
1 Supplementary1

In this supplementary material we provide the following:2

1. A video for qualitative evaluation of our model’s performance (1.1).3

2. Details regarding AVSpeech-Rooms curation (1.2) (referenced in Sec. 4 of main paper)4

3. Details on our ablation study with different metric training objectives (1.3) (referenced in5

Sec. 5 — "Results on AVSpeech-Rooms" of main paper)6

4. A sample survey slide from our human perception study (1)7

5. Model/training details for our RT60 estimator, de-biaser, discriminator, and reverberator8

(1.4) (referenced in Sec. 5 — "Implementation Details" of main paper)9

6. A more detailed version of Figure 4. in the main paper with both baseline models (2)10

7. Details on our data augmentation strategy (1.5) (referenced in Sec. 5 — "Baselines" of main11

paper )12

8. A brief discussion of our work’s limitations and broader impact (1.6 1.7)13

1.1 Supplementary Video14

Our video contains several illustrative examples generated by LeMARA on both SoundSpaces-Speech15

and AVSpeech-Rooms. We provide audio generated by the current state-of-the-art (AViTAR) for16

reference on each example. We recommend wearing headphones for a better listening experience.17

1.2 AVSpeech-Rooms18

Acoustic AVSpeech consists of audio clips from YouTube videos along with an RGB image frame19

selected randomly from the corresponding video clip. To create AVSpeech-Rooms, we design a set of20

criteria which we use to filter out samples in which the image contains uninformative, non-natural, or21

misleading acoustic information about the space. We focus on cases in which the room is not visible,22

a microphone is being used, or a virtual background/screen is present — any of which will disturb the23

natural room acoustics for the speaker’s voice. We query each sample with our criteria using a Visual24

Question Answering (VQA) model [6], which we found more reliable than manual annotations we25

originally obtained on MTurk. 1 contains information about our criteria.26

Table 1: Filtering criteria and % of Acoustic AVSpeech samples removed.

Question Answer dataset %
Is a microphone or headset visible in the image? yes 7.2

Is there a whiteboard/blackboard in the background? yes 3.4
Is the entire background one solid color and material? yes 23.4

Is there a large projector screen covering most of the background? yes 2.2
Is part or all of the background virtual? yes 1.3
Are there multiple screens in the image? yes 3.5

Is the wider room clearly visible? no 3.0

27

1.3 Ablations28

Table 2 displays our experiments with different self-supervised training objectives. We report29

performance on the LibriSpeech evaluation setting. The first three rows correspond to experiments30

in which we do not utilize the shorcut training strategy (referenced in Sec. 3 — "Training" of main31

paper). Using SRMR alone (row 1) produces the largest (worst) RTE. Training with the acoustic32

residue metric instead (row 2) leads to a large improvement in RTE, providing empirical support for33

our metric as an effective training objective. Using our combined metric and the shortcut training34

strategy (both described in Sec. 3 — "Training" of our main paper) further improves the performance35

by a small margin.36
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Figure 1: Human perception study. The instructions given to the user at the start of the survey (left),
and a sample slide from the survey (right). The user is asked to listen to the audio clip, and identify
which room image most closely matches its acoustics.

Table 2: Ablation study using different metric training objectives. AR denotes the proposed acoustic
residue metric.

LibriSpeech
Metric RTE

SRMR [4] 0.2308
AR 0.2156

AR (combined) 0.2123
AR (combined) w/ shortcut 0.2100

1.4 Model/Training details37

RT60 estimator We adopt the RT60 estimator from [1]. The estimator takes a spectrogram as38

input, encodes it with a ResNet18 [5], and outputs a scalar RT60 estimate. The model is trained on39

2.56s clips of reverberant speech simulated on the SoundSpaces platform [2] paired with the ground40

truth RT60 computed from the RIR used to generate the reverberant speech. The model trains using41

MSE loss between predicted and ground truth RT60 values. Ground truth RT60 is computed using42

the Schroeder method [7].43

De-biaser architecture The de-biaser G takes a magnitude spectogram as input. This is passed to a44

bi-directional LSTM with input size 257 and two hidden layers each of size 200, which produces an45

output with the same temporal length as the input spectrogram. This is passed through a linear layer46

of size 300 and a leakyReLU activation, followed by another linear layer of size 257 and a Sigmoid47

activation. The final mask is multiplied with the input magnitude spectrogram to create the generated48

magnitude spectrogram. A resynthesis module computes phase information from the input audio49

waveform, combines this with the generated magnitude spectrogram, and performs an inverse STFT50

to produce the generated waveform. The discriminator D consists of 4 2D Convolutional layers with51

kernel size (5,5) and 15 output channels, followed by a channel averaging operation and two linear52

layers of sizes 50 and 10. A LeakyReLU activation with negative slope = 0.3 is used after each53

intermediate layer. The final layer outputs a scalar-valued metric score estimate.54

De-biaser training In stage (1) (see Sec. 3 — "Training" of our main paper), we train with batch55

size 32. During stage (3) fine-tuning, we use a batch size of 2. G and D are trained with learning56

rates of 2e-6 and 5e-4 respectively in both stages. In each epoch, We train on 10k samples randomly57

selected from the train set without replacement. The reverberator models Rv and Rb are updated with58

the target networks at a frequency of E = 8 epochs. For all models, we clip each audio sample to59

2.56s during training and evaluation.60

Reverberator training We train the reverberators with batch size 4 and a learning rate of 1e-261

in stage (2). During stage (3) fine=tuning, we use batch size 2 and a learning rate of 1e-6. Both62

reverberator models and the ViGAS baseline are trained with MSE loss between the log magnitude63

spectrogram of predicted and ground truth audio.64
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Figure 2: LibriSpeech evaluation. A more detailed version of Figure 4 (see main paper) with
both baseline models for reference. The distribution of RT60 values for LeMARA reverberated
audio (pink) better matches the ground truth distribution (orange) than either baseline (AViTAR and
ViGAS).

Baseline training details We use a learning rate of 1e-2 and a batch size of 4 to train ViGAS. We65

train AViTAR with batch size 4 — all other hyperparameters are set as described in [1].66

Compute All models are trained on 8 NVIDIA Quadro RTX 6000 GPUs.67

1.5 Augmentation strategy68

We follow a data augmentation strategy similar to that proposed in [1] for training the baseline69

models, which was shown to produce better generalization performance on the LibriSpeech setting70

than when trained without this augmentation strategy. In particular, to each batch of dereverberated71

audio we add colored noise, perform a polarity inversion on the waveform with p = 0.5, and convolve72

the waveform with a randomly selected Room Impulse Response (RIR) from a different acoustic73

environment with p = 0.9. At test time, we evaluate without these audio augmentations. This strategy74

is designed to mask over residual acoustic information in dereverberated audio during training. We75

do not use this augmentation strategy in our approach as our model directly learns to remove residual76

acoustic information, obviating the need for a heuristic strategy to mask it out.77

1.6 Limitations78

Our approach focuses on visual acoustic matching on mono-channel audio exclusively. However,79

binaural cues in audio play a fundamental role in our perception of reverberation and room acoustics80

[3]. We leave it to future work to extend our approach to binaural audio.81

1.7 Broader impact82

While training on in-the-wild web videos allows wider access to a diverse variety of speakers and83

environments, it also introduces uncontrolled biases, speaker privacy concerns, and potentially84

harmful content into the model.85

1.8 Data examples86

Refer to video to view samples from both SoundSpaces-Speech and AVSpeech-Rooms.87
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