
Prioritizing Samples in Reinforcement Learning with
Reducible Loss

Anonymous Author(s)
Affiliation
Address
email

A Implementation Details1

We build our experiments on top of existing implementations of SAC, DQN and Rainbow. For the2

DeepMind Control Suite experiments, we modify Yarats and Kostrikov [2020], adding a prioritized3

replay buffer and the ReLo version. We use an open source implementation of Rainbow1 for the4

Arcade Learning Environment and the DQN implementation from the MinAtar authors Young and5

Tian [2019]. Aside from the collected frames and number of seeds, we have not modified any of the6

hyper-parameters from these original implementations. The hyper-parameters as well as hardware7

and software used are given in Table 1.8

Table 1: Hyper-Parameters of all experiments

Environments Algorithm Algorithm Parameters Hardware & Software

ALE Rainbow

Frames = 2× 106

seeds = 5

Remaining hyper-parameters
same as Hessel et al. [2017]

Hardware-
CPU: 6 Intel Gold 6148 Skylake
GPU: 1 NVidia V100
RAM: 32 GB

Software-
Pytorch: 1.10.0
Python: 3.8

DeepMind Control Suite SAC

Frames = 1× 106

seeds = 5

Remaining hyper-parameters
same as Haarnoja et al. [2018]

Hardware-
CPU: 6 Intel Gold 6148 Skylake
GPU: 1 NVidia V100
RAM: 32 GB

Software-
Pytorch: 1.10.0
Python: 3.8

MinAtar DQN

Frames = 5× 106

seeds = 5

Remaining hyper-parameters
same as Mnih et al. [2015]

Hardware-
CPU: 6 Intel Gold 6148 Skylake
GPU: 1 NVidia V100
RAM: 32 GB

Software-
Pytorch: 1.10.0
Python: 3.8

1https://github.com/Kaixhin/Rainbow

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Figure 1: Visualization of a few environments from each benchmark. Left to right: DeepMind Control
Suite, MinAtar, Arcade Learning Environment

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

Re
wa

rd

Quadruped Run

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

600

800
Re

wa
rd

Walker Run

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

250

500

750

1000
Walker Walk

ClipBelowZero ExpLinear

Figure 2: Comparison of different mapping functions from ReLo to pi on a subset of environments
from the DMC benchmark. Performance is evaluated over 3 seeds.

B Mapping Functions for ReLo9

Prioritized experience replay buffers expect the priorities assigned to data points to be non-negative.10

While the MSE version of the TD error used in PER satisfies this constraint, ReLo does not. Therefore,11

there must be a non-negative, monotonically increasing mapping from ReLo to pi. In our main12

experiments, we clipped negative ReLo values to zero. Another mapping we tried was to set13

pi = eReLo, in which case the probability of sampling a data point Pi, from Eq. 6, corresponds to the14

softmax over ReLo scores. However, for this choice the priority would explode if the ReLo crossed15

values above 40 which happened occasionally during the initial stages of learning in Rainbow. The16

second mapping function candidate was exponential when ReLo is negative and linear otherwise,17

that is,18

fExpLinear =

{
eReLo if ReLo < 0

ReLo + 1 otherwise

The linear part is shifted so that the mapping is smooth around ReLo = 0. As shown in Fig. 2,19

fExpLinear performs worse compared to just clipping negative ReLo values to zero. When the ReLo20

values during training are analysed, we observe that the average of ReLo values (before the mapping)21

tends to be positive, so clipping does not lead to a large loss in information.22

C Extended Related Work23

C.1 Prioritization Schemes24

Prioritization strategies have been leading to important improvements in sample efficiency. Sinha25

et al. [2020] proposes an approach that re-weights experiences based on their likelihood under the26

stationary distribution of the current policy in order to ensure small approximation errors on the value27

function of recurring seen states. Lahire et al. [2021] introduces the Large Batch Experience Replay28

(LaBER) to overcome the issue of the outdated priorities of PER and its hyperparameter sensitivity by29

employing an importance sampling view for estimating gradients. LaBER first samples a large batch30

from the replay buffer then computes the gradient norms and finally down-samples it to a mini-batch31

of smaller size according to a priority.32

Kumar et al. [2020] presents Distribution Correction (DisCor), a form of corrective feedback to33

make learning dynamics more steady. DisCor computes the optimal distribution and performs a34

2



weighted Bellman update to re-weight data distribution in the replay buffer. Inspired by DisCor,35

Regret Minimization Experience Replay (ReMERN) Liu et al. [2021] estimates the suboptimality36

of the Q value with an error network. Yet, Hong et al. [2022] uses Topological Experience Replay37

(TER) to organize the experience of agents into a graph that tracks the dependency between Q-value38

of states.39

While PER was initially proposed as an addition to DQN-style agents, Hou et al. [2017] have shown40

that PER can be a useful strategy for improving performance in Deep Deterministic Policy Gradients41

(DDPG) Lillicrap et al. [2016]. Another recent strategy to improve sample efficiency was to introduce42

losses from the transition dynamics along with the TD error as the priority Oh et al. [2022]. Although43

this has shown improvements, it involves additional computational complexity since it also requires44

learning a reward predictor and transition predictor for the environment. Our proposal does not45

require training additional networks and hence is similar in computational complexity to PER. This46

makes it very simple to integrate into any existing algorithm. Wang and Ross [2019] propose an47

algorithm to dynamically reduce the replay buffer size during training of SAC so that the agent48

prioritizes recent experience while also ensuring that updates performed using newer data are not49

overwritten by updates from older data. However, they do not distinguish between points based on50

learn-ability and only assume that newer data is more useful for the agent to learn.51

C.2 Off-Policy Algorithms52

Off-policy algorithms are those that can learn a policy by learning from data not generated from53

the current policy. This improves sample efficiency by reusing data collected by old versions of54

the policy. This is in contrast to on-policy algorithms such as PPO Schulman et al. [2017], which55

after collecting a batch of data and training on it, discard those samples and start data collection56

from scratch. Recent state-of-the-art off-policy algorithms for continuous control include Soft Actor57

Critic (SAC) Haarnoja et al. [2018] and Twin Delayed DDPG (TD3) Fujimoto et al. [2018]. SAC58

learns two Q networks together and uses the minimum of the Q values generated by these networks59

for the Bellman update equation to avoid over estimation bias. The Q target update also includes a60

term to maximize the entropy of the policy to encourage exploration, a formulation that comes from61

Maximum Entropy RL Ziebart et al. [2008]. TD3 is a successor to DDPG Lillicrap et al. [2016]62

which addresses the overestimation bias present in DDPG in a similar fashion to SAC, by learning63

two Q networks in parallel, which explains the “twin” in the name. It learns an actor network µ64

following Eq. 4 to compute the maximum over Q values. TD3 proposes that the actor networks be65

updated at a less frequent interval than the Q networks, which gives rise to the “delayed” name. In66

discrete control, Rainbow Hessel et al. [2017] combines several previous improvements over DQN,67

such as Double DQN van Hasselt et al. [2016], PER Schaul et al. [2016], Dueling DQN Wang et al.68

[2016], Distributional RL Bellemare et al. [2017] and Noisy Nets Fortunato et al. [2018].69

D DeepMind Control Suite70

We choose 9 environments from the DeepMind Control Suite Tassa et al. [2018] for testing the71

performance of ReLo on continuous control tasks. Each agent was trained on proprioceptive inputs72

from the environment for 1M frames with an action repeat of 1. The training curves for the baselines73

and ReLo are given in Fig. 3.74

E OpenAI Gym Environments75

We evaluate agents for 1M timesteps on each environment and similar to DM Control, they are76

trained using proprioceptive inputs from the environment. The hyperparameters for this benchmark77

are shared with those used for the DM Control Suite experiments.78

F MinAtar79

We evaluate the baselines against all 5 environments in the MinAtar suite Young and Tian [2019].80

A visualization of a few environments from the suite is presented in Fig. 1. Each agent receives81

the visual observations from the environment and is trained for 5M frames following the evaluation82

methodology outlined in Young and Tian [2019]. The training curves are given in Fig. 5.83

3



Table 2: Comparison of PER and ReLo on the DMC benchmark

BASELINE PER LABER RELO

CHEETAH RUN 761.89 ± 112.38 831.87 ± 38.90 579.80 ± 60.61 660.29 ± 141.22
FINGER SPIN 966.68 ± 29.40 975.40 ± 6.75 884.46 ± 20.23 978.78 ± 14.46
HOPPER HOP 264.75 ± 37.90 217.35 ± 113.79 90.85 ± 57.76 247.81 ± 51.01
QUADRUPED RUN 612.67 ± 143.90 496.42 ± 216.01 544.80 ± 41.84 833.92 ± 81.05
QUADRUPED WALK 831.92 ± 74.34 766.30 ± 200.86 716.61 ± 270.36 942.64 ± 9.75
REACHER EASY 983.06 ± 2.70 981.58 ± 6.33 947.20 ± 14.46 979.08 ± 11.02
REACHER HARD 955.08 ± 38.52 935.08 ± 47.94 951.08 ± 6.70 956.80 ± 38.73
WALKER RUN 759.13 ± 23.91 755.49 ± 64.35 551.81 ± 58.41 795.14 ± 42.52
WALKER WALK 943.67 ± 30.28 957.38 ± 8.24 863.89 ± 112.60 963.28 ± 5.03

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

Re
wa

rd

Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
Finger Spin

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300

Hopper Hop

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

Re
wa

rd

Quadruped Run

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

250

500

750

1000

Re
wa

rd

Reacher Hard

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

600

800
Walker Run

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

250

500

750

1000
Walker Walk

Baseline PER ReLo LaBER

Figure 3: Training curves of environments from the DeepMind Control Suite. Performance is
evaluated for 10 episodes over 5 random seeds.

Table 3: Comparison of PER and ReLo on OpenAI Gym environments

BASELINE PER RELO

GYM HALFCHEETAH 9579.60 ± 1331.00 9549.42 ± 917.92 11590.63 ± 670.36
GYM HOPPER 2795.18 ± 659.19 2175.09 ± 456.11 2527.93 ± 648.61
GYM WALKER 2854.20 ± 623.69 735.16 ± 474.89 3514.39 ± 676.80

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

5000

10000

Re
wa

rd

Gym Halfcheetah

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0
1000
2000
3000
4000

Gym Hopper

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0
1000
2000
3000
4000

Gym Walker

Baseline PER ReLo

Figure 4: Training curves of environments from the OpenAI Gym benchmark. Performance is
evaluated for 10 episodes over 5 random seeds.

4



0 1 2 3 4 5
0

5

10

15

20

Re
wa

rd

Asterix

0 1 2 3 4 5
0

5

10

Breakout

0 1 2 3 4 5
0

20

40

60
Freeway

0 1 2 3 4 5
Steps 1e6

0

10

20

Re
wa

rd

Seaquest

0 1 2 3 4 5
Steps 1e6

0

20

40

Space Invaders

Baseline PER ReLo LaBER

Figure 5: Training curves of environments from the MinAtar benchmark. Performance is evaluated
using a running average over the last 1000 episodes over 5 random seeds.

Table 4: Comparison of PER and ReLo on the MinAtar benchmark

BASELINE PER LABER RELO

ASTERIX 12.54 ± 1.08 16.16 ± 1.02 15.51 ± 1.11 15.68 ± 0.89
BREAKOUT 9.36 ± 0.29 8.88 ± 0.72 8.81 ± 0.61 8.98 ± 0.75
FREEWAY 52.80 ± 0.35 52.75 ± 0.22 41.98 ± 20.99 53.25 ± 0.37
SEAQUEST 16.13 ± 2.88 6.02 ± 1.92 14.63 ± 2.98 18.13 ± 1.25
SPACE INVADERS 45.36 ± 1.65 37.36 ± 4.45 43.67 ± 3.17 38.54 ± 2.60

G Arcade Learning Environment84

We evaluate agents on a compute-constrained version of the Arcade Learning Environment Bellemare85

et al. [2013], training each agent for 2M frames. We chose the standard 24 environments from the86

suite for our evaluation. ReLo is competitive with PER Schaul et al. [2016] in the tested environments.87

The training curves for the Temporal Difference Error and the rewards are given in Fig. 6 & Fig. 788

respectively.89

H Gridworld90

Figure 8: A top down view of
the GridWorld. The agent is
the black point. It starts at the
blue point and the goal state is
the green point. The red point
represents the location of the
stochastic reward.

We implement a simple GridWorld for the experiments that high-91

lights the drawbacks of PER with TD loss prioritization in Section92

5.6. It consists of a 7× 7 grid. A visualization of the grid is given93

in Fig. 8. The start state of the agent, represented by the blue point,94

is at the top left and the goal state is at the bottom right, represented95

by the green point. The agent is represented by the black point. The96

agent gets a reward of +2 when it reaches the goal state, but does97

not receive reward anywhere else other than the stochastic point.98

The red point marks the state with a corresponding reward uniformly99

sampled from [−0.5, 0.5]. The locations of these points is fixed100

and does not change during training or evaluation. The state that101

the agent receives is (x, y) where x and y are the coordinates of102

the agent’s location, x, y ∈ [−3, 3] and x, y ∈ Z. The agent has 4103

actions, to move up, down, left or right which will deterministically104

move the agent in that direction by 1 unit. If the agent is at the edge105

of the grid and takes an action that will move it out of the 7× 7 grid,106

then it remains in the same location.107

5



0.0 0.5 1.0 1.5 2.0
0

1

2

3

TD
Er

ro
r

Alien

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Amidar

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Assault

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Asterix

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Bank Heist

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Boxing

0.0 0.5 1.0 1.5 2.0
0

1

2

3
TD

Er
ro

r

Breakout

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Chopper Command

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Demon Attack

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Freeway

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Frostbite

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Gopher

0.0 0.5 1.0 1.5 2.0
0

1

2

3

TD
Er

ro
r

Hero

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Jamesbond

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Kangaroo

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Krull

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Kung Fu Master

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Ms Pacman

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

1

2

3

TD
Er

ro
r

Pong

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

1

2

3

Private Eye

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

1

2

3

Qbert

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

1

2

3

Road Runner

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

1

2

3

Seaquest

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

1

2

3

Up N Down

Rainbow Rainbow+ReLo

Figure 6: Temporal difference loss curves for Rainbow (with PER) and Rainbow with ReLo. Rainbow
with ReLo achieves lower loss compared to PER, showing that ReLo is able to prioritize samples
with reducible loss. The dark line represents the mean and the shaded region is the standard deviation
over 3 seeds.

0.0 0.5 1.0 1.5 2.0
0

1000

2000

Re
wa

rd

Alien

0.0 0.5 1.0 1.5 2.0
0

200

400

Amidar

0.0 0.5 1.0 1.5 2.0
0

1000

2000

3000

Assault

0.0 0.5 1.0 1.5 2.0
0

1000

2000

3000

4000
Asterix

0.0 0.5 1.0 1.5 2.0

0

250

500

750

1000
Bank Heist

0.0 0.5 1.0 1.5 2.0

0

50

Boxing

0.0 0.5 1.0 1.5 2.0

0

50

100

150

Re
wa

rd

Breakout

0.0 0.5 1.0 1.5 2.0
0

2000

4000

6000

8000
Chopper Command

0.0 0.5 1.0 1.5 2.0
0

10000

20000

30000

40000
Demon Attack

0.0 0.5 1.0 1.5 2.0
0

10

20

30

Freeway

0.0 0.5 1.0 1.5 2.0

0

2000

4000

Frostbite

0.0 0.5 1.0 1.5 2.0
0

2000

4000

6000

8000
Gopher

0.0 0.5 1.0 1.5 2.0
0

5000

10000

Re
wa

rd

Hero

0.0 0.5 1.0 1.5 2.0
0

500

1000

1500

Jamesbond

0.0 0.5 1.0 1.5 2.0

0

5000

10000

Kangaroo

0.0 0.5 1.0 1.5 2.0
0

2000

4000

6000

8000
Krull

0.0 0.5 1.0 1.5 2.0
0

20000

40000

Kung Fu Master

0.0 0.5 1.0 1.5 2.0
0

1000

2000

3000

4000

Ms Pacman

0.0 0.5 1.0 1.5 2.0
Steps 1e6

20

10

0

10

Re
wa

rd

Pong

0.0 0.5 1.0 1.5 2.0
Steps 1e6

600

400

200

0

200
Private Eye

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

5000

10000

Qbert

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

10000

20000

30000

40000
Road Runner

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

500

1000

1500

2000

Seaquest

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

10000

20000

30000

40000

Up N Down

Rainbow Rainbow+ReLo

Figure 7: Training curves of 24 environments from the ALE benchmark. Performance is evaluated
for 10 episodes over 5 random seeds.

References108

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-109

ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:110

253–279, 2013.111

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement112

learning. In International Conference on Machine Learning, pages 449–458. PMLR, 2017.113

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband,114

Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,115

and Shane Legg. Noisy networks for exploration. In 6th International Conference on Learning116

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track117

Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=rywHCPkAW.118

6

https://openreview.net/forum?id=rywHCPkAW


Table 5: Comparison of Rainbow with PER and Rainbow with ReLo on the ALE benchmark

RAINBOW RAINBOW W/ RELO

ALIEN 1278.70 ± 223.14 1352.90 ± 535.70
AMIDAR 376.20 ± 81.07 410.10 ± 85.63
ASSAULT 2241.78 ± 648.17 2617.37 ± 555.97
ASTERIX 3214.50 ± 323.70 3352.00 ± 431.98
BANKHEIST 526.80 ± 277.83 641.80 ± 284.67
BOXING 76.65 ± 14.58 76.21 ± 11.59
BREAKOUT 82.03 ± 46.10 68.36 ± 45.39
CHOPPERCOMMAND 2794.00 ± 732.87 4974.00 ± 2801.93
DEMONATTACK 25500.50 ± 16311.26 29294.30 ± 15905.25
FREEWAY 32.58 ± 0.31 32.35 ± 0.25
FROSTBITE 2850.60 ± 1553.34 3532.30 ± 1270.73
GOPHER 5336.60 ± 1023.75 5679.80 ± 1199.68
HERO 9907.15 ± 2108.71 8830.30 ± 1894.51
JAMESBOND 810.00 ± 412.00 902.00 ± 469.40
KANGAROO 8904.00 ± 3879.97 8091.00 ± 3618.47
KRULL 6553.18 ± 803.15 6718.67 ± 799.47
KUNGFUMASTER 29371.00 ± 8525.69 23654.00 ± 12360.40
MSPACMAN 2094.70 ± 614.58 1755.80 ± 374.32
PONG 3.18 ± 9.02 5.96 ± 6.45
PRIVATEEYE 100.00 ± 0.00 100.00 ± 0.00
QBERT 8382.00 ± 2935.16 10900.25 ± 2704.23
ROADRUNNER 29333.00 ± 9465.78 29222.00 ± 8696.91
SEAQUEST 1377.20 ± 362.57 1848.80 ± 788.85
UPNDOWN 17065.40 ± 7637.25 21241.50 ± 8599.97

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error119

in actor-critic methods. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th120

International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning121

Research, pages 1587–1596. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/122

v80/fujimoto18a.html.123

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy124

maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and125

Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,126

ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings127

of Machine Learning Research, pages 1856–1865. PMLR, 2018. URL http://proceedings.128

mlr.press/v80/haarnoja18b.html.129

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,130

Daniel Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining131

improvements in deep reinforcement learning. CoRR, abs/1710.02298, 2017. URL http://132

arxiv.org/abs/1710.02298.133

Zhang-Wei Hong, Tao Chen, Yen-Chen Lin, J. Pajarinen, and Pulkit Agrawal. Topological experience134

replay. ICLR, 2022. doi: 10.48550/arXiv.2203.15845.135

Yuenan Hou, Lifeng Liu, Qing Wei, Xudong Xu, and Chunlin Chen. A novel ddpg method with136

prioritized experience replay. In Systems, Man, and Cybernetics (SMC), 2017 IEEE International137

Conference on, pages 316–321. IEEE, 2017.138

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement139

learning via distribution correction. Advances in Neural Information Processing Systems, 33:140

18560–18572, 2020.141

Thibault Lahire, M. Geist, and E. Rachelson. Large batch experience replay. ICML, 2021.142

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,143

David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua144

7

https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298


Bengio and Yann LeCun, editors, 4th International Conference on Learning Representations,145

ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL146

http://arxiv.org/abs/1509.02971.147

Xu-Hui Liu, Zhenghai Xue, Jing-Cheng Pang, Shengyi Jiang, Feng Xu, and Yang Yu. Regret148

minimization experience replay in off-policy reinforcement learning. NEURIPS, 2021.149

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.150

Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-151

tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,152

Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-153

forcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836. URL154

http://dx.doi.org/10.1038/nature14236.155

Youngmin Oh, Jinwoo Shin, Eunho Yang, and Sung Ju Hwang. Model-augmented prioritized156

experience replay. In International Conference on Learning Representations, 2022. URL https:157

//openreview.net/forum?id=WuEiafqdy9H.158

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In159

Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Representa-160

tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.161

URL http://arxiv.org/abs/1511.05952.162

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy163

optimization algorithms. arXiv preprint arXiv: Arxiv-1707.06347, 2017.164

Samarth Sinha, Jiaming Song, Animesh Garg, and S. Ermon. Experience replay with likelihood-free165

importance weights. L4DC, 2020.166

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,167

Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.168

Deepmind control suite. arXiv preprint arXiv: Arxiv-1801.00690, 2018.169

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-170

learning. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thirtieth171

AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages172

2094–2100. AAAI Press, 2016. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI16/173

paper/view/12389.174

Che Wang and Keith Ross. Boosting soft actor-critic: Emphasizing recent experience without175

forgetting the past. arXiv preprint arXiv: Arxiv-1906.04009, 2019.176

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.177

Dueling network architectures for deep reinforcement learning. In Maria-Florina Balcan and178

Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference on Machine179

Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop180

and Conference Proceedings, pages 1995–2003. JMLR.org, 2016. URL http://proceedings.181

mlr.press/v48/wangf16.html.182

Denis Yarats and Ilya Kostrikov. Soft actor-critic (sac) implementation in pytorch. https://github.183

com/denisyarats/pytorch_sac, 2020.184

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible185

reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.186

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse187

reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.188

8

http://arxiv.org/abs/1509.02971
http://dx.doi.org/10.1038/nature14236
https://openreview.net/forum?id=WuEiafqdy9H
https://openreview.net/forum?id=WuEiafqdy9H
https://openreview.net/forum?id=WuEiafqdy9H
http://arxiv.org/abs/1511.05952
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

	Implementation Details
	Mapping Functions for ReLo
	Extended Related Work
	Prioritization Schemes
	Off-Policy Algorithms

	DeepMind Control Suite
	OpenAI Gym Environments
	MinAtar
	Arcade Learning Environment
	Gridworld

