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Abstract

We propose an algorithm for robust recovery of the spherical harmonic expansion1

of functions defined on the d-dimensional unit sphere Sd−1 using a near-optimal2

number of function evaluations. We show that for any f ∈ L2(Sd−1), the number3

of evaluations of f needed to recover its degree-q spherical harmonic expansion4

equals the dimension of the space of spherical harmonics of degree at most q, up to5

a logarithmic factor. Moreover, we develop a simple yet efficient kernel regression-6

based algorithm to recover degree-q expansion of f by only evaluating the function7

on uniformly sampled points on Sd−1. Our algorithm is built upon the connections8

between spherical harmonics and Gegenbauer polynomials. Unlike the prior results9

on fast spherical harmonic transform, our proposed algorithm works efficiently10

using a nearly optimal number of samples in any dimension d. Furthermore, we11

illustrate the empirical performance of our algorithm on numerical examples.12

1 Introduction13

We consider the fundamental problem of recovering a function from a finite number of (noisy)14

observations. To provide accurate and reliable predictions at unobserved points we need to avoid15

overfitting which is typically achieved through restricting our estimator or interpolant to a family of16

smooth or structured functions. In this paper, we focus on interpolating square-integrable functions on17

the d-dimensional unit sphere, with low-degree spherical harmonics. Spherical harmonics are essential18

in various theoretical and practical applications, including the representation of electromagnetic19

fields [Wei95], gravitational potential [Wer97], cosmic microwave background radiation [KKS97]20

and medical imaging [CLL15], as well as modelling of 3D shapes in computer graphics [KFR03].21

We begin by observing that any function f in L2(Sd−1), i.e., the family of square-integrable functions22

on the sphere Sd−1, can be uniquely decomposed into orthogonal spherical harmonic components.23

Specifically, if we denote the space of spherical harmonics of degree ` in dimension d byH`(Sd−1),24

any f ∈ L2(Sd−1) has a unique orthogonal expansion f =
∑∞
`=0 f` with f` ∈ H`(Sd−1) (Lemma 2).25

With this observation, we aim to find the best spherical harmonic approximation of degree ≤ q to f26

using minimal number of samples (essentially treating higher order terms in f ’s expansion as noise).27

Problem 1 (Informal Version of Problem 2). For an unknown function f ∈ L2(Sd−1) and an integer28

q ≥ 1, efficiently (both in terms of number of samples from f and computations) learn the first q + 129

spherical harmonic components
{
f` ∈ H`(Sd−1)

}q
`=0

of f which minimize30 ∥∥∥∥∥
q∑
`=0

f` − f

∥∥∥∥∥
2

Sd−1

:=

∫
Sd−1

∣∣∣∣∣
q∑
`=0

f`(w)− f(w)

∣∣∣∣∣
2

dw. (1)

The angular power spectrum of f commonly obeys a power law decay of the form ‖f`‖2Sd−1 ≤31

O(`−s), for some s > 0, depending on the order of differentiability of f . In fact, for any infinitely32
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differentiable f , ‖f`‖2Sd−1 decays asymptotically faster than any rational function of `. Furthermore,33

for any real analytic f on the sphere, ‖f`‖2Sd−1 decays exponentially. Thus, the first q + 1 spherical34

harmonic components of f typically well approximate f for even modest q, and answering Problem 135

is meaningful for a wide range of differentiable functions.36

1.1 Our Main Results37

We reformulate Problem 1 as a least-squares regression and then solve it using randomized numerical38

linear algebra techniques. We first consider an orthonormal projection operator that maps functions39

in L2(Sd−1) onto the space of bounded-degree spherical harmonics
⊕q

`=0H`(Sd−1). Specifically, if40

K(q)
d is an operator that maps any f with expansion f =

∑∞
`=0 f` where f` ∈ H`(Sd−1), onto f ’s41

first q + 1 expansion components, i.e., K(q)
d f =

∑q
`=0 f`, then Problem 1 can be formulated as42

min
g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
.

However, solving this regression problem with “continuous” cost function is challenging. To avoid43

such continuous optimizations, we adopt the approach of [AKM+19] which discretizes the afore-44

mentioned regression problem according to the leverage scores of the operator K(q)
d . It turns out45

that if we can draw random samples with probabilities proportional to the leverage scores of K(q)
d46

then we can recover the degree-q spherical harmonic expansion of f , i.e.
∑q
`=0 f`, with finite47

number of observations. Particularly, by exploiting the connections between spherical harmonics48

and Zonal (Gegenbauer) Harmonics and the fact that zonal harmonics are the reproducing kernels49

ofH`(Sd−1) (Lemma 3), we prove that the leverage scores of K(q)
d are constant everywhere on the50

sphere Sd−1. Thus, solving a discrete regression problem with uniformly sampled observations yields51

a near-optimal solution to Problem 1. Informal statements of our results are as follows.52

Theorem 1 (Informal Version of Theorem 5). Let βq,d be the dimension of spherical harmonics53

of degree at most q, i.e., βq,d ≡ dim
(⊕q

`=0H`(Sd−1)
)
. There exists an algorithm that finds a54

(1 + ε)-approximation to the optimal solution of Problem 1, given s = O(βq,d log βq,d + ε−1βq,d)55

observations of function f at uniformly sampled points on Sd−1, with O(s2d+ sω)1 runtime.56

We also prove that our bound on the number of required samples is optimal up to a logarithmic factor.57

Theorem 2 (Informal Version of Theorem 6). Any (randomized) algorithm that takes s < βq,d58

samples on any input fails with probability greater than 9/10, where βq,d ≡ dim
(⊕q

`=0H`(Sd−1)
)
.59

1.2 Related Work60

Efficient reconstruction of functions as per Problem 1 has been extensively studied in various fields.61

Many prior papers considered reconstructing 1-dimensional functions from finite number of samples62

on a finite interval under smoothness assumption about the underlying function. Notably, the influen-63

tial line of work of [SP61, LP61, LP62, XRY01] focused on reconstructing Fourier-bandlimited func-64

tions and [CKPS16, EMM20] considered interpolating Fourier-sparse signals. Recently, [AKM+19]65

unified these reconstruction methods in dimension d = 1 and gave a universal sampling framework66

for reconstructing nearly all classes of functions with Fourier-based smoothness constraints. One can67

view 1-dimensional functions on a finite interval as functions on the unit circle S1. Thus, Problem 168

is indeed a generalization of the aforementioned prior work to high dimensions under the assumption69

that the generalized Fourier series (Lemma 2) of the underlying function only contains bounded-70

degree spherical harmonics. This degree constraint on spherical harmonic expansions can be viewed71

as the d-dimensional analog of Fourier-bandlimitedness on circle S1.72

Computing the spherical harmonic expansion in dimension d = 3 has received considerable attention73

in physics and applied mathematics communities. The algorithms for this special case of Problem 174

are known in the literature as “fast spherical harmonic transform” [SS00, ST02]. Most notably, [RT06]75

proposed an algorithm for computing spherical harmonic expansion of degree≤ q to precision ε using76

O(βq,3) samples andO(βq,3 log βq,3 ·log(1/ε)) time. These fast algorithms were developed based on77

1ω < 2.3727 is the exponent of the fast matrix multiplication algorithm [Wil12]
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fast Fourier and associated Legendre transforms and make use of a (well-conditioned) orthogonal basis78

for H`(Sd−1), which happened to be the associated Legendre polynomials when d = 3. However,79

it is in general very difficult to compute an orthogonal basis for spherical harmonics [MNY06], so80

unlike our Theorem 1, it is inefficient to extend these prior results to higher d.81

From the techniques point of view, a related work is [GMMM21], which employs harmonic analysis82

over Sd−1 to analyze the generalization of two-layered neural tangent kernels. They show that an83

unknown function defined on Sd−1 can be efficiently recovered using kernel regression w.r.t. neural84

tangent kernel on uniform random samples from the function. However, the number of samples85

that [GMMM21] requires for recovering bounded degree spherical harmonics, especially when the86

degrees are high, is sub-optimal and is strictly worse than our result. Additionally, this paper does not87

guarantee recovery with relative error, while our Theorem 5 provides relative error guarantees.88

2 Mathematical Preliminaries89

We denote by Sd−1 the unit sphere in d dimension. We use |Sd−1| = 2πd/2

Γ(d/2) to denote the surface90

area of sphere Sd−1 and U(Sd−1) to denote the uniform probability distribution on Sd−1. We denote91

by L2
(
Sd−1

)
the set of all square-integrable real-valued functions on sphere Sd−1. Furthermore, for92

any f, g ∈ L2
(
Sd−1

)
we use the following definition of the inner product on the unit sphere2,93

〈f, g〉Sd−1 :=

∫
Sd−1

f(w)g(w)dw =
∣∣Sd−1

∣∣ · E
w∼U(Sd−1)

[f(w)g(w)]. (2)

The function space L2
(
Sd−1

)
is complete with respect to the norm induced by the above inner94

product, i.e. ‖f‖Sd−1 :=
√
〈f, f〉Sd−1 , so L2

(
Sd−1

)
is a Hilbert space.95

We often use the term quasi-matrix which is informally defined as a “matrix” in which one dimension96

is finite while the other is infinite. A quasi-matrix can be tall (or wide) meaning that there is a finite97

number of columns (or rows) where each one is a functional operator. For a more formal definition,98

see [SA22].99

Spherical Harmonics are the solutions of Laplace’s equation in spherical domains and can be thought100

of as functions defined on Sd−1 employed in solving partial differential equations. Formally,101

Definition 1 (Spherical Harmonics). For integers ` ≥ 0 and d ≥ 1, let P`(d) be the space of degree-`102

homogeneous polynomials with d variables and real coefficients. Let H`(d) denote the space of103

degree-` harmonic polynomials in dimension d, i.e., homogeneous polynomial solutions of Laplace’s104

equation:105

H`(d) := {P ∈ P`(d) : ∆P = 0},
where ∆ = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

is the Laplace operator on Rd. Finally, letH`
(
Sd−1

)
be the space of106

(real) Spherical Harmonics of order ` in dimension d, i.e. restrictions of harmonic polynomials in107

H`(d) to the sphere Sd−1. The dimension of this space, α`,d ≡ dim
(
H`
(
Sd−1

))
, is108

α0,d = 1, α1,d = d, α`,d =

(
d+ `− 1

`

)
−
(
d+ `− 3

`− 2

)
for ` ≥ 2.

2.1 Gegenbauer Polynomials109

The Gegenbauer (a.k.a. ultraspherical) polynomial of degree ` ≥ 0 in dimension d ≥ 2 is given by110

P `d(t) :=

b`/2c∑
j=0

cj · t`−2j · (1− t2)j , (3)

where c0 = 1 and cj+1 = − (`−2j)(`−2j−1)
2(j+1)(d−1+2j) · cj for j = 0, 1, . . . , b`/2c − 1. These polynomials are111

orthogonal on the interval [−1, 1] with respect to the measure (1− t2)
d−3
2 , i.e.,112 ∫ 1

−1

P `d(t) · P `
′

d (t) · (1− t2)
d−3
2 dt =

∣∣Sd−1
∣∣

α`,d · |Sd−2|
· 1{`=`′}. (4)

2Formally, L2
(
Sd−1

)
is a space of equivalence classes of functions that differ at a set of points with measure

0. For notational simplicity, here and throughout we use f to denote the specific representative of the equivalence
class f ∈ L2

(
Sd−1

)
. In this way, we can consider the point-wise value f(w) for every w ∈ Sd−1.
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Zonal Harmonics. The Gegenbauer polynomials naturally provide positive definite dot-product113

kernels on Sd−1 known as Zonal Harmonics, which are closely related to the spherical harmonics.114

The following reproducing property of zonal harmonics plays a crucial role in our analysis.115

Lemma 1 (Reproducing Property of Zonal Harmonics). Let P `d(·) be the Gengenbauer polynomial116

of degree ` in dimension d. For any x, y ∈ Sd−1:117

P `d(〈x, y〉) = α`,d · Ew∼U(Sd−1)

[
P `d (〈x,w〉)P `d (〈y, w〉)

]
,

Furthermore, for any `′ 6= `:118

Ew∼U(Sd−1)

[
P `d (〈x,w〉) · P `

′

d (〈y, w〉)
]

= 0.

The proof of this and all subsequent results can be found in the appendix. The following useful fact,119

known as the addition theorem, connects Gegenbauer polynomials and spherical harmonics.120

Theorem 3 (Addition Theorem). For every integer ` ≥ 0, if
{
y`1, y

`
2, . . . , y

`
α`,d

}
is an orthonormal121

basis forH`
(
Sd−1

)
, then for any σ,w ∈ Sd−1 we have122

α`,d
|Sd−1|

· P `d (〈σ,w〉) =

α`,d∑
j=1

y`j(σ) · y`j(w).

3 Reconstructing L2
(
Sd−1

)
Functions via Spherical Harmonics123

In this section we show how to approximate any function f ∈ L2
(
Sd−1

)
by spherical harmonics124

using the optimal number of samples. We begin with the fact that spherical harmonics form a125

complete set of orthonormal functions and thus form an orthonormal basis for the Hilbert space126

of square-integrable functions on sphere Sd−1. This is analogous to periodic functions, viewed127

as functions defined on the circle S1, which can be expressed as a linear combination of circular128

functions (sines and cosines) via the Fourier series.129

Lemma 2 (Direct Sum Decomposition of L2(Sd−1)). The family of spaces H`
(
Sd−1

)
yields a130

Hilbert space direct sum decomposition L2
(
Sd−1

)
=
⊕∞

`=0H`
(
Sd−1

)
: the summands are closed131

and pairwise orthogonal, and every f ∈ L2
(
Sd−1

)
is the sum of a converging series (in the sense of132

mean-square convergence with the L2-norm defined in Eq. (2)),133

f =

∞∑
`=0

f`,

where f` ∈ H`
(
Sd−1

)
are uniquely determined functions. Furthermore, given any orthonormal134

basis
{
y`1, y

`
2, . . . , y

`
α`,d

}
ofH`

(
Sd−1

)
we have f` =

∑α`,d

j=1 〈f, y`j〉Sd−1 · y`j .135

The series expansion in Lemma 2 is the analog of the Fourier expansion of periodic func-136

tions, and is known as “generalized Fourier series” [Pen30] with respect to the Hilbert basis137 {
y`j : j ∈ [α`,d], ` ≥ 0

}
. We remark that it is in general intractable to compute an orthogonal basis for138

the space of spherical harmonics [MNY06], which renders the generalized Fourier series expansion139

in Lemma 2 primarily existential. While finding the generalized Fourier expansion of a function140

f ∈ L2
(
Sd−1

)
is computationally intractable, our goal is to answer the next fundamental question,141

which is about finding the projection of a function f onto the space of spherical harmonics, i.e., the142

f`’s in Lemma 2. Concretely, we seek to solve the following problem.143

Problem 2. For an integer q ≥ 0 and a given function f ∈ L2
(
Sd−1

)
whose decomposition over the144

Hilbert sum
⊕∞

`=0H`
(
Sd−1

)
is f =

∑∞
`=0 f` as per Lemma 2, let us define the low-degree expansion145

of this function as f (q) :=
∑q
`=0 f`. How efficiently can we learn f (q) ∈

⊕q
`=0H`

(
Sd−1

)
?146

More precisely, we want to find a set {w1, w2, . . . , ws} ⊆ Sd−1 with minimal cardinality s along147

with an efficient algorithm that given samples {f(wi)}si=1 can interpolate f(·) with a function148

f̃ (q) ∈
⊕q

`=0H`
(
Sd−1

)
such that:149 ∥∥∥f̃ (q) − f (q)

∥∥∥2

Sd−1
≤ ε ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
.
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For ease of notation, we denote the Hilbert space of spherical harmonics of degree at most q by150

H(q)
(
Sd−1

)
:=
⊕q

`=0H`
(
Sd−1

)
. To answer Problem 2 we exploit the close connection between151

the spherical harmonics and Gengenbauer polynomials, and in particular the fact that zonal harmonics152

are the reproducing kernels of the Hilbert spacesH`
(
Sd−1

)
.153

Lemma 3 (A Reproducing Kernel forH`
(
Sd−1

)
). For every f ∈ L2

(
Sd−1

)
, if f =

∑∞
`=0 f` is the154

unique decomposition of f over
⊕∞

`=0H`
(
Sd−1

)
as per Lemma 2, then f` is given by155

f`(σ) = α`,d · E
w∼U(Sd−1)

[
f(w)P `d (〈σ,w〉)

]
for σ ∈ Sd−1.

Now we define a kernel operator, based on the low-degree Gegenbauer polynomials, which projects156

functions onto their low-degree spherical harmonic expansion.157

Definition 2 (Projection Operator ontoH(q)(Sd−1)). For any integers q ≥ 0 and d ≥ 2, define the158

kernel operator K(q)
d : L2

(
Sd−1

)
→ L2

(
Sd−1

)
as follows: for f ∈ L2

(
Sd−1

)
and σ ∈ Sd−1,159 [

K(q)
d f

]
(σ) :=

q∑
`=0

α`,d
|Sd−1|

〈
f, P `d (〈σ, ·〉)

〉
Sd−1 =

q∑
`=0

α`,d · E
w∼U(Sd−1)

[
f(w)P `d (〈σ,w〉)

]
. (5)

This is an integral operator with kernel function kq,d(σ,w) :=
∑q
`=0

α`,d

|Sd−1| · P
`
d (〈σ,w〉).160

Note that the operatorK(q)
d is self-adjoint and positive semi-definite. Moreover, using the reproducing161

property of this kernel we can establish that K(q)
d is a projection operator.162

Claim 1. The operator K(q)
d defined in Definition 2 satisfies the property

(
K(q)
d

)2

= K(q)
d .163

Furthermore, by the addition theorem (Theorem 3), K(q)
d is trace-class (i.e., the trace is finite and164

independent of the choice of basis) because:165

trace
(
K(q)
d

)
=

∫
Sd−1

kq,d(w,w) dw =

q∑
`=0

α`,d
|Sd−1|

·
∫
Sd−1

P `d (〈w,w〉) dw

=

q∑
`=0

α`,d =

(
d+ q − 1

q

)
+

(
d+ q − 2

q − 1

)
− 1. (6)

By combining Theorem 3 and Lemma 2, and using the definition of the projection operator K(q)
d , it166

follows that for any function f ∈ L2
(
Sd−1

)
with Hilbert sum decomposition f =

∑∞
`=0 f`, the low-167

degree component f (q) =
∑q
`=0 f` ∈ H(q)

(
Sd−1

)
can be computed as f (q) = K(q)

d f . Equivalently,168

in order to learn f (q), it suffices to solve the following least-squares regression problem,169

min
g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
. (7)

If g∗ is an optimal solution to the above regression problem then f (q) = K(q)
d g∗. In the next claim we170

show that solving the least squares problem in Eq. (7), even to a coarse approximation, is sufficient to171

solve our interpolation problem (i.e., Problem 2):172

Claim 2. For any f ∈ L2
(
Sd−1

)
, any integer q ≥ 0, and any C ≥ 1, if g̃ ∈ L2

(
Sd−1

)
satisfies,173 ∥∥∥K(q)

d g̃ − f
∥∥∥2

Sd−1
≤ C · min

g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
,

and if we let f (q) := K(q)
d f , where K(q)

d is defined as per Definition 2, then the following holds174 ∥∥∥K(q)
d g̃ − f (q)

∥∥∥2

Sd−1
≤ (C − 1) ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
.

Claim 2 shows that solving the regression problem in Eq. (7) approximately provides a solution to175

our spherical harmonics interpolation problem (Problem 2). But how can we solve this least-squares176

problem efficiently? Not only does the problem involve a possibly infinite dimensional parameter177

vector g, but the objective function also involves the continuous domain on the surface of Sd−1.178
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3.1 Randomized Discretization via Leverage Function Sampling179

We solve the continuous regression in Eq. (7) by randomly discretizing the sphere Sd−1, thereby180

reducing our problem to a regression on a finite set of points w1, w2, . . . , ws ∈ Sd−1. In particular,181

we propose to sample points on Sd−1 with probability proportional to the so-called leverage function,182

a specific distribution that has been widely applied in randomized algorithms for linear algebra183

problems on discrete matrices [LMP13]. We start with the definition of the leverage function:184

Definition 3 (Leverage Function). For integers q ≥ 0 and d > 0, we define the leverage function of185

the operator K(q)
d (see Definition 2) for every w ∈ Sd−1 as follows,186

τq(w) := max
g∈L2(Sd−1)

∥∥∥K(q)
d g

∥∥∥−2

Sd−1
·
∣∣∣[K(q)

d g
]

(w)
∣∣∣2. (8)

Intuitively, τq(w) is an upper bound of how much a function that is spanned by the eigenfunctions187

of the operator K(q)
d can “blow up” at w. The larger the leverage function τq(w) implies the higher188

the probability we will be required to sample w. This ensures that our sample points well reflect any189

possibly significant components, or “spikes”, of the function. Ultimately, the integral
∫
Sd−1 τq(w) dw190

determines how many samples we require to solve the regression problem Eq. (7) to a given accuracy.191

It is a known fact that the leverage function integrates to the rank of the operator K(q)
d (which is192

equal to the dimensionality of the Hilbert spaceH(q)(Sd−1)). This ultimately allows us to achieve a193

Õ(
∑q
`=0 α`,d) sample complexity bound for solving Problem 2. To compute the leverage function,194

we make use of the following useful alternative characterization of the leverage function.195

Lemma 4 (Min Characterization of the Leverage Function). For any w ∈ Sd−1, let τq(w) be the196

leverage function (Definition 3) and define φw ∈ L2(Sd−1) by φw(σ) ≡
∑q
`=0

α`,d

|Sd−1|P
`
d (〈σ,w〉).197

We have the following minimization characterization of the leverage function:198

τq(w) =

{
min

g∈L2(Sd−1)
‖g‖2Sd−1 , s.t. K(q)

d g = φw

}
. (9)

Using the min and max characterizations of the leverage function we can find upper and lower bounds199

on this function. Surprisingly, in this case the upper and lower bounds match, so we actually have an200

exact value for the leverage function.201

Lemma 5 (Leverage Function is Constant). The leverage function given in Definition 3 is equal to202

τq(w) =
∑q
`=0

α`,d

|Sd−1| for every w ∈ Sd−1.203

We prove this lemma in Appendix C. The integral of the leverage function, which determines the204

total samples needed to solve our least-squares regression, is therefore equal to the dimensionality of205

the Hilbert spaceH(q)(Sd−1).206

Corollary 1. The leverage function defined in Definition 3 integrates to the dimensionality of the207

Hilbert spaceH(q)(Sd−1), which we denote by βq,d, i.e.,208 ∫
Sd−1

τq(w) dw = dim
(
H(q)(Sd−1)

)
=

q∑
`=0

α`,d ≡ βq,d.

We now show that the leverage function can be used to randomly sample the points on the unit sphere209

to discretize the regression problem in Eq. (7) and solve it approximately.210

Theorem 4 (Approximate Regression via Leverage Function Sampling). For any ε > 0, let s =211

c·
(
βq,d log βq,d +

βq,d

ε

)
, for sufficiently large fixed constant c, and let x1, x2, . . . , xs be i.i.d. uniform212

samples on Sd−1. Define the quasi-matrix P : Rs → L2(Sd−1) as follows, for every v ∈ Rd:213

[P · v](σ) :=

q∑
`=0

α`,d√
s · |Sd−1|

·
s∑
j=1

vj · P `d (〈xj , σ〉) for σ ∈ Sd−1.

Also let f ∈ Rs be a vector with fj := 1√
s
· f(xj) for j = 1, 2, . . . , s and let P ∗ be the adjoint of P .214

If g̃ is an optimal solution to the least-squares problem g̃ ∈ arg ming∈L2(Sd−1) ‖P ∗g − f‖22, then215

with probability at least 1− 10−4 the following holds,216 ∥∥∥K(q)
d g̃ − f

∥∥∥2

Sd−1
≤ (1 + ε) · min

g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
.
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Algorithm 1 Efficient Spherical Harmonic Expansion

1: Input: accuracy parameter ε > 0, integer q ≥ 0
2: Set s = c · (βq,d log βq,d + βq,d/ε) for sufficiently large fixed constant c
3: Sample i.i.d. random points w1, w2, . . . , ws from U(Sd−1)
4: Compute K ∈ Rs×s with Ki,j =

∑q
`=0

α`,d

s·|Sd−1| · P
`
d (〈wi, wj〉) for i, j ∈ [s]

5: Compute f ∈ Rs with fj = 1√
s
· f(wj) for j ∈ [s]

6: Solve the regression by computing z = K†f
7: Return: y ∈ H(q)(Sd−1) with y(σ) :=

∑q
`=0

α`,d√
s·|Sd−1| ·

∑s
j=1 zj · P `d (〈wj , σ〉) for σ ∈ Sd−1

We prove Theorem 4 in Appendix C. This theorem shows that the function g̃ obtained from solving217

the discretized regression problem provides an approximate solution to Eq. (7).218

3.2 Efficient Solution for the Discretized Least-Squares Problem219

In this section, we demonstrate how to apply Theorem 4 algorithmically to approximately solve the220

regression problem of Eq. (7). Specifically, we show how to use the kernel trick to solve the randomly221

discretized least squares problem efficiently in Algorithm 1 and its guarantee in Theorem 5.222

Theorem 5 (Efficient Spherical Harmonic Interpolation). Algorithm 1 returns a function y ∈223

H(q)(Sd−1) such that, with probability at least 1− 10−4:224 ∥∥∥y − f (q)
∥∥∥2

Sd−1
≤ ε ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
, where f (q) := K(q)

d f.

Suppose we can compute the Gegenbauer polynomial P `d(t) at every point t ∈ [−1, 1] in constant225

time. Algorithm 1 queries the function f at s = O
(
βq,d log βq,d +

βq,d

ε

)
points on the sphere Sd−1226

and runs in O(s2 · d+ sω) time. This algorithm evaluates y(σ) in O(d · s) time for any σ ∈ Sd−1.227

We provide the proof of this theorem in Appendix D.228

4 Lower Bound on The Number of Required Observations229

We conclude by showing that the dimensionality of the Hilbert spaceH(q)(Sd−1) tightly characterizes230

the sample complexity of Problem 2. Thus, our Theorem 5 is optimal up to a logarithmic factor. The231

crucial fact we use for proving the lower bound is that all (non-zero) eigenvalues of the operator232

K(q)
d are equal to one. This fact follows from the addition theorem presented in Theorem 3, i.e., if233 {
y`1, y

`
2, . . . , y

`
α`,d

}
is an orthonormal basis ofH`

(
Sd−1

)
, then for any function f ∈ L2

(
Sd−1

)
,234

[
K(q)
d f

]
(σ) =

q∑
`=0

α`,d · E
w∼U(Sd−1)

[
P `d (〈σ,w〉) · f(w)

]
=

q∑
`=0

α`,d∑
j=1

〈y`j , f〉Sd−1 · y`j(σ). (10)

235

Theorem 6 (Lower Bound). Consider an error parameter ε > 0, and any (possibly randomized)236

algorithm that solves Problem 2 with probability greater than 1/10 for any input function f and237

makes at most r (possibly adaptive) queries on any input. Then r ≥ βq,d.238

We describe a distribution on input function f on which any deterministic algorithm that takes239

r < βq,d samples fails with probability ≥ 9/10. The theorem then follows by Yao’s principle.240

Hard Input Distribution. For integer ` ≤ q, consider an orthonormal basis of H`
(
Sd−1

)
and241

denote it by
{
y`1, y

`
2, . . . , y

`
α`,d

}
. Let Y` : Rα`,d → H`

(
Sd−1

)
be the quasi-matrix with y`j as242

its jth column, i.e., [Y` · u](σ) :=
∑α`,d

j=1 uj · y`j(σ) for any u ∈ Rα`,d and σ ∈ Sd−1. Let243

v(0) ∈ Rα0,d , v(1) ∈ Rα1,d , . . . , v(q) ∈ Rαq,d be independent random vectors with i.i.d. Gaussian244

entries: v(`)
j ∼ N (0, 1). The random input is defined to be f :=

∑q
`=0 Y` · v(`). In other words, f =245
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∑q
`=0 Y` · v(`) is a random linear combination of the eigenfunctions of K(q)

d . We prove that accurate246

reconstruction of f drawn from the aforementioned distribution yields accurate reconstruction of247

random vectors v(0), v(1), . . . , v(q). Since each v(`) is α`,d-dimensional, this reconstruction requires248

Ω(
∑q
`=0 α`,d) = Ω(βq,d) samples, giving us a lower bound for accurate reconstruction of f .249

First we show that finding an f̃ (q) satisfying the condition of Problem 2 is at least as hard as accurately250

finding all vectors v(0), v(1), . . . , v(q). The following lemma is proved in Appendix E.251

Lemma 6. If a deterministic algorithm solves Problem 2 with probability at least 1/10 over our252

random input distribution f =
∑q
`=0 Y` · v(`), then with probability at least 1/10, the output of the253

algorithm f̃ (q) satisfies Y ∗` f̃
(q) = v(`) for all integers ` ≤ q.254

Finally, we complete the proof of Theorem 6 by arguing that if f̃ (q) is formed using less than βq,d255

queries from f , then
∑q
`=0

∥∥∥Y ∗` f̃ (q) − v(`)
∥∥∥2

2
> 0 with good probability, thus the bound of Lemma 6256

cannot hold and f̃ (q) cannot be a solution to Problem 2. Assume for sake of contradiction that there257

is a deterministic algorithm which solves Problem 2 with probability ≥ 1/10 over the random input258

f =
∑q
`=0 Y` · v(`) that makes r = βq,d − 1 queries on any input (we can modify an algorithm that259

makes fewer queries to make exactly β`,d − 1 queries). For every σ ∈ Sd−1 and integer ` ≤ q define260

u`σ :=
[
y`1(σ), y`2(σ), . . . , y`α`,d

(σ)
]
. Also define uσ :=

[
u0
σ, u

1
σ, . . . , u

q
σ

]
∈ Rβq,d and v ∈ Rβq,d as261

v :=
(
v(0), v(1), . . . , v(q)

)
. Additionally, define the quasi-matrix Y := [Y0, . . . ,Yq].262

Using the above notations and the definition of the hard input instance f , each query to f is in263

fact a query to the random vector v in the form of f(σ) = 〈uσ,v〉. Now consider a deterministic264

function Q, that is given input V ∈ Ri×βq,d (for any positive integer i) and outputs Q(V ) ∈265

Rβq,d×βq,d such that Q(V ) has orthonormal rows with the first i rows spanning the i rows of V . If266

σ1, σ2, . . . , σr ∈ Sd−1 denote the points where our algorithm queries the input f , for any integer267

i ∈ [r], let Qi be an orthonormal matrix whose first i rows span the first i queries of the algorithm,268

i.e., Qi := Q
(
[uσ1 ,uσ2 , . . . ,uσi ]

>). Since the algorithm is deterministic, Qi is a deterministic269

function of input v. The following claim is proved in [AKM+19]:270

Claim 3 (Claim 23 of [AKM+19]). Conditioned on the queries f(σ1), f(σ2), . . . , f(σr) for r <271

βq,d, the variable [Qr · v](βq,d) is distributed as N (0, 1).272

Now using Claim 3 we can write,273

Pr
v

[
q∑
`=0

∥∥∥v(`) − Y ∗` f̃
(q)
∥∥∥2

2
= 0

]
= Pr

v

[
Qrv = QrY ∗f̃ (q)

]
≤ Pr

v

[
[Qrv]βq,d

=
[
QrY ∗f̃ (q)

]
βq,d

]
= E

[
Pr
v

[
[Qrv]βq,d

=
[
QrY ∗f̃ (q)

]
βq,d

∣∣∣∣ f(σ1), . . . , f(σr)

]]
,

where the expectation in the last line is taken over the randomness of f(σ1), . . . , f(σr). Conditioned274

on f(σ1), . . . , f(σr),
[
QrY ∗f̃ (q)

]
(βq,d) is a fixed quantity because the algorithm determines f̃ (q)275

given the knowledge of the queries f(σ1), . . . , f(σr). Furthermore, by Claim 3, [Qr · v](βq,d) is a276

random variable distributed as N (0, 1), conditioned on f(σ1), . . . , f(σr). This implies that,277

Pr
[

[Qr · v] (βq,d) =
[
QrY ∗f̃ (q)

]
(βq,d)

∣∣∣ f(σ1), . . . , f(σr)
]

= 0.

Thus, Pr

[∑q
`=0

∥∥∥v(`) − Y ∗` f̃
(q)
∥∥∥2

2
= 0

]
= Ef(σ1),...,f(σr)[0] = 0. However, we have assumed278

that this algorithm solves Problem 2 with probability at least 1/10, and hence, by Lemma 6,279

Pr
[∑q

`=0 ‖v(`) − Y ∗` f̃
(q)‖22 = 0

]
≥ 1/10. This is a contradiction, yielding Theorem 6.280

5 Numerical Evaluation281

Noise-free Setting. For a fixed q, we generate a random function f(σ) =
∑q
`=0 c`P

`
d(〈σ, v〉) where282

v ∼ U(Sd−1) and c`’s are i.i.d. samples from N (0, 1). Then, f is recovered by running Algorithm 1283
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(a) d = 3 (b) d = 4

Figure 1: (Left) Empirical success probabilities of Algorithm 1 varying the number of samples s
and the degree of spherical harmonic expansion q. (Right) The dimension βq,d of the Hilbert space
H(q)(Sd−1) as a function of q when (a) d = 3 and (b) d = 4, respectively.

(a) d = 3 (b) d = 4

Figure 2: (Left) Empirical success probabilities of Algorithm 1 in presence of additive noise, where
“success” means the error’s energy is below the noise level ‖f̃ (q) − f‖Sd−1 ≤ ‖n‖Sd−1 . (Right) The
error’s norm ‖f̃ (q) − f‖Sd−1 as a function of q when (a) d = 3 and (b) d = 4, respectively.

with s random evaluations of f on Sd−1. Note that ‖K(q)
d f−f‖Sd−1 = 0 since f ∈ H(q)(Sd−1), thus,284

as shown in Theorem 4, Algorithm 1 can recover f “exactly” using s = O(βq,d log βq,d) evaluations,285

where βq,d is the dimension of the Hilbert space H(q)(Sd−1). We predict f ’s value on a random286

test set on Sd−1 and consider the algorithm fails if the testing error is greater than 10−12. We count287

the number of failures among 100 independent random trials with different choices of d ∈ {3, 4},288

q ∈ {5, . . . , 22}, and s ∈ {40, . . . , 2400}. The empirical success probabilities for d = 3 and 4 are289

reported in Fig. 1(a) and Fig. 1(b), respectively. Fig. 1 illustrates that the success probabilities of our290

algorithm sharply transition to 1 as soon as the number of samples approaches s ≈ βq,d for a wide291

range of q and both d = 3, 4. These experimental results complement our Theorem 4 along with the292

lower bound analysis in Section 4 and empirically verify the performance of our algorithm.293

Noisy Setting. We repeated our experiments in the presence of an additive noise which is a linear294

combination of random spherical harmonics of degrees q + 1 to 2q. More precisely, we let the noise295

be n(σ) =
∑2q
`=q+1 c`P

`
d(〈v, σ〉) ∈ H(2q)(Sd−1) \ H(q)(Sd−1) for c`’s that are i.i.d. samples from296

N (0, 1). We then re-scale the noise to have norm ‖n‖Sd−1 = 10−6. Furthermore, the function f is297

defined as before, and f is recovered by Algorithm 1 with s random evaluations of f + n on Sd−1.298

The heat-maps in Fig. 2 are generated by considering an instance of our algorithm as a “success” if the299

error’s energy is below the noise level,
∥∥∥f̃ (q) − f

∥∥∥
Sd−1

≤ ‖n‖Sd−1 = 10−6. The success probability300

transitions less sharply than the noiseless setting but the shift of probabilities starts at βs,q samples.301

6 Conclusion302

We studied the problem of robustly recovering spherical harmonic expansion of a function defined303

on the sphere. The number of function evaluations needed to recover its degree-q expansion is the304

dimension of spherical harmonics of degree at most q, up to a logarithmic factor. We develop a simple305

yet efficient kernel regression-based algorithm to recover degree-q expansion of the function by only306

evaluating the function on uniformly sampled points on the sphere. Unlike the prior results on fast307

spherical harmonic transform, our algorithm works efficiently using a nearly optimal number of308

samples in any dimension. We believe our findings would appeal to the readership of the community.309
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A Properties of Gegenbauer Polynomials and Spherical Harmonics371

In this section we prove the basic properties of the Gegenbauer Polynomials as well as the Spherical372

Harmonics and establish the connection between the two. We start by the direct sum decomposition373

of the Hilbert space L2(Sd−1) in terms of the spherical harmonics,374

Lemma 2 (Direct Sum Decomposition of L2(Sd−1)). The family of spaces H`
(
Sd−1

)
yields a375

Hilbert space direct sum decomposition L2
(
Sd−1

)
=
⊕∞

`=0H`
(
Sd−1

)
: the summands are closed376

and pairwise orthogonal, and every f ∈ L2
(
Sd−1

)
is the sum of a converging series (in the sense of377

mean-square convergence with the L2-norm defined in Eq. (2)),378

f =

∞∑
`=0

f`,

where f` ∈ H`
(
Sd−1

)
are uniquely determined functions. Furthermore, given any orthonormal379

basis
{
y`1, y

`
2, . . . , y

`
α`,d

}
ofH`

(
Sd−1

)
we have f` =

∑α`,d

j=1 〈f, y`j〉Sd−1 · y`j .380

Proof. This is in fact a standard result. For example, see [Lan12] for a proof.381

382

Now we show that the Gegenbauer polynomials and spherical harmonics are related through the so383

called the addition theorem,384

Theorem 3 (Addition Theorem). For every integer ` ≥ 0, if
{
y`1, y

`
2, . . . , y

`
α`,d

}
is an orthonormal385

basis forH`
(
Sd−1

)
, then for any σ,w ∈ Sd−1 we have386

α`,d
|Sd−1|

· P `d (〈σ,w〉) =

α`,d∑
j=1

y`j(σ) · y`j(w).

Proof. The result can be proven analytically, using the properties of the Poisson kernel in the unit387

ball. This is classic and the proof can be found in [AH12, Theorem 2.9].388

389

Next we show that the Gegenbauer kernels can project any function into the space of their corre-390

sponding spherical harmonics,391

Lemma 3 (A Reproducing Kernel forH`
(
Sd−1

)
). For every f ∈ L2

(
Sd−1

)
, if f =

∑∞
`=0 f` is the392

unique decomposition of f over
⊕∞

`=0H`
(
Sd−1

)
as per Lemma 2, then f` is given by393

f`(σ) = α`,d · E
w∼U(Sd−1)

[
f(w)P `d (〈σ,w〉)

]
for σ ∈ Sd−1.

Proof. This is a classic textbook result, see [Mor98].394

395

Now we prove that the Gegenbauer kernels satisfy the reproducing property for the Hilbert space396

H`(Sd−1).397

Lemma 1 (Reproducing Property of Zonal Harmonics). Let P `d(·) be the Gengenbauer polynomial398

of degree ` in dimension d. For any x, y ∈ Sd−1:399

P `d(〈x, y〉) = α`,d · Ew∼U(Sd−1)

[
P `d (〈x,w〉)P `d (〈y, w〉)

]
,

Furthermore, for any `′ 6= `:400

Ew∼U(Sd−1)

[
P `d (〈x,w〉) · P `

′

d (〈y, w〉)
]

= 0.
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Proof. This result follows directly from the Funk–Hecke formula (See [AH12]). However, we401

provide another proof here. First note that for every x ∈ Sd−1 the function P `d (〈x, ·〉) ∈ H`
(
Sd−1

)
.402

Therefore the first claim follow by applying Lemma 3 on function f(σ) = P `d (〈x, σ〉) which also403

satisfies f` = f . On the other hand, P `
′

d (〈y, ·〉) ∈ H`′
(
Sd−1

)
for every y ∈ Sd−1. Thus, for `′ 6= `,404

using the fact that spherical harmonics are orthogonal spaces of functions, P `
′

d (〈y, ·〉) ⊥ H`
(
Sd−1

)
,405

which gives the second claim.406

407

Next we prove that the kernel operator defined in Definition 2 is in fact a projection operator,408

Claim 1. The operator K(q)
d defined in Definition 2 satisfies the property

(
K(q)
d

)2

= K(q)
d .409

Proof. For every f ∈ L2
(
Sd−1

)
and every σ ∈ Sd−1, using Definition 2 we have,410 [(

K(q)
d

)2

f

]
(σ) =

q∑
`′=0

α`′,d
|Sd−1|

〈
K(q)
d f, P `

′

d (〈σ, ·〉)
〉
Sd−1

=

q∑
`=0

q∑
`′=0

α`,dα`′,d · E
w∼U(Sd−1)

[
P `
′

d (〈σ,w〉) · E
τ∼U(Sd−1)

[
P `d (〈τ, w〉) f(τ)

]]

=

q∑
`=0

q∑
`′=0

α`,dα`′,d · E
τ∼U(Sd−1)

[
f(τ) · E

w∼U(Sd−1)

[
P `
′

d (〈σ,w〉)P `d (〈τ, w〉)
]]

=

q∑
`=0

α`,d · E
τ∼U(Sd−1)

[
f(τ) · P `d (〈σ, τ〉)

]
=
[
K(q)
d f

]
(σ),

where the fourth line above follows from Lemma 1. This proves the claim.411

412

B Reducing the Interpolation Problem to a Least-Squares Regression413

In this section we show that our spherical harmonic interpolation problem, i.e., Problem 2, can be414

solved by approximately solving a least-squares problem as claimed in Claim 2. We start by showing415

that for any function f ∈ L2(Sd−1), K(q)
d f gives its low-degree component. More precisely, let416

f =
∑∞
`=0 f` be the decomposition of f over the Hilbert sum

⊕∞
`=0H`

(
Sd−1

)
as per Lemma 2. Now417

if we let K(q)
d be the kernel operator from Definition 2 and if

{
y`1, y

`
2, . . . , y

`
α`,d

}
is an orthonormal418

basis forH`
(
Sd−1

)
, then by Theorem 3 we have,419 [

K(q)
d f

]
(σ) =

q∑
`=0

α`,d · E
w∼U(Sd−1)

[
f(w)P `d (〈σ,w〉)

]
=

q∑
`=0

∣∣Sd−1
∣∣ · E
w∼U(Sd−1)

f(w) ·
α`,d∑
j=1

y`j(σ) · y`j(w)


=

q∑
`=0

α`,d∑
j=1

y`j(σ) ·
∣∣Sd−1

∣∣ · E
w∼U(Sd−1)

[
f(w) · y`j(w)

]
=

q∑
`=0

α`,d∑
j=1

〈f, y`j(w)〉Sd−1 · y`j(σ)

=

q∑
`=0

f`(σ) = f (q)(σ),
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where the the second line above follows from Theorem 3, the fourth line follows from Eq. (2), and420

the last line follows from Lemma 2. This proves that the low-degree component f (q) = K(q)
d f .421

Claim 2. For any f ∈ L2
(
Sd−1

)
, any integer q ≥ 0, and any C ≥ 1, if g̃ ∈ L2

(
Sd−1

)
satisfies,422 ∥∥∥K(q)

d g̃ − f
∥∥∥2

Sd−1
≤ C · min

g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
,

and if we let f (q) := K(q)
d f , where K(q)

d is defined as per Definition 2, then the following holds423 ∥∥∥K(q)
d g̃ − f (q)

∥∥∥2

Sd−1
≤ (C − 1) ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
.

Proof. First, note that g∗ = f is an optimal solution to the least-squares problem in Eq. (7). Thus we424

have,425

min
g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
=
∥∥∥K(q)

d f − f
∥∥∥2

Sd−1
=
∥∥∥f (q) − f

∥∥∥2

Sd−1
.

Next, we can write,426 ∥∥∥K(q)
d g̃ − f

∥∥∥2

Sd−1
=
∥∥∥K(q)

d g̃ −K(q)
d f +

(
K(q)
d f − f

)∥∥∥2

Sd−1

=
∥∥∥K(q)

d (g̃ − f) +
(
K(q)
d f − f

)∥∥∥2

Sd−1

=
∥∥∥K(q)

d (g̃ − f)
∥∥∥2

Sd−1
+
∥∥∥K(q)

d f − f
∥∥∥2

Sd−1

=
∥∥∥K(q)

d g̃ − f (q)
∥∥∥2

Sd−1
+
∥∥∥f (q) − f

∥∥∥2

Sd−1
,

where the third line follows from the Pythagorean theorem becauseK(q)
d (g̃−f) ∈ H(q)

(
Sd−1

)
while427

K(q)
d f − f = −

∑
`>q f`, thus

(
K(q)
d f − f

)
⊥ H(q)

(
Sd−1

)
. Combining the two equalities above428

with inequality
∥∥∥K(q)

d g̃ − f
∥∥∥2

Sd−1
≤ C ·ming∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
given in the statement of429

the claim, proves Claim 2.430

431

C Approximate Regression via Leverage Score Sampling432

In this section we ultimately prove our main result of Theorem 4. We start by proving useful properties433

of the leverage function given in Definition 3. First, we show the fact that the leverage function can434

be characterized in terms of a least-squares minimization problem, which is crucial for computing the435

leverage scores distribution. This fact was previously exploited in [AKM+17] and [AKM+19] in the436

context of Fourier operators.437

Lemma 4 (Min Characterization of the Leverage Function). For any w ∈ Sd−1, let τq(w) be the438

leverage function (Definition 3) and define φw ∈ L2(Sd−1) by φw(σ) ≡
∑q
`=0

α`,d

|Sd−1|P
`
d (〈σ,w〉).439

We have the following minimization characterization of the leverage function:440

τq(w) =

{
min

g∈L2(Sd−1)
‖g‖2Sd−1 , s.t. K(q)

d g = φw

}
. (9)

We remark that this lemma is in fact an adaptation and generalization of Theorem 5 of [AKM+19].441

We prove this lemma here for the sake of completeness.442

Proof. First we show that the right hand side of Eq. (9) is never smaller than the leverage function in443

Definition 3. Let g∗w ∈ L2(Sd−1) be the optimal solution of Eq. (9) for any w ∈ Sd−1. Note that the444
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optimal solution satisfies K(q)
d g∗w = φw. Thus, for any function f ∈ L2(Sd−1), using Definition 2,445

we can write446 ∣∣∣[K(q)
d f

]
(w)
∣∣∣2 =

∣∣∣∣∣
q∑
`=0

α`,d · E
σ∼U(Sd−1)

[
P `d (〈σ,w〉) · f(σ)

]∣∣∣∣∣
2

= |〈φw, f〉Sd−1 |2 =
∣∣∣〈K(q)

d g∗w, f
〉
Sd−1

∣∣∣2
=
∣∣∣〈g∗w,K(q)

d f
〉
Sd−1

∣∣∣2 (because K(q)
d is self-adjoint)

≤ ‖g∗w‖2Sd−1 ·
∥∥∥K(q)

d f
∥∥∥2

Sd−1
(by Cauchy–Schwarz inequality)

Therefore, for any f ∈ L2(Sd−1) with
∥∥∥K(q)

d f
∥∥∥
Sd−1

> 0, we have447 ∣∣∣[K(q)
d f

]
(w)
∣∣∣2∥∥∥K(q)

d f
∥∥∥2

Sd−1

≤ ‖g∗w‖2Sd−1 . (11)

We conclude the proof by showing that the maximum value is attained. First, we show that the448

optimal solution g∗w of Eq. (9) satisfies the property that K(q)
d g∗w = g∗w. Suppose for the sake of449

contradiction that K(q)
d g∗w 6= g∗w. In this case, Claim 1 implies that,450

K(q)
d

(
K(q)
d g∗w − g∗w

)
=
(
K(q)
d

)2

g∗w −K
(q)
d g∗w = K(q)

d g∗w −K
(q)
d g∗w = 0.

Thus, the function g = K(q)
d g∗w satisfies the constraint of the minimization problem in Eq. (9). Now,451

using the above and the fact that K(q)
d is self-adjoint we can write,452 〈

K(q)
d g∗w,K

(q)
d g∗w − g∗w

〉
Sd−1

=
〈
g∗w,K

(q)
d

(
K(q)
d g∗w − g∗w

)〉
Sd−1

= 0.

This shows that K(q)
d g∗w ⊥

(
K(q)
d g∗w − g∗w

)
, hence by Pythagorean theorem we have,453

‖g∗w‖2Sd−1 =
∥∥∥K(q)

d g∗w

∥∥∥2

Sd−1
+
∥∥∥K(q)

d g∗w − g∗w
∥∥∥2

Sd−1
>
∥∥∥K(q)

d g∗w

∥∥∥2

Sd−1
= ‖g‖2Sd−1 ,

which is in contrast with the assumption that g∗w is the optimal solution of Eq. (9). Therefore, our454

claim that K(`)
d g∗w = g∗w holds.455

Now, we show that for f = g∗w, the maximum value in inequality Eq. (11) is attained. For any456

w ∈ Sd−1 we have the following457 [
K(q)
d f

]
(w) =

〈
K(q)
d g∗w, f

〉
Sd−1

= 〈g∗w, g∗w〉Sd−1 = ‖g∗w‖2Sd−1 .

On the other hand we have
∥∥∥K(q)

d f
∥∥∥2

Sd−1
= ‖g∗w‖2Sd−1 . Thus,

∥∥∥K(q)
d f

∥∥∥−2

Sd−1
·
∣∣∣[K(q)

d f
]

(w)
∣∣∣2 =458

‖g∗w‖2Sd−1 which implies that τq(w) = ‖g∗w‖2Sd−1 and thus proves the lemma.459

460

Next we prove that the leverage function is constant.461

Lemma 5 (Leverage Function is Constant). The leverage function given in Definition 3 is equal to462

τq(w) =
∑q
`=0

α`,d

|Sd−1| for every w ∈ Sd−1.463

Proof. First we prove that τq(w) ≤
∑q
`=0

α`,d

|Sd−1| using the min-characterization. If we let φw ∈464

L2(Sd−1) be defined as φw(σ) :=
∑q
`=0

α`,d

|Sd−1|P
`
d (〈σ,w〉), then by Definition 2, for every σ ∈ Sd−1465
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we can write,466 [
K(q)
d φw

]
(σ) =

q∑
`=0

α`,d · E
v∼U(Sd−1)

[
P `d (〈σ, v〉) · φw(v)

]
=

q∑
`=0

q∑
`′=0

α`,dα`′,d
|Sd−1|

· E
v∼U(Sd−1)

[
P `d (〈σ, v〉) · P `

′

d (〈v, w〉)
]

=

q∑
`=0

α`,d
|Sd−1|

P `d (〈σ,w〉) = φw(σ), (12)

where the third line above follows from Lemma 1. Therefore, the test function g := φw satisfies the467

constraint of the minimization in Eq. (9), i.e., K(q)
d g = φw. Thus, Lemma 4 implies that,468

τq(w) ≤ ‖g‖2Sd−1 = ‖φw‖2Sd−1 =

q∑
`=0

α`,d
|Sd−1|

,

where the equality above follows from Lemma 1 along with Eq. (2). This establishes the upper bound469

on the leverage function that we sought to prove.470

Now, using the maximization characterization of the leverage function in Definition 3, we prove that471

τq(w) ≥
∑q
`=0

α`,d

|Sd−1| . Again, we consider the same test function g = φw and write,472 ∥∥∥K(q)
d φw

∥∥∥−2

Sd−1
·
∣∣∣[K(q)

d φw

]
(w)
∣∣∣2 =

|φw(w)|2

‖φw‖2Sd−1

=

∣∣∣∑q
`=0

α`,d

|Sd−1|P
`
d (〈w,w〉)

∣∣∣2∑q
`=0

α`,d

|Sd−1|

=

∣∣∣∑q
`=0

α`,d

|Sd−1|P
`
d(1)

∣∣∣2∑q
`=0

α`,d

|Sd−1|
=

q∑
`=0

α`,d
|Sd−1|

,

where the first and second line above follow from Eq. (12) and Lemma 1, respectively. Therefore, the473

max characterization of the leverage function in Definition 3 implies that,474

τq(w) ≥
∥∥∥K(q)

d φw

∥∥∥−2

Sd−1
·
∣∣∣[K(q)

d φw

]
(w)
∣∣∣2 =

q∑
`=0

α`,d
|Sd−1|

.

This completes the proof of Lemma 5 and establishes that τq(w) is uniformly equal to
∑q
`=0

α`,d

|Sd−1| .475

476

To prove Theorem 4, we need to use prior results about solving linear systems in continuous setting477

via leverage score sampling. In particular, we use Theorem 6.3 from [CP19], which is restated below,478

479

Theorem 7 (Theorem 6.3 of [CP19]). Consider any dimension n linear space F of functions480

from a domain G to R. Let D be a distribution over G and f be some function from G481

to R. Also, define the norm with respect to D of any function h : G → R as ‖h‖2D :=482

Ex∼D[|h(x)|2] and let y = arg minh∈F ‖h− f‖
2
D. Fix any distribution D′ over G and let483

KD′ := supx∈G suph∈F

{
D(x)
D′(x) ·

|h(x)|2
‖h‖2D

}
.484

For i.i.d. sample query points x1, x2, . . . xs ∼ D′ and weights wi = D(xi)
s·D′(xi)

for i ∈ [s], let the485

weighted ERM estimator f̃s be defined as f̃s := arg minh∈F
∑s
i=1 wi · |h(xi)− f(xi)|2. For any486

ε > 0 and a sufficiently large fixed constant c, if the number of queries s ≥ c ·
(
KD′ log n+ KD′

ε

)
,487

then the weighted ERM estimator f̃s satisfies,488

Pr

[∥∥∥f̃s − y∥∥∥2

D
≤ ε · ‖f − y‖2D

]
≥ 1− 10−4.
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Now we are ready to prove Theorem 4. Our approach is to apply Theorem 7 to the space of degree q489

spherical harmonicsH(q)
(
Sd−1

)
and use the fact that the leverage scores distribution of the operator490

K(q)
d are uniform on the unit sphere Sd−1.491

Theorem 4 (Approximate Regression via Leverage Function Sampling). For any ε > 0, let s =492

c·
(
βq,d log βq,d +

βq,d

ε

)
, for sufficiently large fixed constant c, and let x1, x2, . . . , xs be i.i.d. uniform493

samples on Sd−1. Define the quasi-matrix P : Rs → L2(Sd−1) as follows, for every v ∈ Rd:494

[P · v](σ) :=

q∑
`=0

α`,d√
s · |Sd−1|

·
s∑
j=1

vj · P `d (〈xj , σ〉) for σ ∈ Sd−1.

Also let f ∈ Rs be a vector with fj := 1√
s
· f(xj) for j = 1, 2, . . . , s and let P ∗ be the adjoint of P .495

If g̃ is an optimal solution to the least-squares problem g̃ ∈ arg ming∈L2(Sd−1) ‖P ∗g − f‖22, then496

with probability at least 1− 10−4 the following holds,497

∥∥∥K(q)
d g̃ − f

∥∥∥2

Sd−1
≤ (1 + ε) · min

g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
.

Proof. We prove this theorem by invoking Theorem 7. To do so, we first let the space F of function498

from Sd−1 to R be F := H(q)
(
Sd−1

)
. It is clear that the space of spherical harmonics is a linear499

space of functions because of the existence of the kernel operator K(q)
d which is a projection operator500

ontoH(q)
(
Sd−1

)
, so F satisfies the first precondition of Theorem 7. Additionally, the dimension of501

this space of functions is n = βq,d.502

Also, letD be a uniform distribution over the unit sphere Sd−1. For this distribution, the norm defined503

in Theorem 7 satisfies ‖h‖2Sd−1 = |Sd−1| · ‖h‖2D, for any h ∈ L2(Sd−1). Moreover, let D′ be a504

uniform distribution over the unit sphere Sd−1 as well.505

Now we show that for these choices of F , D,D′, the condition numberKD′ defined as per Theorem 7506

is equal to βq,d. We can write,507

KD′ := sup
x∈Sd−1

sup
h∈F

{
D(x)

D′(x)
· |h(x)|2

‖h‖2D

}
= |Sd−1| · sup

x∈Sd−1

sup
h∈F

{
|h(x)|2

‖h‖2Sd−1

}

= |Sd−1| · sup
x∈Sd−1

sup
g∈L2(Sd−1)


∣∣∣[K(q)

d g
]

(x)
∣∣∣2∥∥∥K(q)

d g
∥∥∥2

Sd−1


= |Sd−1| · sup

x∈Sd−1

τq(x)

= βq,d,

where the second line above follows from the fact thatD,D′ are both equal to the uniform distribution508

over Sd−1 and ‖h‖2Sd−1 = |Sd−1| · ‖h‖2D. The third line above follows from the fact that any function509

h ∈ H(q)
(
Sd−1

)
can be expressed as h = K(q)

d g for some g ∈ L2(Sd−1) because K(q)
d is the510

projection operator ontoH(q)
(
Sd−1

)
. The fourth line follows from Definition 3 and last line follows511

from Lemma 5.512
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Finally, in order to invoke Theorem 7, we can write that the weighted ERM estimator f̃s is equal to513

the following,514

f̃s := arg min
h∈F

s∑
i=1

wi · |h(xi)− f(xi)|2

= arg min
g∈L2(Sd−1)

s∑
i=1

wi ·
∣∣∣[K(q)

d g
]

(xi)− f(xi)
∣∣∣2

= arg min
g∈L2(Sd−1)

s∑
i=1

∣∣∣∣ 1√
s
·
[
K(q)
d g

]
(xi)− fi

∣∣∣∣2
= arg min
g∈L2(Sd−1)

‖P ∗g − f‖22 ,

where the third line above uses the definition of fi = 1√
s
f(xi), and the last line follows from the515

definition of adjoint of the quasi-matrix P . Therefore, the theorem follows by invoking Theorem 7.516

517

D Efficient Algorithm for Spherical Harmonic Interpolation518

In this section we prove our main theorem about our spherical harmonic interpolation algorithm.519

Theorem 5 (Efficient Spherical Harmonic Interpolation). Algorithm 1 returns a function y ∈520

H(q)(Sd−1) such that, with probability at least 1− 10−4:521 ∥∥∥y − f (q)
∥∥∥2

Sd−1
≤ ε ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
, where f (q) := K(q)

d f.

Suppose we can compute the Gegenbauer polynomial P `d(t) at every point t ∈ [−1, 1] in constant522

time. Algorithm 1 queries the function f at s = O
(
βq,d log βq,d +

βq,d

ε

)
points on the sphere Sd−1523

and runs in O(s2 · d+ sω) time. This algorithm evaluates y(σ) in O(d · s) time for any σ ∈ Sd−1.524

Proof. First note that the random points w1, w2, . . . , ws in line 3 of Algorithm 1 are i.i.d. sample525

with uniform distribution on the surface of Sd−1. Therefore, we can invoke Theorem 4. More526

specifically, if we let P be the quasi-matrix defined in Theorem 4 corresponding to the random527

points w1, w2, . . . , ws sampled in line 3 and if we let f be the vector of function samples defined in528

line 5 of the algorithm, then with probability at least 1− 10−4, any optimal solution to the following529

least-squares problem530

g̃ ∈ arg min
g∈L2(Sd−1)

‖P ∗g − f‖22 , (13)

satisfies the following,531 ∥∥∥K(q)
d g̃ − f

∥∥∥2

Sd−1
≤ (1 + ε) · min

g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
. (14)

Now note that the least-squares problem in Eq. (13) has at least one optimal solution g̃ which is in the532

eigenspace of the operator PP ∗. More specifically, there exists a vector z ∈ Rs such that g̃ = P · z533

is an optimal solution for Eq. (13). Therefore, we can focus on finding this optimal solution by534

solving the following least-squares problem535

z ∈ arg min
x∈Rs

‖P ∗Px− f‖22 ,

and then letting g̃ = P · z. This g̃ is guaranteed to be an optimal solution for Eq. (13), thus it satisfies536

Eq. (14). We solve the above least-squares problem using the kernel trick. In fact we show that P ∗P537

is equal to the kernel matrix K computed in line 4 of Algorithm 1. To see why, note that for any538
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i, j ∈ [s] we have,539

[P ∗P ]i,j =

〈
q∑
`=0

α`,d√
s · |Sd−1|

· P `d (〈wi, ·〉) ,
q∑
`=0

α`,d√
s · |Sd−1|

· P `d (〈wj , ·〉)

〉
Sd−1

=

q∑
`=0

q∑
`′=0

α`,dα`′,d
s · |Sd−1|2

·
〈
P `d (〈wi, ·〉) , P `

′

d (〈wj , ·〉)
〉
Sd−1

=

q∑
`=0

q∑
`′=0

α`,dα`′,d
s · |Sd−1|

· E
v∼U(Sd−1)

[
P `d (〈wi, v〉) · P `

′

d (〈wj , v〉)
]

=

q∑
`=0

α`,d
s · |Sd−1|

· P `d (〈wi, wj〉) = Ki,j ,

where the fourth line above follows from Lemma 1. Therefore, we are interested in the optimal540

solution of the following least-squares problem541

z ∈ arg min
x∈Rs

‖Kx− f‖22 .

The least-squares solution to the above problem is z = K†f which is exactly what is computed542

in line 6 of the algorithm. Now note that, the function g̃ = P · z satisfies Eq. (14). Because543

g̃ = P · z ∈ H(q)(Sd−1) and because K(q)
d is an orthonormal projection operator intoH(q)(Sd−1),544

we have K(q)
d · g̃ = g̃ = P · z. This together with Eq. (14) imply that,545

‖P · z − f‖2Sd−1 ≤ (1 + ε) · min
g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
.

Now if we invoke Claim 2 with C = 1 + ε on the above inequality we find that,546 ∥∥∥P · z − f (q)
∥∥∥2

Sd−1
≤ ε ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
.

Finally, one can easily see that the function y ∈ H(q)(Sd−1) that Algorithm 1 outputs in line 7 is547

exactly equal to y = P · z. This completes the accuracy bound of the theorem.548

Runtime and Sample Complexity. these bounds follow from observing that:549

• s · d time is needed to generate w1, w2, . . . , ws in line 3 of the algorithm. To do this, we550

first generate random Gaussian points in Rd and then project then onto Sd−1 by normalizing551

them.552

• s2 · d operations are needed to form the kernel matrix K in line 4 of the algorithm.553

• s queries to function f are needed to form the samples vector f in line 5 of the algorithm.554

• sω time is needed to compute the least-squares solution z = K†f in line 6 of the algorithm.555

• s · d operations are needed to evaluate the output function y(σ) in line 7 of the algorithm.556

This completes the proof of Theorem 5.557

E Lower Bound: Claims and Lemmas558

In this section we prove the Claims and Lemmas used in our lower bound analysis for proving559

Theorem 6.560

Claim 4. Given the random input f =
∑q
`=0 Y` · v(`) generated as described in Section 4, to solve561

Problem 2, an algorithm must return a function f̃ (q) ∈ H(q)
(
Sd−1

)
such that ‖f̃ (q) − f‖2Sd−1 = 0.562
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Proof. Note that Problem 2 requires recovering a function f̃ (q) ∈ H(q)
(
Sd−1

)
such that:563 ∥∥∥f̃ (q) − f (q)

∥∥∥2

Sd−1
≤ ε ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
, (15)

where f (q) = K(q)
d f . Using the definition of the input function f =

∑q
`=0 Y` · v(`), we can write,564

f (q) = K(q)
d f =

q∑
`=0

K(q)
d · Y` · v

(`)

=

q∑
`=0

(
q∑

`′=0

Y`′Y
∗
`′

)
· Y` · v(`)

=

q∑
`=0

Y` · v(`) = f,

where the equality in the second line above follows from Eq. (10) and the addition theorem in565

Theorem 3, and the third line follows because the operator Y` has orthonormal columns and thus566

Y ∗`′Y` = Iα`,d
· 1{`=`′}. Therefore, plugging this into Eq. (15) gives,567 ∥∥∥f̃ (q) − f
∥∥∥2

Sd−1
=
∥∥∥f̃ (q) − f (q)

∥∥∥2

Sd−1
≤ ε · ‖f (q) − f‖2Sd−1 = ε · ‖f − f‖2Sd−1 = 0.

568

Lemma 6. If a deterministic algorithm solves Problem 2 with probability at least 1/10 over our569

random input distribution f =
∑q
`=0 Y` · v(`), then with probability at least 1/10, the output of the570

algorithm f̃ (q) satisfies Y ∗` f̃
(q) = v(`) for all integers ` ≤ q.571

Proof. By Claim 4, the output of the algorithm that solves Problem 2, satisfies
∥∥∥f̃ (q) − f

∥∥∥2

Sd−1
= 0.572

Therefore, by orthonormality of the columns of the operator Y`, we can write,573

Y ∗` f̃
(q) = Y ∗` f + Y ∗` (f̃ (q) − f) =

q∑
`′=0

Y ∗` Y`′ · v(`′) = v(`).

574
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