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Abstract

We present a new combinatorial bandit model, the cascading contextual assortment

bandit. This model serves as a generalization of both existing cascading bandits
and assortment bandits, broadening their applicability in practice. For this model,
we propose our first UCB bandit algorithm, UCB-CCA. We prove that this algorithm
achieves a T -step regret upper-bound of Õ(

1
d
p

T ), sharper than existing bounds
for cascading contextual bandits by eliminating dependence on cascade length K.
To improve the dependence on problem-dependent constant , we introduce our
second algorithm, UCB-CCA+, which leverages a new Bernstein-type concentra-
tion result. This algorithm achieves Õ(d

p
T ) without dependence on  in the

leading term. We substantiate our theoretical claims with numerical experiments,
demonstrating the practical efficacy of our proposed methods.

1 Introduction

Sequential interactions between users and a recommender agent are often modeled as the multi-armed
bandit problem or one of its variants [15]. In practice, a user typically encounters multiple items per
round of interaction rather than a solitary item. Two popular models that capture this aspect are the
cascading bandit [13; 14; 18] and the assortment bandit [4; 5; 7; 22], also often known as multinomial
logistic bandits.

In the cascading bandit problem [13; 14; 18; 29; 25; 28], the agent selects a cascade of K items from
a total of N items each round. These selected items are sequentially presented one at a time to a user.
If the user clicks on a presented item, the cascading round ends. If not, the agent proceeds to reveal
the next item from the cascade. This process continues until either the user clicks on an item or
all K items in the cascade have been presented without a click. Once a round ends, a next round
commences with a newly selected list of K items.

In the assortment bandit problem [4; 5; 7; 8; 9; 7; 22; 23], the agent presents an assortment of M
items all at once, then receives user choice feedback on the assortment. A user may opt for one of
the M items presented or choose none at all, concluding the round in either case. Both cascading
and assortment bandit problems are significant combinatorial variations of the multi-armed bandit
problem and have been extensively examined both theoretically and in practice.

However, a more commonly encountered scheme in real-world applications is a generalization of
these two settings, where a cascade of assortments is sequentially revealed in each round. This
approach is evident in video streaming services, where assortments of recommended contents are
revealed as users scroll through webpages or mobile applications. Similar experiences can also
be found in various online retail services and search engines. To address this, we propose a new
interactive model, which we term cascading assortment bandits. In the cascading assortment bandits,
the agent chooses a cascade of assortments that consists of K assortments with each assortment
containing M items. The agent reveals one assortment at a time in the cascade. The cascade concludes
if the user clicks on one of the items contained in a given assortment. If not, the agent proceeds
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Figure 1: Comparisons between the cascading assortment bandit and the other combinatorial bandits.
The cascading assortment bandit subsumes the multi-armed bandit (K = 1, M = 1), the cascading
bandit (K > 1, M = 1), and the assortment bandit (K = 1, M > 1).

to unveil the subsequent assortment in the cascade. This cycle continues until either an assortment
receives a click from the user or the agent depletes the pre-selected assortments.

The cascading assortment bandit problem is the strict generalization of both the cascading bandits
model and the assortment bandits model. It is also a generalization of the simple multi-armed bandit
problem. That is, if K = 1 and M = 1, the problem is the simple multi-armed bandit. If K > 1

and M = 1, the problem corresponds to the cascading bandit. If K = 1 and M > 1, we recover
the assortment bandit problem. The illustrations on comparisons between the cascading assortment
bandit and the other combinatorial bandits are presented in Figure 1.

In order to accommodate the generalization of the interactive model across items and assortments,
we also incorporate the feature information of items and parametrization of a click model in the
cascading assortment bandit model. Hence, we name the model as cascading contextual assortment
bandit (see Section 2.2 for the formal definition of the problem setting).1 Under this newly proposed
combinatorial bandit model, we posit the following question:

Can we design a provably efficient algorithm for cascading contextual assortment bandits?

To address the question at hand, we first have to overcome the technical challenges inherent in each
special case of our problem setting: the cascading contextual bandit and the contextual assortment
bandit. Firstly, in the cascading contextual bandit [18; 25], a longstanding issue has been the
suboptimal dependence on the cascade length, K. Intuitively, one would expect that as K increases
in the cascading model, the regret should either diminish or at least remain constant; performance
deterioration should not occur. However, all existing regret bounds for cascading contextual bandits
scale proportionally to K [18; 29; 17; 28; 25]. This finding is not just counter-intuitive, but also
suboptimal (for further discussions, refer to Section2.4). As a result, (i) eradicating the suboptimal
dependence on cascade length K has been recognized as an open problem, even within the cascading
contextual bandit setting.2

Further, in the context of assortment bandits, there is a widely recognized suboptimal dependence on
the problem-specific constant , as demonstrated in the existing assortment bandit literature [9; 22; 23].
This problem-specific constant  (in Assumption 4.2) represents the curvature of the multinomial
logit (MNL) function. Recent studies [24; 3] have demonstrated an improved dependence on ,
albeit only multiplied by logarithmic factors. However, this improvement comes at the expense of
an increased dependence on the assortment size M , a conclusion that is both counter-intuitive and
suboptimal. Thus, (ii) decreasing the  dependence without escalating the dependence on M
still poses an unresolved issue. While addressing either of the two challenges (i) and (ii) can be
daunting individually, tackling both issues simultaneously poses an even greater challenge in both
our algorithm design and regret analysis.

1Note that a non-contextual version of the cascading assortment bandit is a special case of the cascading
contextual assortment bandit with a one-hot encoded feature vector for each item. Hence, when we aim to
provide efficient algorithms for cascading contextual assortment bandit, we also address the non-contextual
cascading assortment bandit which has not been studied previously.

2A concurrent work [20] addresses this suboptimal dependence on K under the linear model assumption.
Our work tackles this challenge under the MNL model in a more general setting.
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Table 1: Comparisons of algorithms for contextual cascade and assortment bandits as well as for
cascading contextual assortment bandits. N is the number of ground items, K is a length of cascade,
d is a dimension of feature vectors and T is total rounds.  is a problem-dependent parameter for the
MNL model. See Appendix A for more discussions.

Algorithm Context Cascade Assortment Click Model Regret Bound

CombCascade [14] ⇥ � ⇥ ⇥ Õ(
p
KNT )

C
3
-UCB [18] � � ⇥ Linear Õ(d

p
KT )

EE-MNL [5] ⇥ ⇥ � MNL Õ(
p
NT )

TS-MNL [22] � ⇥ � MNL Õ( 1
d

3/2
p
T )

UCB-MNL [23] � ⇥ � MNL Õ( 1
d

p
T )

LinTS-Cascade [28] � � ⇥ Linear Õ(d3/2K
p
T )

CascadeWOFUL [25] � � ⇥ Linear Õ(
p
d2T + dTK)

VAC
2
-UCB [20] � � ⇥ Linear Õ(d

p
T )

UCB-CCA (Algorithm 1) � � � MNL Õ( 1
d

p
T )

UCB-CCA+ (Algorithm 2) � � � MNL Õ(d
p
T )

To this end, we design novel upper confidence bound (UCB) algorithms for contextual cascading
assortment bandits, tackling both technical challenges. We show that our proposed algorithms achieve
provable guarantees on regret performances overcoming the longstanding technical challenges.
Our regret bounds show sharper results than those of the existing contextual cascading bandits or
assortment bandits. We corroborate our theoretical claims through numerical experiments, thus
ensuring that both our newly proposed bandit framework and the proposed algorithms establish
provable efficiency and practical applicability.

Our main contributions are summarized as follows.

• We formulate a general combinatorial bandit model, named cascading contextual assortment

bandit that encompasses the existing cascading bandits and assortment bandits. This novel
problem setting is observed in many practical applications.

• We first propose a UCB bandit algorithm UCB-CCA for the cascading contextual assortment
bandit and establish the T -step regret upper-bound of Õ(

1
d
p

T ) (in Theorem 4.3). This
regret bound is tighter than the existing bounds for cascading contextual bandits, where
we not only remove the longstanding, unnecessary dependence on K but also establish the
result without dependence on M .

• While UCB-CCA is an efficient algorithm achieving both the statistical efficiency and practical
performances (shown in Section 7), its regret bound includes dependence on the inverse of a
problem-dependent constant , which can be potentially large in the worst case. To improve
the dependence on , we propose our second algorithm UCB-CCA+, which exploits a new
Bernstein-type concentration result, taking into account the effects of the local curvature of
the MNL model. We prove that UCB-CCA+ achieves Õ(d

p
T ) without the dependence on 

in the leading term (only scaling with logarithmic factors), hence significantly improving
the regret of UCB-CCA without increasing the other dependencies. Hence, we successfully
solve the two technical challenges (i) and (ii) mentioned above.

• As an independent contribution, we prove that a greedy algorithm for the cascading assort-
ment optimization problem gives a 0.5 approximation of the optimal solution (discussed in
Section 6). To our best knowledge, this is the first rigorous result showing the approximation
guarantee even for the contextual cascading bandit problem, instead of simply assuming
access to an approximation optimization oracle.

• We evaluate our proposed methods in numerical experiments and show that the practical
performances support our theoretical claims. Hence, our proposed algorithms along with
our newly proposed bandit model establish provable efficiency and practical applicability.
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2 Preliminaries

2.1 Notation

Define [n] as a set of positive integers from 1 to n. Let |·| be the length of a sequence or the cardinality
of a set. For a vector x 2 Rd, we denote the `2-norm of x as ||x||2 and the V -weighted norm of x
for a positive-definite matrix V as ||x||V =

p
x>V x. The determinant and trace of a matrix V are

det(V ) and trace(V ), respectively. �min(V ) denotes the minimum eigenvalue of a matrix V .

2.2 Cascading Contextual Assortment Bandit Problem

Consider [N ], a set of N items. Let A be a set of candidate assortments of items with size M , i.e.,
A := {A ✓ [N ] : |A| = M}. A cascade S is an ordered sequence of K assortments chosen from A
where all the items in these K assortments are distinct. Then, the set of all feasible cascades S can be
defined as follows.

S :=
�
S =

�
A1, ..., AK) | Ak 2 A for all k 2 [K], \Kk=1Ak = ;

 

At round t, feature vectors {xti 2 Rd, i 2 [N ]} for every item are revealed to the decision-making
agent. Each feature vector xti may contain the contextual information of the user at round t and the
item i. After observing this contextual information, at round t, the agent recommends a cascade
St = (Atk)k2[K] to the user, where Atk 2 A represents the k-th assortment of the cascade at round t.
The user scans the assortments in St one by one. If the items in Atk do not attract the user, the user
moves on to the next assortment At,k+1. The user stops at the Ot-th assortment when the user is
attracted by an item in the Ot-th assortment and clicks on the item.

After the user clicks on the item, the agent observes a sequence of user choices yt = (ytk)k2[Ot]

where a binary vector ytk = (ytk0, ytk1, ..., ytkM ) represents user choices on assortment Atk. Let
ytkm = 1 if the m-th item im in Atk is clicked by the user, and ytkm = 0 for items that are not
clicked on. For each assortment, there is an outside option. That is, there is a probability that the user
may not click any of the items in Atk. If the user does not choose any items, ytk0 = 1 and ytkm = 0

for all m 2 [M ]. The user choice for each assortment is given by the multinomial logit (MNL) choice
model [21]. For this MNL model, there is an unknown time-invariant parameter ✓⇤ 2 Rd. We define
the true weight of item i in round t as w⇤

ti := x>
ti✓

⇤. Also, we let the vector representation of the
weights be defined as w⇤

t := (w⇤
ti)i2[N ] for convenience.

Under this model, the user’s click probability of the m-th item in Atk and the probability of the
outside option in Atk is given respectively by

pt(im|Atk, w
⇤
t ) =

exp(w⇤
tim)

1 +
P

j2Atk
exp(w⇤

tj)
and pt(i0|Atk, w

⇤
t ) =

1

1 +
P

j2Atk
exp(w⇤

tj)

where item i0 represents the outside option. The user choice ytk is sampled from the multinomial
distribution, ytk ⇠ MNL

�
1,
�
pt(im|Atk, w⇤

t )
�M
m=0

 
, where the argument 1 indicates that ytk is

a single-trial sample. Hence,
PM

m=1 ytkm is always 1. Also, we denote measurement noise as
✏tkm := ytkm � pt(im|Atk, w⇤

t ). Since ✏tkm is bounded in [0, 1], ✏tkm is �2-sub-Gaussian with
�2

= 1/4. It is important to note that ✏tkm across items in the same assortment is not independent
due to the substitution effect in the MNL model.

The expected reward function of a combinatorial action St based on w⇤
t is given by

f(St, w
⇤
t ) =

KX

k=1

8
<

:

k�1Y

k̇=1

pt(i0|Atk̇, w
⇤
t )

9
=

;
X

i2Atk

pt(i|Atk, w
⇤
t ) = 1�

|St|Y

k=1

pt(i0|Atk, w
⇤
t ).

The formulation above is also known as the cascade model with disjunctive objective, where the user
stops at the first attractive item [13; 14; 18].

2.3 ↵-Approximation Oracle and ↵-Regret

The exact combinatorial optimization to compute an optimal cascade of assortments can be com-
putationally expensive. Therefore, we allow for approximate optimization. We assume that the
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agent has access to an ↵-optimization oracle to compute a ↵-approximation solution of the cascade
optimization problem with ↵  1. For approximate optimization, we prove that a greedy selection
for the cascading assortment optimization problem gives a 0.5 approximation of the optimal solution,
which may be of independent interest (see Section 6).

Formally, for a given an ↵-optimization oracle and a weight parameter w, the oracle outputs an
approximately optimal cascade Ŝ⇤

= O↵
(w) 2 S satisfying f(Ŝ⇤, w) � ↵f(S⇤, w) where S⇤ 2

arg maxS2S f(S, w) is an optimal assortment without approximation. The instantaneous ↵-regret
of cascade St in round t is defined as R↵

(t, St) := E[↵f(S⇤
t , w⇤

t ) � f(St, w⇤
t )] where S⇤

t 2
arg maxS2S f(S, w⇤

t ) is an true optimal assortment. Then, the goal of the agent is to minimize the
cumulative ↵-regret defined as

R↵
(T ) :=

TX

t=1

R↵
(t, St) =

TX

t=1

E
⇥
↵f(S⇤

t , w⇤
t )� f(St, w

⇤
t )
⇤
.

2.4 Suboptimal Dependence on Problem Dependent Parameters

In this subsection, we discuss the main technical challenges faced in the regret analysis of our problem
setting. In particular, the suboptimal dependence on cascade length K has been a long-standing open
problem even in contextual cascading bandits.

2.4.1 Dependence on Length of Cascade K

The previous literature on the contextual cascading bandits [18; 17; 26; 25] bounds the instantaneous
regret in each round, utilizing the monotonicity and Lipschitz continuity of the expected reward
function f . A simple adaptation of the previously known techniques to our problem would result in
the following upper bound for the instantaneous regret R↵

(t, St) for St = (At1, At2, ..., AtK).

R↵
(t, St) 

KX

k=1

X

i2Atk

�t||xti||V �1
t�1

(1)

where �t is a suitable confidence radius chosen by an algorithm, and Vt is a positive definite gram
matrix. Then, the dependence on the length of cascade K and the assortment size M would appear in
the regret bound after summing the right-hand side of Eq.(1) over the time horizon and applying the
Cauchy-Schwarz inequality. Because of this reason, even when M = 1, there still exists dependence
on K which appears in the regret bounds of all previous contextual cascading bandits (see Table 1).

To overcome this challenge, we present a new Lipschitz continuity of the expected reward function to
derive the regret bound independent of M and K by replacing the summation with the maximum
over assortments and a cascade (see Section 4.3 for more details).

2.4.2 Dependence on Worst-Case Scanning Probability

Analogous to the existing algorithms for the contextual cascading bandits [18; 26], the gram ma-
trix Vt contains the rank-1 matrices of observed items accumulated up to round t, i.e., Vt =Pt

⌧=1

PO⌧

k=1

P
i2A⌧k

x⌧ix>
⌧i + �I . However, there exists an out-of-control issue, that is, the sum-

mation of the rank-1 matrices over Ot + 1 to |St| in Eq.(1) is not included in the gram matrix Vt.
Note that this issue also arises in cascading contextual assortment bandits. Adapting a technique
used in the existing literature [18] to mitigates this issue, let pt,St be the probability of examining
all assortments in St and p⇤ = mint2[T ] minS2S pt,St be the worst-case probability of examining a
cascade over all rounds and all feasible cascades. A simple adaptation of the existing methods would
result in the following bound for the expected instantaneous regret.

E [R↵
(t, St)] = E


R↵

(t, St)E


1

pt,St

{Ot = |St|} | St

��
 1

p⇤
E
⇥
R↵

(t, St) {Ot = |St|}
⇤
.

This concedes the dependence on p⇤, which can be exponentially small in the worst case. We
overcome this challenge by designing an algorithm that offers the assortment containing the most
uncertain item as the first assortment in a cascade. We discuss this salient feature of the proposed
algorithm in more detail in Section 3.2.

5



Algorithm 1 UCB-CCA
Input: confidence radius �t and ridge penalty parameter � � 1

1: for t = 1, . . . , T do
2: Observe xti for all i 2 [N ]

3: Compute uti = x>
ti ✓̂t�1 + �t�1||xti||V �1

t�1
for all i 2 [N ]

4: Compute a candidate cascade S0
t  (A0

tk)k2[K] = O↵
(ut)

5: Find optimistic exposure assortment index k⇤ in (k⇤, i⇤) = argmax

k2[K],i2A0
tk

||xti||V �1
t�1

6: Optimistic exposure swap St  (Atk)k2[K] where Atk :=

8
<

:

A0
tk⇤ if k = 1

A0
t1 if k = k⇤

A0
tk otherwise

7: Offer St, and observe user feedback Ot and yt = (ytk)k2[Ot]

8: Update Vt  Vt�1 +
POt

k=1

P
i2Atk

xtix>
ti

9: Compute the regularized MLE ✓̂t by solving r✓

⇥
`t(✓) +

�
2 ||✓||

2
2

⇤
= 0

10: end for

3 Algorithm: UCB-CCA

3.1 Upper Confidence Bounds and Confidence Set

UCB-CCA utilizes the upper confidence bounds (UCB) technique [6; 1; 16] to compute an optimistic
action based on optimistic estimates of each item’s weight, uti = x>

ti ✓̂t�1 + �t�1(�)||xti||V �1
t�1

for
all i 2 [N ]. The confidence radius �t(�) is specified to maintain a high-probability confidence set
Ct(�) for the unknown parameter ✓⇤, although the algorithm does not explicitly compute Ct(�).

Ct(�) :=

n
✓ 2 Rd

: ||✓̂t � ✓||Vt  �t(�)
o

.

Setting a proper confidence radius �t(�) can guarantee that ✓⇤ lies within the confidence set with
probability 1��. On the event that ✓⇤ 2 Ct(�), the UCB weight uti serves as an upper bound of a true
weight w⇤

ti := x>
ti✓

⇤ for every item i 2 [N ]. We denote the UCB weight vector as ut = (uti)i2[N ]

for convenience.

3.2 Optimistic Exposure Swapping

A distinctive element of UCB-CCA is what we call optimistic exposure swapping, a procedure crucial
for eliminating dependence on the worst-case scanning probability, as elaborated in Section 2.4.2.
This technique strategically positions the assortment containing the item with the highest uncertainty
among the top MK items in the first slot of the cascade of assortments.

In each round t, the ↵-approximate oracle O↵
(ut) outputs a candidate cascade S0

t, determined by
the UCB weights ut. It is important to note that S0

t is not immediately presented to the user. Instead,
after S0

t is derived using the optimization oracle O↵
(ut), the algorithm identifies the index k⇤ of an

assortment that includes the item with the largest ||xti||V �1
t�1

in S0
t.

Subsequently, the algorithm swaps the positions: the assortment A0
tk⇤ is moved to the top of St,

becoming At1, and the initially top assortment A0
t1 in S0

t is relocated to the k⇤-th position of St,
now Atk⇤ . The positions of the other assortments remain the same, that is, Atk = A0

tk for all
k 2 [K] \ {1, k⇤}.3 This procedure is viable as the expected reward is unaffected by the display order
of assortments in the cascade, as shown in Lemma 4.5.

3.3 Regularized Maximum Likelihood Estimation

UCB-CCA computes a regularized maximum likelihood estimate of the unknown parameter ✓⇤. The
negative log-likelihood is given by `t(✓) = �

Pt�1
⌧=1

PO⌧

k=1

PM
m=0 y⌧km log p⌧ (im|A⌧k, w⌧ ), where

3While the swapping occurs between the first and the k⇤-th positions for specificity, it is sufficient to place
A0

tk⇤ at the top position of St. The sequence of the remaining assortments is not critical.
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wt = (wti)i2[N ] is a weight vector, and its element is wti = x>
ti✓. For penalty parameter � � 1, the

`2-regularized MLE is given by

✓̂t = argmin
✓


`t(✓) +

�

2
||✓||22

�
= argmin

✓

"
�

t�1X

⌧=1

O⌧X

k=1

MX

m=0

y⌧km log p⌧ (im|A⌧k, w⌧ ) +
�

2
||✓||22

#
.

(2)

4 Regret Analysis of UCB-CCA

4.1 Regularity Condition

Assumption 4.1. ||x||ti  1 for all round t and items i 2 [N ], and also ||✓⇤||  1.
Assumption 4.2. There exists  > 0 such that for all t 2 [T ], any assortment A 2 A, and any item
i 2 A, inf✓2Rd pt(i|A, w)pt(i0|A, w) � , where w = (wi)i2[N ] and wi = x>

i ✓.

Discussion of Assumptions. Assumption 4.1 makes the regret bound independent on the scale of the
feature vector and parameter. This is the standard assumption used in the contextual bandit litera-
ture [1; 18; 22]. Assumption 4.2 is the standard regularity assumption in the contextual assortment
bandit literature [8; 27; 22; 7; 23], adapted from the standard assumption for the link function in the
generalized linear contextual bandit literature [16] to ensure that the Fisher information matrix is
non-singular.

4.2 Regret Bound of UCB-CCA

Theorem 4.3 (↵-regret upper bound of UCB-CCA). Suppose Assumptions 4.1 and 4.2 hold, and we

run UCB-CCA for total T rounds with �t =
1
2

q
d log

�
1 +

tKM
d�

�
+ 4 log t +

p
�
 and with � � 1,

Then, the ↵-regret of UCB-CCA is upper-bounded by

R↵
(T ) 

✓
K

K + 1

◆K+1
"

1

2

s

d log

✓
1 +

TKM

d�

◆
+ 4 log T +

p
�



#s

2dT ln

✓
1 +

TKM

�d

◆
.

Discussion of Theorem 4.3. Theorem 4.3 establishes that UCB-CCA achieves a regret bound of
Õ
�
d


p
T
�
. Notably, this regret bound removes dependence on p⇤ completely and removes polynomial

dependence on K, achieving the best-known bound in contextual cascading bandits [18; 25; 20],
a special case of our problem setting. Apart from the generalization we consider in this work, a
key distinction between our work and the previous contextual cascading bandit models lies in our
adoption of the MNL model, as opposed to the linear model assumed by the existing literature. This
model choice introduces a dependence on the parameter  within the regret bound of UCB-CCA,
which is an aspect we address and refine in subsequent sections. It is essential to highlight that our
work tackles a more general problem yet achieves improved bounds concerning the key problem
parameters previously considered suboptimal. The factor comprised of the length of the cascade,
(K/(K+1))

K+1, in Theorem 4.3 is also notable, which is bounded above by 1 regardless of the value
of K. Consequently, the regret bound does not increase polynomially with K, ensuring scalability.

4.3 Proof Outline

In this subsection, we present the proof sketch of Theorem 4.3. One of the key components of the
regret analysis that enables carving off the dependence on K is the following lemma.
Lemma 4.4 (Maximal Lipschitz continuity). Suppose uti � w⇤

ti for all i 2 [N ]. Then

f(St, ut)� f(St, w
⇤
t ) 

✓
K

K + 1

◆K+1

max
Atk2St

max
i2Atk

(uti � w⇤
ti) . (3)

Lemma 4.4 demonstrates that the difference between the reward functions under the UCB parameter
and the true parameter is upper bounded by the maximal difference between the UCB and true
parameters. This implies that the regret bound remains unaffected by increases in the cascade length
K or the assortment size M .
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Eliminating the dependence on p⇤ is another key element of our analysis. To this end, we first show
that the order of assortments in the cascade model with the disjunctive objective does not affect the
expected reward. We formalize this property in the following lemma.
Lemma 4.5. Let pk be the probability that the user clicks on any item in Ak. Given a collection of

assortments {A1, · · · , AK} with probabilities {p1, · · · , pK}, their order of display does not matter.

Further, for every permutation ⇢ : [K]! [K], we have

X

k2[K]

pk
Y

k̇<k

(1� pk̇) = 1�
Y

k2[K]

(1� pk) =

X

k2[K]

p⇢�1(k)

Y

k̇<k

⇣
1� p⇢�1(k̇)

⌘
.

Consolidating these key results, we proceed to bound the cumulative regret. We begin by leveraging
the monotonicity of the expected reward function and the definition of the ↵-approximate optimization
oracle to bound the cumulative regret.

R↵
(T )  E

"
TX

t=1

f(St, ut)� f(St, w
⇤
t )

#
 CKE

"
TX

t=1

max
Atk2St

max
i2Atk

(uti � w⇤
ti)

#

 2CKE
"
�T

TX

t=1

max
Atk2St

max
i2Atk

||xti||V �1
t�1

#
= 2CKE

"
�T

TX

t=1

max
k2[Ot]

max
i2Atk

||xti||V �1
t�1

#
. (4)

The second inequality is from Lemma 4.4, letting CK := (K/(K + 1))
K+1. The third inequality is

given by the concentration of the UCB weights (see Lemma B.5). Note that the assortment including
the item with the largest value of ||xti||V �1

t
is always examined by the user since it is included in

the first assortment of St by the optimistic exposure swapping technique as described in Section 3.2.
Note that a change in the order of assortments incurred by the optimistic exposure swapping does not
affect the expected reward which is shown in Lemma 4.5. Hence, for every round t 2 [T ], we obtain

max
Atk2St

max
i2Atk

||xti||V �1
t�1

= max
k2[Ot]

max
i2Atk

||xti||V �1
t�1

. (5)

Therefore, the last equality in Eq.(4) is given by Eq.(5). Then, we can apply the maximal version of
elliptical potential lemma (see Lemma B.8) to bound the cumulative regret.

5 Improved Dependence on 

While UCB-CCA achieves the regret bound of Õ
�
1
d
p

T
�

improving dependence on K, the bound
includes the problem-dependent constant . This implies a potential risk of the regret bound becoming
large when  becomes very small. In order to circumvent this challenge, we propose a new optimism in

the face of uncertainty (OFU) algorithm, UCB-CCA+, which exhibits a regret bound that is independent
of  in the leading term. The pseudocode of UCB-CCA+ is detailed in Algorithm 2.

5.1 Algorithm: UCB-CCA+

5.1.1 Confidence Set

UCB-CCA+ computes a regularized MLE ✓̂t, following the same procedure described in Section 3.3.
Then, the algorithm constructs a new confidence set centered around ✓̂t utilizing a Bernstein-type tail
inequality for self-normalized martingales [11; 3]. Nevertheless, a simple adaptation of the previous
approaches may incur increased dependence on M . Hence, a more intricate analysis and refined
algorithmic strategy are imperative to effectively address this challenge.

First, we define gt(✓) :=
Pt

⌧=1

P
k2[O⌧ ]

P
i2A⌧k

p⌧ (i|A⌧k, w⌧ )x⌧i + �t✓ where wt = (wti)i2[N ]

and wti = x>
ti✓. We also denote the partial derivative of pt(i|Atk, wt) with respect to wti as

ṗt(i|A⌧k, w⌧ ) := pt(i|Atk, wt)pt(i0|Atk, wt). Additionally, we define the new design matrix con-
taining local information, denoted as Ht(✓) :=

Pt
⌧=1

P
k2[O⌧ ]

P
i2A⌧k

ṗ⌧ (i|A⌧k, w⌧ )x⌧ix>
⌧i+�tId,

and, for convenience, Ht :=
Pt

⌧=1

P
k2[O⌧ ]

P
i2A⌧k

ṗ⌧ (i|A⌧k, w⇤
⌧ )x⌧ix>

⌧i + �tId. Then, the algo-
rithm constructs a confidence set as below:

Bt(�) :=

n
✓ 2 Rd

: ||gt(✓̂t)� gt(✓)||H�1
t (✓)  �t(�)

o
(6)
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Algorithm 2 UCB-CCA+
Input: confidence radius �t and ridge penalty parameter � � 1

1: for t = 1, . . . , T do
2: Observe xti for all i 2 [N ]

3: Construct a confience set Bt�1(�) as defined in Eq.(6)
4: Compute a candidate cascade (S0

t = (A0
tk)k2[K], ✓t) = arg maxS2S,✓2Bt(�) f(S, wt)

5: Find optimistic exposure assortments Lt,H and Lt,V (and their positions h and v) in S0
t

6: St  (Atk)k2[K] where Atk =

8
>>>>><

>>>>>:

Lt,H if k = 1

Lt,V if k = 2

A0
t1 if k = h

A0
t2 if k = v

A0
tk otherwise

7: Offer St and observe Ot, yt = (ytk)k2[Ot]

8: Update Ht  Ht�1 +
POt

k=1

P
i2Atk

ṗt(i|Atk, w⇤
t )xtix>

ti

9: Update Vt  Vt�1 +
POt

k=1

P
i2Atk

xtix>
ti

10: Compute the regularized MLE ✓̂t by solving r✓

⇥
`t(✓) +

�
2 ||✓||

2
2

⇤
= 0

11: end for

where the confidence radius �t(�) is suitably specified to ensure that the true parameter ✓⇤ lies in
the confidence set Bt(�) with high probability. On the event of ✓⇤ 2 Bt(�), The following lemma
bounds the weighted `2-norm of the difference between ✓ and ✓⇤.
Lemma 5.1. Suppose ✓⇤ 2 Bt(�). Then, for any ✓ 2 Bt(�), we have ||✓ � ✓⇤||Ht  6�t(�).

5.1.2 Doubly Optimistic Exposure Swapping

UCB-CCA+ still faces the challenge outlined in Section 2.4.2. The complication is exacerbated for
UCB-CCA+ as the algorithm concurrently updates two gram matrices, Ht and Vt, which only contain
the information of the observed items. Building upon the technique of optimistic exposure swapping
detailed in Section 3.2, in each round t, UCB-CCA+ assigns the assortment Lt,H — containing the
item with the largest uncertainty with respect to Ht�1 among the top KM items — to the first slot of
cascade St. Similarly, the algorithm places Lt,V — with the item that has the largest uncertainty with
respect to Vt�1 — in the second slot of St.

5.2 Regret Analysis of UCB-CCA+

Theorem 5.2 (Regret upper bound of UCB-CCA+). Suppose Assumptions 4.1 and 4.2 hold, and we run

UCB-CCA+ for total T rounds with � � 1 and �t(�) :=
3
p
�t

2 +
2p
�t

log

✓
(�t+KMt/d)d/2��d/2

t
�

◆
+

2dp
�t

log 2 with � =
1
t2 . Then, the regret of UCB-CCA+ is upper-bounded by

R↵
(T )  C1�T (�)

s

2dT log

✓
1 +

KMT

d�

◆
+

C2


�T (�)2d log

✓
1 +

KMT

d�

◆

where C1 = 36 and C2 = 216(1 + Me).

Discussion of Theorem 5.2. Theorem 5.2 establishes the regret bound of Õ
�
d
p

T
�
. The leading

term of the regret bound is independent of . Although the second term exhibits dependence on
, the term only scales logarithmically in T , whose comparative effect diminishes as t increases
compared to the leading term. Hence, the worst-case regret guarantee of UCB-CCA+ improves from
that of UCB-CCA. The comprehensive proof of Theorem 5.2 is provided in the appendix.

6 Approximation Algorithm for Optimal Combinatorial Action

In this section, we show that computing the optimal cascade is, in general, a weakly NP-hard problem
and give a (fast) polynomial time algorithm that the agent can use to compute a 0.5-approximation to
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the optimal cascade for any weight w. We assume that the MNL weights are given and consider the
problem of finding the cascade that maximizes the expected reward. This is an optimization problem
on selecting a sequence of K assortments with size M each from a ground set of N items. The
number of feasible cascades is O

⇣�N
M

�K⌘
. In fact, we establish the following hardness result.

Lemma 6.1. For general M , the optimization problem is weakly NP-hard even for K = 2.

The hardness of our problem follows from the hardness result of [19] for a related setting of
unconstrained cascade optimization where the size of each assortment can be arbitrary. In light of this
hardness, we turn our attention to finding fast approximation algorithms for the problem. While there
has been a lot of recent work on the unconstrained cascade optimization problem (see [19; 12; 10]
and the references therein), none of the previous algorithms apply to our constrained setting (where
the size of each assortment is M ).

We consider the following greedy approach for the problem. Consider arbitrary weights at round t,
i.e. wt = (wti)i2[N ], is given. We order the items in [N ] in decreasing order of given weights and
consider the following cascade of assortments.

D1 = {1, 2, ..., M}, D2 = {M + 1, M + 2, ..., 2M}, · · · , DK = {(K � 1)M + 1, · · · , KM}

We call these assortments “decreasing order assortments”. Let OPT denote the value of the optimal
solution to the problem. We establish that showing these assortments in any possible sequences gives
a good approximation to the problem.
Lemma 6.2. Let OPT denote the overall click probability in the optimal solution. The decreasing

order assortments D1, ..., DK , shown in any order, have overall click probability at least 0.5 OPT.

We present the proof in Appendix E. We also show that our algorithm is optimal for M = 1, which
captures the classic cascade optimization problem.

7 Numerical Experiments

Figure 2: N =10, K =2, M =2, and d=5. Figure 3: N =15, K =2, M =2, and d=10 .

In this section, we evaluate the performances of our proposed algorithms UCB-CCA and UCB-CCA+
in numerical experiments and compare their performances with the existing combinatorial bandit
algorithms CombCascade and C3-UCB. For simulations, we generate a random sample of the unknown
time-invariant parameter ✓⇤ from N (0, 1) at the beginning of the simulation. We sample N feature
vectors from N (0, 1) in each round t. At each round t, the oracle computes a sequence of assortments
in decreasing order, forming a cascade St based on given wt. We assess the cumulative regret
of UCB-CCA, UCB-CCA+, CombCascade, and C3-UCB. Note that a user’s choice for UCB-CCA and
UCB-CCA+ is determined by the MNL logit choice model, whereas C3-UCB utilizes a linear model
and CombCascade is a non-contextual model. Figure 2 and Figure 3 indicate that both UCB-CCA
and UCB-CCA+ significantly outperform C3-UCB and CombCascade. We also observe that UCB-CCA+
shows a slight performance advantage over UCB-CCA, although the difference is not statistically
significant. While UCB-CCA+ has a sharper worst-case regret guarantee, UCB-CCA can provide
favorable practical performances, with simpler implementation and computational efficiency.
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