should play arms more often if they640

either 1. have large expected reward, R̂, or 2. na is small because the arm is not well explored.641

B Pseudo-code642

We include here pseudo-code for our 2 proposed algorithms. Algorithm 1 contains the pseudo-code643

for EXP3-FLAD, and Algorithm 2 contains the pseudo-code for UCB1-FLAD.644

Algorithm 1 EXP3-FLAD
Require: DA,DT : Auxiliary and target datasets
Require: fθ: Parameterized model
Require: G: Gradient accumulation steps
1: Initialize: K = |A|; E0 = 1

K
;

∀a ∈ A : ∇a = 0, R̂a = 1
2: for t = 1, 2, . . . , N do
3: Et = min

n
1
K
,
q

lnK
K·t

o

4: ∀a ∈ A : π(a) ← (1−KEt)
exp(Et−1R̂a)P
a′ exp(Et−1Ra′ ) + Et

5: Sample a ∼ π(A) and batch {x,y} ∼ Da

6: ∇a ← ∇a +∇θL(fθ,x,y)
7: if t (mod G) ≡ 0 then
8: ∇T ← ∇θL(fθ,DT )
9: Update model parameters w.r.t.∇T +

P
a ∇a

10: for all {a ∈ A|∇a ̸= 0} do
11: R̂a ← R̂a +

Ra,t

π(a)

12: ∇a ← 0
13: end for
14: end if
15: end for
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Algorithm 2 UCB1-FLAD
Require: DA,DT : Auxiliary and target datasets
Require: fθ: Parameterized model
Require: G: Gradient accumulation steps
Require: β: Smoothing factor
1: Initialize:

∀a ∈ A : na = 1,
R̂a = cos(∇θL(fθ,DT ),∇θL(fθ,Da))

2: for t = 1, 2, . . . , N do
3: a∗ = argmax

a∈A
R̂a +

q
2 ln t
na

4: Sample batch {x,y} ∼ Da∗

5: ∇a∗ ← ∇a∗ +∇θL(fθ,x,y)
6: na∗ ← na∗ + 1
7: if t (mod G) ≡ 0 then
8: ∇T ← ∇θL(fθ,DT )
9: Update model parameters w.r.t. ∇T +

P
a ∇a

10: for all {a ∈ A|∇a ̸= 0} do
11: R̂a ← (1− β)R̂a + βRa,t

12: ∇a ← 0
13: end for
14: end if
15: end for

C Training details645

We train all models (FLAD and non-FLAD) on 40Gb A100s.646

For all experiments, we use validation-based early stopping, and train for a maximum of 10,000647

gradient update steps. In practice, we find that early-stopping leads to significantly fewer than 10,000648

updates, usually between 50-150 for direct fine-tuning, and 1-2,000 for other methods.649

For the smoothing factor, β, in UCB1-FLAD we ran preliminary experiments using values of650

{0.99, 0.9, 0.75, 0.5} and found 0.9 to work well across datasets. All reported scores use β = 0.9.651

In preliminary experiments we consider rewards using gradients from multiple model partitions: the652

full model, encoder-only, decoder-only, and language modelling head (token classifier). We find that653

using the parameters from the LM head provides best performance, followed by the decoder-only,654

encoder-only, and full model gradients. The differential from best to worst method was ∼ 3% relative655

performance. Recall that with a gradient accumulation factor of G, our algorithms need to store656

at most G + 1 gradients at any time. So not only does using the LM head provide performance657

improvements, but also saves memory. For the models we use, the LM head contains only 2.3% of658

the full model parameters.659

D Full results660

The full results of experiments on target-only fine-tuning, explore-only, exploit-only, EXP3-FLAD,661

and UCB1-FLAD are found on the next page.662
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Table 2: Detailed results from the main experiment including direct fine-tuning, exploration-only,
exploitation-only baselines and our proposed methods, EXP3-FLAD and UCB1-FLAD.
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E Probing the reward generating processes.663

Gradient Alignment Gradient Magnitude Similarity 
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Figure 4: Reward distributions of RGA and RGMS prior to training and every 100 gradient updates
thereafter. We probe the reward distributions using the T5-XL model with the T0Mix auxiliary dataset
and WSC [52] as the target dataset.
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F EXP3-FLAD and UCB1-FLAD training dynamics664

The following 4 pages include a case study on the training dynamics of EXP3-FLAD and UCB1-665

FLAD when training T5-XL using T0Mix as the auxiliary data. First, we find datasets where666

EXP3-FLAD and UCB1-FLAD improve significantly over the baseline FLAD methods, but also667

where either EXP3-FLAD or UCB1-FLAD clearly outperforms the other. The two datasets that fulfill668

our interests are RTE and COPA.669

We find that UCB1-FLAD outperforms EXP3-FLAD on RTE, and show their respective training670

dynamics in Figure 5 (UCB1) and Figure 6 (EXP3).671

We find that EXP3-FLAD outperforms UCB1-FLAD on COPA, and show their respective training672

dynamics in Figure 7 (UCB1) and Figure 8 (EXP3).673

We include details and takeaways in the caption for each figure. For EXP3-FLAD figures, we include674

charts of the cumulative estimated reward, empirical gradient alignment, instantaneous sampling675

distribution determined by the policy, and the empirical sampling distribution determined by the total676

number of samples seen per dataset as a fraction of the total samples seen. For UCB1-FLAD figures,677

we include charts of the upper confidence index, estimated gradient alignment, and the empirical678

sampling distribution.679
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Figure 5: Training dynamics of UCB1-FLAD, a case study using RTE as target dataset and T0Mix as
auxiliary data, where UCB1-FLAD outperforms EXP3-FLAD. Colored lines are a sample of auxiliary
datasets with interesting properties, the remaining datasets are shown in grey. We find that even
though wiki_qa’s estimated gradient alignment falls to below 0 (middle), UCB1 does not abandon
sampling from it in the future, finding that between 3200 and 4800 batches, it becomes the dataset
with largest upper confidence bound (top). Similarly, we see that UCB1 alternates between wiki_qa,
amazon_polarity, and qasc as the datasets with higher gradient alignment and upper confidence
bounds. kilt_tasks/hotpotqa has a very high gradient alignment prior to training, but UCB1 samples
very infrequently from it, due to it’ls lower upper confidence bound. This is a failure case for transfer
learning-based methods. Interestingly, UCB1 never estimates imdb to have a negative gradient, and
gradually samples from it more and more frequently over the course of training.
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Figure 6: Training dynamics of EXP3-FLAD, a case study using RTE as target dataset and T0Mix
as auxiliary data, where UCB1-FLAD outperforms EXP3-FLAD. Colored lines are a sample of
auxiliary datasets with interesting properties, the remaining datasets are shown in grey. We find that
the gradient alignment signal is particularly noisy for EXP3-FLAD, possibly leading to it’s slightly
worse performance on RTE. All five highlighted auxiliary datasets have high instantaneous sampling
probability, but over the course of training, the empirical sampling distribution is very condensed
across the full set of auxiliary datasets, unlike UCB1 which is able to find better separation.
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Figure 7: Training dynamics of UCB1-FLAD, a case study using COPA as target dataset and T0Mix
as auxiliary data, where EXP3-FLAD outperforms UCB1-FLAD. Colored lines are a sample of
auxiliary datasets with interesting properties, the remaining datasets are shown in grey. We find
that although qasc and quartz start with very high gradient alignment, they very quickly fall to
negative alignment (middle figure, green and yellow). In the end, we find that the algorithm samples
much more from qasc than from quartz (bottom figure). Interestingly, we find that although both
cnn_dailymail and multi_news start off with very negative gradient alignment, they quickly become
the most aligned with the target task (middle figure, blue and red). We find that the three auxiliary
datasets with highest upper confidence index (top figure) and largest sampling percent (bottom figure)
are cnn_dailymail, multi_news, and trec even though these all considered dissimilar to the target prior
to training.
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Figure 8: Training dynamics of EXP3-FLAD, a case study using COPA as target dataset and T0Mix
as auxiliary data, where EXP3-FLAD outperforms UCB1-FLAD. Colored lines are a sample of
auxiliary datasets with interesting properties, the remaining datasets are shown in grey. This is
an impressive example of the importance-weighted estimated reward. We see that cnn_dailymail
and multi_news both start with very negative alignment, but EXP3 quickly updates it’s estimated
reward once their alignment becomes positive. Similar to RTE, we see that EXP3 never makes large
separations in the empirical sampling distribution, possibly a reason why UCB1 outperforms EXP3
overall. Compared to RTE, we find that gradient alignments are much less variable, with a maximum
alignment close to 0.5 and minimum alignment close to -0.5. Whereas in RTE, alignments regularly
reach close to 1.0 and -1.0.
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G Auxiliary Datasets680

Here we include the full list of auxiliary datasets from P3 [23] used to train models for the ANLI681

target task. Other target datasets have slightly different auxiliary datasets, but are generally the same.682

Datasets are listed by their name as found in HuggingFace Datasets2.683

Zaid/quac_expanded, acronym_identification, ade_corpus_v2/Ade_corpus_v2_classification,684

ade_corpus_v2/Ade_corpus_v2_drug_ade_relation, ade_corpus_v2/Ade_corpus_v2_drug_dosage_relation,685

adversarial_qa/adversarialQA, adversarial_qa/dbert, adversarial_qa/dbidaf, adversarial_qa/droberta,686

aeslc, ag_news, ai2_arc/ARC-Challenge, ai2_arc/ARC-Easy, amazon_polarity, ama-687

zon_reviews_multi/en, amazon_us_reviews/Wireless_v1_00, ambig_qa/light, app_reviews,688

aqua_rat/raw, art, asset/ratings, asset/simplification, banking77, billsum, bing_coronavirus_query_set,689

biosses, blbooksgenre/title_genre_classifiction, blended_skill_talk, cbt/CN, cbt/NE, cbt/P,690

cbt/V, cbt/raw, cc_news, circa, climate_fever, cnn_dailymail/3.0.0, codah/codah, codah/fold_0,691

codah/fold_1, codah/fold_2, codah/fold_3, codah/fold_4, code_x_glue_tc_text_to_code, com-692

mon_gen, commonsense_qa, conv_ai, conv_ai_2, conv_ai_3, cord19/metadata, cos_e/v1.0,693

cos_e/v1.11, cosmos_qa, covid_qa_castorini, craffel/openai_lambada, craigslist_bargains,694

crows_pairs, dbpedia_14, discofuse/discofuse-sport, discofuse/discofuse-wikipedia, discov-695

ery/discovery, docred, dream, drop, duorc/ParaphraseRC, duorc/SelfRC, e2e_nlg_cleaned,696

ecthr_cases/alleged-violation-prediction, emo, emotion, enriched_web_nlg/en, esnli, ev-697

idence_infer_treatment/1.1, evidence_infer_treatment/2.0, fever/v1.0, fever/v2.0, finan-698

cial_phrasebank/sentences_allagree, freebase_qa, generated_reviews_enth, gigaword,699

glue/ax, glue/cola, glue/mnli, glue/mnli_matched, glue/mnli_mismatched, glue/mrpc,700

glue/qnli, glue/qqp, glue/rte, glue/sst2, glue/stsb, glue/wnli, google_wellformed_query,701

great_code, guardian_authorship/cross_genre_1, guardian_authorship/cross_topic_1,702

guardian_authorship/cross_topic_4, guardian_authorship/cross_topic_7, gutenberg_time,703

hans, hate_speech18, head_qa/en, health_fact, hlgd, hotpot_qa/distractor, hotpot_qa/fullwiki,704

humicroedit/subtask-1, humicroedit/subtask-2, hyperpartisan_news_detection/byarticle, hyperparti-705

san_news_detection/bypublisher, imdb, jfleg, kelm, kilt_tasks/hotpotqa, kilt_tasks/nq, lama/trex,706

lambada, liar, limit, math_dataset/algebra__linear_1d, math_dataset/algebra__linear_1d_composed,707

math_dataset/algebra__linear_2d, math_dataset/algebra__linear_2d_composed, math_qa,708

mc_taco, mdd/task1_qa, mdd/task2_recs, mdd/task3_qarecs, medal, medical_questions_pairs,709

meta_woz/dialogues, mocha, movie_rationales, multi_news, multi_nli, multi_x_science_sum, mwsc,710

narrativeqa, ncbi_disease, neural_code_search/evaluation_dataset, newspop, nlu_evaluation_data,711

nq_open, numer_sense, onestop_english, openai_humaneval, openbookqa/additional, open-712

bookqa/main, paws-x/en, paws/labeled_final, paws/labeled_swap, paws/unlabeled_final, piqa,713

poem_sentiment, pubmed_qa/pqa_labeled, qa_srl, qa_zre, qasc, qed, quac, quail, quarel,714

quartz, quora, quoref, race/all, race/high, race/middle, riddle_sense, ropes, rotten_tomatoes,715

samsum, scan/addprim_jump, scan/addprim_turn_left, scan/filler_num0, scan/filler_num1,716

scan/filler_num2, scan/filler_num3, scan/length, scan/simple, scan/template_around_right,717

scan/template_jump_around_right, scan/template_opposite_right, scan/template_right, scicite,718

scientific_papers/arxiv, scientific_papers/pubmed, sciq, scitail/snli_format, scitail/tsv_format,719

scitldr/Abstract, selqa/answer_selection_analysis, sem_eval_2010_task_8, sem_eval_2014_task_1,720

sent_comp, sick, sms_spam, snips_built_in_intents, snli, social_i_qa, species_800, squad,721

squad_adversarial/AddSent, squad_v2, squadshifts/amazon, squadshifts/new_wiki, squadshifts/nyt,722

sst/default, stsb_multi_mt/en, subjqa/books, subjqa/electronics, subjqa/grocery, subjqa/movies,723

subjqa/restaurants, subjqa/tripadvisor, super_glue/axb, super_glue/axg, super_glue/boolq, su-724

per_glue/multirc, super_glue/record, swag/regular, tab_fact/tab_fact, tmu_gfm_dataset, trec,725

trivia_qa/unfiltered, turk, tweet_eval/emoji, tweet_eval/emotion, tweet_eval/hate, tweet_eval/irony,726

tweet_eval/offensive, tweet_eval/sentiment, tweet_eval/stance_abortion, tweet_eval/stance_atheism,727

tweet_eval/stance_climate, tweet_eval/stance_feminist, tweet_eval/stance_hillary, ty-728

diqa/primary_task, tydiqa/secondary_task, web_questions, wiki_bio, wiki_hop/masked,729

wiki_hop/original, wiki_qa, wiki_split, wino_bias/type1_anti, wino_bias/type1_pro,730

wino_bias/type2_anti, wino_bias/type2_pro, winograd_wsc/wsc273, winograd_wsc/wsc285,731

wiqa, xnli/en, xquad/xquad.en, xquad_r/en, xsum, yahoo_answers_qa, yahoo_answers_topics,732

yelp_polarity, yelp_review_full, zest733

2https://huggingface.co/datasets

25


