
A Optimal Embeddings489

Recall the setting of self supervised learning as described in Balestriero and LeCun (5): given490

a dataset X′ = [x1, ...,xN ]T ∈ RN×D′
we construct a new dataset by creating k randomly491

augmented views of the original data, X = [view1(X
′), ..., viewk(X

′)] ∈ RNk×D. The advantage492

of doing so is that we can now leverage the knowledge that different views of the same underlying493

datapoint are semantically related. We can express this notion of similarity in the symmetric matrix494

G ∈ {0, 1}Nk×Nk with Gij = 1 if augmented datapoints i and j are semantically related (and495

Gii = 1 as any datapoint is related to itself). We can normalize G such that its rows and columns496

sum to 1 (so rows of G are k-sparse with nonzero entries equal to 1/k).497

Now let Z ∈ RNk×d be an embedding of the augmented dataset. Then we have GZ = [C, ...,C]T498

where C is the matrix of centroid vectors introduced above, and the number of repetitions of C is k.499

Then because σ([C, ...,C]) =
√
kσ(C) we can write MMCR loss function as,500

L = −||GZ||∗
= −||QΛQTUSV T ||∗
= −||ΛQTUS||∗

(6)

Where we have taken the eigendecomposition of G which is real and symmetric and the SVD of501

Z, and then used the fact that the singular value spectrum is invariant under left or right orthogonal502

transformations. We now show that a global optima of this objective is achieved when the left singular503

vectors of Z are the eigenvectors of G and the singular values of Z are proportional to the eigenvalues504

of G. Throughout we will assume that the size of the dataset is greater than the dimensionality of the505

embedddings, N > d, as is the case in practical applications. First we prove a simple lemma about506

the spectrum of matrices who are extended by zeros (i.e. embedded in a higher dimensional space).507

Lemma A.1: For A ∈ RN×N , B ∈ RN×d with d < N , ||AB||∗ = ||AB̃||∗ where B̃ = [B,0] ∈508

RN×N .509

Proof: First note that AB̃ = [AB,0] so it suffices to show that for arbitrary X that σ(X) =510

σ([X,0]). Taking the SVD of X ,511

X =
[
U Ũ

] [ Σ
0

] [
V T

]
= UΣV T

Then a valid singular value decomposition for X̃ is512

X̃ =
[
U Ũ

] [ Σ 0
0 0

] [
V T 0
0 I

]
Clearly then, ||X||∗ = ||X̃||∗513

Theorem: The proposed loss achieves a global minimum when the left singular vectors of Z are the514

eigenvectors of G, and the singular values of Z are proportional to the top d eigenvalues of G.515

Proof: Let Z̃ = [Z,0] ∈ RN×N . By Lemma A.1 we have ||GZ||∗ = ||GZ̃||∗. Von Neumann’s516

trace inequality can be used to show ||GZ̃||∗ ≤
∑Nk

i=1 σi(G)σi(Z̃) (see Marshall et al. (48) for517

proof). Examining (4) it is clear that this bound is achieved when U = Q. The problem can therefore518

be reduced to the constrained optimization problem,519

min
σi(Z̃)

Nk∑
i=1

σi(G)σi(Z̃)

subject to
Nk∑
i=1

σi(Z̃)2 = Nk

where the constraint comes from the fact that columns of Z are unit vectors. Intuitively, we are520

maximizing the inner product between a fixed vector σ(G) and a vector with fixed L2 norm. The521
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solution of course is to align the two vectors as closely as possible, i.e. when σi(Z̃) ∝ σi(G) for522

i = 1, ..., d. It is worth noting that by construction σi(Z̃) = 0 for i > d and the columns of U523

associated with these zero valued singular values are unconstrained.524

B Pytorch Style Pseudocode for MMCR525

1 # h: encoder526

2 # g: projection head527

3 # T: momentum temperature528

4 # B: batch size529

5 # K: number of augmentations530

6 # D: projector output dimensionality531

7 #532

8 # lmbda: trade -off parameter533

9534

10 f_o , g_o = ResNet50 (), MLP() # online networks535

11536

12 # initialize momentum network with identical params537

13 f_m , g_m = f_o.copy , g_o.copy()538

14539

15 # momentum networks are not updated via gradient descent540

16 f_m.requires_grad = False541

17 g_m.requires_grad = False542

18543

19 for x in loader:544

20 # K randomly augmented views545

21 x = multi_augment(x) # B x K x H x W546

22547

23 # push through encoder and projector548

24 z_o = g_o(h_o(x)) # B x K x D549

25 z_m = g_m(h_m(x)) # B x K x D550

26 z = concatenate(z_o , z_m , dim=1) # append outputs551

27552

28 # project onto unit sphere553

29 z = normalize(z, dim=-1)554

30555

31 # calculate centroids (mean over augmentation axis)556

32 c = z.mean(dim=1) # B x D557

33558

34 # calculate singular values559

35 U_z , S_z , V_z = svd(z) # batch svd560

36 U_c , S_c , V_c = svd(c)561

37562

38 # calculate loss563

39 loss = -1.0 * sum(S_c) + lmbda * sum(S_z) / B564

40565

41 # backward pass and optimization step566

42 loss.backward ()567

43 optim.step()568

44569

45 # perform momentum update570

46 with torch.no_grad ():571

47 f_m.parameters () = (1 - T) * f_o.parameters () + T * f_m.572

parameters ()573

48 g_m.parameters () = (1 - T) * g_o.parameters () + T * g_m.574

parameters ()575

C Mean Field Theory Manifold Capacity Background Information576

For completeness we summarize some of the central arguments from Chung et al. (16), which577

develops the general form of manifold capactiy theory.578
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Mean Field Theory Recall the problem setting for manifold capacity analysis: given a set of P579

manifolds embedded in a feature space of dimensionality D, each assigned a random binary class580

label (16). Manifold capacity theory is concerned with the question: what is the largest value of581
P
D such that there exists (with high probability) a hyperplane separating the two classes? In the582

thermodynamic limit, where P,D → ∞ but P
D remains finite, the inverse capacity can be written583

exactly,584

α−1
M = ET⃗ [F (T⃗ )] (7)

where, F (T⃗ ) = minV⃗

{
∥V⃗ − T⃗∥2 | gS(V⃗ ) ≥ 0

}
, S is the set defining the manifold geometry (i.e.585

the set of vectors S⃗ that are points on an individual manifold), T⃗ are random vectors drawn from a586

white multivariate Gaussian distribution, and gS(V⃗ ) = minS⃗{V⃗ · S⃗ | S⃗ ∈ S}, is the concave support587

function.588

The KKT equations for this convex optimization problem are:589

V⃗ − T⃗ − λS̃(T⃗ ) = 0

λ ≥ 0

gS(V⃗ )− κ ≥ 0

λ
[
gS(V⃗ )− κ

]
= 0.

(8)

, where S̃(T⃗ ) is a subgradient of the support function. When the support function is differentiable,590

the subgradient is unique and equal to the gradient,591

S̃(T⃗ ) = ∇gS(V⃗ ) = argmin
S⃗∈S

V⃗ · S⃗ (9)

S̃(T⃗ ) is the unique point in the convex hull of S that satisfies the first KKT equation, and is called592

the “anchor point" for S induced by the random vector T⃗ .593

Equivalent Interpretation of Anchor Points For a given dichotomy (random binary class labelling)594

the weight vector of the maximum margin separating hyperplane can be decomposed into a sum of at595

most P vectors, with each manifold contributing a single vector, which lies within the convex hull of596

the manifold. The position of said point point is a function of the manifolds position relative to all597

of the other manifolds in the space and depends on the particular set of random labels. Thus there598

exists a distribution of separating-hyperplane-determining-points for each individual manifold. Using599

the cavity method it can be shown that these points are none other than the anchor points that are600

involved in solving the optimization problem described above (31).601

Numerical Solution To solve the mean field equations numerically, one samples several random602

Gaussian vectors T⃗ , and then for each T⃗ , V⃗ and S⃗ are determined by solving the quadratic program-603

ming program given above. The capacity is then estimated as the mean value of F or the samples604

T⃗ .605

Manifold Geometries The way the capacity varies in terms of the statistics of the anchor points can606

be simplified by introducing two key quantities, the manifold radius RM and manifold dimensionality607

RM :608

R2
M = ET⃗ [||S̃(T⃗ )||

2]

DM = ET⃗ [T⃗ · Ŝ(T⃗ )]
(10)

where Ŝ(T⃗ ) is a unit-vector in the direction of the anchor point S̃. In particular as discussed in the609

main text, the manifold capacity can be approximated by ϕ(RM

√
DM ) where ϕ is a monotonically610

decreasing function.611
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Elliptical Geometries In the case where the manifolds exhibit elliptical symmetries, the manifold612

radius and dimensionality can be written in terms of the eigenvalues of the covariance matrix of the613

anchor points:614

R2
M =

∑
i

λ2
i

DM =
(
∑

i λi)
2∑

i λ
2
i

(11)

So, in this case RM is the total variability of the anchor points, and DM is a generalized participation615

ratio of the anchor point covariance, a well known soft measure of dimensionality.616

D Additional Pre-training information617

Settings for CIFAR/STL-10 We take the parameters of each augmentation directly from Zbontar618

et al. (63), but for these lower resolution images we omitted Gaussian blurring and solarization619

augmentations. All models were trained for 500 epochs using the Adam optimizer (40) with a620

learning rate of 1e − 3 and weight decay of 1e − 6. For all three methods we used a one hidden layer621

MLP with hidden dimension of 512 and output dimension of 128 for the projector head g. We swept622

batch size for each method and chose the one that resulted in the highest downstream task performance.623

For both SimCLR and Barlow Twins we found that a batch size of 128 was optimal (among 32, 64,624

128, 256, and 512) for all 3 datasets. For MMCR there is a trade-off between batch size and the625

number of augmentations used, and the optimal value of that trade-off is highly dataset dependent. For626

CIFAR-10 and CIFAR-100 we used batch size of 32 and 40 views, and for STL-10 we used a batch of627

64 with 20 views For Barlow Twins we used λ = 1
128 which normalizes for the number of elements628

in the on-diagonal and off-diagonal terms in the loss. For SimCLR we used the recommended629

setting of τ = 0.5. The overall performance of both baseline methods (and likely MMCR as well)630

could be increased with a more thorough hyperparameter search and by employing methodology that631

more closely matches the original works. For example, both methods would likely benefit from the632

combination of larger batch size, the use of the LARS optimizer (which is designed for large batch633

optimization), a learning rate scheduler consisting of linear warm-up followed by cosine annealing,634

longer training, and the use of more diverse augmentations (i.e. including solarization and gaussian635

blur). Additionally Barlow Twins reports that the representation can benefit from using a much larger636

projector network than we use. Because our goal was primarily to demonstrate that MMCR can637

produce representations that are comparable to these baselines rather than to produce state-of-the-art638

results on small scale datasets we opted for simplifications wherever possible (using off the shelf639

Adam for optimization with a fixed learning rate, and fixing architectural hyperparameters like the640

projector dimensionality).641

Settings for ImageNet-100 For ImageNet we more closely match the pre-training procedures of642

previous works. We use a batch size of 2048 and a smaller number of views for MMCR (4), and643

also use the full suite of augmentations from Zbontar et al. (63). For the sake of efficiency we train644

for a reduced number of epochs (200). For MMCR and SimCLR we modified the projector hidden645

dimensionality to be 4096 for the projector head, following the original work (12). For Barlow646

Twins we used the recommended 2-layer MLP with hidden and output dimensions of 8192, and set647

λ = 5e − 3, however these hyperparameters were optimal for the full ImageNet dataset, and not648

neccesarrily for ImageNet-100. We were unable to achieve better downstream performance using a649

ResNet-50 backbone than what has previously been reported in the literature for this dataset with a650

ResNet-18 backbone, therefore we report the ResNet-18 performance reported in (20). For SimCLR651

we use τ = 0.1 which is the recommended setting for larger batch sizes.652

Settings for ImageNet-1k: For ImageNet-1k we use mostly identical settings to ImageNet-100,653

but we increased the capacity of the projector network (using a 2 hidden layer MLP with hidden654

dimenisons of 8192 and output dimension of 512). We scaled the learning rate linearly with batch655

size: lr = 0.6× batch size
256 . Additionally we reduce the number of pretraining epochs to 100. Finally656

for ImageNet-1k we found that employing a momentum encoder slightly boosted downstream per-657

formance (around +0.5% on ImageNet frozen-linear evaluation). Specifically, an identical encoding658

network and projector architecture is initialized with the same parameters as the initial “online"659

network, and during training the weights of this “momentum" network track a slowly moving average660

of the online network parameters (only the online network parameters are updated via gradient661
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descent). Each augmented view is passed through both the online and momentum networks, and the662

resultant embeddings are all averaged to form the centroid vector for a particular image in the batch.663

We used a momentum coefficient of 0.99.664

Pre-training on 16 A100 GPUs using 8 views (our most compute intensive setting) takes approximately665

32 hours.666

E Details of Representational Analyses667

E.1 Manifold Capacity Analysis668

For each pre-trained model, we extract layer activations across the ResNet hierarchy after a forward669

pass of a set of images. For class manifold analysis, the set of images contain 10 classes, where each670

class has 100 examples. Augmentation manifolds instead have 100 exemplars with 100 examples671

each. Following (18), we take activations from all convolutional layers in ResNet-50 after a ReLU672

non-linearity. The specific extracted layers highlighted in bold fonts are given by Table 3. The673

final analysis results are averaged over five data samplings with different random seeds and random674

projections of intermediate features to lower-dimension spaces (default 5000 dimensions).675

E.2 Gradient Coherence Analysis676

In Fig. 3, for each of the classes of CIFAR-10, we generate 100 batches of 32 augmentation manifolds677

of samples from a specific class (with 40 augmentations each). We then measure the gradient of the678

loss function for each batch during different stages of training, and compute the cosine similarity679

between every pair of gradients. Across all stages of training the mean cosine similarity between680

gradients generated from batches of the same class is larger than those from distinct classes (left681

column). This observation remains true when isolating the gradients of parameters from different682

stages of in the resnet-50 hierarchy (center and right columns, respectively).683

E.3 Manifold Subspace Alignment684

For Fig. 4 we generated 100 samples from the augmentation manfiolds of 500 images in the CIFAR-10685

dataset. We then measure the mean subspsace angle (left column), fraction of shared variance (middle686

column) and centroid cosine similarity between each pair of manifolds. The same procedure was687

used for generating the data for Fig. 5.688

Subspace Angle. Besides measuring the size and dimensionality of individual object manifolds we689

also wish to characterize the degree of overlap between pairs of manifolds. For this, we measure the690

angle between their subspaces (41), which is a generalization of the notion of angles that applies to691

subspaces of arbitrary dimension.692

Shared Variance. Object manifolds will generally have a lower intrinsic dimensionality then the693

space in which they are embedded. Therefore, the data will have low variance along several of the694

principal vectors used to calculate the set of subspace angles, and so many of the principal angles695

will have little meaning. To address this limitation we also compute the shared variance between the696

linear subspaces that contain object manifolds.697

F Implicit MMCR Effectively Reduces Augmentation Manifold Nuclear698

Norm699

To test whether or not implicit manifold compression actually reduces the mean augmentation700

manifold nuclear norm, we can vary the value of λ. Below we see the evolution of both terms of the701

loss for several different values of lambda during training on CIFAR-10. For these experiments the702

batch size was 64 and the number of augmentations per image was 4.0. As shown in Fig. 6, the level703

of compression of individual manifolds is nearly the same across all values of the parameter.704
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Table 3: A Total of 18 Extracted ResNet-50 Layers (in Bold) for MFTMA Analysis

Layer Type Conv2d Size (H × W × C)

pixel Input None

conv1

[
[l]Conv2d

BatchNorm
ReLU

]
× 1 [[l]7× 7× 64]× 1

conv2_x

[l] [ [l]Conv2d
BatchNorm

]
× 3

ReLU

× 3

[
[l]1× 1× 64
3× 3× 64
1× 1× 256

]
× 3

conv3_x

[l] [ [l]Conv2d
BatchNorm

]
× 3

ReLU

× 4

[
[l]1× 1× 128
3× 3× 128
1× 1× 512

]
× 4

conv4_x

[l] [ [l]Conv2d
BatchNorm

]
× 3

ReLU

× 6

[
[l]1× 1× 256
3× 3× 256
1× 1× 1024

]
× 6

conv5_x

[l] [ [l]Conv2d
BatchNorm

]
× 3

ReLU

× 3

[
[l]1× 1× 512
3× 3× 512
1× 1× 2048

]
× 3

Figure 6: Validation loss values for different values of λ

G Classification Evaluation Procedure705

CIFAR and STL-10: During pre-training all models were monitored with a k-nearest neighbor706

classifier (k=200) and checkpointed every 5 epochs. After pre-training, we trained linear classifiers707

on all checkpoints whose monitor accuracy was within 1% of the highest observed accuracy, and708

select the model that achieves the highest linear classification accuracy. Linear classifiers were trained709

using the Adam optimizer with batch size of 1024 and an initial learning rate of 0.1, which decayed710

according to a cosine scheduler over the course of 50 epochs. For the linear classifier training, at train711

time we use the same set of augmentations as during unsupervised pretraining, at test time we only712

use center cropping and random horizontal flipping.713
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ImageNet-1k/100: For ImageNet datasets we closely followed the most widely adopted evaluation714

procedure. Following pre-training we freeze the encoder weights and train a linear layer in a715

supervised fashion using SGD with a batch size of 256, learning rate of 0.3, and weight decay of 1e-6716

for 100 epochs. During linear classifier training the only data augmentations are random cropping717

and random horizontal flips, and during evaluation inputs are center cropped.718

Semi-Supervised: For semi-supervised evaluation we mostly follow the procedure outlined in Bardes719

et al. (6). We use the SGD optimizer with momentum of 0.9 and weight decay of 1e-6 and the720

standard cross entropy loss. The augmentation procedure was the same as described above. Because721

the linear classifier is being trained from scratch and the representation is being fine tuned the learning722

rate for the parameters of the backbone is scaled down by a factor of 10, and both learning rates723

(backbone and classifier) followed a cosine decay schedule for 20 epochs. We used a batch size of724

256 and swept the learning rate over [0.1, 0.3, 1.0] for each model.725

Other Downstream Classification Tasks: Classifiers on these datasets were trained in a similar726

fashion to those trained on the CIFAR and STL-10 datasets. The only difference was that we trained727

for only 20 epochs (which we found sufficient for convergence), the initial learning rate over [3e-2,728

3e-3, 3e-4] for each model, and the augmentation procedure matched the standard setup for ImageNet729

training (only random cropping and horizontal flipping for training, resizing and center cropping for730

evaluation).731

H Training Metrics732

In the Fig. 7 below we monitor the evolution of both the objective (second panel), the mean733

augmentation manifold nuclear norm, the centroid norm, and the mean centroid similarity evaluated734

on the test set over the course of training.735

Figure 7: Evolution of various metrics during training. Geometric measures are evaluated on a
set of 200 manifolds, each defined by an image drawn from the CIFAR-10 dataset, along with 16
augmentations. Shaded regions indicate a 95% confidence interval around the mean.

I Classification Performance on Smaller Datasets736

In Table 4 below we report the performance of both our method as well as Barlow Twins and SimCLR737

when trained using a ResNet-50 backbone on smaller datasets.738

J Batch Size Dependence739

One of the most cited drawbacks of contrastive SSL methods has been that strong performance740

on downstream tasks requires training with large batch sizes, while non-contrastive methods (e.g.,741

VICReg or Barlow Twins (63; 6)) that place constraints on the cross-correlation/covariance matrices742

of the embeddings are much more amenable to smaller batch training. It is also worth noting that743

the need for large batch sizes in contrastive methods can be alleviated in various ways, such as744

maintaining a memory bank (61) or employing a slowly updating momentum encoder (36). Given745

that our method is neither wholly contrastive nor non-contrastive (since it acts on the spectrum of the746

embedding matrix directly), we wondered howwould depend on training batch size. We pretrained747

on ImageNet-1k using batch sizes of 256, 512, 1024, 2048, 4096 and evaluate the linear classification748
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Table 4: Top-1 classification accuracies of linear classifiers for representations trained with various
datasets and objective functions. Note: for Barlow Twins on ImageNet-100 we report the result
from da Costa et al. (20) which uses a ResNet-18 backbone, as we were unable to obtain better
performance. For MMCR on ImageNet-100 we tested both 2 views (matched to baselines) and 4
views, results are formatted (2-view)/(4-view)

[t]

Method CIFAR-10 CIFAR-100 STL-10 ImageNet-100

Barlow Twins (our repro.) 90.91 67.91 89.96 80.38∗

SimCLR (our repro.) 92.22 70.04 91.11 79.64
MMCR (λ = 0.0) 93.53 69.87 90.62 81.52/82.88
MMCR (λ = 0.01) 93.39 70.94 90.77 81.28/82.56

accuracy for each. Encouragingly we observed only a modest decrease in performance for the749

smallest batch size tested. The results of this sweep, in comparison to Barlow Twins and SimCLR, is750

shown in in Fig. 8 Note that for these runs we used two views and the linear learning rate scaling as751

described in Appendix D. Future work should endeavor to better understand the impact of various752

hyperparameters on the quality of learned representations.753

An important detail is that for this experiment we did not employ a momentum encoder when training754

MMCR. It is argued in He et al. (36) that the momentum encoder increases the effective minibatch755

size as the slowly moving weights encode information from preceding batches. However here we756

are interested explicitly interested in batch size dependence so we ablate this architectural confound757

(neither Zbontar et al. (63); Chen et al. (12) employ momentum encoders).758

Figure 8: Drop in top-1 performance relative to that of the best setting for three methods. Data for
both Barlow Twins and SimCLR are copied from Zbontar et al. (63).

K Additional Details on BrainScore759

Brain-Score evaluates a model in terms of its ability to predict the measured responses of neurons to760

images. We provide a brief introduction to the metric here (see (54) for a complete description). Let761

y ∈ RN denote the average response of a single (biological) neuron to a set of N training images762

and X ∈ RN×K be the response of K model neurons to the same images. Brain Score first solves763

the linear regression problem y = Xw for weights w. The model then predicts responses y′ to a set764

of held out images. Next the Pearson correlation coefficient between y′ and y is calculated, and the765

score for a particular dataset is the median of the individual neuron predicitivities in said dataset. The766

mean of these scores is taken over different train-test splits of each dataset. The score for a total brain767

area (as shown in Table 2 is the mean over train-test splits and distinct datasets. The standard error of768

the means for each dataset (which are typically between 1e-3 and 1e-2) within an area are summed769

quadrature and divided by the number of datasets to produce the errors reported in table 2. In table770

5 we split the brain area scores into individual datasets.771
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Model V1.0 V1.1 V2.0 V4.0 V4.1 V4.2
MMCR 0.270 0.718 0.311 0.577 0.627 0.492
SimCLR 0.224 0.776 0.288 0.576 0.626 0.48
BYOL 0.274 0.727 0.291 0.585 0.626 0.48
MoCo 0.273 .726 0.293 0.57 0.629 0.492
Barlow 0.276 .721 0.293 0.568 0.626 0.493
SwAV 0.252 .723 0.296 0.568 0.614 0.469
Model V4.3 IT.0 IT.1 IT.2 IT.3
MMCR 0.226 0.554 0.558 0.545 0.424
SimCLR 0.224 0.552 0.545 0.518 0.456
BYOL 0.216 0.55 0.545 0.516 0.41
MoCo 0.215 0.54 0.560 0.550 0.437
Barlow 0.221 0.545 0.547 0.518 0.412
SwAV 0.202 0.533 0.537 0.518 0.405

Table 5: Brain-score comparison of six self-supervised models, over 11 different electrophysiological
data sets recorded from macaque monkeys (54). Datasets V1.0 and V2.0 are from Freeman et al.
(26), V1.1 is from Marques et al. (47), and V4.0, V4.1, IT.0, and IT.1 are from Majaj et al. (45).
(V4/IT).(2/3) are the SanghaviJozwik2020 and SanghaviMurty2020 datasets as denoted by brainscore.

L Additional Details on Spectral Properties772

Participation Ratio We first extracted the 2048 dimensional feature vectors for each model in773

response to the images in the ImageNet validation set. Images were resized to 256× 256 and then774

center cropped to 224× 224 following the setting in which the classifiers are tested. We resampled775

the resultant feature matrices with replacement 10 times independently for each model For each776

resampled dataset (of features) we calculate the empirical covariance matrix, associated eigenspectra,777

and associated participation ratios (squared ratio of L1 to L2 norm of the eigenvcetors).778

Decay Coefficient The spectra obtained using the procedure outlined above all decayed rapidly near779

the tails (the least significant eigenvalues). To avoid undo bias from these tails when estimating the780

decay coefficients we only considered the top 2000 eigenvalues. To estimate the decay coefficient we781

fit a regression line to the logarithm of the eigenvalues as a function of the logarithm of their indexes.782

This fitting procedure was repeated across the bootstrapped spectra for each model to obtain standard783

errors of the mean. For all models the linear regression produced a strong fit to the data, with the784

minimum observed R2 value being 0.95.785

M Object Detection786

To ensure that the representations obtained with MMCR are not hyperspecialized to classification787

tasks we also evaluated our highest performing model on object detection. We follow (36; 63), fine788

tuning the representation network with a Faster R-CNN head and C-4 backbone on the VOC07+12789

dataset (training with the train+val split and evaluating on the VOC07 test split). All settings except790

for the initial learning rate (which we set to 0.12) were identical to those from He et al. (36), and791

we similarly used the detectron2 library for this evaluation. A representation trained using MoCo792

v2 for 200 epochs achieves an AP50 (the most common evaluation metric for this dataset) of 82.4.793

MMCR with 8 views and 100 epochs of pretrainined produced an AP50 of 81.9 (this is the mean over794

three independent fine tunes, the standard deviation was 0.2), demonstrating that the representeations795

generated by our method are not limited to object recognition.796

N Limitations797

Time and compute limitations prevented us from conducting exhaustive optimization of all design798

choices. For example we do not explore effects of varying the projector network width and depth.799

We additionally restrict the model to a ResNet-50 encoding network pretrained on the ImageNet-1k800

dataset for 100 epochs. This choice allows us to make fair comparisons to several recently developed801
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SSL methods with a modest compute budget, but precludes answering questions about how the802

method scales up to larger problems.803

We also note that although our objective function has favorable computational complexity compared to804

existing methods, the evaluation of our objective is not straightforward to distribute across machines.805

This is because we need to compute the SVD over the centroid matrix, which requires gathering the806

outputs of a distributed forward pass onto a single machine. Efficient methods for the distributed807

computation of the SVD could help alleviate this issue in the future.808
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