
Provable Advantage of Curriculum Learning on Parity
Targets with Mixed Inputs

Emmanuel Abbe
EPFL

emmanuel.abbe@epfl.ch

Elisabetta Cornacchia
EPFL, MIT

ecornacc@mit.edu

Aryo Lotfi
EPFL

aryo.lotfi@epfl.ch

Abstract

Experimental results have shown that curriculum learning, i.e., presenting simpler
examples before more complex ones, can improve the efficiency of learning. Some
recent theoretical results also showed that changing the sampling distribution can
help neural networks learn parities, with formal results only for large learning rates
and one-step arguments. Here we show a separation result in the number of training
steps with standard (bounded) learning rates on a common sample distribution: if
the data distribution is a mixture of sparse and dense inputs, there exists a regime in
which a 2-layer ReLU neural network trained by a curriculum noisy-GD (or SGD)
algorithm that uses sparse examples first, can learn parities of sufficiently large
degree, while any fully connected neural network of possibly larger width or depth
trained by noisy-GD on the unordered samples cannot learn without additional
steps. We also provide experimental results supporting the qualitative separation
beyond the specific regime of the theoretical results.

1 Introduction

Starting with easy concepts is an effective way to facilitate learning for humans. When presented
with simpler ideas or tasks, individuals can develop a foundation of knowledge and skills upon which
more complex concepts can be built. This approach allows learners to gradually gain competence and
accelerate learning [EA84, RK90, AKB+97, SGG14].

For machine learning algorithms, this is typically referred to as Curriculum Learning (CL) [BLCW09].
Several empirical studies have shown that presenting samples in a meaningful order can improve
both the speed of training and the performance achieved at convergence, compared to the standard
approach of presenting samples in random order [WCZ21, SIRS22, GBM+17, HW19, PSL15].

The theoretical study of CL is mostly in its infancy. While some works have analytically shown
benefits of CL for certain targets [SMS22, WCA18, MKAS21, CM23] (see Section 1.1 for a dis-
cussion on these), it remained open to provide a separation result between curriculum training and
standard training on a common sampling distribution. Specifically, one seeks to demonstrate how a
standard neural network, trained using a gradient descent algorithm on a given dataset and horizon,
can successfully learn the target when certain samples are presented first during training, whereas
learning does not occur if samples are presented in a random order.

This paper provides such an instance. We focus on the case of parities, as a classical case of
challenging target for differentiable learning. In the experimental part of the paper, we report results
suggesting that a similar picture can hold for other large leap functions as defined in [ABAM23],
although more investigations are required to understand when and how curriculum learning should be
developed for more general functions.

We assume that the network is presented with samples (x, χS(x)), with x ∈ {±1}d and χS(x) :=∏
i∈S xi, for some set S ⊆ {1, . . . , d} of fixed size. We consider datasets where a small fraction ρ of

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

the inputs are sparse, meaning they have, on average, few negative coordinates and mostly positive
coordinates, and the remaining inputs are dense, with an average of half negative and half positive
coordinates. We refer to Section 2 for the definition of the input distribution. Parities seem to be
promising candidates for theoretical investigations into CL, as they are hard to learn in the statistical
query learning model [Kea98], or on dense data by any neural network trained with gradient-based
methods having limited gradient precision [AS20], but they are efficiently learnable on sparse data by
regular architectures [MKAS21] (see Section 1.1 for further discussion).

We say that a neural network is trained with curriculum if it goes through an initial phase where it is
exposed to batches consisting only of sparse samples (see discussion below on the interpretation of
these as ‘simpler’ examples). Following this phase, the network is trained using batches sampled
from the entire dataset. We compare this curriculum training approach with standard training, where
the network receives batches of samples selected randomly from the entire dataset at each step. Our
intuition is as follows. If the fraction of sparse samples is small, without curriculum, the network is
exposed to batches of mostly uniform inputs, and the contribution of sparse inputs in estimating the
gradients will be limited. As a result, learning parities on the mixed distribution without curriculum
is roughly as hard as learning parities on dense inputs (Theorem 2). On the contrary, if the network
is initially exposed to batches consisting of sparse inputs, it can efficiently identify the support of
the parity, and subsequent fitting using batches sampled from the entire dataset enables learning the
target with fewer training steps compared to standard training (Theorem 1).

In particular, we show that if the fraction of sparse samples ρ is small enough, (e.g., ρ < d−4.5,
where d is the input dimension), a 2-layer fully connected network of size θ(d) trained by layerwise
SGD (or noisy-SGD, see Def. 1) with curriculum can learn any target k-parity, with k bounded, in
T = θ(d) steps, while the same network (or any network of similar size) trained by noisy-SGD
without curriculum cannot learn the target in less than Ω(d2) steps. We refer to Section 2 for a more
detailed explanation of our results. While our theoretical results use simplifying assumptions (e.g.,
layerwise training), our experiments show separations between curriculum and standard training in a
broader range of settings.

1.1 Related Literature

Curriculum Learning (CL) was first introduced in the machine learning context by the seminal
work of [BLCW09]. This paper along with many other subsequent works presented empirical
evidence that training neural networks with a curriculum can be beneficial in both the training
speed and the performance achieved at convergence in certain instances in different domains such as
computer vision [JMMH14, GHZ+18, CG15, STD19], natural language processing (NLP) [KB17,
GBM+17, ZKK+18, PSN+19], and reinforcement learning [FHW+17, NPL+20]. We refer to
relevant surveys [WCZ21, SIRS22] for a more comprehensive list of applications of CL in different
domains. In general, defining a complexity measure on samples and consequently an ordering of
training inputs is not trivial. Some works determine the easiness of samples based on predefined rules
(e.g., shape as used in [BLCW09]), while others also use the model’s state and performance to evaluate
the samples dynamically as in self-paced learning (SPL) [KPK10]. In this work, we follow the former
group as we define the hardness of samples based on the number of −1 bits, i.e., the Hamming weight.
Note that in parity targets, +1 is the identity element. Thus, one can view the number of −1 bits as
the length of the sample. In this sense, our work resembles [SAJ10, ZS14, KB17, PSN+19] which
use the length of the text inputs as a part of their curriculum.

Despite the considerable empirical work on CL, there appears to be a scarcity of theoretical analysis.
Few theoretical works focused on parity targets, as in this paper. While parities are efficiently
learnable by specialized algorithms that have access to at least d samples (e.g. Gaussian elimination
over the field of two elements), they are hard to learn under the uniform distribution (i.e. on dense data)
by any neural network trained with gradient-based methods with limited gradient precision [AS20,
AKM+21]. Parities on sparse data can be learned more efficiently on an active query model, which
can be emulated by a neural network [AS20]. However, such emulation networks are far from the
practical and homogeneous networks, and distribution class-dependent. A natural question that
has been considered is whether more standard architectures can also benefit from a simpler data
distribution. In [MKAS21], the authors make a first step by showing that parities on sparse inputs
are efficiently learnable on a 1-layer network with a parity module appended to it, with a one-step
argument. In [DM20], it is shown that for a two-layer fully connected network, sparse inputs help but

2

with a variant of the distribution that allows for leaky labels. [ABLR23] obtains experimental results
for a curriculum algorithm presenting sparse samples first with heuristics for regular networks and
hyperparameters, but without proofs. In [CM23], the authors prove that a two-layer fully connected
net can benefit from sparse inputs, with a one-step gradient argument requiring a large learning
rate. This paper improves on [CM23] not only in terms of having more natural training settings
and hyperparameters (i.e., we use SGD with bounded batch size and bounded learning rate), it is
also establishing a separation between learning with and without curriculum on a common sampling
distribution, while [CM23] does not (in fact in their work curriculum involves both sparse and
dense inputs while standard training involves dense inputs only). To the best of our knowledge, our
paper is the first work that establishes a rigorous separation between training on adequately ordered
samples and randomly ordered samples drawn from the same distribution, and our theorem gives a
condition on the mixture under which this separation holds (interestingly the separation does not
take place for all mixtures parameters). Beyond parities, [SMS22] studies a teacher-student model,
where the target depends on a sparse set of features and where the variance on the irrelevant features.
Furthermore, [WCA18, WA20] show that on some convex models, CL provides an improvement in
the speed of convergence of SGD. In contrast, our work covers an intrinsically non-convex problem.

2 Setting and Informal Contributions

We consider the problem of learning a target function f : {±1}d → {±1} that belongs to the class of
k-parities on d bits, i.e.,

f ∈ {χS(x) =
∏
j∈S

xj : S ⊆ [d], |S| = k}, (1)

where we denoted by [d] := {1, . . . , d}. We assume that the network has access to a dataset
(X,Y) = {(xs, ys)}s∈[m] where the inputs xs are sampled i.i.d. from a mixed distribution defined as
follows:

Dmix = ρDµ + (1− ρ)Du, (2)

where Dµ = Rad(µ+1
2)⊗d1, for some µ ∈ [−1, 1], Du = Unif{±1}d2 and ρ ∈ [0, 1] is some

fixed parameter, and ys = f(xs). We will assume µ ∈ (0, 1). In other words, we assume that the
dataset contains approximately ρm samples with in average 1−µ

2 d negative bits (sparse samples), and
(1− ρ)m samples with in average half negative bits (dense samples). We consider training the neural
network with stochastic gradient descent, with or without gradient noise (SGD or noisy-SGD, see
Def. 1).

Informal Description of the Curriculum and Standard Training Algorithms. We compare two
training strategies: standard training and curriculum training. In the standard training, at each step,
mini-batches are drawn from the whole dataset. For curriculum training, we first need to isolate the
set of sparse inputs in our dataset. Let us denote this set by X1 := {xs ∈ X : H(xs) < (12 − µ

4)d},
where H(x) :=

∑
j∈[d] 1(xj = −1) denotes the Hamming weight of x, which is the count of

negative bits in x, and by Y1 = {ys ∈ Y : xs ∈ X1} the corresponding set of labels. Our curriculum
strategy consists of training on only sparse samples for the first T1 steps, where T1 ≤ T is some
well-chosen time horizon and T is the total number of training steps. After this initial phase, the
network is trained on samples belonging to the whole dataset. To sum up, we compare the following
two training strategies:

• (standard training): At all t ∈ [T], mini-batches are sampled from (X,Y);
• (curriculum training): At t ≤ T1, mini-batches are sampled from (X1, Y1) and at T1 < t ≤
T mini-batches are sampled from (X,Y).

Informal Description of the Positive and Negative Results. In this paper, we prove that if the
fraction of sparse samples ρ is small enough, there is a separation in the number of training steps
needed to learn the target parity up to a given accuracy. We say that an algorithm on a neural network

1Rad denotes the Rademacher distribution, i.e., we say that x ∼ Rad(p), for p ∈ [0, 1], if P(x = 1) =
1− P(x = −1) = p.

2Unif denotes the uniform distribution. In particular, Du = D0.

3

learns a target function f : {±1}d → {±1} up to accuracy 1− ϵ, for ϵ ≥ 0, in T steps, if it outputs a
network NN(x; θT) such that:

Px∼Dmix(sgn(NN(x; θT)) = f(x)) ≥ 1− ϵ, (3)

where sgn(.) denotes the sign function. In our main positive result, we consider training with the
covariance loss (Def. 2) and we refer to Remark 2 for considerations on other losses. Let us state our
main positive result informally.
Theorem 1 (Theorem 3, Informal). Consider the input distribution Dmix with mixture parameters
ρ = Õ(d−1/2)3, µ = θ(1). Let ϵ > 0. Then, a 2-layer ReLU neural network of size O(d) initialized
with an isotropic distribution, trained with the covariance loss, standard (i.e., non-diverging) learning
rate schedule and either (i) a layer-wise curriculum-noisy-SGD algorithm with gradient range
A = Õ(

√
d), noise-level τ = Õ(d−1) and sparse samples first, or (ii) a layer-wise curriculum-SGD

algorithm with sparse samples first, can learn any k-parities, k = θ(1), up to accuracy at least 1− ϵ

in T = Õ(d)/ϵ2 steps.

We further show an additional positive result valid for a layer-wise curriculum SGD with the hinge
loss, which holds for large batch size and diverging learning rate (Theorem 4). On the flip side, we
have the following.
Theorem 2 (Theorem 5, Informal). Consider the input distribution Dmix with mixture parameters
ρ = Õ(d−3.5−δ), δ > 0, and µ = θ(1). Then, any neural network of size Õ(d) (any depth),
with any initialization and activation, trained by a noisy-SGD algorithm (layer-wise or joint) with
gradient range A = Õ(

√
d), noise-level τ = Ω̃(d−1), batch size B = Ω̃(ρ−2), any almost surely

differentiable loss function and any learning rate schedule, will need at least T = Ω̃(ϵd1+δ) steps to
achieve accuracy 1

2 + ϵ for any k-parities (k ≥ 6).

Conclusion of Results. When using noisy-SGD, the curriculum learning algorithm that takes
sparse samples first, for the first layer training, and then full samples, can learn in a regime of
hyperparameters and training steps (Theorem 1) that is contained in the hyperparameter regime of the
negative result (Theorem 2), for which it is shown that the absence of curriculum cannot learn without
additional training steps. Further, it is shown in part (ii) of the first theorem, that using SGD rather
than noisy-SGD still allows to learn with the curriculum training; this result does however not come
with a counter-part for the lower-bound, i.e., we cannot show that SGD without curriculum could not
learn such parities, as there is currently no proof technique to obtain rigorous lower-bounds for SGD
algorithms (as for the case of noiseless honest-SQ algorithms); see for instance discussions about
this in [AKM+21, ABA22]. However, it is not expected that SGD can do better than noisy-SGD on
‘regular’ neural networks [ABA22, ABAM22, ABAM23].

3 Positive Results for Curriculum Training

The Algorithm. Let us define the noisy-SGD algorithm, that is used in both our positive and
negative results.
Definition 1 (Noisy-SGD). Consider a neural network NN(.; θ), with initialization of the weights θ0,
and a dataset (X,Y) = {(xs, ys)}s∈[m]. Given an almost surely differentiable loss function L, the
updates of the noisy-SGD algorithm with learning rate γt and gradient range A are defined by

θt+1 = θt − γt

(
1

B

B∑
s=1

[
∇θtL(NN(xs,t; θt), ys,t, xs,t)

]
A
+ Zt

)
, (4)

where for all t ∈ {0, . . . , T − 1}, Zt are i.i.d. Unif[−τ, τ], for some noise level τ , and they are
independent from other variables,B is the batch size, and [z]A := argmin|y|≤A |y−z|, i.e., whenever
the gradient exceeds A (resp. −A) it is rounded to A (resp. −A).

For brevity, we will write L(θt, y, x) := L(NN(x; θt), y, x). We assume that for all s ∈ [B],
(xs,t, ys,t) are chosen from (Xt, Yt), where (Xt, Yt) can be either the whole dataset (X,Y), or a
subset of it. We include the noise Zt and the gradient range A to cover the noisy-SGD algorithms,

3Õ(dc) = O(dcpoly(log(d))), for any c ∈ R.

4

used in SQ lower bounds e.g. in [AS20, AKM+21, MKAS21, ABA22, ACHM22]. Note that if we
set τ = 0 and A large enough, we recover the standard SGD algorithm without noise.

We assume that our dataset is drawn from the mixed distribution defined in (2), with parameters ρ, µ.
For the purposes of this section, we assume ρ = Õ(d−1/2) and µ ∈ (0, 1). As a preliminary step,
we isolate the sparse inputs from our dataset, by mean of Hamming weight. In particular, we define
X1 := {xs ∈ X : H(xs) < (12 − µ

4)d}, where H(x) :=
∑

j∈[d] 1(xj = −1) denotes the Hamming
weight of x, and Y1 = {ys ∈ Y : xs ∈ X1}. Note that, due to the concentration of Hamming weight,
for d large enough, there will be approximately mρ samples in X1 (see Lemma 1). We assume that
the training set is large enough, such that each sample is observed at most once during training.

In this section, we consider a 2-layer neural network NN(x; θ), with θ = (a,w, b), defined by:
NN(x; θ) :=

∑N
i=1 aiσ(wix + bi), where σ(x) = ReLU(x) := max{x, 0}. We assume that the

number of hidden units is N ≥ k + 1, where k is the degree of the target parity. We initialize
w0

ij = 0, a0i = κ and b0i = ∆d + 1, for some κ,∆ > 0, for all i, j. We refer to κ and ∆ as the
second layer initialization scale and the bias initialization scale, respectively. We adopt a layer-wise
curriculum training approach. During the initial phase of training, we exclusively train the first
layer of the network using samples taken from (X1, Y1). Furthermore, we project the weights of
the first layer, to guarantee that they stay bounded. In the second phase, we train only the second
layer using the entire merged dataset. We refer to Algorithm 1 in Appendix A for the pseudo-code
of the algorithm used in our proof. In the context of standard learning without curriculum, similar
layer-wise training strategies are considered in e.g., [MSS20, BEG+22, ABAM23]. [CM23] uses
a layer-wise curriculum training, but with a one-step argument that requires a diverging learning
rate. In our analysis, we keep the bias weights fixed to specific values during the whole training. We
believe that one could extend the result to include scenarios with more general initializations and
where the bias weights are trained, but this would require further technical work.

The Covariance Loss. We train NN(x; θ) using noisy-SGD with a specific loss function, namely
the covariance loss, that we define here. The covariance loss appears in [CM23] with a slightly
different definition: in particular, the following definition does not depend on the average estimator
output, as opposed to their definition.
Definition 2 (Covariance Loss). Let (X,Y) = {(xs, ys)}s∈[m] be a dataset, where for all s, xs ∈ X
and ys ∈ {±1}, and let ȳ = 1

m

∑
s∈[m] y

s. Assume |ȳ| < 1. Let f̂ : X → {±1} be an estimator. We
define the covariance loss as

Lcov(f̂ , y
s, xs) :=

(
1− ysȳ − f̂(xs)(ys − ȳ)

)
+
, (5)

where (a)+ := max{a, 0}.

The covariance loss can be applied to classification datasets with non-negligible fractions of +1 and
−1 labels. In Proposition 1, we show that a small covariance loss implies a small classification error.
Proposition 1. Let (X,Y) = {(xs, ys)}s∈[m] be a dataset, where for all s, xs ∈ X and ys ∈ {±1}.
Let ȳ = 1

m

∑
s∈[m] y

s and assume |ȳ| < 1− δ, for some δ > 0. Let f̂ := X → {±1} be an estimator.

If 1
m

∑
s∈[m] Lcov(f̂ , x

s, ys) < ϵ, then 1
m

∑
s∈[m] 1(sgn(f̂(x

s)) ̸= ys) < ϵ
δ .

The proof of Proposition 1 can be found in Appendix D.
Remark 1. We remark that for balanced datasets (ȳ = 0), the covariance loss coincides with
the hinge loss. On the other hand, note that the right hand side of (5) can be rewritten as(
(1− ysȳ) · (1− ysf̂(xs))

)
+
. Thus, in some sense, the samples in the under-represented class

(where ysȳ ≤ 0) are assigned a higher loss compared to those in the over-represented class (where
ysȳ ≥ 0).

Main Theorem. We are now ready to state our main theorem.
Theorem 3 (Main Positive Result). Let NN(x; θ) be a 2-layer ReLU neural network with N ≥ k+1
hidden units, 2nd layer init. scale κ > 0 and bias init. scale ∆ > 0. Let Dmix be a mixed distribution,

as defined in (2), with parameters 0 < ρ ≤ ∆
4N

√
log(d)√

d
, and µ ∈ (0, 1). Assume we have access to

5

a dataset (X,Y) = {xs, ys}s∈[m], where xs iid∼ Dmix, ys = χS(x
s), with |S| = k. Assume NN is

trained according to the layer-wise curriculum-SGD algorithm (Algorithm 1), with the covariance
loss, batch size B, noise level τ and gradient range A.

For all ϵ > 0, there exist C,C1, C
∗ > 0 such that if κ ≤ 1/N(2∆d + 2), τ ≤ κ, A = Ω̃(

√
d),

m ≥ 4C∗ log(3d)dρ−1B, and if

T1 =
2C∆2d log(d)2

L2
µ

, γ1 =
Lµ

C∆κd log(d)2
, (6)

T2 =
256(C1 + 2∆k + τ)2N2d

ϵ2∆2 log(d)
, γ2 =

ϵ log(d)

8(C1 + 2∆k + τ)2dN
, (7)

where Lµ = µk−1 − µk+1, then, with probability at least 1 − 6Nd−C∗
, the algorithm outputs a

network such that 1
m

∑
s∈[m] Lcov(θ

T1+T2 , xs, ys) ≤ ϵ.

The following corollary is a direct consequence of Theorem 3 and Proposition 1.
Corollary 1. Let the assumptions of Theorem 3 be satisfied and assume that τ = O(κ) and ∆, k
constants. There exists a 2-layer ReLU network of size at most (d + 2)(k + 1) and initialization
invariant to permutations of the input neurons, such that for all ϵ > 0 the layer-wise curriculum
noisy-SGD algorithm with gradient rangeA = Õ(

√
d), after at most T = Õ(d) steps of training with

bounded learning rates, outputs a network such that Px∼Dmix
(sgn(NN(x; θT)) = f(x)) ≥ 1 − ϵ,

with high probability.
Remark 2. The choice of the covariance loss is motivated by a simplification of the proof of Theorem 3.
Indeed, with this loss, we can show that in the first part of training the weights incident to the relevant
coordinates move non-negligibly, while the other weights stay close to zero (see proof outline). If we
used another loss, say the hinge loss, all weights would move non-negligibly. However, we believe
that one could still adapt the argument to cover the hinge loss case, by adding another projection to
the iterates. In the following, we also give a positive result for the hinge loss, with a different proof
technique, that holds for large batch size and large learning rate (Theorem 4).
Remark 3. While we show that with appropriate hyperparameters, the layer-wise curriculum-SGD
can learn k-parities in Õ(d) steps, we need to notice that to implement the curriculum, one has to
first retrieve (X1, Y1). This involves computing the Hamming weight of d/ρ samples, which adds
computational cost if the curriculum learning includes this part. Nevertheless, in the experiments
that we performed, the recovery of (X1, Y1) was consistently efficient, with an average of less than 1
second running time for a dataset of 10 million samples of dimension 100. On the other hand, the
reduction of training steps due to the curriculum yields significant time savings.
Remark 4. Theorem 3 provides an upper bound on the sample complexity required to learn using a
curriculum, of Õ(dB/ρ) for SGD with batch size B. Consequently, while the number of iterations
needed for learning remains unaffected by ρ, the sample complexity increases as ρ decreases.
Additionally, we do not currently have a lower bound on the sample complexity for learning parities
with standard training with offline SGD. However, our experiments in Section 5 demonstrate a
noticeable difference in the sample complexity required for learning with and without a curriculum.
These findings may encourage future work in establishing a theoretical advantage in the number of
samples needed to learn with curriculum.
Remark 5. We further remark that the proof method of Theorem 3 yields a tighter upper bound
on curriculum learning’s sample complexity than the 1-step argument used in [CM23][Thm 4].
Specifically, using the technique of [CM23][Thm 4], we achieve an upper bound of Õ(d2/ρ), as
opposed to the Õ(d/ρ) given by Theorem 3 for SGD with bounded batch size.
Remark 6. T1 depends on the degree of the parity k through the parameter Lµ. We believe that such
dependence cannot be removed, however, we remark that choosing µ sufficiently close to 1 (e.g.
µ = 1 − 1

k) allows bounding Lµ independently from k. Indeed, our experiments (Figure 4) show
mild dependence on the parity degree for curriculum learning with large µ.

Proof Outline. The proof of Theorem 3 follows a similar strategy as in [AGJ21, ABAM23, TV19].
We decompose the dynamics into a drift and a martingale contribution, and we show that the drift
allows us to recover the support of the parity in Õ(d) steps, while in the same time horizon, the
martingale contribution remains small, namely of order O(1/

√
d log(d)). In particular, we show that

6

after the first phase of training, with high probability, all weights corresponding to coordinates in
the parity’s support are close to ∆ and the others are close to zero. The fit of the second layer on
the whole dataset corresponds to the analysis of a linear model and follows from standard results on
the convergence of SGD on convex losses (e.g., in [SSBD14]). The formal proof can be found in
Appendix A.

Hinge Loss. While the use of the covariance loss simplifies considerably the proof of Theorem 3,
we believe that the advantages of curriculum extend beyond this specific loss. Here, we present a
positive result that applies to a more commonly used loss function, namely the hinge loss.

Theorem 4 (Hinge Loss). Let NN(x; θ) =
∑N

i=1 aiσ(wix+bi) be a 2-layer fully connected network
with activation σ(y) := Ramp(y) and N = θ̃(d2 log(1/δ)). Assume we have access to a dataset

(X,Y) = {(xs, ys)}s∈[m], with xs iid∼ Dmix, with parameters ρ > 0, µ ∈ (0, 1), and ys = χS(x), for
some target parity χS , with |S| = k. Then, there exists an initialization and a learning rate schedule,
such that for any target parity χS and for any ϵ > 0, the layer-wise curriculum SGD on the hinge loss
with batch size B = θ̃(d10/ϵ2 log(1/δ)), noise level τ = θ̃(ϵµ

k log 1/δ
d6), T1 = 1 and T2 = θ̃(d6/ϵ2)

with probability 1− 3δ, outputs a network such that Px∼Dmix
(sgn(NN(x; θT)) = f(x)) ≥ 1− ϵ.

As opposed to Theorem 3, Theorem 4 only holds for SGD with large batch size and unbounded
learning rate schedules. The proof of Theorem 4 follows a 1-step argument, similarly to [CM23], and
it is deferred to Appendix B.

4 Negative Result for Standard Training

In this section, we present a lower bound for learning k-parities on the mixed distribution of eq. (2),
without curriculum.
Theorem 5 (Main Negative Result). Assume we have access to a dataset (X,Y) = {(xs, ys)}s∈[m],

with xs iid∼ Dmix, with parameters ρ = od(1), µ ∈ (0, 1), and ys = χS(x), with |S| = k. Let
NN(x; θ) be a fully-connected neural network of size P , with initialization that is invariant to
permutations of the input neurons. Then, the noisy-SGD algorithm with noise level τ , gradient range
A, batch size B, any learning rate schedule, and any loss function, after T steps of training without
curriculum, outputs a network such that

Px∼Dmix
(sgn(NN(x; θT)) = f(x)) ≤ 1

2
+
TPA

τ
·

((
d

k

)−1

+ Ckρ
2µ4k +

1

B

)1/2

, (8)

where the probability is over x ∼ Dmix and any randomness in the algorithm, and where Ck is a
constant that depends on k.
Remark 7. For the purposes of Theorem 5, the network can have any fully connected architecture
and any activation such that the gradients are well-defined almost everywhere. Furthermore, the loss
can be any function that is differentiable almost everywhere.

Theorem 5 follows from an SQ-like lower bound argument and builds on previous results
in [AS20][Theorem 3]. We defer the formal proof to Appendix C. Theorem 5 implies the following
corollary.

Corollary 2. Under the assumptions of Theorem 5, if ρ = Õ(d−3.5−δ) and k ≥ 6, any fully
connected network of size at most Õ(d) with any permutation-invariant initialization and activation,
trained by the noisy-SGD algorithm with batch size B = Ω̃(ρ−2), noise-level τ = Õ(1/d) and
gradient range A = Õ(

√
d), after T = Õ(d) steps of training, will output a network such that

Px∼Dmix(sgn(NN(x; θT)) = f(x)) ≤ 1
2 + Cd−δ log(d)c, for some c, C > 0.

In particular, in Corollary 2, the network can have any width and depth (even beyond 2 layers),
as long as the total number of parameters in the network scales as Õ(d) in the input dimension.
Combining Corollary 1 and Corollary 2, we get that if ρ = Õ(d−3.5−δ), for some δ > 0, and k ≥ 6,
and for ϵ = 1/10, say, a 2-layer fully connected network can learn any k parities up to accuracy 1− ϵ
in T = θ(d) steps with curriculum, while the same network in the same number of steps without
curriculum, can achieve accuracy at most 1− 2ϵ, for d large enough.

7

104 105 106

Number of samples

0.6

0.8

1.0

Ge
n.

 a
cc

ur
ac

y

=0.0001
Std.
Curr.

104 105 106

Number of samples

0.6

0.8

1.0

Ge
n.

 a
cc

ur
ac

y

=0.001
Std.
Curr.

104 105 106

Number of samples

0.6

0.8

1.0

Ge
n.

 a
cc

ur
ac

y

=0.01

Std.
Curr.

104 105 106

Number of samples

0.6

0.8

1.0

Ge
n.

 a
cc

ur
ac

y

=0.1
Std.
Curr.

104 105 106

Number of samples

0.8

0.9

1.0

Ge
n.

 a
cc

ur
ac

y

=0.5
Std.
Curr.

10 4 10 3 10 2 10 1

105

106

No
. o

f s
am

pl
es Std.

Curr.

Figure 1: Comparison of the performance of the curriculum strategy and standard training for different
training set sizes and values of ρ. In the bottom-left plot, we report the number of samples needed to
achieve accuracy close to 1 for different values of ρ based on the other plots.

Remark 8. While our results show a first separation in the number of training steps between curriculum
and standard training, we do not claim that the given range of ρ is maximal. For instance, one could
get a tighter negative bound by considering Gaussian, instead of uniform, noise in the noisy-SGD
iterates. However, getting a positive result with the curriculum for Gaussian noise would require a
more involved argument. Our experiments show separation in the number of training steps and in the
sample complexity for different values of ρ.

5 Experiments

In this section, we present empirical results demonstrating the benefits of the proposed curriculum
method.4 We use a multi-layer perceptron (MLP) with 4 hidden layers of sizes 512, 1024, 512, and
64 as our model. We optimize the model under the ℓ2 loss using mini-batch SGD with batch size
64. We also train all layers jointly. Each of our experiments is repeated with 10 different random
seeds, and the results are reported with 95% confidence intervals. Note that generalization error
is always computed based on Dmix. Here, we mostly focus on the common settings not covered
by our theoretical results. We present additional results on other architectures, namely, two-layer
mean-field networks [MMN18] and Transformers [VSP+17] and covariance and hinge loss functions
in Appendix E.2.

Number of Samples. First, we focus on the difference in sample complexity, between curriculum
and standard training. We consider learning f(x1, . . . , x100) = x1x2x3x4x5, with inputs sampled
from a mixed distribution with µ = 0.98 and different values of ρ = 10−4, 10−3, 10−2, 0.1, 0.5.
For each ρ, we train the network on training sets of different sizes (between 104 and 106) with
and without curriculum. When using the curriculum, we first select the sparse samples as those
with Hamming weight smaller than (12 − µ

4)d, and we train on those until convergence (specifically,
training loss smaller than 10−2). We then train the model on the entire training set until convergence.
Similarly, when the curriculum is not used, the model is trained using all the available samples until
convergence.

Figure 1 shows the validation accuracy achieved for different values of ρ,m. It can be seen that for
some values of ρ, there is a reduction in the number of samples needed to achieve validation accuracy
close to 1 when the curriculum is used. For the purpose of visualization, in Figure 1 (bottom-right),
we sketch the number of samples needed to achieve accuracy close to 1 for different values of ρ,
based on the previous plots. We notice that the sample complexity decreases as ρ is increased, for
both curriculum and standard training. Among the ρ values that we tried, the gap between the two
training strategies is maximal for ρ = 0.01, and it decreases as ρ gets larger or smaller. Also, note

4Code: https://github.com/aryol/parity-curriculum

8

https://github.com/aryol/parity-curriculum

10 4 10 3 10 2 10 1

106
St

ep
s t

o
le

ar
n

Standard
Curriculum

10 3 10 2 10 1

106

St
ep

s t
o

le
ar

n

.98

.9

.5

.02
Std.
Curr.

104 105 106

Number of training samples

0.5

0.6

0.7

0.8

0.9

1.0

Ge
n.

 a
cc

ur
ac

y k = 5
k = 7
k = 10
Std.
Curr.

104 105 106

Number of training samples

0.5

0.6

0.7

0.8

0.9

1.0

Ge
n.

 a
cc

ur
ac

y

.98

.9

.5

.02
Std.
Curr.

Figure 2: (Top-left) Number of training steps needed for learning 5-parity for different values of ρ.
The gap between curriculum and standard training decreases as ρ increases. (Top-right) The number
of training steps for different values of µ based on ρ. (Bottom-right) Performance for different values
of µ and different sample sizes. Curriculum boosts the learning for large values of µ. (Bottom-left)
Performance for different parity functions. (The curves of standard training for k = 7 and k = 10
overlap.) The benefit of curriculum potentially increases with the degree of the parity.

that for small values of ρ the sample complexity for standard training is constant and equals 106. We
note that with 106 samples, we can learn f(x) even with uniform inputs (ρ = 0).

Number of Training Steps. Now we focus on the number of iterations needed for learning the
same f as above. In order to study the number of iterations independently of the number of samples,
we draw fresh mini-batches at each step. When using the curriculum, we sample from Dµ in the
initial phase and from Dmix in the second phase, while when using standard training we sample
from the mixed distribution at each step. In all cases, we train until convergence. The number of
iterations needed for learning f for different values of ρ is depicted in Figure 2 (top-left). It can be
seen that the number of training steps needed for learning with the curriculum is constant w.r.t. ρ.
In contrast, for standard training, the number of iterations increases with the decrease of ρ. Both
these observations are consistent with our theoretical results. In particular, for small values of ρ, the
curriculum significantly reduces the number of training steps, while for large ρ it provides little or no
benefit, and for ρ = 0.5, it is harmful.

Dependency on µ and k. Next, we investigate the dependency of our results on µ and on the
degree of parity k. For evaluating dependency on µ, we consider the function f as above and different
values of µ. First, we consider the number of training steps needed for learning f based on ρ. The
results are shown in Figure 2 (top-right). It can be seen that while the curriculum is not beneficial
for µ = 0.02 (where Dµ is close to Du and all samples are dense), it can significantly reduce the
number of training steps for moderate and large values of µ. Further, we fix ρ = 0.01 and compare
the performance of the curriculum and standard training for different training set sizes. The results
are demonstrated in Figure 2 (bottom-right). It is shown that for large values of µ such as 0.98 and
0.90, there is a gap in the number of samples needed for achieving generalization accuracy close to
1 between curriculum and standard training. On the other hand, for smaller values of µ, this gain
is diminished. Nonetheless, note that the relationship between the performance of the curriculum
method and µ is not monotonous (e.g., see the number of steps plot), and this is indeed reflected in
our analysis. More precisely, in Theorem 1, T1 scales with 1/L2

µ where Lµ = µk−1 − µk+1.

9

104 105 106

Number of training samples

0

1

2

Ge
n.

 lo
ss Std.

Curr.

104 105

Number of training samples

0.5

1.0

1.5

2.0

Ge
n.

 lo
ss Std.

Curr.

104 105 106

Number of training samples

0.0

0.2

0.4

Ge
n.

 lo
ss

Standard
Curriculum

10 3 10 2 10 1

106

3 × 105
4 × 105

6 × 105

St
ep

s t
o

le
ar

n Standard
Curriculum

10 3 10 2 10 1

105

106

St
ep

s t
o

we
ak

ly
 le

ar
n

Std.
Curr.

10 3 10 2 10 1

4 × 105

6 × 105

St
ep

s t
o

le
ar

n Std.
Curr.

Figure 3: Considering gains in sample complexity (top row) and number of steps (bottom row) beyond
parity targets. Plots in the left (corresponding to fleft(x) = x1x2x3x4x5+

1
2x1x2x3x4x5x6), middle

(fmiddle(x) = x1x2x3x4x5 + 1
2x6 · · ·x11), and right (fright(x) = 1

2x1x2 + 1
2x1 · · ·x6) columns

present cases in which curriculum is beneficial, is only beneficial for weak learning, and is not
beneficial, respectively.

To analyze the effect of the degree of parity, k, we fix µ = 0.98, ρ = 0.01 and the input dimension
d = 100, and we compare the performance of the model trained with different amounts of training
data. The results are portrayed in Figure 2 (bottom-left). One can see that, while without curriculum
the parity problem becomes harder to learn as k increases, the complexity with curriculum has mild
dependence on k and it allows one to learn all the parities considered with 105 samples. The plot
exhibiting the dependence of the number of optimization steps on k is reported in Appendix E.2.

Beyond Parities. Finally, we study target functions composed of multiple monomials. We consider
three examples in 100-dimensional space: (i) fleft(x) = x1x2x3x4x5 + 1

2x1x2x3x4x5x6, (ii)
fmiddle(x) = x1x2x3x4x5 + 1

2x6 · · ·x11, and (iii) fright(x) = 1
2 (x1x2 + x1 · · ·x6). We also

fix µ = 0.98. In Figure 3, we investigate the gain of curriculum method in sample complexity for
ρ = 0.01 (top row) and the number of training steps (bottom row) needed to learn. The plots in
the bottom row are obtained by training the network with fresh batches. The left, middle, and right
column correspond to fleft, fmiddle, and fright, respectively. Note that curriculum is beneficial for
fleft, while it hardly helps with fright. Interestingly, for fmiddle, curriculum is advantageous for
weak learning of the function. More specifically, it helps learning x1x2x3x4x5 monomial of fmiddle.
Consequently, for the corresponding iterations plot (Figure 3 bottom-middle), we plot the number
of iterations needed for getting a loss below 0.26. This suggests that the curriculum method put
forward in this paper mostly helps with learning of the monomial with the lowest degree. We leave
improvements of our curriculum method to future work.

6 Conclusion

In this paper, we introduced a curriculum strategy for learning parities on mixed distributions. Our
approach involves training on sparse samples during the initial phase, which leads to a reduction
in the number of required training steps and sample complexity compared to standard training. In
the experiments section, we presented some results for certain functions with multiple monomials.
Although a complete picture requires further investigation, these results suggest that starting from
sparse samples provides advantages in the early stages of training. It would be interesting to investigate
what variation of our curriculum strategy fits best the case of multiple monomials, beyond the initial
phase. For example, one could explore multiple curriculum phases where training progresses from
samples with increasing Hamming weight, or employ a self-paced curriculum that dynamically selects
samples during training. Such analyses could offer valuable insights into the broader applicability of
our approach. Here we focused mainly on establishing a formal separation in the number of training
steps for the canonical case of parities.

10

References
[ABA22] Emmanuel Abbe and Enric Boix-Adsera. On the non-universality of deep learning:

quantifying the cost of symmetry. arXiv preprint arXiv:2208.03113, 2022.

[ABAM22] Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. The merged-staircase
property: a necessary and nearly sufficient condition for sgd learning of sparse functions
on two-layer neural networks. In Conference on Learning Theory, pages 4782–4887.
PMLR, 2022.

[ABAM23] Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. Sgd learning on
neural networks: leap complexity and saddle-to-saddle dynamics. arXiv preprint
arXiv:2302.11055, 2023.

[ABLR23] Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the
unseen, logic reasoning and degree curriculum. arXiv preprint arXiv:2301.13105, 2023.

[ACHM22] Emmanuel Abbe, Elisabetta Cornacchia, Jan Hazla, and Christopher Marquis. An initial
alignment between neural network and target is needed for gradient descent to learn. In
International Conference on Machine Learning, pages 33–52. PMLR, 2022.

[AGJ21] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient
descent on non-convex losses from high-dimensional inference. The Journal of Machine
Learning Research, 22(1):4788–4838, 2021.

[AKB+97] Judith Avrahami, Yaakov Kareev, Yonatan Bogot, Ruth Caspi, Salomka Dunaevsky,
and Sharon Lerner. Teaching by examples: Implications for the process of category
acquisition. The Quarterly Journal of Experimental Psychology Section A, 50(3):586–
606, 1997.

[AKM+21] Emmanuel Abbe, Pritish Kamath, Eran Malach, Colin Sandon, and Nathan Srebro. On
the power of differentiable learning versus PAC and SQ learning. In Advances in Neural
Information Processing Systems, volume 34, 2021.

[AS20] Emmanuel Abbe and Colin Sandon. On the universality of deep learning. In Advances
in Neural Information Processing Systems, volume 33, pages 20061–20072, 2020.

[AS23] Emmanuel Abbe and Colin Sandon. Poly-time universality and limitations of deep
learning. to appear in CPAM, 2023.

[BEG+22] Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril
Zhang. Hidden progress in deep learning: Sgd learns parities near the computational
limit. arXiv preprint arXiv:2207.08799, 2022.

[BLCW09] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th annual international conference on machine
learning, pages 41–48, 2009.

[CG15] Xinlei Chen and Abhinav Gupta. Webly supervised learning of convolutional networks.
In Proceedings of the IEEE international conference on computer vision, pages 1431–
1439, 2015.

[CM23] Elisabetta Cornacchia and Elchanan Mossel. A mathematical model for curriculum
learning. arXiv preprint arXiv:2301.13833, 2023.

[DBK+20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.

[DM20] Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in
Neural Information Processing Systems, 33:20356–20365, 2020.

[EA84] Renee Elio and John R Anderson. The effects of information order and learning mode
on schema abstraction. Memory & cognition, 12(1):20–30, 1984.

11

[FHW+17] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel.
Reverse curriculum generation for reinforcement learning. In Conference on robot
learning, pages 482–495. PMLR, 2017.

[GBM+17] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu.
Automated curriculum learning for neural networks. In international conference on
machine learning, pages 1311–1320. PMLR, 2017.

[GHZ+18] Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong, Matthew R
Scott, and Dinglong Huang. Curriculumnet: Weakly supervised learning from large-
scale web images. In Proceedings of the European conference on computer vision
(ECCV), pages 135–150, 2018.

[HW19] Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training
deep networks. In International Conference on Machine Learning, pages 2535–2544.
PMLR, 2019.

[JMMH14] Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexander G Hauptmann. Easy samples
first: Self-paced reranking for zero-example multimedia search. In Proceedings of the
22nd ACM international conference on Multimedia, pages 547–556, 2014.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[KB17] Tom Kocmi and Ondrej Bojar. Curriculum learning and minibatch bucketing in neural
machine translation. arXiv preprint arXiv:1707.09533, 2017.

[Kea98] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the
ACM (JACM), 45(6):983–1006, 1998.

[KPK10] M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. Advances in neural information processing systems, 23, 2010.

[MKAS21] Eran Malach, Pritish Kamath, Emmanuel Abbe, and Nathan Srebro. Quantifying the
benefit of using differentiable learning over tangent kernels. In International Conference
on Machine Learning, pages 7379–7389. PMLR, 2021.

[MMN18] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the
landscape of two-layer neural networks. Proceedings of the National Academy of
Sciences, 115(33):E7665–E7671, 2018.

[MSS20] Eran Malach and Shai Shalev-Shwartz. Computational separation between convolutional
and fully-connected networks. arXiv preprint arXiv:2010.01369, 2020.

[NPL+20] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and
Peter Stone. Curriculum learning for reinforcement learning domains: A framework
and survey. The Journal of Machine Learning Research, 21(1):7382–7431, 2020.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural
information processing systems, 32, 2019.

[PSL15] Anastasia Pentina, Viktoriia Sharmanska, and Christoph H Lampert. Curriculum learning
of multiple tasks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5492–5500, 2015.

[PSN+19] Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and
Tom M Mitchell. Competence-based curriculum learning for neural machine translation.
arXiv preprint arXiv:1903.09848, 2019.

[RK90] Brian H Ross and Patrick T Kennedy. Generalizing from the use of earlier examples
in problem solving. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 16(1):42, 1990.

12

[RSR+19] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

[SAJ10] Valentin I Spitkovsky, Hiyan Alshawi, and Dan Jurafsky. From baby steps to leapfrog:
How “less is more” in unsupervised dependency parsing. In Human Language Technolo-
gies: The 2010 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, pages 751–759, 2010.

[SGG14] Patrick Shafto, Noah D Goodman, and Thomas L Griffiths. A rational account of
pedagogical reasoning: Teaching by, and learning from, examples. Cognitive psychology,
71:55–89, 2014.

[SIRS22] Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning:
A survey. International Journal of Computer Vision, pages 1–40, 2022.

[SMS22] Luca Saglietti, Stefano Sarao Mannelli, and Andrew Saxe. An analytical theory of
curriculum learning in teacher–student networks. Journal of Statistical Mechanics:
Theory and Experiment, 2022(11):114014, 2022.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[STD19] Shreyas Saxena, Oncel Tuzel, and Dennis DeCoste. Data parameters: A new family
of parameters for learning a differentiable curriculum. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[TV19] Yan Shuo Tan and Roman Vershynin. Online stochastic gradient descent with ar-
bitrary initialization solves non-smooth, non-convex phase retrieval. arXiv preprint
arXiv:1910.12837, 2019.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[WA20] Daphna Weinshall and Dan Amir. Theory of curriculum learning, with convex loss
functions. Journal of Machine Learning Research, 21(222):1–19, 2020.

[WCA18] Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning:
Theory and experiments with deep networks. In International Conference on Machine
Learning, pages 5238–5246. PMLR, 2018.

[WCZ21] Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

[ZKK+18] Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton Murray, Jeremy Gwinnup,
Marianna J Martindale, Paul McNamee, Kevin Duh, and Marine Carpuat. An empirical
exploration of curriculum learning for neural machine translation. arXiv preprint
arXiv:1811.00739, 2018.

[ZS14] Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint
arXiv:1410.4615, 2014.

13

A Proof of Theorem 3

Algorithm 1 Layer-wise curriculum-SGD. Init. scales κ,∆ > 0, learning rates γ1, γ2 > 0, step
counts T1, T2, input param. ρ, µ, batch size B, noise level τ and gradient range A.

1: input: Data matrix X ∈ {±1}d×n and label vector Y ∈ {±1}n
2: initialize: For all i ∈ [N], j ∈ [d], w0

i,j = 0, a0i = κ, b0i = ∆d+ 1

3: X1 = {xs : H(xs) < d(12 − µ
4)} and Y1 = {ys : xs ∈ X1} ▷ Select sparse inputs

4: for t = 0 to T1 − 1 : do
5: Select unused xs,t ∼ X1 and ys,t ∼ Y1, s ∈ [B].
6: ∀i ∈ [N], j ∈ [d]:
7: w̃t+1

ij = wt
ij − γ1

(
1
B

∑
s∈[B] ∂wt

ij
[L(θt, xs,t, ys,t)]A +Unif[−τ, τ]

)
8: wt+1

ij = [w̃t+1
ij]∆ ▷ [.]∆: proj. on [−∆,∆]

9: bt+1
i = bti, a

t+1
i = ati

10: end for
11: For all i ∈ [N], bT1

i = −1 + 2(i+ 1)∆, aT1
i = 0

12: for t = T1 to T2 − 1 : do
13: Select unused xs,t ∼ X and ys,t ∼ Y , s ∈ [B].
14: ∀i ∈ [N]:
15: at+1

i = ati − γ2

(
1
B

∑
s∈[B] ∂at

i
[L(θt, xs,t, ys,t)]A +Unif[−τ, τ]

)
16: wt+1

ij = wt
ij , bt+1

i = bti
17: end for

In this section, we report the proof of Theorem 3. The proof follows a similar argument used
in [TV19, AGJ21, ABAM23]: we decompose the dynamics into a drift and a martingale contribution.
Our work differs from the ones above in considering a mixed input distribution and the covariance loss.
For the purposes of this section, we consider a 2-layer neural network: NN(x; θ) =

∑N
i=1 aiσ(wix+

bi), with N = k + 1 hidden neurons and activation σ := ReLU. We consider the following
initialization:

w0
ij = 0, (9)

a0i = κ ≤ 1

N(2∆d+ 2)
, (10)

b0i = d∆+ 1. (11)

We train the neural network using the layer-wise curriculum-SGD algorithm (see Algorithm 1 for
pseudo-code). Without loss of generality, we assume that the target parity is χ[k] :=

∏
j∈[k] xj . The

result for other k-parities follows directly since the initialization and the curriculum-SGD algorithm
are invariant to permutations of the input neurons. We show the following:

• With a large enough training set, there are enough sparse inputs, which can be identified by
computation of the Hamming weight.

• We train the first layer’s weightswij on the sparse data, keeping the ai, bi fixed. We first show
that with enough sparse samples, the labels’ average will concentrate around Ex∼Dµ

[f(x)],
with high probability. This term is needed in the computation of the covariance loss. Then,
we show that after T1 = Õ(d) steps, with an appropriate learning rate, with high probability,
the target parity will belong to the linear span of the hidden units. This is obtained by
showing that the weights corresponding to the first k input coordinates move noticeably,
while the ones corresponding to the other d− k coordinates remain small.

• We train the second layer’s weights ai on the full data, keeping the first layer’s weights and
biases fixed. Established results on the convergence of SGD on convex losses allow us to
conclude.

Bounding the Number of Samples. In the following lemma, we show that if the training set is
large enough, the fraction of sparse inputs is large, and their Hamming weights will concentrate
around expectation with high probability as d increases.

14

Lemma 1. Let {xs}s∈[m] be m i.i.d. inputs sampled from D, with parameters ρ, µ. Let X1 := {xs :
H(xs) < d(12 − µ

4)} and let S1 := {xs : xs ∼ Dµ}. If d ≤ m ≪ exp(d) and m ≥ 2m1

ρ , for
C∗ > 0,

i) With probability at least 1− 2d−C∗
, |S1| ≥ m1.

ii) With probability at least 1− d−C∗
, S1 = X1.

Proof. i) For all s ∈ [m], P(xs ∈ S1) = ρ, thus,

P
(∑

s∈[m]

1(xs ∈ S1) ≤ m1

)
= P

(∑
s∈[m]

1(xs ∈ S1)−mρ ≤ m1 −mρ
)

(12)

= P
(∑

s∈[m]

1(xs ∈ S1)−mρ ≤ −mρ
2

)
(13)

(a)

≤ P
(
mρ−

∑
s∈[m]

1(xs ∈ S1) ≥
√
C∗ log(d)m/2

)
(14)

(b)

≤ 2 exp (−2C∗ log(d)) ≤ 2d−C∗
, (15)

where in (a) we used that

mρ

2
≥

√
dmρ

2
≥
√
C∗ log(d)m/2, (16)

for some constant C∗, that depends only on ρ, and in (b) we used Hoeffding’s inequality.

ii) It is enough to show that for all xs ∈ S1, H(xs) < h̄, for h̄ = d
(
1
2 − µ

4

)
and for all

xs ̸∈ S1, H(xs) ≥ h̄. Thus, for xs ∈ S1,

P
(
H(xs) ≥ h̄

)
= P

(
H(xs)− 1− µ

2
d ≥ h̄− 1− µ

2
d

)
(17)

≤ exp

(
−µ

2d

8

)
. (18)

Similarly, for xs ̸∈ S1, P
(
H(xs) < h̄

)
< exp(−C ′d), for some C ′ > 0. The result follows

from union bound.

In the rest of the proof, we will assume that the event in Lemma 1 holds.

A.1 First Layer Training

For the first training phase, we only use the sparse samples.

Computing ȳ1. As a first step, we need to estimate the average of y over the sparse set. To that
purpose, we sample one batch of size B1 from X1. We denote by ȳ1 such estimate

Lemma 2. Let ȳ1 = 1
B1

∑
s∈[B1]

ys. If B1 ≥ 2C∗ log(d)/ζ2, with probability at least 1− d−C∗
,∣∣∣ȳ1 − µk

∣∣∣ ≤ ζ. (19)

Proof. By construction, and by Lemma 1, ȳ1 is the mean of B1 i.i.d random variables sampled from
Dµ. Thus, by Hoeffding’s inequality,

P(|ȳ1 − Ex∼Dp [f(x)]| ≥ ζ) ≤ 2 exp

(
−B1ζ

2

2

)
≤ 2d−C∗

. (20)

15

We assume that each sample is presented to the network at most once. For instance, this can be done
by discarding each sample after it is used, assuming that the number of samples is large enough for
covering all training steps. Denoting by Gwt

ij
the gradient computed at step t < T1 for weight wt

ij ,
the updates of the first layer weights are given by:

w̃t+1
ij = wt

ij − γGwt
ij

(21)

wt+1
ij = [w̃t+1

ij]∆ (22)

where by [.]∆ we denote the projection of all coordinates that exceed ∆ (resp. −∆) to ∆ (resp.
−∆). Note that with our assumption on the initialization, |NN(x; θt)| < 1 for all t < T1. Thus, the
gradients at each step are given by:

Gwt
ij
= − 1

B

∑
s∈[B]

(ys,t − ȳ1) · ∂wt
ij
NN(xs,t; θt) + Zwt

ij
, (23)

We decompose the dynamic into a drift and a martingale contribution:

Gwt
ij
= Ḡwt

ij︸︷︷︸
drift

+(Gwt
ij
− Ḡwt

ij
)︸ ︷︷ ︸

martingale

, (24)

where we denoted by

Ḡwt
ij
= ExGwt

ij
, (25)

the (deterministic) population gradients.

Drift Contribution. In the following, we denote by wt
j = wt

ij for an arbitrary neuron i ∈ [N]. We
first bound the drift term.
Lemma 3. Let Lµ := µk−1 − µk+1. Let ζ > 0. If B1 ≥ 2C∗ log(d)/ζ2, with prob. 1− d−C∗

for
all t ≤ T1,

∀j ∈ [k] : |Ḡwt
j
+ κLµ| ≤ κµζ; (26)

∀j ̸∈ [k] : |Ḡwt
j
| ≤ κµζ. (27)

Proof. With our initialization, for all t < T1,

∂wt
ij
NN(xt; θt) = κxtj . (28)

Thus, for all j ∈ [k],

Ḡwt
j
= −κ (Ex[f(x)xj]− ȳEx[xj]) (29)

= −κ
(
µk−1 − ȳ1µ

)
. (30)

Applying Lemma 2, with probability 1− ϵ′,

|Ḡwt
j
+ κLµ| = |κµ(ȳ − µk)| ≤ κµζ. (31)

Similarly, for all j ̸∈ [k],

Ḡwt
j
= −κµ(µk − ȳ), (32)

thus, applying one more time Lemma 2, we get the result.

Martingale Contribution. We consider wt
j = wt

ij for an arbitrary neuron i ∈ [N]. For t ∈ N and
for all j, we define the martingale contribution to the dynamics up to time t by

M t
j =

t∑
s=1

Gws
j
− Ḡws

j
. (33)

We show that for appropriate time horizon and learning rate, the martingale contribution stays small.

16

Lemma 4 (Lemma 4 in [ABAM23]). Fix T ≤ C0d log(d)
C0 , for some C0 > 0. For all C∗, there

exists C that depends on C0, C
∗ such that if:

γ21T ≤ 1

C(4κ+ τ)2 log(d)2d
, (34)

with probability at least 1− d−C∗
:

max
0<t<T

max
j∈[d]

|γ1M t
j | ≤

1√
d log(d)

. (35)

Proof. Note that in our setting (Boolean inputs, ReLU activation) we have that for all t < T1

|M t
j −M t−1

j | ≤ |Gwt
j
|+ |Ḡwt

j
| ≤ 4κ+ τ. (36)

Thus, by Azuma-Hoeffding inequality:

P
(
|γ1M t

j | ≥ ϵ
)
≤ 2 exp

(
− ϵ2

2Tγ21(4κ+ τ)2

)
. (37)

The result follows by choosing ϵ = 1/
√
d log(d) and by union bound on all t ≤ C0d log(d)

C0 and
j ∈ [d].

Bounding the Contributions to the Dynamics. We define the following stopping times:

τ∆j := inf{t ≥ 0 : |wt+1
j | ≥ ∆− γ1(4κ+ τ)} (38)

τ∆ = sup
j∈[k]

τ∆j . (39)

We show that for t ≥ τ∆j , wt
j stays close to ∆.

Lemma 5. Fix T ≤ C0d log(d)
C0 , for some C0 > 0. Let ζ > 0 and let B1 ≥ 2C∗ log(d)/ζ2. For

all C∗, there exists C such that if γ1 satisfies (34) and if ζ ≤ 1√
d log(d)C0

, with probability 1−3d−C∗

for all j ∈ [d]:

inf
τ∆
j <t<T

wt
j ≥ ∆− 3 +

√
C0µ√

d log(d)
. (40)

Proof. For all j, let s = sup{t′ ≤ t : wt′

j ≥ ∆− γ1(4κ+ τ)}, then with probability 1− 3d−C∗
for

all j ∈ [d]:

wt
j = ws

j − γ1

t−1∑
l=s

Ḡwl
j
+ γ1(M

t−1
j −Ms

j) (41)

(a)

≥ ∆− γ1(4κ+ τ)− γ1tκµζ −
2√

d log(d)
(42)

(b)

≥ ∆− 3√
d log(d)

−
√
tζµ√

d log(d)
, (43)

(c)

≥ ∆− 3√
d log(d)

−
√
C0µ√

d log(d)
, (44)

where in (a) we used that by Lemma 3 with prob. 1− 2d−C∗
, Ḡwl

j
< −κLµ + κµζ < κµζ for all

l ∈ [t] and Lemma 4, in (b) we used that by (34), γ1(4κ+ τ) ≤ γ1(4κ+ τ)
√
t ≤ 1/

√
d log(d), and

in (c) we used the assumptions on T and ζ. Thus, the result holds.

We will now establish a high-probability bound on the time that it takes for all weights associated
with coordinates in the support of the target parity to approach proximity with ∆.

17

Lemma 6. Let ζ > 0 and let B1 ≥ 2C∗ log(d)/ζ2. For all C∗, there exists C such that if
γ1 satisfies (34), ζ ≤ 1√

d log(d)C0
and d is large enough, such that d log(d) ≥ (

√
C0µ+1)2

∆2 , with

probability 1− 3d−C∗
:

τ∆ ≤ 2∆

γ1κLµ
. (45)

Proof. Let T ≤ C0d log(d)
C0 , for some C0 > 0. Let αt = min{wt

j : j ∈ [k], t ≤ τ∆j , t ≤ T}.
Then, with probability 1− 3d−C∗

:

αt ≥ −γ1
t−1∑
s=0

Ḡαs − γ1|M t
j | (46)

≥ −γ1t(−κLµ + κµζ) +
1√

d log(d)
(47)

(a)

≥ γ1tκLµ −
√
tζµ√

d log(d)
− 1√

d log(d)
(48)

(b)

≥ γ1tκLµ −
√
C0µ+ 1√
d log(d)

, (49)

where in (a) we used that by (34),
√
tγ1κ ≤ 1/

√
d log(d), and in (b) we used the assumptions on T

and ζ. Thus if t ≥ 2∆
γ1κLµ

and d is large enough, such that
√
C0µ+1√
d log(d)

< ∆, we have

αt ≥ 2∆−∆ > ∆− γ1(4κ+ τ). (50)

Thus, the result holds.

As our last lemma, we show that during the same time horizon, all coordinates that are not in the
support of the parity will stay close to zero.
Lemma 7. Fix T ≤ C0d log(d)

C0 , for some C0 > 0. Let ζ > 0 and let B1 ≥ 2C∗ log(d)/ζ2. For
all C∗, there exists C such that if γ1 satisfies (34), ζ ≤ 1√

d log(d)C0
and d is large enough, such that

d log(d) ≥ (
√
C0µ+1)2

∆2 , with probability 1− 3d−C∗
:

sup
0≤t≤T

sup
j∈{k+1,...,d}

|wt
j | ≤

√
C0µ+ 1√
d log(d)

. (51)

Proof. Let |βt| = max{|wt
j | : j ∈ [k + 1, ..., d], t ≤ T}. Thus, with probability 1− 3d−C∗

:

|βt| =
∣∣∣− γ1

t−1∑
s=0

Ḡβs
− γ1M

t
j

∣∣∣ (52)

≤ γ1

t−1∑
s=0

|Ḡβs |+ γ1|M t
j | (53)

≤ γ1tκµζ +
1√

d log(d)
(54)

≤
√
tζµ+ 1√
d log(d)

(55)

≤
√
C0µ+ 1√
d log(d)

. (56)

18

Thus, combining Lemmas 5, 6 and 7 and by union bound on i ∈ [N], we get that for all C∗, there
exist C1, C2 such that if T1 and γ1 are such that

γ21T1 ≤ 1

C(4κ+ τ)2 log(d)2d
,

2∆

γ1κLµ
≤ T1 ≤ C0d log(d)

C0 . (57)

for some C0, C, with prob. 1− 3Nd−C∗
, for all i ∈ [N],

For all j ∈ [k] : |wT1
ij −∆| ≤ C1√

d log(d)
; (58)

For all j ̸∈ [k] : |wT1
ij | ≤

C2√
d log(d)

. (59)

For τ ≤ κ, we can choose

γ1 =
Lµ

C ′∆κd log(d)2
, T1 =

2C ′∆2d log(d)2

L2
µ

, (60)

where C ′ = C/50, and the result follows.

A.2 Second Layer Training

As mentioned, the second phase of training consists of training the second layer’s weights ai, keeping
wij and bi fixed. We do not train the biases, and directly assign bT1

i to be well spread in the interval
[∆(2− k),∆(2 + k)], so that the target parity belongs to the linear span of the hidden units at time
T1. We believe that one could extend the argument to cover scenarios where biases are trained, but
this would require further technical work. To train the second layer, we use samples drawn from
the entire dataset. Again, we take a large enough dataset and we assume that each sample is used at
most once. In the following, we assume that the events in (58)-(59) hold. Below, we show that there
exist a∗i such that

∑N
i=1 a

∗
i σ(w

T1
i x+ bi) achieves small expected loss. For simplicity, we restrict our

attention to k even, but an analogous Lemma to the below can be written for k odd. For a function f ,
an estimator f̂ and input distribution D, let us define

Lcov(f̂ , f,D) := Ex∼D

(
1− f(x)Ex∼Df(x)− f̂(x)(f(x)− Ex∼Df(x))

)
+
. (61)

Lemma 8. Assume k is an even integer. Let N = k + 1 and for i ∈ {0, ..., k} let bi = −∆k + 2(i+

1)∆. For all ϵ > 0, there exist ∆ > 0, D > max{C1, C2} such that if ρ < (∆
2N −D)

√
log(d)√
dµ

, and if
d is large enough:

min
a:∥a∥∞≤4/∆

Lcov(f
∗, χ[k],D) < ϵ/2. (62)

Proof. We follow a similar proof scheme as in [BEG+22], and choose a∗i such that

a∗i = (−1)i
4

∆
, ∀i ∈ {0, 1, . . . , k − 2}, (63)

a∗k−1 = (−1)k−1 3

∆
, (64)

a∗k = (−1)k
1

∆
. (65)

We denote f∗(x) =
∑k

i=0 a
∗
i σ(w

T1
i x+bi). One can verify that 2χ[k](x) =

∑k
i=0 a

∗
i σ(∆

∑k
j=1 xj+

bi). For all i ∈ [N], let us denote ŵij = wT1
ij −∆ for all j ∈ [k] and ŵij = wT1

ij for all j ̸∈ [k]. Thus,

Ex∼D[
∑d

j=1 ŵijxj] = ρµ
∑d

j=1 ŵij conditioned on the event in (58)-(59), ∥ŵi∥1 ≤ C3

√
d√

log(d)
for all

19

i ∈ [N], where C3 = max{C1, C2}. Let δ = ∆
8N . Then,

Px∼D

∣∣∣ d∑
j=1

ŵijxj

∣∣∣ > δ

 ≤ Px∼D

∣∣∣ d∑
j=1

ŵijxj − ρµ∥ŵi∥1
∣∣∣ > δ − ρµ∥ŵi∥1

 (66)

(a)

≤ Px∼D

∣∣∣ d∑
j=1

ŵijxj − ρµ∥ŵi∥1
∣∣∣ > D

 (67)

(b)

≤ 2 exp

(
− D2

2C2
3

log(d)

)
≤ 2d

− D2

2C2
3 , (68)

where in (a) we used the assumption on ρ and in (b) we used Hoeffding’s inequality and the fact that∑d
j=1(2ŵij)

2 ≤ 4C2
3

log(d) . Thus, with probability 1− 2Nd
− D2

2C2
3 over x for all i ∈ {0, ..., k}:

|σ(wT1
i x+ bi)− σ(∆

k∑
j=1

xj + bi)| ≤
∣∣∣ d∑
j=1

ŵijxj

∣∣∣ ≤ δ. (69)

Consequently,

|2χ[k](x)− f∗(x)| =
∣∣∣ k∑
i=0

a∗i

[
σ(wT1

i x+ bi)− σ(∆

k∑
j=1

xj + bi)
]∣∣∣ (70)

≤
k∑

i=0

|a∗i |δ ≤
4N

∆
δ = 1/2 (71)

Thus, for d large enough, with probability 1− 2Nd
− D2

2C2
3 we have f∗(x)χ[k](x) ≥ 1. Moreover, for

all x,

|f∗(x)| ≤ N∥a∗∥∞

(
2∆k +

√
dC3√
log(d)

)
(72)

≤
√
d√

log(d)

4N(C3 + 2∆k)

∆
. (73)

Then,

Lcov(f
∗, χ[k],D) = Ex∼D

(
(1− χ[k](x)Ex[χ[k](x)])(1− χ[k](x)f

∗(x))
)
+

(74)

= Ex∼D(1− χ[k](x)ρµ
k) · (1− χ[k](x)f

∗(x)) · 1(χ[k](x)f
∗(x) < 1) (75)

≤ 9N2(C3 + 2∆k)(1 + ρµk)

∆
√
log(d)

· d
− D2

2C2
3
+ 1

2 (76)

< ϵ/2, (77)

for d large enough.

To conclude, we apply an established result from [SSBD14] on the convergence of SGD on convex
losses.

Theorem 6 ([SSBD14]). Let L be a convex function and let a∗ ∈ argmin∥a∥2≤B L(a), for some
B > 0. For all t, let αt be such that E [αt | at] = −∇atL(at) and assume ∥αt∥2 ≤ ξ for some
ξ > 0. If a(0) = 0 and for all t ∈ [T] at+1 = at + γαt, with γ = B

ξ
√
T

, then

1

T

T∑
t=1

L(at) ≤ L(a∗) + Bξ√
T
. (78)

20

We refer to [SSBD14] for a proof. Let us take L(a) := Lcov((a,w
T1 , bT1), χ[k],D). Then, L is

convex in a and for all t ∈ [T2],

αt = − 1

B

∑
s∈[B]

∇atLcov((a
t, wT1 , bT1), χ[k], x

s,t) + Zat , (79)

and, recalling σ := ReLU, we have

∥αt∥∞ ≤ 2 sup
x

|σ(wT1
i x+ bT1

i)|+ τ (80)

≤ 2

(
2∆k +

√
dC3√
log(d)

)
+ τ (81)

≤ 2 (2∆k + C3 + τ)

√
d

log(d)
, (82)

and ∥αt∥2 ≤
√
N∥αt∥∞. Thus, if we choose

• B = 4
√
N

∆

• ξ = 2(C3 + 2∆k + τ)
√

dN
log(d)

• T2 = 256(C3+2∆k+τ)2N2d
ϵ2∆2 log(d)

• γ2 = ϵ log(d)
8(C3+2∆k+τ)2dN

we obtain

min
t∈[T1+T2]

Lcov

(
θt, χ[k], x

)
≤ ϵ

2
+
ϵ

2
= ϵ. (83)

The result follows under the assumption that the training process is terminated once the training loss
falls below ϵ, thus guaranteeing that Lcov

(
θT1+T2 , χ[k], x

)
≤ ϵ.

B Proof of Theorem 4

Theorem 7 (Theorem 4, restatement). Let d,N be two positive integers. Let NN(x; θ) =∑N
i=1 aiσ(wix + bi) be a 2-layer fully connected network with activation σ(y) := Ramp(y) (as

defined in (84)) and N ≥ (d+1)(d− k+1) log((d+1)(d− k+1)/δ). Consider training NN(x; θ)
with layerwise curriculum-SGD on the hinge loss with batch size B ≥ (4ζ2N2)−1 log(Nd+N

δ), noise

level τ ≤ ζ log
(
Nd+N

δ

)−1/2
, with ζ ≤ ϵµk

24(d+1)2(d−k+1)2N and µ =
√

1− 1
2(d−k) . Then, there

exists an initialization and a learning rate schedule such that after T1 = 1 step on the sparse data
and T2 = 64

ϵ2 (d−k+1)3(d+1)N(1+ τ)2 steps on the full data, with probability 1−3δ, the trained
network has generalization error at most ϵ.

This proof is similar to the proof of Theorem 3 in [CM23], with the following two modifications: 1)
the use of a mixed input distribution in the second part of training, and, 2) the addition of uniform
gradient noise in the iterates.

B.1 Proof Setup

We consider a 2-layer neural network, defined as NN(x; θ) =
∑N

i=1 aiσ(wix + bi), where N ≥
(d + 1)(d − k + 1) log((d + 1)(d − k + 1)/δ) is the number of hidden units, θ = (a, b, w) and
σ := Ramp denotes the activation defined as:

Ramp(x) =

0 x ≤ 0,

x 0 < x ≤ 1,

1 x > 1

. (84)

Similarly as before, without loss of generality, we assume that the labels are generated by χ[k](x) :=∏k
i=1 xi. Our proof scheme is the following:

21

1. We train only the first layer of the network for one step on data (x, χ[k](x)) with x ∼ Dµ,

with µ := 2p− 1 =
√
1− 1

2(d−k) ;

2. We show that after one step of training on such biased distribution, the target parity belongs
to the linear span of the hidden units of the network;

3. We train only the second layer of the network on (x, χ[k](x)) with x ∼ D, until convergence;

4. We use established results on the convergence of SGD on convex losses to conclude.

We train our network with noisy-GD on the hinge loss. Specifically, we apply the following updates,
for all t ∈ {0, 1, . . . , T − 1}:

wt+1
i,j = wt

i,j − γt

(
1

B

B∑
s=1

∇wt
i,j
L(θt, χ[k], x

t
s) + Zwt

i,j

)
,

at+1
i = ati − ηt

(
1

B

B∑
s=1

∇at
i
L(θt, χ[k], x

t
s) + Zat

i

)
+ ct, (85)

bt+1
i = λt

(
bti + ψt

1

B

B∑
s=1

∇bti
L(θt, χ[k], x

t
s) + Zbti

)
+ dt,

where L(θt, χ[k], x) = max{0, 1−χ[k](x)NN(x; θt)} and Zwt
i,j
, Zat

i
and Zbti

are i.i.d. Unif[−τ, τ]
for some τ > 0. Following the proof strategy introduced above, we set D0 = Dµ, where µ =√
1− 1

2(d−k) , and Dt = D, for all t ≥ 1. We set the parameters of (85) to:

γ0 = µ−(k−1)2N, γt = 0 ∀t ≥ 1, (86)

η0 = 0, ηt =
ϵ

2N(1 + τ)2
∀t ≥ 1, (87)

ψ0 =
N

µk
, ψt = 0 ∀t ≥ 1, (88)

c0 = − 1

2N
, ct = 0 ∀t ≥ 1, (89)

λ0 = (d+ 1), λt = 1 ∀t ≥ 1, (90)
d0 = 0, dt = 0 ∀t ≥ 1, (91)

and we consider the following initialization scheme:

w0
i,j = 0 ∀i ∈ [N], j ∈ [d];

a0i =
1

2N
∀i ∈ [N]; (92)

b0i ∼ Unif
{ blm
d+ 1

+
1

2
: l ∈ {0, ..., d},m ∈ {−1, ..., d− k}

}
,

where we define

blm := −d+ 2l − 1

2
+
m+ 1

d− k
. (93)

Note that such initialization is invariant to permutations of the input neurons.

B.2 First Step: Recovering the Support

As mentioned above, we train our network for one step on (x, χ[k](x)) with x ∼ Dµ.

Population Gradient at Initialization. Let us compute the population gradient at initialization.
Since we set ξ0 = 0, we do not need to compute the initial gradient for a. Note that at initialization

22

|NN(x; θ0)| < 1. Thus, the initial population gradients are given by

∀j ∈ [k], i ∈ [N] Ḡwi,j
= −aiEx∼Dµ

 ∏
l∈[k]\j

xl · 1(⟨wi, x⟩+ bi ∈ [0, 1])

 (94)

∀j ̸∈ [k], i ∈ [N] Ḡwi,j = −aiEx∼Dµ

 ∏
l∈[k]∪j

xl · 1(⟨wi, x⟩+ bi ∈ [0, 1])

 (95)

∀i ∈ [N] Ḡbi = −aiEx∼Dµ

∏
l∈[k]

xl · 1(⟨wi, x⟩+ bi ∈ [0, 1])

 (96)

Lemma 9. Initialize a, b, w according to (92). Then,

∀j ∈ [k], Ḡwi,j
= −µ

k−1

2N
; (97)

∀j ̸∈ [k], Ḡwi,j = −µ
k+1

2N
; (98)

Ḡbi = − µk

2N
. (99)

Proof. If we initialize according to (92), we have ⟨wi, x⟩ + bi ∈ [0, 1] for all i. The results holds
since Ex∼Dµ [χS(x)] = µ|S|.

Effective Gradient at Initialization.
Lemma 10 (Noisy-GD). Let

Ĝwi,j :=
1

B

B∑
s=1

∇w0
i,j
L(θ0, χ[k], x

s,0) + Zwi,j , (100)

Ĝbi :=
1

B

B∑
s=1

∇b0i
L(θ0, χ[k], x

s,0) + Zbi , (101)

be the effective gradients at initialization, where Gwi,j
, Gbi are the population gradients at ini-

tialization and Zwi,j
, Zbi are i.i.d. Unif[−τ, τ]. If B ≥ (4ζ2N2)−1 log(Nd+N

δ) and τ ≤
ζ log

(
Nd+N

δ

)−1/2
, with probability 1− 2δ:

∥Ĝwi,j − Ḡwi,j∥∞ ≤ ζ, (102)

∥Ĝbi − Ḡbi∥∞ ≤ ζ. (103)

Proof. By Hoeffding’s inequality

P
(
|Ĝwi,j

− Ḡwi,j
| ≥ ζ

)
≤ 2 exp

(
− 2ζ2

(4N2B)−1 + τ2

)
≤ 2δ

Nd+N
, (104)

P
(
|Ĝbi − Ḡbi | ≥ ζ

)
≤ 2 exp

(
− 2ζ2

(4N2B)−1 + τ2

)
≤ 2δ

Nd+N
. (105)

The result follows by union bound.

Lemma 11. Let

w1
i,j = w0

i,j − γ0Ĝwi,j
(106)

b1i = λ0

(
b0i − ψ0Ĝbi

)
(107)

(108)

If B ≥ (4ζ2N2)−1 log(Nd+N
δ) and τ ≤ ζ log

(
Nd+N

δ

)−1/2
, with probability 1− 2δ,

23

i) For all j ∈ [k], i ∈ [N], |w1
i,j − 1| ≤ 2Nζ

µk−1 ;

ii) For all j ̸∈ [k], |w1
i,j − (1− 1

2(d−k))| ≤
2Nζ
µk−1 ;

iii) For all i ∈ [N], |b1i − (d+ 1)(b0i − 1
2)| ≤

N(d+1)ζ
µk .

Proof. We apply Lemma 11:

i) For all j ∈ [k], i ∈ [N], |ŵ1
i,j − 1| = γ0|Ĝwi,j

−Gwi,j
| ≤ 2Nζ

µk−1 ;

ii) For all j ̸∈ [k], i ∈ [N], |ŵ1
i,j − (1− 1

2(d−k))| = γ0|Ĝwi,j
−Gwi,j

| ≤ 2Nζ
µk−1 ;

iii) For all i ∈ [N],

|b̂1i − (d+ 1)(b0i −
1

2
)| = |λ0(b0i + ψ0Ĝbi)− λ0(b

0
i + ψ0Gbi)| (109)

≤ |λ0| · |ψ0| · |Ĝbi −Gbi | (110)

≤ N(d+ 1)ζ

µk
. (111)

Lemma 12. If N ≥ (d+ 1)(d− k + 1) log((d+ 1)(d− k + 1)/δ), then with probability 1− δ, for
all l ∈ {0, ..., d}, and for all m ∈ {−1, ..., d− k} there exists i such that b0i = blm

d+1 + 1
2 .

Proof. The probability that there exist l,m such that the above does not hold is(
1− 1

(d+ 1)(d− k + 1)

)N

≤ exp

(
− N

(d+ 1)(d− k + 1)

)
≤ δ

(d+ 1)(d− k + 1)
. (112)

The result follows by union bound.

Lemma 13. Let σlm(x) = Ramp
(∑d

j=1 xj −
1

2(d−k)

∑
j>k xj + blm

)
, with blm given in (93). If

B ≥ (4ζ2N2)−1 log(Nd+N
δ), τ ≤ ζ log

(
Nd+N

δ

)−1/2
and N ≥ (d+1)(d−k+1) log((d+1)(d−

k + 1)/δ), with probability 1− 3δ, for all l,m there exists i such that

∣∣∣σlm(x)− Ramp

 d∑
j=1

ŵ1
i,jxj + b̂1i

∣∣∣ ≤ 3N(d+ 1)ζµ−k. (113)

Proof. By Lemma 12, with probability 1− δ, for all l,m there exists i such that b(0)i = blm
d+1 +

1
2 . For

ease of notation, we replace indices i 7→ (lm), and denote σ̂lm(x) = Ramp
(∑d

j=1 w
1
lm,jxj + b1lm

)
.

Then, by Lemma 11 with probability 1− 2δ,

|σlm(x)− σ̂lm(x)| ≤
∣∣∣ k∑
j=1

(w1
lm,j − 1)xj +

d∑
j=k+1

(
w1

lm,j −
(
1− 1

2(d− k)

))
xj + b1lm − blm

∣∣∣
≤ k2Nζµ−(k−1) + (d− k)2Nζµ−(k−1) +N(d+ 1)ζµ−k

≤ 3N(d+ 1)ζµ−k.

We make use of Lemma 6 from [CM23], for which we rewrite the statement here for completeness.

24

Lemma 14 (Lemma 6 in [CM23]). There exists a∗ with ∥a∗∥∞ ≤ 4(d− k) such that

d∑
l=0

d−k∑
m=−1

a∗lmσlm(x) = χ[k](x). (114)

Lemma 15. Let f∗(x) =
∑

l,m a∗lmσlm(x) and let f̂(x) =
∑

l,m a∗lmσ̂lm(x), with σlm, σ̂lm defined

in Lemma 13 and a∗ defined in Lemma 14. If B ≥ (4ζ2N2)−1 log(Nd+N
δ), τ ≤ ζ log

(
Nd+N

δ

)−1/2

and N ≥ (d+ 1)(d− k + 1) log((d+ 1)(d− k + 1)/δ), with probability 1− 3δ for all x,

L(f̂ , f∗, x) ≤ (d+ 1)2(d− k + 1)212Nζµ−k. (115)

Proof.

|f∗(x)− f̂(x)| =
∣∣∣∑
l,m

a∗lm(σlm(x)− σ̂lm(x)
∣∣∣ (116)

≤ d(d− k + 1)∥a∗∥∞ sup
lm

|σlm(x)− σ̂lm(x)| (117)

≤ (d+ 1)2(d− k + 1)212Nζµ−k. (118)

Thus,

(1− f̂(x)f∗(x))+ ≤ |1− f̂(x)f∗(x)| (119)

= |f∗
2

(x)− f̂(x)f∗(x)| (120)

= |f∗(x)| · |f∗(x)− f̂(x)| ≤ (d+ 1)2(d− k + 1)212Nζµ−k, (121)

which implies the result.

B.3 Second Step: Convergence

To conclude, we use one more time Theorem 6. Let L(a) := Ex∼D
[
L((a, b1, w1), χ[k], x)

]
. Then,

L is convex in a and for all t ∈ [T],

αt = − 1

B

B∑
s=1

∇atL((at, b1, w1), χ[k], x) + Zat . (122)

Thus, recalling σ = Ramp, we have ∥αt∥∞ ≤ 1 + τ and ∥αt∥2 ≤
√
N(1 + τ). Let a∗ be as in

Lemma 14. Clearly, ∥a∗∥2 ≤ 4(d − k + 1)3/2(d + 1)1/2. Moreover, a1 = 0. Thus, we can apply
Theorem 6 with B = 4(d− k + 1)3/2(d+ 1)1/2 and ξ =

√
N(1 + τ), and obtain that if:

• T = 64
ϵ2 (d− k + 1)3(d+ 1)N(1 + τ)2;

• ηt = ϵ
2N(1+τ)2 for t ∈ {1, . . . , T};

then, with probability 1− 3δ over the initialization

Ex∼D

[
min
t∈[T]

L
(
θt, χ[k], x

)]
≤ ϵ

2
+
ϵ

2
= ϵ. (123)

C Proof of Theorem 5

Let us recall the definition of Cross-Predictability (CP) from [AS20].
Definition 3 (Cross-Predictability (CP), [AS20]). Let PF be a distribution over functions from
{±1}d to {±1} and PX a distribution over {±1}d. Then,

CP(PF , PX) = EF,F ′∼PF [Ex∼PX [F (x)F
′(x)]2] . (124)

We invoke Theorem 3 from [AS20], which we restate here.

25

Theorem 8 ([AS20]). Let PF be a distribution on the class of parities on d bits, and let PX be a
distribution over {±1}d. Assume that PF∼PF ,x∼PX (F (x) = 1) = 1

2 + od(1). Consider any neural
network NN(x; θ) with P edges and any initialization. Assume that a function f is chosen from PF
and then T steps of noisy-SGD (Def. 1) with learning rate γ, gradient range A, batch size B and
noise level τ are run on the network using inputs sampled from PX and labels given by f . Then, in
expectation over the initial choice of f , the training noise, and a fresh sample x ∼ PX , the trained
network satisfies:

P(sgn(NN(x; θT)) = f(x)) ≤ 1

2
+
TPA

τ
·
(
CP(PF ,PX) +

1

B

)1/2

(125)

In Theorem 8 we imported Theorem 3 from [AS20] with 1) the tighter bound for the specific case of
parities, which gives a term (CP+1/B)1/2 instead of (CP+1/B)1/4 (see Theorem 4 and remarks
in [AS20]); 2) the bound to the junk flow term JFT for noisy-SGD with uniform noise, instead of
Gaussian noise, which gives a term P instead of

√
P (see comments in [AS23]).

We thus compute the cross-predictability between PX = D and PF being the uniform distribution
on the set of parities of degree k.
Lemma 16. If µ = θ(1),

CP(Unif{k-parities},D) ≤
(
d

k

)−1

+ C ′
k · ρ2 · µ4k, (126)

where C ′
k is a constant that depends only on k.

Proof.

CP(Unif{k-parities},D) = ES,S′Ex∼D [χS(x)χS′(x)]
2 (127)

=

(
d

k

)−1

+ ES,S′:S ̸=S′Ex∼D [χS(x)χS′(x)]
2 (128)

=

(
d

k

)−1

+ ES,S′:S ̸=S′ρ2Ex∼Dµ
[χS(x)χS′(x)]

2 (129)

(a)

≤
(
d

k

)−1

+ ρ2 ·
k−1∑
l=0

d−lµ4(k−l)(Ck +O(d−1)) (130)

=

(
d

k

)−1

+ ρ2 · µ4k ·
k−1∑
l=0

(
1

dµ4

)l

(Ck +O(d−1)) (131)

∼
(
d

k

)−1

+ Ck · ρ2 · d−k − µ4k

(dµ4)−1 − 1
, (132)

where in (a) we used that for S and S′ two randomly sampled sets of k coordinates, we have:

P(|S ∩ S′| = l) =

(
k
l

)(
d−k
k−l

)(
d
k

) (133)

= d−l

(
k
(
k
l

)
Γ(k)

Γ(1 + k − l)
+O(1/d)

)
(134)

≤ d−l (Ck +O(1/d)) , (135)

where Ck is such that Ck ≥ k(kl)Γ(k)
Γ(1+k−l) for all l ∈ [k − 1].

If µ≫ d−1/4, then

CP(Unif{k-parities},D) ≤
(
d

k

)−1

+ C ′
k · ρ2 · µ4k, (136)

where C ′
k depends only on k.

26

Finally, we need to discuss that Theorem 5 applies to any fully connected network with weights
initialized from a distribution that is invariant to permutation of the input neurons. Let χS(x) =∏

j∈S xj , with |S| = k, and let π be a random permutation of the input neurons. Theorem 8 and
Lemma 16 imply that after T steps of training with noisy-SGD with the parameters A,B and τ , on
data generated by D and χS , the trained network is such that

EπP(NN(x; θT) = (χS ◦ π)(x)) ≤ 1

2
+
TPA

τ

((
d

k

)−1

+ C ′
kρ

2µ4k +
1

B

)1/2

. (137)

Recall that the network is fully connected and the weights outgoing from the input neurons are
initialized from a distribution that is invariant to permutation of the input neurons. Consider the action
induced by π on the weights outgoing from the input neurons. By properties of SGD, it follows that
each conditional probability on π contributes equally to the left hand side of (137), thus the same
bound holds also for the single function:

P(NN(x; θT) = χS(x)) ≤
1

2
+
TPA

τ

((
d

k

)−1

+ C ′
kρ

2µ4k +
1

B

)1/2

. (138)

D Proof of Proposition 1

Note that

1− ysȳ − f̂(xs)(ys − ȳ) = (ys)2 − ysȳ − f̂(xs)(ys − ȳ) (139)

= (ys − f̂(xs))(ys − ȳ) (140)

= (1− ysf̂(xs))(1− ysȳ) (141)

Since |ȳ| < 1, sgn(1− ysȳ) = 1, and sgn((1− ysf̂(xs))(1− ysȳ)) = sgn(1− ysf̂(xs)). Thus,

ϵ >
1

m

∑
s∈[m]

(
(1− ysf̂(xs))(1− ysȳ)

)
+

(142)

=
1

m

∑
s∈[m]

(
(1− ysf̂(xs))(1− ysȳ)

)
+
1(ysf̂(xs) < 1) (143)

≥ 1

m

∑
s∈[m]

(
(1− ysf̂(xs))(1− ysȳ)

)
+
1(ysf̂(xs) < 0) (144)

≥ δ
1

m

∑
s∈[m]

1(ysf̂(xs) < 0). (145)

E Experiment Details and Additional Experiments

In this section, we provide more details on the implementation of the experiments. Moreover, we
present further experiments on the comparison of the curriculum strategy and standard training.

E.1 Experiment Details

E.1.1 Architectures and Loss Functions

Architectures. We used an MLP model trained by SGD under the ℓ2 loss for the results presented
in the main part. In this appendix, we further present experimental results using other models,
particularly, mean-field [MMN18] and Transformer [VSP+17]. Below, we describe each in detail.

• MLP. The MLP model is a fully-connected architecture consisting of 4 hidden layers of
sizes 512, 1024, 512, and 64. The ReLU activation function has been used for each of
the layers (except the last one). Moreover, we have used PyTorch’s default initialization
which initializes weights of each layer with U(−1√

dimin
, 1√

dimin
) where dimin is the input

dimension of the corresponding layer.

27

• Mean-field. We also use a two-layer neural network with mean-field [MMN18] parametriza-
tion. Particularly, we define fMF(x) = 1

N

∑N
i=1 aiσ(⟨wi, x⟩ + bi) where N = 216 and

σ = ReLU are the number of neurons and the activation function respectively. We also
initialize the weights following ai ∼ U(−1, 1), wi ∼ U(−1√

d
, −1√

d
)⊗d, and bi ∼ U(−1√

d
, −1√

d
),

where d is the dimension of the input. Note that with this parametrization, one should
employ large learning rates (e.g., 1000) assuming SGD is used as the optimizer.

• Transformer. We use the standard encoder part of Transformer architecture [VSP+17]
which is commonly used in language modeling ([RSR+19]) and vision applications (par-
ticularly, Vision Transformers [DBK+20]). More specifically, we first embed ±1 into a
256-dimensional vector using a shared embedding layer. Then, the embedded input is
processed through 6 transformer layers. In each transformer layer, the size of the MLP
hidden layer is also 256, and 6 attention heads are used. Finally, a linear layer is utilized for
computing the output. We also use learnable positional embedding.

Loss Functions. We have mainly used the ℓ2 loss for our experiments. Nonetheless, we additionally
present results on the hinge and covariance loss which are used in our theoretical results. We briefly
review each of these losses below.

• ℓ2 loss. We use the squared loss (ŷ − y)2 for each sample where ŷ and y are the predicted
and the true values respectively.

• Hinge loss. We use the hinge loss defined as max(0, 1 − ŷy) for each sample where the
true label y ∈ {±1} and the predicted value ŷ ∈ R.

• Covariance loss. We also use the covariance loss as defined in Definition 2, i.e., max(0, (y−
ȳ)(y− ŷ)) = max(0, 1− yȳ− ŷ(y− ȳ)), where y ∈ {±1}, ȳ ∈ (−1, 1) and ŷ ∈ R present
the true label, the average of the true label (on the training distribution), and the predicted
value.

E.1.2 Procedure

We have implemented the experiments using the PyTorch framework [PGM+19]. The experiments
were executed (in parallel) on NVIDIA A100, RTX3090, and RTX4090 GPUs and consumed ap-
proximately 200 GPU hours (excluding the selection of hyperparameters). Note that each experiment
has been repeated using 10 different random seeds and the results are reported with 95% confidence
intervals.

Curriculum Strategy / Standard Training. Here we explain the general setting of training. When
using the curriculum strategy, the model is first trained on the sparse samples until the training loss
reaches below 10−2. Then, in the second phase of the curriculum, the training is continued on the
mixed distribution until the training loss drops below 10−3. On the other hand, during the standard
training, the training is done on the mixed distribution, again, until the training loss becomes less
than 10−3.

Number of Samples/Number of Iterations. We generally focused on two components to compare
the curriculum and standard training: sample complexity and the number of iterations needed for
convergence. To compare the sample complexity, for a given number of training samples, we first
generate a training set according to ρ and µ. In the case of using the curriculum, the sparse samples are
then selected by checking if their Hamming weight satisfies H(x) < d(12 − µ

4). Afterward, training
is done as described earlier with or without the curriculum. Finally, the test accuracy (or the test loss)
is compared. We are also interested in the number of steps needed for the convergence of models
whether the curriculum is used or not. To study the number of optimization steps independently of
the number of samples, we consider an online setting in which each mini-batch is freshly sampled
and there is no fixed training set. Note that in this case, when in the curriculum’s first phase, we
directly sample the sparse distributions from Dµ. Similarly, the model is trained until the training
loss drops below 10−3, and then the number of iterations is compared. The only exception is fmiddle

in Figure 3, where we were mainly interested in the weak learning of the target function. In that case,
the training is stopped when the training loss reaches below 0.26.

28

Hyperparameter Tuning. Note that the experiments are aimed at comparing the standard and
curriculum-based training in a fair and similar context. As a result, we did not perform extensive
hyperparameter tuning for our experiments. (Also note that the task and/or the training distribution
varies from one experiment to another.) Nonetheless, we tried different batch sizes and learning rates
to ensure the robustness of our findings. Generally, we did not observe any significant change in the
patterns and potential gains of the curriculum method (of course changes like using a smaller learning
rate would make both curriculum and standard training slower). Consequently, we used a moderate
batch size of 64 for all of our experiments (other than Transformers) and we selected the learning rate
based on the speed and the stability of the convergence. Particularly, we used a learning rate of 0.003
when optimizing the MLP model with SGD under the ℓ2 loss (which covers all experiments presented
in the main part). For the mean-field model, we use a learning rate of 1000. Also for the experiments
of Transformers, we used the Adam [KB14] optimizer with batch size 512 and learning rate 0.0001.

E.2 Additional Experiments

First, we complete Figure 2 by presenting the plot that shows the gain of the curriculum method in
the number of iterations needed for convergence for different parity degrees in Figure 4. Similar to
the previous experiments, we consider the parity embedded in dimension d = 100. As expected, it
is shown that parities of higher degree require more iterations to be learned in general. However,
this increase in iterations is mild when the curriculum is employed, which leads to an increasing gap
between the curriculum and standard training as the degree of parity is increased.

10 3 10 2 10 1

106

St
ep

s t
o

le
ar

n

Parity degree
k = 5
k = 7
k = 10
Standard
Curriculum

Figure 4: Dependency of the gains of the curriculum strategy in the number of training steps for
different degrees of the parity function. The gain of the curriculum method is potentially increased if
parities of higher degrees are used.

Next, we move to the mean-field model. Similar to the other experiments, we evaluate the benefit
of the curriculum strategy for both the sample complexity and the number of steps needed for
convergence. We empirically observed that the mean-field model is able to learn parity functions
more easily (with fewer samples and iterations) than the MLP model used in the main text. We thus
use parity of degree k = 7 in dimension 100 and µ = 0.98 to demonstrate the gains of the curriculum
strategy more clearly. Particularly, we report the accuracy of the mean-field model trained under
the ℓ2 loss for ρ = 0.01 and different training set sizes in Figure 5 (left). Likewise, the number of
iterations needed for convergence for different values of ρ is presented in 5 (right). As expected, the
gap between curriculum strategy and standard training in both the sample complexity and number of
optimization steps are similarly exhibited if a mean-field model is used.

29

104 105 106

Number of training samples

0.5

0.6

0.7

0.8

0.9

1.0

Ge
n.

 a
cc

Std.
Curr.

10 3 10 2 10 1

105

St
ep

s t
o

le
ar

n

Std.
Curr.

Figure 5: Comparison of curriculum and standard training for the mean-field model trained under the
ℓ2 loss; (left) accuracy of the model trained on training sets with varying sizes, (right) the number of
iterations needed for convergence of the model. The general picture of the potential benefits of the
curriculum method remains unchanged.

Moreover, we study other loss functions studied in this paper. To this end, we keep the same setting
as above, considering the mean-field model, parity of 7 bits, and d = 100, µ = 0.98, and ρ = 0.01
(unless varying). We report the results of the hinge and covariance loss in Figure 6 and Figure 7
respectively. It can be seen that the patterns are generally similar to the case that ℓ2 loss was being
used (Figure 5). In sum, the curriculum method makes the learning of the parity function possible
with fewer samples and iterations for small enough values of ρ.

104 105 106

Number of training samples

0.5

0.6

0.7

0.8

0.9

1.0

Ge
n.

 a
cc

Std.
Curr.

10 3 10 2 10 1

105

106

St
ep

s t
o

le
ar

n

Std.
Curr.

Figure 6: Potential benefits of the curriculum strategy for the mean-field model trained with the
hinge loss; (left) accuracy for different training set sizes, (right) the number of iterations (with fresh
samples) needed for the convergence of the model. Similar to the case of the ℓ2 loss, the curriculum
is beneficial for small enough values of ρ.

104 105 106

Number of training samples

0.5

0.6

0.7

0.8

0.9

1.0

Ge
n.

 a
cc

Std.
Curr.

10 3 10 2 10 1

105

106

St
ep

s t
o

le
ar

n

Std.
Curr.

Figure 7: Comparing curriculum strategy and standard training for the mean-field model trained with
the covariance loss; (left) accuracy for different training set sizes, (right) the number of optimization
steps needed for learning the parity function. Similar to experiments where ℓ2 or hinge loss are used,
curriculum potentially reduces the number of iterations and also the number of samples needed for
learning.

30

Finally, we evaluate the curriculum strategy for the Transformer model trained under the ℓ2 loss. To
make the optimization of the model faster, we use Adam [KB14] optimizer with batch size 512 for
this experiment. We also stop the training when the training loss reaches below 10−2 instead of 10−3.
Similar to the above-mentioned setting, we set µ = 0.98, ρ = 0.01 (unless varying), d = 100, and
we consider learning the parity of degree k = 7. The validation accuracy of the Transformer for
different training set sizes is presented in Figure 8 (left). It can be seen that there is a significant,
albeit weak, advantage in terms of sample complexity when the curriculum is used. Similarly, the
number of iterations with fresh samples needed for convergence of the model is shown in Figure
8 (right). The gain in the number of steps is also weaker than the other models, nonetheless, it is
significant (especially for small values of ρ such as 0.001).

104 105

Number of training samples

0.5

0.6

0.7

0.8

0.9

1.0

Ge
n.

 a
cc

Std.
Curr.

10 3 10 2 10 1

104

St
ep

s t
o

le
ar

n

Std.
Curr.

Figure 8: Evaluating the curriculum for the Transformer model in terms of sample complexity (left)
and the number of iterations (right). It can be seen that the curriculum can still be significantly benefi-
cial, although the difference between the curriculum and standard training is weaker in comparison to
the MLP and mean-field model.

31

	Introduction
	Related Literature

	Setting and Informal Contributions
	Positive Results for Curriculum Training
	Negative Result for Standard Training
	Experiments
	Conclusion
	Proof of Theorem 3
	First Layer Training
	Second Layer Training

	Proof of Theorem 4
	Proof Setup
	First Step: Recovering the Support
	Second Step: Convergence

	Proof of Theorem 5
	Proof of Proposition 1
	Experiment Details and Additional Experiments
	Experiment Details
	Architectures and Loss Functions
	Procedure

	Additional Experiments

