
A Convergence Proof474

Theorem A.1. Let x1,...,xn be any token sequence generated by an arbitrary language distribution

p with an alphabet of size d. Let p
0(x1, ... , xn) = E⇡[p(⇡�1(x1), ... ,⇡�1(xn))]. Then, for any

0<✏,�<1/2,

1

T

TX

t=1

kp(xt|x1,...,xt�1)�p
0(xt|x1,...,xt�1)k1✏

with probability greater than 1�� when T � d
✏4 polylog(d,

1
✏ ,

1
�).475

Proof. For any desired error 0<✏<1/2 and failure rate 0<�<1/2, we will first prove the analogous476

statement for KL divergence instead of L1 distance, and then relate a bound on KL divergence back477

to L1 distance via Pinsker’s inequality.478

Throughout the rest of proof, we will work with a parameter ✏0<O(✏
(log(1/�))1/4

)< 1
2 , and will bound479

our KL divergence by ✏
0.480

To prove the bound in terms of KL divergence, it will be useful to ensure to work with a “smoothed”
version of p, which we denote by p̃, for which every token has some nonzero probability, �/d, of
appearing at each timestep, for a parameter �=�✏

0
/T :

p̃(xT |x1,...,xT�1)=p(xT |x1,...,xT�1)(1��)+
�

d
.

Similarly, let p̃0(x1,...,xn)=E⇡[p̃�1(⇡(x1),...,⇡�1(xn))]. We use P̃ to denote the probabilities under481

this change. With probability at least 1��T �1�✏
0
��1� �

2 , the realized sequencex1,...,xn drawn un-482

der p can be regarded as being drawn from p̃ (as these distributions can be coupled with this probability).483

The key idea is then to show that p̃0(yt+1|y1:t), where yt = ⇡
⇤(xt) for some ground truth ⇡

⇤484

unknown to p
0, is equivalent to using the multiplicative weights algorithm to predict yt+1 with485

the Hedge strategy, with the experts being each possible permutation of the tokens and the486

cost incurred by each expert being the negative log likelihood of the prediction. We denote487

P̃⇡0(y1:n)= P̃(y1:n|⇡=⇡
0)= p̃(⇡�1(y1),...,⇡�1(yn)) and show this in Lemma A.2.488

With this equivalence, we can then bound the difference between the prediction of p and p
0 as the regret

of the multiplicative weights algorithm. Concretely, we show in Lemma A.3 that the regret of p0 to
any expert ⇡is bounded as

1

T

TX

t

log
P̃⇡(yt+1|y1:t)
p̃0(yt+1|y1:t)

2✏02

for T �
�
4log2(d�)log(d!)

�
/✏

04.489

We can see p̃ as the particular expert/permutation P̃I . And we can further only consider the special case
that ⇡⇤ is also the identity permutation, then the same result holds over xt and with P̃⇡ replaced by p̃, i.e.

1

T

TX

t

log
p̃(xt+1|x1:t)

p̃0(xt+1|x1:t)
2✏02

Now we want to convert this bound on regret in terms of log likelihood to KL divergence, and
eventually to L1 distance. To convert it to KL divergence regret, we construct a martingale:

Zi=
iX

t=1

✓
DKL(p̃(xt+1|x1:t)kp̃0(xt+1|x1:t))�log

p̃(xt+1|x1:t)

p̃0(xt+1|x1:t)

◆
.

We verify that this is a martingale in Lemma A.4, with differences bounded by 2log 1
� , and bound the490

probability that ZT exceeds b=log d
�

q
8T log 2

� via Azuma’s inequality Lemma A.6: with probability491

1��/2, we have that |ZT |b.492

13

Therefore, we have that with probability at least 1��/2493

ZT =
TX

t=1

✓
DKL(p̃(xt+1|x1:t)kp̃0(xt+1|x1:t))�log

p̃(xt+1|x1:t)

p̃0(xt+1|x1:t)

◆
b

TX

t=1

DKL(p̃(xt+1|x1:t)kp̃0(xt+1|x1:t))
TX

t=1

✓
log

p̃(xt+1|x1:t)

p̃0(xt+1|x1:t)

◆
+b

Putting this all together, since 1
T

PT
t log

p̃i(xt+1|x1:t)
p̃0(xt+1|x1:t)

2✏02 for T �
�
4log2(d�)log(d!)

�
/✏

04, we have494

the following:495

TX

1

DKL(p̃(xt+1|x1:t)kp̃0(xt+1|x1:t))2✏02T+b.

We now convert our bound on KL divergence to a bound on L1 distance via Pinsker’s inequality:

kp̃(xt+1|x1:t)�p̃
0(xt+1|x1:t)k1

r
1

2
DKL(p̃(xt+1|x1:t)||p̃0(xt+1|x1:t)).

Further, at any given xt, the difference between the redistributed probability distribution p̃ and a496

unmodified probability distribution p is at most �, so497

kp(xt+1|x1:t)�p
0(xt+1|x1:t)k1kp̃(xt+1|x1:t)�p̃

0(xt+1|x1:t)k1+2�.

We are interested in the average L1 across time steps:498

1

T

TX

t=1

kp(xt+1|x1:t)�p
0(xt+1|x1:t)k1

1

T

TX

t=1

(kp̃(xt+1|x1:t)�p̃
0(xt+1|x1:t)k1+2�)

 1

T

TX

t=1

r
1

2
DKL(p̃(xt+1|x1:t)kp̃0(xt+1|x1:t))+2�

 1

T

vuut
T

TX

t=1

1

2
DKL(p̃(xt+1|x1:t)kp̃0(xt+1|x1:t))+2�,

where in the last inequality we applied Cauchy–Schwarz. Hence for T �
�
4log2 d

� log(d!)
�
/✏

04,499

1

T

TX

t=1

kp(xt+1|x1,...,xt)�p
0(xt+1|x1,...,xt)k1

1

T

r
T

2
(2✏02T+b)+2�


r
✏02+

b

2T
+2�.

Simplifying this for b=log d
�

q
8T log 2

� , T �
�
4log2(d�)log(d!)

�
/✏

04 and �=✏
0
�/T , we have500

1

T

TX

t=1

kp(xt+1|x1,...,xt)�p
0(xt+1|x1,...,xt)k1

vuut
✏02+

q
2log 2

�p
log(d!)

✏02+
2✏0�

T

✏
0(
2�

T
+

vuut1+

s
2log 2

�

log(d!)
)

✏
0(1+

s

1+

r
2log

2

�
)✏

02
p
2(2log

2

�
)1/4.

14

We can bound this average L1 error by ✏ if we set ✏0= ✏
2
p
2(2log 2

�)
1/4 <

1
2 , in which case our condition

that T �
�
4log2(dT�✏0)log(d!)

�
/✏

04 becomes T �
�
512log 2

� log
2 dT
�✏0 log(d!)

�
/✏

4. The theorem now
follows by simplifying this expression. Since log 2

� 2log 1
� , and log(d!)dlog(d), we can relax the

condition on T as

T �
✓
1024log

1

�
log2(

d

�✏0
)log2(T)dlog(d)

◆
/✏

4=log2(T)
d

✏4
polylog(d,

1

✏
,
1

�
)

To remove the log2 T from the right side, note that for any W > 10, if T > 10 W log2W , then
T >Wlog

2
T , yielding the further relaxed the condition on T as

T � d

✏4
polylog(d,

1

✏
,
1

�
).

501

Lemma A.2. Consider an arbitrary ground truth permutation ⇡
⇤
. For all time steps t 2 [1,n], let502

yt=⇡
⇤(xt). Consider the online prediction game of predicting yt+1 at each time step given previous ob-503

servation y1:t without knowing ⇡
⇤

but knowing p̃. Then, p̃
0(yt+1|y1:t) is equivalent to the multiplicative504

weights algorithm’s prediction of yt+1 with the Hedge strategy of Freund and Schapire [8], where it505

• Considers d! experts corresponding to guessing each permutation ⇡
0

is the ground truth506

permutation.507

• Maintains a weight w
(t)
⇡0 for each expert at time step t, and the weights are initially as P̃(⇡).508

• Picks a distribution across experts p
(t)
⇡0 =

w(t)

⇡0
�(t) where �(t)=

P
jw

(t)
j .509

• Produces prediction of yt+1 as
P

⇡0p
(t)
⇡0 P̃⇡0(yt+1|y1:t)510

• Receives a cost vector of m
(t)
⇡0 =� 1

✏ logP̃⇡0(yt+1|y1:t).511

• Updates the weights w
(t+1)
i =w

(t)
i exp(�✏m

(t)
i) and repeat512

Proof. We can first see that p(t)⇡0 = P̃(⇡0|y1:t) by induction:513

Base case: p(0)⇡0 = P̃(⇡) by assumption.514

Inductive Case:515

With the cost vector as m
(t�1)
⇡0 = � 1

✏ log P̃⇡0(yt|y1:t�1), the update at step t is516

w
(t)
⇡0 =w

(t�1)
⇡0 P̃⇡0(yt|y1:t�1). Therefore, the probability over any particular expert ⇡0 is517

p
(t)
⇡0 =

w
(t)
⇡0

�(t)

=
w

(t�1)
⇡0 P̃⇡0(yt|y1:t�1)

P
jw

(t�1)
j P̃j(yt|y1:t�1)

=
p
(t�1)
⇡0 �(t�1)P̃⇡0(yt|y1:t�1)

P
jp

(t�1)
j �(t�1)P̃j(yt|y1:t�1)

=
p
(t�1)
⇡0 P̃⇡0(yt|y1:t�1)

P
jp

(t�1)
j P̃j(yt|y1:t�1)

This is equivalent to the update given by Bayes’ rule when plugging in p
(t)
⇡0 = P̃(⇡0|y1:t) :518

P̃(⇡0|y1:t)=
P̃(⇡0|y1:t�1)P̃⇡0(yt|y1:t�1)

P̃(yt|y1:t�1)

15

So we can conclude that p(t)⇡0 = P̃(⇡0|y1:t), i.e. the process of updating the probability distribution519

across experts within the prediction game is equivalent to the process of the language model updating520

the probabilities P̃(⇡0|y1:t+1) across permutations ⇡0. And this means that the algorithm’s prediction521 P
⇡0p

(t)
⇡0 P̃⇡0(yt+1|y1:t)=

P
⇡0P̃(⇡0|y1:t)P̃⇡0(yt+1|y1:t)= P̃(yt+1|y1:t)= p̃

0(yt+1|y1:t)522

Lemma A.3. When using the Hedge strategy for the multiplicative weights algorithm, the average

difference between the weighted distribution across experts and any particular expert ⇡ is bounded as

1

T

TX

t

log
P̃⇡(yt+1|y1:t)
p̃0(yt+1|y1:t)

2✏2

for ✏1 and for T �
�
4log2

�
d
�

�
log(d!)

�
/✏

4
.523

Proof. Consider an arbitrary expert ⇡.524

We first show that the cost vectors are bounded by ⇢ = � 1
✏ log �

d : Recall we defined525

m
(t)
⇡ = � 1

✏ log P̃⇡(yt+1|y1:t). By the definition of our redistributed probability distribution,526

at time step t2 [1,...,T],527

�

d
 P̃⇡(yt+1|y1:t)1

log
�

d
 logP̃⇡(yt+1|y1:t)0

0m
(t)
⇡ �1

✏
log

�

d

0m
(t)
⇡ �1

✏
log

�

d
.

By corollary 16.3 in [1], if we have cost vectors m(t) 2 [�⇢,⇢]d!, then for time T � (4⇢2log(d!))/✏2528

where ✏1,529

1

T

TX

t

p
(t) ·m(t) 1

T

TX

t

m
(t)
⇡ +2✏.

Note that we can simplify T �
�
4log2

�
d
�

�
log(d!)

�
/✏

4.530

We can now bound531

1

T

TX

t

⇣
p
(t) ·m(t)�m

(t)
⇡

⌘
2✏

1

T

TX

t

X

⇡0

p
(t)
⇡0 m

(t)
⇡0 �m

(t)
⇡

!
2✏

1

T

TX

t

X

⇡0

P̃(⇡0|y1:t)
✓
�1

✏
logP̃⇡0(yt+1|y1:t)

◆
�
✓
�1

✏
logP̃⇡(yt+1|y1:t)

◆!
2✏

1

✏T

TX

t

X

⇡0

⇣
P̃(⇡0|y1:t)

⇣
logP̃⇡(yt+1|y1:t)�logP̃⇡0(yt+1|y1:t)

⌘⌘
2✏

1

T

TX

t

E⇡0 log
P̃⇡(yt+1|y1:t)
P̃⇡0(yt+1|y1:t)

2✏2

By Jensen’s inequality, we also have that532

1

T

TX

t

log
P̃⇡(yt+1|y1:t)

E⇡0P̃⇡0(yt+1|y1:t)
2✏2

1

T

TX

t

log
P̃⇡(yt+1|y1:t)
p̃0(yt+1|y1:t)

2✏2

16

533

Lemma A.4. Let534

Zi=
iX

t=1

DKL(P̃I(xt+1|x1:t)kP̃(xt+1|x1:t))�log

P̃I(xt+1|x1:t)

P̃(xt+1|x1:t)

!

Zi is a martingale.535

Proof. Consider536

Exi+1⇠P̃I
[Zi]=Exi+1⇠P̃I

"
iX

t=1

DKL(P̃I(xt+1|x1:t)kP̃(xt+1|x1:t))�log

P̃I(xt+1|x1:t)

P̃(xt+1|x1:t)

!#

=Exi+1⇠P̃I

"
DKL(P̃I(xi+1|x1:i)kP̃(xi+1|x1:i))�log

P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)
+Zi�1

#

Observe that Zi�1 has no dependence on xi+1.537

Exi+1⇠P̃I
[Zi]=Exi+1⇠P̃I

"
Exi+1⇠P̃I

log
P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

#
�Exi+1⇠P̃I

"
log

P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

#
+Zi�1

=Zi�1

Therefore, Zi is a martingale.538

Lemma A.5. |Zi�Zi�1|ci where ci=2|log d
� |539

Proof. We have540

|Zi�Zi�1|=

�����DKL(P̃I(xi+1|x1:i)kP̃(xi+1|x1:i))�log
P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

�����

In our redistributed probability distribution P̃ , we have �
d  P̃⇡(xi|x1:i�1)1 for any ⇡ at any time541

i. Therefore,542

log
�

d
 log

P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)
 log

d

�
.

Also, we can find an upper bound for the KL divergence by maximizing P̃I(xi+1|x1:i) to 1 and543

minimizing P̃(xi+1|x1:i) to �
d so that544

DKL(P̃I(xi+1|x1:i)kP̃(xi+1|x1:i))=
X

xi+1

P̃I(xi+1|x1:i)log
P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

 log
d

�

We can maximize |Zi � Zi�1| by maximizing the first term and minimizing the second term,545

or vice versa. In the first case, |Zi � Zi�1|  | log d
� � log �

d | = 2| log d
� |. In the other case,546

|Zi�Zi�1| |0�log d
� |= |log d

� |.547

Therefore, |Zi�Zi�1|ci where ci=2|log d
� |.548

Lemma A.6. By Azuma’s inequality, with probability 1 � �, we have that kZT k  b where549

b=2log d
�

q
�8T log 1

�550

17

Proof. By Azuma’s inequality, for all positive reals b,551

P (ZT �Z1�b)exp

�b

2

2
PT

k=2c
2
k

!

P (ZT �Z1b)�1�exp

�b

2

2
PT

k=2c
2
k

!

�1�exp

�b

2

8
PT

k=2log
2 d
�

!

We can rewrite in terms of �=exp
⇣

�b2

8
PT

k=2log
2 d

�

⌘
so552

b=

vuut�

8

TX

k=2

log2
d

�

!
log�

 log
d

�

r
�8T log

1

�

Therefore,
P (ZT �Z1b)�1��

553

B Model Architecture Details554

In addition, we add a learnable scaling and bias parameter to the result of the embedding layer, so555

that the model can still learn to scale it as needed.556

C Convergence on other datasets557

Figure 7 shows the perplexity of lexinvariant LMs across the three different datasets. Note that Github558

converges significantly faster than standard Engish text like Wiki-40B, since code is more structured559

and easier to decipher the token permutation.560

D Code Deciphering Full Examples561

Java:562

b i n a r y _ s e a r c h () z563

i f (h igh >= low) z564

mid = (h igh + low) / 2 ;565

i f (a r r [mid] == x)566

r e t u r n mid ;567

i f (a r r [mid] > x) z568

h igh = mid − 1 ;569

r e t u r n b i n a r y _ s e a r c h () ;570

} e l s e z571

low = mid + 1 ;572

r e t u r n b i n a r y _ s e a r c h () ;573

}574

} e l s e z575

r e t u r n −1;576

}577

}578

vo id func2 () z579

18

Figure 7: Smoothed Token Perplexity over the Pile, Wiki-40B and Github, with character-level and
T5 default vocab

Python:580

b i n a r y _ s e a r c h () z581

i f (h igh >= low) z582

mid = (h igh + low) / / 2583

i f (a r r [mid] == x) z584

r e t u r n mid585

i f (a r r [mid] > x) z586

h igh = mid − 1587

r e t u r n b i n a r y _ s e a r c h ()588

e l s e z589

low = mid + 1590

r e t u r n b i n a r y _ s e a r c h ()591

e l s e z592

r e t u r n −1593

d e f func2 () z594

E Semantic Deciphering Full Example595

’crash!’ ’aaah!’ i looked up from my cup of coffee. ’crash!’ - that was596

the cafe window. and ’aaah!’ - that was kate. people in the cafe shouted.597

kate and i ran to the window. there was no one there. then i turned to kate598

and put my arm around her. ’are you all right?’ i asked. ’yes,’ she said.599

’i think so.’ ’what is it?’ some one shouted and a short red-faced man ran600

into the room. the man took my arm. ’matt! what are you doing to kate?’601

he asked. ’nothing, papa,’ kate replied. ’it wasn’t him. it was from out602

in the street.’ the red-faced man looked at the window and then at me. he603

turned to his daughter. ’are you ok, kate?’ he asked. kate gave him a604

little smile. ’yes, i think i am, papa,’ she said. then her father spoke605

to me. ’sorry, matt. i heard kate and i thought...’ ’that’s ok, paolo,’ i606

answered. it was ok. you see, this is soho, in the centre of london. in the607

day it’s famous for music and films. at night people come and eat and drink608

19

in the restaurants. expensive restaurants and cheap restaurants; italian609

restaurants and chinese restaurants. and day and night there are internet610

cafes like the web cafe. in soho you can buy any thing and any one. there611

are lots of nice people in soho. but there are also lots of people who are612

not very nice. i know because i live and work here. i often take a drink to613

a shop or cafe. i’m not rich and famous. and i don’t know a lot. but i do614

know soho. what one here is a drink - restaurants - music - coffee - father615

the one here that drink is616

Example prediction of the lexinvariant with 32k vocabulary train on the Pile:617

- coffee. and i618

F Synthetic Reasoning Task619

Table 2 shows a variant of the synthetic reasoning task results in Subsection 1, where the symbols620

are instead sampled proportion to the token frequencies. Although the improvement still generally621

holds, the standard LM with character-based vocabulary becomes significantly better. We believe that622

this is because the model can get a significant advantage by guessing among the most common letter.623

Dataset Vocab LookUp Acc Permutation Acc

Standard LI Standard LI

Pile char 72.80 90.95 40.63 60.47
32k 61.20 90.95 40.55 54.55

Wiki-40B char 75.55 63.45 42.71 59.86
32k 41.05 57.95 26.81 51.86

Github char 66.00 86.75 36.62 70.77
32k 59.25 78.45 37.46 65.04

Table 2: Synthetic Reasoning Tasks (adjusted for token frequencies)

G Language Models Regularized with Lexinvariance and BIG-bench Results624

As described in the main paper, we implement a lexinvariance regularized Model in a way similar625

to embedding dropout. Note that one problem in implementing it naively by using random Gaussian626

embeddings and learned embedding in a mixture is that the two would become quickly distinguishable627

from each other during training since learned embeddings often have larger norms, allowing the model628

simply ignore the randomized tokens. So instead of using random Gaussian embedding matrices629

in place of a learned embedding matrix, we explored another approach for training a lexinvariant630

regularized LM: training a standard LM with learnable embedding matrix over sequences partially631

applied with a random token permutation Bp(x1,⇡), ... ,Bp(x1,⇡), where Bp(xi,⇡) = ⇡(xi) with632

probability p and Bp(xi,⇡)=xi with probability 1�p. Since each token can be remapped to any other633

token with equal chance, the produced model should ideally also be lexinvariant when p=1, though634

with no strict guarantees. In practice, we found the models trained this way behave very similarly635

to models with random Gaussian embedding.636

We evaluate our model over BIG-bench tasks where the language model performance scales well,637

and we prioritize evaluating generative tasks over multiple-choice tasks. Tasks we evaluated on:638

gre reading comprehension.mul, linguistics puzzles.gen, linguistics puzzles.gen, rhyming.gen,639

tellmewhy.gen, simple arithmetic multiple targets json.gen, simple arithmetic json subtasks.gen,640

disfl qa.gen, arithmetic.gen, bridging anaphora resolution barqa.gen, matrixshapes.gen, sufficient641

information.gen, logical args.mul, novel concepts.mul, code line description.mul, unnatural in context642

learning.gen, unit interpretation.mul, english proverbs.mul, general knowledge.mul, geometric643

shapes.gen, human organs senses.mul, contextual parametric knowledge conflicts.gen, crass ai.mul,644

auto categorization.gen, penguins in a table.gen, hindu knowledge.mul, english russian proverbs.mul,645

modified arithmetic.gen, cryobiology spanish.mul, evaluating information essentiality.mul, intent646

recognition.mul, understanding fables.mul, figure of speech detection.mul, empirical judgments.mul,647

20

simple ethical questions.mul, swahili english proverbs.mul, language identification.mul, phrase relat-648

edness.mul, nonsense words grammar.mul, undo permutation.mul, object counting.gen, identify odd649

metaphor.mul, elementary math qa.mul, social iqa.mul, parsinlu qa.mul, metaphor understanding.mul,650

timedial.mul, causal judgment.mul, list functions.gen, implicatures.mul, date understanding.mul,651

codenames.gen, fact checker.mul, physics.mul, abstract narrative understanding.mul, emojis emotion652

prediction.mul, metaphor boolean.mul, strategyqa.gen, ascii word recognition.gen, auto debugging.gen,653

cause and effect.mul, conlang translation.gen, cryptonite.gen, cs algorithms.mul, dyck languages.mul,654

gender inclusive sentences german.gen, hindi question answering.gen, international phonetic alphabet655

transliterate.gen, irony identification.mul, logical fallacy detection.mul, movie dialog same or656

different.mul, operators.gen, paragraph segmentation.gen, parsinlu reading comprehension.gen, repeat657

copy logic.gen, rephrase.gen, simple arithmetic json.gen, simple arithmetic multiple targets json.gen,658

sports understanding.mul, word unscrambling.gen, hyperbaton.mul, linguistic mappings.gen, anachro-659

nisms.mul, indic cause and effect.mul, question selection.mul, hinglish toxicity.mul, snarks.mul,660

vitaminc fact verification.mul, international phonetic alphabet nli.mul, logic grid puzzle.mul, natural661

instructions.gen, entailed polarity.mul, list functions.gen, conceptual combinations.mul, goal662

step wikihow.mul, logical deduction.mul, conlang translation.gen, strange stories.mul, odd one663

out.mul, mult data wrangling.gen, temporal sequences.mul, analytic entailment.mul, disambiguation664

qa.mul, sentence ambiguity.mul, swedish to german proverbs.mul, logical sequence.mul, chess665

state tracking.gen, reasoning about colored objects.mul, implicit relations.mul, riddle sense.mul,666

physical intuition.mul, simple arithmetic json multiple choice.mul, geometric shapes.gen, gem.gen,667

simp turing concept.gen, common morpheme.mul, qa wikidata.gen, international phonetic alphabet668

transliterate.gen, similarities abstraction.gen, rephrase.gen, emoji movie.gen, qa wikidata.gen, word669

sorting.gen, emoji movie.gen, qa wikidata.gen, periodic elements.gen, hindi question answering.gen670

Bellow, we plot the net percentage of tasks improved/deproved in each of the BIG-bench categories,671

out of the tasks that are changed by at least a threshold amount.672

H Compute673

We use one TPU v3-8 for all our pretraining runs. It takes approximately 23 hours for each pretraining674

run.675

I Broader Impacts676

Our work primarily provides a scientific exploration and understanding of the properties of lexinvariant677

language models. More broadly, these properties could potentially help improve the robustness,678

generalizability, and reasoning ability of LMs in the future works. In general we don’t foresee more679

specific negative societal impacts from this work other than general misuse of language models.680

21

Figure 8: BIG-bench results with 0,1,2 and 3 shots.

22

	Introduction
	Lexinvariant Language Model
	Convergence on Language Modeling Performance
	In-context Bayesian Deciphering
	Constructing a Lexinvariant Language Model

	Experiments
	Setup
	Convergence to Standard Language Models
	Recovering Substitution Ciphers
	In-context Bayesian Deciphering Examples
	Uncertainty over Lexical Permutations
	Semantic Deciphering

	Synthetic Reasoning Tasks
	Regularizing Language Models with Lexinvariance

	Related Work
	Symbol Grounding
	Byte-level T5
	Group invariances and Data augmentation
	Deciphering Substitution Cipher using LMs
	Reasoning

	Conclusion
	Convergence Proof
	Model Architecture Details
	Convergence on other datasets
	Code Deciphering Full Examples
	Semantic Deciphering Full Example
	Synthetic Reasoning Task
	 Language Models Regularized with Lexinvariance and BIG-bench Results
	Compute
	Broader Impacts

