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A Theoretical results316

A.1 Proof of Lemma 1317

Proof. Recall that Z is a random vector taking values in Euclidean space (Rdz , ‖·‖2), where dz is the
dimension of Z and ‖ · ‖2 is Euclidean distance. Z1, Z2, . . . , Zn are i.i.d. random vectors according

to p(z). For a fixed z ∈ Rdz , we denote by Z
(1)
n (z), . . . , Z

(n)
n (z) a reordering of Z1, Z2, . . . , Zn

according to the increasing values of ‖Zi − z‖2, that is,
‖Z(1)

n (z)− z‖2 ≤ . . . ≤ ‖Z(n)
n (z)− z‖2.

Define the set G = {z ∈ Rdz | ∀δ > 0, P ({ω : Z(ω) ∈ Sz(δ)}) > 0}, where Sz(δ) = {x ∈318

Rdz | ‖x− z‖2 ≤ δ}. For convenience, we omit ω in probability in the following paper. For example,319

write P (Z ∈ Sz(δ)) instead of P ({ω : Z(ω) ∈ Sz(δ)}). By definition, for z ∈ G, ∀δ > 0,320

P (Z ∈ Sz(δ)) > 0. Let Gc be the complement of G. Then, for z ∈ Gc, ∃rz > 0, s.t. ∀r < rz ,321

P (Z ∈ Sz(r)) = 0. Note that P (‖Z(k)
n (z)− z‖2 > δ) = P (Z

(k)
n (z) /∈ Sz(δ)).322

In order to prove ‖Z(k)
n (Z) − Z‖2 → 0 a.s., it is sufficient to prove ∀δ > 0,323

limn→∞ P (supm≥n‖Z(k)
m (Z)− Z‖2 > δ) = 0. We can obtain324

P (supm≥n‖Z(k)
m (Z)− Z‖2 > δ) ≤ P ({supm≥n‖Z(k)

m (Z)− Z‖2 > δ} ∩ {Z ∈ G}) + P (Z ∈ Gc)

=

∫
G

P (supm≥n‖Z(k)
m (z)− z‖2 > δ)p(z)dz + P (Z ∈ Gc)

≤
∫
G

∑
m≥n

P (Z(k)
m (z) /∈ Sz(δ))p(z)dz + P (Z ∈ Gc). (11)

First, consider the first term of (11). We have325

P (Z(k)
m (z) /∈ Sz(δ)) = P (Z(1)

m (z), Z(2)
m (z), . . . , Z(m)

m (z) /∈ Sz(δ))

+ P (Z(1)
m (z) ∈ Sz(δ), Z

(2)
m (z), . . . , Z(m)

m (z) /∈ Sz(δ))

+ P (Z(1)
m (z), Z(2)

m (z) ∈ Sz(δ), Z
(3)
m (z), . . . , Z(m)

m (z) /∈ Sz(δ))

+ . . .+ P (Z(1)
m (z), . . . , Z(k−1)

m (z) ∈ Sz(δ), Z
(k)
m (z), . . . , Z(m)

m (z) /∈ Sz(δ)).

By setting P (Z ∈ Sz(δ)) = γ, we have326

P (Z(k)
m (z) /∈ Sz(δ)) = (1− γ)m + C1

mγ(1− γ)m−1 + C2
mγ2(1− γ)m−2 + . . .

+ Ck−1
m γk−1(1− γ)m−k+1. (12)

Consider the j-th term of (12). Let C1 := γj/j!, C2 := C1e
j and C3 := C2e

j(1− γ)−j . By using327

Stirling’s approximation, we have328

lim
m→∞Cj

mγj(1− γ)m−j = lim
m→∞

m!

(m− j)!j!
γj(1− γ)m−j

= lim
m→∞C1

√
2πm(me )

m√
2π(m− j)(m−j

e )m−j
(1− γ)m−j

= lim
m→∞C2

√
m

(m− j)

mm

(m− j)
m−j

(1− γ)m−j

= lim
m→∞C2e

j(m+ j)j(1− γ)m

= lim
m→∞C2e

jmj(1− γ)m−j

= lim
m→∞C3m

j(1− γ)m.
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Thus, there exists C4 > 0 such that P (Z
(k)
m (z) /∈ Sz(δ)) ≤ C4m

k−1(1− γ)m when m is large329

enough. It holds that330

C4m
k−1(1− γ)m

m−2
= C4m

k+1(1− γ)m → 0, as m→ +∞.

Thus, for z ∈ G and n large enough, ∀δ > 0, we have P (Z
(k)
m (z) /∈ Sz(δ)) = o(m−2) and∑

m≥n
P (Z(k)

m (z) /∈ Sz(δ)) ≤
∑

m≥n

1

m2
,

which shows limn→∞
∑

m≥nP (Z
(k)
m (z) /∈ Sz(δ)) = 0 for z ∈ G. So by Lebesgue dominated331

convergence theorem, we obtain limn→∞
∫
G

∑
m≥nP (Z

(k)
m (z) /∈ Sz(δ))p(z)dz = 0.332

Second, we consider the second term of (11). To prove that P (Z ∈ Gc) = 0, we aim to construct a
countable open cover of Gc and show that the probability of the random vector Z falling into each of
these open balls is zero. By the property of Gc, for every z ∈ Gc, there exists rz > 0 such that for all
r < rz , P (Z ∈ Sz(r)) = 0. Furthermore, using the separability of Euclidean space and the density

of the rational number set, we can approximate z using points from Qdz with Q being the rational
number set. Therefore, for every z ∈ Gc, there exist x ∈ Qdz ∩ Sz(

rz
3 ) and r ∈ Q ∩ ( rz3 , 2rz

3 ),
such that z ∈ Sx(r) ⊆ Sz(rz). Because P (Z ∈ Sz(rz)) = 0, we conclude that P (Z ∈ Sx(r)) = 0.
Define

F := {Sx(r)| ∃z ∈ Gc, such that z ∈ Sx(r) ⊆ Sz(rz) with x ∈ Qdz and r ∈ Q}.
Note that the elements in set F are mutually distinct. By the construction of Sx(r), F forms a333

countable open cover of Gc, and the probability of Z falling into each open ball in F is zero. Using334

the monotonicity and countable additivity properties of probability, we have P (Z ∈ Gc) ≤ P (Z ∈335

∪Sx(r)∈FSx(r)) ≤
∑

Sx(r)∈FP (Z ∈ Sx(r)) = 0. Thus, we conclude that P (Z ∈ Gc) = 0.336

We therefore conclude that, ∀δ > 0, limn→∞ P (supm≥n‖Z(k)
m (Z)− Z‖2 > δ) = 0. This finish the337

proof.338

A.2 Proof of Theorem 2339

Proof. By Pinsker’s inequality, we have340

dTV {p(x|Z), p̂(x|Z)} ≤
√

DKL{p(x|Z), p̂(x|Z)}/2.

Note that I{ξ = 1}+ . . .+ I{ξ = k} = 1. By the definition of p̂(x|Z), we obtain341

DKL{p(x|Z), p̂(x|Z)} =
∫

p(x|Z) log
{

p(x|Z)
p(x|Z(1)

n )I{ξ=1} × . . .× p(x|Z(k)
n )I{ξ=k}

}
dx

=

∫
p(x|Z) log

k∏
l=1

p(x|Z)I{ξ=l}

p(x|Z(l)
n )I{ξ=l}

dx

=

k∑
l=1

I{ξ = l}
∫

p(x|Z) log p(x|Z)
p(x|Z(l)

n )
dx

=

k∑
l=1

I{ξ = l}DKL{p(x|Z)||p(x|Z(l)
n )}.

Then, by Taylor’s expansion, we have342

DKL{p(x|Z)||p(x|Z(l)
n )}

= DKL{p(x|Z)||p(x|Z)}+ ∂

∂z′
DKL{p(x|Z)||p(x|z′)}

∣∣∣∣
z′=Z

(Z(l)
n − Z)

+
1

2
(Z(l)

n − Z)T
∂2

∂z′∂z′T
DKL{p(x|Z)||p(x|z′)}

∣∣∣∣
z′=a

(Z(l)
n − Z),
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where a = λZ + (1− λ)Z
(l)
n with 0 ≤ λ ≤ 1.343

Note that DKL{p(x|Z)||p(x|Z)} =
∫
p(x|Z) log p(x|Z)

p(x|Z)dx = 0. By Lemma 1 and Assumptions 1344

and 2, we have345

∂

∂z′
DKL{p(x|Z)||p(x|z′)}

∣∣∣∣
z′=Z

= −
∫

p(x|Z) · ∂

∂z′
log p(x|z′)

∣∣∣∣
z′=Z

dx

= − ∂

∂z′

∫
p(x|z′)dx

∣∣∣∣
z′=Z

= 0

and346

∂2

∂z′∂z′T
DKL{p(x|Z)||p(x|z′)}

∣∣∣∣
z′=a

= −
∫

p(x|Z) · ∂2

∂z′∂z′T
log p(x|z′)

∣∣∣∣
z′=a

dx = Ia(Z).

This means347

DKL{p(x|Z)||p(x|Z(l)
n )} = 1

2
(Z(l)

n − Z)T Ia(Z)(Z
(l)
n − Z).

Note that Z
(l)
n → Z a.s. implies that Z

(l)
n converges to Z in probability. Then ∀δ > 0, for ε defined348

in Assumption 1, we have349

P (DKL{p(x|Z)||p(x|Z(l)
n )} > δ) ≤ P ({DKL{p(x|Z)||p(x|Z(l)

n )} > δ} ∩ {‖Z(l)
n − Z‖2 ≤ ε})

+ P (‖Z(l)
n − Z‖2 > ε)

≤ P

(
1

2
β‖Z(l)

n − Z‖22 > δ

)
+ P (‖Z(l)

n − Z‖2 > ε)

= o(1).

Thus, DKL{p(x|Z)||p(x|Z(l)
n )} = op(1).350

Because I{ξ = l} ≤ 1 for l = 1, 2, ..., k, and k is finite, we obtain351

DKL{p(x|Z), p̂(x|Z)} =
k∑

l=1

I{ξ = l}DKL{p(x|Z)||p(x|Z(l)
n )} = op(1).

Finally, we conclude that dTV {p(x|Z), p̂(x|Z)} ≤
√

DKL{p(x|Z), p̂(x|Z)}/2 = op(1).352

A.3 Proof of Theorem 3353

To prove Theorem 3, the following two lemmas are needed.354

Lemma 5. Let X́ be drawn from p̂(·|Z), independently of Y . X́(1), . . . , X́(B) are i.i.d. samples
drawn from the k-nearest-neighbor local sampling mechanism based on (X́,Y ,Z). For any statistic
T , the B + 1 statistics

T (X́,Y ,Z), T (X́(1),Y ,Z), . . . , T (X́(B),Y ,Z)

are exchangeable conditionally on Y and Z.355

Proof. We have that theB+1 triples (X́,Y ,Z), (X́(1),Y ,Z), . . . , (X́(B),Y ,Z) are i.i.d. samples356

drawn from the same mechanism after conditionally on X́(),Y andZ, where X́() is the order statistic357

of X́ . Note that, T is measurable. Thus, T (X́,Y ,Z), T (X́(1),Y ,Z), . . . , T (X́(B),Y ,Z) are358

i.i.d. after conditionally on X́(),Y and Z. Conditionally on X́(),Y and Z, denote their cumulative359

conditional distribution as F (·|X́(),Y ,Z). Denote X́ as X́(0). Then, for any t0, . . . , tB ∈ R and360
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any permutation π = (π(0), . . . , π(B)) of the indices {0, 1, . . . , B}, we have361

P (T (X́(0),Y ,Z) ≤ t0, T (X́
(1),Y ,Z) ≤ t1, . . . , T (X́

(B),Y ,Z) ≤ tB |Y ,Z)

= EX́()|Y ,Z{P (T (X́(0),Y ,Z) ≤ t0, T (X́
(1),Y ,Z) ≤ t1, . . . , T (X́

(B),Y ,Z) ≤ tB |X́(),Y ,Z)}
= EX́()|Y ,Z{P (T (X́(0),Y ,Z) ≤ t0|X́(),Y ,Z), . . . , P (T (X́(B),Y ,Z) ≤ tB |X́(),Y ,Z)}

= EX́()|Y ,Z

{
B∏
i=0

F (ti|X́(),Y ,Z)

}
= EX́()|Y ,Z{P (T (X́(π(0)),Y ,Z) ≤ t0, . . . , T (X́

(π(B)),Y ,Z) ≤ tB |X́(),Y ,Z)}
= P (T (X́(π(0)),Y ,Z) ≤ t0, . . . , T (X́

(π(B)),Y ,Z) ≤ tB |Y ,Z).

Thus, the desired result follows.362

Let
d
= denotes equality in distribution. We present the following Lemma:363

Lemma 6. For any two bi-tuples (U ,V ) and (U ′,V ′), if ∀u, (V |U = u)
d
= (V ′|U ′ = u), we364

have dTV {(U ,V ), (U ′,V ′)} = dTV (U ,U ′).365

Proof. Denote the joint density functions of (U ,V ) and (U ′,V ′) by pU ,V (u,v) and pU ′,V ′(u′,v′),366

respectively. According to the equivalent definition of the TV distance, we obtain367

dTV {(U ,V ), (U ′,V ′)} = 1

2

∫∫ ∣∣pU ,V (u,v)− pU ′,V ′(u,v)
∣∣dudv

=
1

2

∫∫ ∣∣pV |U (v|u)pU (u)− pV ′|U ′(v|u)pU ′(u)
∣∣dudv

=
1

2

∫∫
pV |U (v|u)

∣∣pU (u)− pU ′(u)
∣∣dudv

=
1

2

∫ [ ∫
pV |U (v|u)dv

]∣∣pU (u)− pU ′(u)
∣∣du

=
1

2

∫ ∣∣pU (u)− pU ′(u)
∣∣du

= dTV (U ,U ′).

Now we present the proof of Theorem 3:368

Proof. Let X̃(1), . . . , X̃(B) be i.i.d. drawn from the k-nearest-neighbor local sampling mechanism,369

see Algorithm 3. Now let X́ be an additional sample drawn from p̂(·|Z) independently of Y . Let370

X́(1), . . . , X́(B) be i.i.d. drawn from the k-nearest-neighbor local sampling mechanism after we371

observe X́ instead of X . Because (X́(1), . . . , X́(B)), conditionally on X́,Y and Z, is generated372

from the same mechanism as (X̃(1), . . . , X̃(B)), conditionally on X,Y and Z, for all x ∈ Rn, we373

have374

((X̃(1), . . . , X̃(B))|X = x,Y ,Z)
d
= ((X́(1), . . . , X́(B))|X́ = x,Y ,Z).

Then, by applying Lemma 6, we obtain375

dTV {(X, X̃(1), . . . , X̃(B)|Y ,Z), (X́, X́(1), . . . , X́(B)|Y ,Z)}
= dTV {(X|Y ,Z), (X́|Y ,Z)} = dTV {p(·|Z), p̂(·|Z)}.

Define χB
α :=

{
(x,x(1), . . . ,x(B))

∣∣∣ [
1 +

∑B
b=1 1{T (x(b),Y ,Z) ≥ T (x,Y ,Z)}

] /
(1 +B) ≤ α

}
,376

where 1(·) is the indicator function. Note that in our case, the statistic T is selected to be ĈMI. Then,377
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it follows that378

P (p ≤ α|Y ,Z) = P ((X, X̃(1), . . . , X̃(B)) ∈ χB
α |Y ,Z)

= P ((X́, X́(1), . . . , X́(B)) ∈ χB
α |Y ,Z) + P ((X, X̃(1), . . . , X̃(B)) ∈ χB

α |Y ,Z)

− P ((X́, X́(1), . . . , X́(B)) ∈ χB
α |Y ,Z)

≤ P ((X́, X́(1), . . . , X́(B)) ∈ χB
α |Y ,Z)

+ dTV {(X, X̃(1), . . . , X̃(B)|Y ,Z), (X́, X́(1), . . . , X́(B)|Y ,Z)}
= P ((X́, X́(1), . . . , X́(B)) ∈ χB

α |Y ,Z) + dTV {p(·|Z), p̂(·|Z)}.
Applying Lemma 5 and the property of rank test, we obtain P ((X́, X́(1), . . . , X́(B)) ∈ χB

α |Y ,Z) ≤379

α. Finally, we have P (p ≤ α|Y ,Z) ≤ α+ dTV {p(·|Z), p̂(·|Z)}.380

Because the TV distance is bounded by 1, marginalizing the above inequality over Y and Z and
applying Theorem 2 and Lebesgue dominated convergence theorem lead to

P (p ≤ α|H0) ≤ α+ E(dTV {p(·|Z), p̂(·|Z)}) = α+ o(1).

A.4 Proof of Theorem 4381

Here we present the assumptions given in [6] that ensure the consistency of CMI estimator. We
denote the point (x, y, z) as ω ∈ Rdx × Rdy × Rdz . Let f(ω) = p(x, y, z) be the joint density
function of (X,Y, Z), g(ω) = p(x, z)p(y|z) be the joint density function of (X,Y, Z) under H0,
and φ(ω) = φ(x, y, z) be the joint density of (X,Y ′, Z) produced by Algorithm 1. The classifier in
Algorithm 2 is trained using the label probability γθ(ω) := Pθ(l = 1|ω) with parameter θ. According
to Algorithm 2, P (l = 1) = P (l = 0) = 1/2. Define the population binary-cross entropy loss over
the joint distribution of data and label as

BCE(γθ) = −{EWl(l log γθ(W ) + (1− l) log(1− γθ(W ))}.
Let γ′(ω) := γθ′(ω) be the point-wise minimizer of binary-cross entropy loss based on f(ω) and382

φ(ω), and γ′′(ω) := γθ′′(ω) be the point-wise minimizer of binary-cross entropy loss based on f(ω)383

and g(ω).384

Assumption (A1): f(·) and φ(·) admit densities in a compact subsetW ⊂ Rdx × Rdy × Rdz .385

Assumption (A2): For some constant α, ζ > 0, α ≤ f(ω), φ(ω) ≤ ζ, ∀ω.386

Assumption (A3): γ′(ω), γ′′(ω) ∈ [τ, 1− τ ] and clip predictions such that γθ(ω) ∈ [τ, 1− τ ] ∀ω, θ,387

with 0 < τ ≤ α/(α+ ζ).388

Assumption (A4): The classifier class Cθ is parametrized by θ within a compact domain Θ ⊂ Rh.389

There exists a constant K such that ||θ||2 ≤ K, and the classifier’s output is L-Lipschitz with respect390

to θ.391

Assumption (A5):
∫
p(z)1−1/ddz ≤ C5, ∀d ≥ 2, where C5 is a constant.392

We denote the CMI estimator ĈMI based on Algorithm 2 as D̂
(n)
KL(f ||φ). The true CMI of (X,Y, Z)393

is CMI := I(X;Y |Z) = DKL(f ||g). Then we have the following Lemma:394

Lemma 7. Under Assumptions 1 and 2 and (A1)-(A5), we have D̂
(n)
KL(f ||φ) P→ DKL(f ||g).395

Proof. By the definition of convergence in probability, it is sufficient to prove ∀δ > 0, ∀η > 0, ∃N ,396

when n > N , P (|D̂(n)
KL(f ||φ)−DKL(f ||g)| > δ) < η.397

Note that398

P (|D̂(n)
KL(f ||φ)−DKL(f ||g)| > δ)

= P (|D̂(n)
KL(f ||φ)−DKL(f ||φ) +DKL(f ||φ)−DKL(f ||g)| > δ).

Applying Theorem 1 in [6], we have D̂
(n)
KL(f ||φ)−DKL(f ||φ) P→ 0, which means for δ/2 > 0 and399

η > 0, ∃N1, when n > N1, P (|D̂(n)
KL(f ||φ)−DKL(f ||φ)| > δ/2) < η.400
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Now consider the term DKL(f ||φ)−DKL(f ||g). Applying Lemma 3 in [6], we have γ′(ω)/{1−401

γ′(ω)} = f(ω)/φ(ω) and γ′′(ω)/{1 − γ′′(ω)} = f(ω)/g(ω). Then, by the definition of KL402

divergence, it follows that403

|DKL(f ||φ)−DKL(f ||g)| =
∣∣∣∣Ef(ω) log

f(ω)

φ(ω)
− Ef(ω) log

f(ω)

g(ω)

∣∣∣∣
=

∣∣∣∣Ef(ω)

(
log

γ′(ω)
1− γ′(ω)

− log
γ′′(ω)

1− γ′′(ω)

)∣∣∣∣
≤ Ef(ω)

∣∣∣∣ log 1− γ′(ω)
γ′(ω)

− log
1− γ′′(ω)
γ′′(ω)

∣∣∣∣
≤ 1− τ

τ
Ef(ω)

∣∣∣∣1− γ′(ω)
γ′(ω)

− 1− γ′′(ω)
γ′′(ω)

∣∣∣∣
=
1− τ

τ
Ef(ω)

∣∣∣∣φ(ω)− g(ω)

f(ω)

∣∣∣∣
=
1− τ

τ

∫∫∫
|φ(x, y, z)− g(x, y, z)|dxdydz

=
2(1− τ)

τ
dTV (φ, g).

The second inequality follows from Lagrange’s mean value theorem and Assumption (A3).404

Applying Theorem 1 in [9], ∀ε1 ≤ εwith ε being defined in Assumption 1, we have dTV (φ, g) ≤ b(n),
where

b(n) =
1

2

√
β

4

C521/dzΓ(1/dz)

(nγdz
)1/dzdz

+
βε1G(2cdz

ε21)

4
+ exp

(
− 1

2
nγdzcdzε

dz+2
1

)
+G(2cdzε

2
1).

Here, β is defined in Assumption 1, C5 is defined in Assumption (A5), dz is the dimension of Z,405

Γ(·) is the gamma function, γdz
is the volume of the unit radius l2 ball in Rdz , cdz

is defined in406

Assumption 2, and ∀δ > 0, G(δ) = P (p(Z) ≤ δ).407

Because ε1 can be arbitrary small, we conclude that limn→∞ b(n) = 0. So we arrive at408

limn→∞ |DKL(f ||φ) − DKL(f ||g)| = 0, which means for δ/2 > 0, ∃N2, when n > N2,409

|DKL(f ||φ)−DKL(f ||g)| < δ/2.410

Then for δ > 0 and η > 0, take N = max(N1, N2), when n > N ,411

P (|D̂(n)
KL(f ||φ)−DKL(f ||φ) +DKL(f ||φ)−DKL(f ||g)| > δ)

≤ P (|D̂(n)
KL(f ||φ)−DKL(f ||φ)|+ |DKL(f ||φ)−DKL(f ||g)| > δ)

≤ P (|D̂(n)
KL(f ||φ)−DKL(f ||φ)| > δ/2) < η

holds. This finish the proof.412

We therefore conclude that ĈMI is a consistent estimator of CMI. When considering ĈMI
(b)

based413

on the sample (X̃(b),Y ,Z) (b = 1, . . . , B) drawn from the k-nearest-neighbor local sampling414

mechanism as depicted in Algorithm 3, we can state: Under Assumptions 1, 2, (A1)-(A3) with415

f(ω) and φ(ω) replaced by densities of the distribution of (X̃, Y, Z) and the corresponding 1-NN416

distribution, respectively, and Assumptions (A4)-(A5), ∀b = 1, . . . , B, ĈMI
(b)

is a consistent417

estimator of CMI(b), where CMI(b) = I(X̃(b);Y |Z). Now let’s present the proof of Theorem 4.418
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Proof. Write P (·|H1) as PH1(·). By Markov inequality, it follows that419

PH1
(p > α) = PH1

(
1 + ΣBn

b=11(ĈMI
(b) ≥ ĈMI)

1 +Bn
> α

)
≤ 1

α(1 +Bn)
EH1

(
1 +

Bn∑
b=1

1(ĈMI
(b) ≥ ĈMI)

)
=

1

α(1 +Bn)
+

Bn

α(1 +Bn)
PH1

(
ĈMI

(1) ≥ ĈMI
)

≤ 1

α(1 +Bn)
+
1

α
PH1

(
ĈMI

(1) ≥ ĈMI
)
.

Because X̃(1) ⊥⊥ Y |Z, CMI(1) = I(X̃(1);Y |Z) = 0. Then, ∀δ > 0,420

PH1

(
ĈMI

(1) ≥ ĈMI
) ≤ PH1

({ĈMI ≤ ĈMI
(1)} ∩ {|ĈMI

(1) − CMI(1)| ≤ δ})
+ PH1

(|ĈMI
(1) − CMI(1)| > δ

)
≤ PH1

(ĈMI ≤ δ) + PH1

(|ĈMI
(1) − CMI(1)| > δ

)
.

Next, we have421

PH1
(ĈMI ≤ δ) ≤ PH1

({ĈMI ≤ δ} ∩ {|ĈMI− CMI| ≤ δ}) + PH1
(|ĈMI− CMI| > δ)

≤ PH1
(CMI− δ ≤ ĈMI ≤ δ) + PH1

(|ĈMI− CMI| > δ).

Thus, we conclude that422

PH1
(p ≤ α) ≥1− 1

α(1 +Bn)
− 1

α

[
PH1

(CMI− δ ≤ ĈMI ≤ δ)

+ PH1(|ĈMI− CMI| > δ) + PH1

(|ĈMI
(1) − CMI(1)| > δ

)]
.

Under H1, CMI > 0. Take δ = CMI/4 > 0, we obtain

lim
n→∞PH1

(p ≤ α)→ 1.

B Additional Empirical Results423

B.1 The choice of the neighbor order k424

To investigate the impact of the parameter k on our proposed approach, we employ a linear uniform425

model. To accomplish this, we generate synthetic data in the following manner:426

H0 : X = εx, Y = εy, and Z ∼ Uniform(−1, 1),
H1 : X = εx, Y = αX + 0.5εy, and Z ∼ Uniform(−1, 1), (13)

where εx and εy are generated independently from the uniform distribution over the interval [−1, 1].427

The parameter α is randomly generated within the range of [0, 2]. As is shown in Figure 3, our428

method achieves effective control of type I error and exhibits the highest power under H1 across all429

dimensions when k = 7. Therefore, we consistently set k = 7 in all experiments.430

B.2 Empirical results for Scenario (13)431

We demonstrate the effectiveness of our approach and compare it with alternative methods in Scenario432

(13). The results are shown in Figure 4, which pertains to high-dimensional Z, and Figure 5, which433

focuses on low-dimensional Z. The results consistently demonstrate that our test achieves favorable434

performance in terms of the type I error and power under H1. Although LPCIT, CMIknn, and435

NNSCIT effectively control the type I error, they exhibit noticeably lower power compared to our436

method, when the dimension exceeds 60, often by a substantial margin. Furthermore, KCIT, GCIT,437

and CCIT all yield high power under H1, but they either always or sometimes suffer from inflated438

type I errors.439
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Figure 3: Comparison of the type I error (lower is better) and power under H1 (higher is better) for
our test in Scenario (13) across different values of k.

Figure 4: Comparison of the type I error (lower is better) and power under H1 (higher is better) of
our test with six SOTA tests in Scenario (13). Left: The results when varying the dimension of Z.
Right: The results when varying the sample size.

B.3 Additional empirical results for Scenario I440

In Figure 6, we present the type I error and power under H1 in low dimensions of Z ranging from441

5 to 30 for Scenario I (Eq. (9)) with Gaussian or Laplace noises. It can be observed that our test442

and LPCIT consistently achieve good and stable performance in terms of type I error and power443

under H1, when the dimensionality of Z is lower than 30. On the other hand, GCIT, CCIT, and KCIT444

exhibit high power under H1 but fail to control the type I error. NNSCIT and CMIknn demonstrate445

relatively good control of type I errors but lack sufficient power under H1.446

B.4 Computational efficiency analysis447

Figure 7 shows the timing performance of all methods for a single test under Scenario I with Laplace448

noises. Our test is found to be highly computationally efficient even when dealing with large449

sample sizes and high-dimensional conditioning sets. In contrast, CMIknn and CCIT for sample450
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Figure 5: Comparison of the type I error (lower is better) and power under H1 (higher is better) of
our test with six SOTA tests in Scenario (13).

Figure 6: Comparison of the type I error (lower is better) and power underH1 (higher is better) of our
method with six SOTA methods on the post-nonlinear model under Gaussian or Laplace distributions
in Scenario I. Left: The results under Gaussian distribution. Right: The results under Laplace
distribution.

sizes exceeding 1000, and LPCIT for dimension of Z higher than 50 are impractical due to their451

prohibitively long running time.452

B.5 The detailed experimental setup for Scenario III453

For the chain structure Y → Z → X , we generate synthetic data as follows:454

H0 : Y ∼ N(1, 1), Z = Y a+ ε1, X = ZT b+ ε2,

H1 : Y ∼ N(1, 1), Z = Y a+ ε1, X = ZT b+ Y + ε2,

where a and b are both dz-dimensional, the entries of a and b are both randomly and uniformly sampled455

from [0, 0.3], ε1 is generated from a dz-dimensional standard multivariate Gaussian distribution, and456

ε2 is sampled from a standard Gaussian distribution.457
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Figure 7: Running times in seconds as a function of sample size or dimension of Z on the post-
nonlinear model under Laplace distribution in Scenario I. Left: The results when varying the
dimension of Z. Right: The results when varying the sample size.

C Real Data Analysis458

In order to showcase the superior performance of our test, we conduct a comparative evaluation459

against other state-of-the-art (SOTA) CI tests using real datasets. We assess the effectiveness of our460

method along with six SOTA approaches on two specific datasets: the ABALONE dataset [1] and the461

Flow-Cytometry dataset [8].462

C.1 Real ABALONE dataset463

The ABALONE dataset [1] comprises measurements obtained from a study conducted to464

predict the age of abalones based on their physical characteristics. The dataset is pub-465

licly available at the UCI Machine Learning Repository and can be downloaded from466

https://archive.ics.uci.edu/ml/datasets/abalone. In our evaluation, we consider the graph structure467

recovered by [4] as the ground truth, as depicted in Figure 4 of their paper. This graph represents468

the causal relationships among the 8 variables in the dataset. We specifically select 35 CI relations469

and 35 non-CI relations from this graph. The philosophy used is that a node X is independent of all470

other nodes Y in the graph when conditioned on its parents, children, and parents of children [2, 9].471

Additionally, if there exists a direct edge between node X and node Y in the graph, they are never472

conditionally independent given any other set of variables. As a result, the conditioning set Z can be473

arbitrarily selected from the remaining nodes. The dataset consists of 4177 samples, and dz varies474

from 1 to 6.475

In order to evaluate the performance of various tests, we utilize precision, recall, and F-score as476

evaluation metrics. Precision is calculated as TP/(TP+FP), where TP represents the number of true CI477

instances correctly identified, and FP represents the number of non-CI instances incorrectly identified478

as CI. Recall is calculated as TP/(TP+FN), where FN represents the number of CI instances not479

identified. The F-score is then computed as the harmonic mean of precision and recall, given by 2 ×480

precision × recall / (precision + recall) [3]. TN represents the number of correctly identified true481

non-CI instances. Table 1 presents the results for all methods. It should be noted that we do not record482

the results for GCIT as it does not correctly identify any CI relations. Our approach successfully483

identifies 31 CI relations and 32 non-CI relations, achieving the highest F-score among the testing484

methods, while maintaining high precision and recall.485

C.2 Real Flow-Cytometry dataset486

The Flow-Cytometry dataset is a widely used benchmark in the field of causal structure learning487

[7, 10]. This dataset captures the expression levels of proteins and phospholipids in human cells [8].488
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Table 1: The TP, TN, precision (pre), recall (rec) and F-score of our test and six SOTA methods for
the real ABALONE dataset.

Method TP TN Pre Rec F-score
KCIT 5 35 1 0.1429 0.2501
CCIT 12 34 0.9231 0.3429 0.5

CMIknn 22 35 1 0.6286 0.7720
LPCIT 5 35 1 0.1429 0.2501
NNSCIT 33 6 0.5323 0.9429 0.6805
Ours 31 32 0.9118 0.8857 0.8986

The data can be obtained from the website https://www.science.org/doi/10.1126/science.1105809. In489

our evaluation, we consider the consensus graph proposed in [5] as the ground truth, which has also490

been adopted by [9] for verifying CI relations. Figure 5(a) in [5] illustrates the causal relationships491

among the 11 proteins in the dataset. Following the philosophy outlined in Section C.1, we select 50492

CI relations and 40 non-CI relations from this graph. The number of samples is 1755 and dz varies493

from 1 to 9.494

Table 2 presents the results for all tests. Our method outperforms other approaches by correctly495

identifying 47 CI relations and achieving the highest recall and F-score.496

Table 2: The TP, TN, precision (pre), recall (rec) and F-score of our test and six SOTA methods for
the real Flow-Cytometry dataset.

Method TP TN Pre Rec F-score
KCIT 32 30 0.7619 0.64 0.6957
CCIT 33 29 0.75 0.66 0.7021

CMIknn 41 26 0.7455 0.82 0.7810
GCIT 40 24 0.7143 0.8 0.7547
LPCIT 38 25 0.7170 0.76 0.7379
NNSCIT 33 26 0.7021 0.66 0.6804
Ours 47 23 0.7344 0.94 0.8246
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