
Supplementary Material
Explainable and Efficient Randomized Voting Rules

In this supplementary material, we provide the details and proofs omitted from the main text. The
structure of the supplementary material resembles the structure of the main text.

In Appendix A, we present the results on randomized positional scoring rules. Specifically, we first
present novel insights (A.1), use them to prove distortion upper bounds for common randomized
positional scoring rules (A.2), prove generic lower bounds that prove tightness of these results (A.3),
and finally extend our results to randomized multi-level approval rules (A.4) as the first step towards
characterizing the distortion of every randomized positional scoring rule.

In Appendix B, we present the results on random k-committee member rules, first presenting a lower
bound (B.1) and then an algorithm achieving a non-trivial upper bound (B.2).

Finally, in Appendix C, we present additional experiments, such as analyzing how the distortion of
explainable randomized rules depends on the Mallows noise parameter � for fixed values of m (as
opposed to the results in the main text, which analyze the dependence on m for fixed values of �), and
analyzing how the optimal k (and the distortion achieved at this optimal k for random k-committee
member rules changes with m. We also present additional results for two other statistical models: the
Polya-Eggenberger urn model and the Plackett-Luce model.

A Randomized Positional Scoring Rules

In this section, we expand on our discussion of randomized positional scoring rules.

A.1 High-Level Distortion Analysis and Novel Insights

Next, we elaborate on the high-level distortion analysis and novel insights presented in Section 3.1 as
well as provide additional novel insights.

A.1.1 Absolute Welfare is Minimized at Dichotomous Utilities

As mentioned in Strategy 3 of Section 3.1, a novel insight of our work is that proving an absolute
lower bound on the welfare achieved by a rule across all instances can be useful in bounding the
distortion, even though the latter needs to compare the welfare achieved in each instance to the
optimum welfare in that instance. First, recall the definition of minimum welfare.
Definition 1 (Minimum Welfare). Define the minimum welfare of a distribution over alternatives
p 2 �(A) on a preference profile ~� as min-sw(p,~�) = inf~u2C(~�) sw(p, ~u), which is the minimum
social welfare of p across all consistent utility profiles. The minimum welfare of a voting rule
f is the minimum welfare of its output, minimized over all preference profiles: min-swn,m(f) =
min~� min-sw(f(~�),~�), where the minimum is taken over all preference profiles with n agents and m
alternatives. We drop n and m when clear from the context.

First, we show that this minimum welfare is in fact attained at a dichotomous utility profile.
Definition 5 (Dichotomous Utilities). For k 2 [m], define the k-dichotomous utility function for
agent i to be

i,k =

⇢
1/k ranki(a) 6 k,
0 o.w..

That is, agent i is indifferent between her top k alternatives, but does not value any other alternative.
We call ~u a dichotomous utility profile if, for each i 2 N , we have ui = i,k for some k 2 [m].
Lemma 6. For any preference profile ~� and distribution over alternatives p 2 �(A), there exists a
dichotomous utility profile ~u⇤ 2 argmin

~u2C(~�) sw(p, ~u) at which minimum welfare is achieved, and
this minimum welfare is bounded as min-sw(p,~�) = sw(p, ~u⇤) 6 n/m.

Proof. Let p = f(~�) be the distribution returned by the rule f . Take the utility profile ~u =
argmin

~u2C(~�) sw(p, ~u). Suppose by contradiction that there exists an agent i 2 N such that ui is
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not dichotomous. Since ui is a unit-sum utility vector, ui can be represented as ui =
P

k2[m] ↵k i,k

for a unique list of ↵k’s subject to
P

k
↵k = 1. Then, we have

ui(p) =
X

k2[m]
↵k · i,k(p).

By the linearity of the expression above, we can assume, without loss of generality, that it is minimized
at one of the i,k’s.

To show that min-sw(p,~�) 6 n

m
, take the utility profile ui = i,m for all i (all agents are indifferent).

Then, ui(p) =
P

a2A

pa

m
= 1

m
and sw(p) = n

m
.

Next, we show that the minimum welfare of any distribution that is returned by a randomized
positional scoring rule on any preference profile is not much lower.
Lemma 7. For any randomized positional scoring rule f rand

~s
and preference profile ~�, the minimum

welfare is bounded as min-sw(f rand
~s

(~�),~�) > n/(4m2).

Proof. Normalize ~s such that k~sk1 = 1. Following Lemma 11, for all k 2 [m], min-sw(f rand
~sk-approval

) >
n

4m2 . Furthermore, any scoring vector can be uniquely rewritten as ~s =
P

k2[m] ↵k · ~sk-approval
k

with
↵k > 0 and

P
k2[m] ↵k = 1. Note that scaling a scoring vector does not affect its distortion or

obtained social welfare. Therefore,

min-sw(f rand
~s

) >
X

k2[m]

↵k ·min-sw(f rand
~sk-approval

) > n

4m2
·
X

k2[m]

↵k =
n

4m2
.

From Lemmas 6 and 7, we have the following.
Corollary 6. Every randomized positional scoring rule f rand

~s
satisfies min-sw(f rand

~s
) 2

[n/(4m2), n/m].

See Table 1 for tight bounds for the rules induced by common scoring vectors.

A.1.2 Logarithmic Rounding of the Scores

Let us begin by providing a proof of the following result stated in Section 3.1.

Lemma 1 (Rounding Down Scores). Let ↵ > 0, and ~s, ~s0 be scoring vectors such that s0
j
6 sj 6

(1 + ↵)s0
j

for all j 2 [m]. Then, for every preference profile ~� and consistent utility profile ~u 2 C(~�),

1

1 + ↵
· sw(f rand

~s 0 (~�), ~u) 6 sw(f rand
~s

(~�), ~u) 6 (1 + ↵) · sw(f rand
~s 0 (~�), ~u),

and consequently, 1
1+↵

· dist(f rand
~s0

) 6 dist(f rand
~s

) 6 (1 + ↵) · dist(f rand
~s0

).

Proof. Fix a preference profile ~� and a consistent utility profile ~u 2 C(~�). Since s0
j
6 sj 6 (1+↵)s0

j

for all j 2 [m], we have score(a,~s) > score(a,~s 0) for all alternatives a 2 A as well as k~sk1 6
(1 + ↵) · k~s 0k1. Hence,

sw(f rand
~s

(~�), ~u) =
X

a2A

sw(a, ~u) · score(a,~s)

nk~sk1
>
X

a2A

sw(a, ~u) · score(a,~s 0)

n(1 + ↵)k~s 0k1

=
1

1 + ↵
· sw(f rand

~s 0 (~�), ~u).

Hence,
dist(f rand

~s
(~�), ~u) 6 (1 + ↵) · dist(f rand

~s 0 (~�), ~u).

Since the above holds for all ~� and ~u 2 C(~�), we have dist(f rand
~s

) 6 (1 + ↵) · dist(f rand
~s 0 ).

The other direction follows similarly using score(a,~s) 6 (1+↵)·score(a,~s 0) and k~sk1 > k~s 0k1.
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As stated in Section 3.1, applying this transformation to scores in the range [k~sk1/(4m2), k~sk1] allows
us to reduce them to O(logm) distinct values. The next result shows that the remaining small scores
can be ignored by reducing them to 0 while only changing the distortion by another factor of at most
two.
Lemma 8 (Ignoring Small Scores). Let ~s be a scoring vector. Let ~s0 be ~s except that sj 6 k~sk1

4m2 )
s0
j
= 0 for all j 2 [m]. Then,

1

2
· dist(f rand

~s0
) 6 dist(f rand

~s
) 6 2 · dist(f rand

~s0
).

Proof. Fix any preference profile ~� and consistent utility profile ~u 2 C(~�). For each a 2 A, define
�(a) = score(a,~s)� score(a,~s 0). Then,

sw(f rand
~s

(~�), ~u) =
X

a2A

sw(a, ~u) ·
✓
score(a,~s 0) + �(a)

nk~sk1

◆

=
k~s 0k1
k~sk1

· sw(f rand
~s 0 (~�), ~u) +

X

a2A

sw(a, ~u) · �(a)

nk~sk1
. (1)

Note that k~s 0k1 > k~sk1 � (m� 1) · k~sk1

4m2 > (1� 1
4m+1 ) · k~sk1. Thus, in Equation (1), we have

sw(f rand
~s

(~�), ~u) >
✓
1� 1

4m + 1

◆
· sw(f rand

~s 0 (~�), ~u).

This implies

dist(f rand
~s

(~�), ~u) 6 4m + 1

4m
· dist(f rand

~s 0 (~�), ~u).

Since this holds for all ~� and ~u 2 C(~�), we have dist(f rand
~s

) 6 (1 + 1
4m ) · dist(f rand

~s 0 ).

For the other direction, we use the facts that k~s 0k1 6 k~sk1 and �(a)
nk~sk1

6 1
nk~sk1

· n · k~sk1

4m2 = 1
4m2 .

Thus, in Equation (1), we have

sw(f rand
~s

(~�), ~u) 6 sw(f rand
~s 0 (~�), ~u)+

X

a2A

sw(a, ~u) · 1

4m2
= sw(f rand

~s 0 (~�), ~u)+
n

4m2
6 2 ·sw(f rand

~s 0 ),

where the last inequality is due to Lemma 7. Using the same argument as above, this results in
dist(f rand

~s 0 ) 6 2 · dist(f rand
~s

).

Using Lemma 1 with ↵ = 1 and combining with Lemma 8, we get the following.
Corollary 7 (Scoring Vector Reduction). Given any scoring vector ~s, there exists a scoring vector ~s 0

with O(logm) distinct positive scores such that (1/4) · dist(f rand
~s

) 6 dist(f rand
~s 0 ) 6 4 · dist(f rand

~s
).

A.1.3 Helpful Technical Lemmas

Before proving Lemma 2, we show a weaker lemma which follows from a simpler proof. This
is useful in particular for analyzing randomized k-approval rules with k 2 [1, m � ⌦(m)] (which
includes the randomized dictatorship rule) and randomized approval mixtures rules where again we
mix some k-approvals with k 2 [1, m� ⌦(m)].
Lemma 9. Fix any preference profile ~�, subset of agents T ⇢ N , threshold ⌧ > 0, and rank ` 2 [m].
For a partial utility profile ~u in which every agent in T has utility at least ⌧ for each of her top `
alternatives and all other utilities are 0, we have

sw(f rand
~sk-approval

) > ⌧ · |T |2

nm
· (min{k, `})2

k
.

Proof. Let t = min{k, `}. For all a 2 A let xa denote the number of appearances of a among the
top t votes of T . Then,

sw(f rand
~sk-approval

) =
X

a2A

Pr[a] · sw(a)
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>
X

a2A

xa

nk
· (xa · ⌧)

=
⌧

nk
·
X

a2A

x2
a

> ⌧

nk
·
�P

a2A
xa

�2

m
(by AM-QM inequality)

=
⌧

nk
· (|T | · t)2

m
= ⌧ · |T |2

nm
· (min{k, `})2

k
.

The key limitation of the lemma above is that the probability of selecting alternative Pr[a] is lower
bounded by xa

nk
(the score a gets only from the top ` alternatives of T ), while this could be higher

due to the score that agents in N \ T give to a. As a result, in the transition that uses the AM-QM
inequality, we divide the top ` alternatives of T among all m alternatives. If the scores obtained from
N \ T is also considered, it may be the case that the top ` alternatives of T is divided among fewer
number of alternatives (sublinear in m), which enables stronger lower bounds. To this end, we need a
more complicated analysis provided in the following lemma.
Lemma 2. Fix any scoring vector ~s, preference profile ~�, subset of agents T ✓ N , threshold ⌧ > 0,
and rank ` 2 [m]. For a partial utility profile ~u in which every agent in T has utility at least ⌧ for
each of her top ` alternatives and all other utilities are 0, we have:

swT (f
rand
~s

(~�), ~u) > ⌧ · |T |`
2nk~sk1

min
h2[m]

1

h

⇣
2s` · |T |` + (n� |T |) ·

hX

j=1

sm�j+1

⌘
.

Proof. For all alternative a, denote by xa the number of appearances of a among the top ` votes of T .
Note that

P
a2A

xa = |T | · `. We have

swT (f
rand
~s

) =
X

a2A

swT (a) ·
score(a)

nk~sk1

>
X

a2A

⌧ · xa ·
scoreT (a) + scoreN\T (a)

nk~sk1

>
X

a2A

⌧ · xa ·
xa · s` + scoreN\T (a)

nk~sk1
. (2)

Rename the candidates such that x1 > x2 > · · · > xm.

Worst-case Preference Ranking of N \ T . The contribution of N \ T to Equation (2) is
P

a
xa ·

scoreN\T (a) which can be decomposed to across agents, i.e. the contribution of each agent i 2 N \T
is
P

a2A
xa · scorei(a). Since xa’s are only depends on agents in T , to obtain a lower bound, we

may assume without loss of generality that their preference ranking is m �i m � 1 �i . . . �i 1,
since xm 6 xm�1 6 . . . 6 x1 and scorei(�i(1)) > . . . > scorei(�i(m)).

Forming a Quadratic Program. Recall that we renamed the alternatives in decreasing order by xa.
Following the observation of worst-case preference ranking of N \ T , to obtain a lower bound, for
a 2 [m], we have scoreN\T (a) = (n� |T |) · sm�a+1. Now, we can rewrite Equation (2) as follows,

⌧

nk~sk1 · s`
·

mX

a=1

s` · xa · (s` · xa + (n� |T |) · sm�i+1). (3)

Now, we simplify this expression to form a quadratic program and analyze its minimum. Since
⌧

nk~sk1·s` is a constant value, we focus on the summation. For conciseness, define ya = s` · xa,
�a = (n� |T |) · sm�a+1, and � = s` · |T | · ` =

P
m

a=1 ya (holds due to
P

a
xa = |T | · `). Then, we

have the following quadratic program with variables y = {ya}a2A,

min
mX

a=1

ya · (ya + �a)
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s.t.
mX

a=1

ya = �

ya > 0 8a 2 [m]. (4)

Applying the KKT Conditions. Our objective is convex in ya’s, and it is easy to check that this
program satisfies the Slater’s condition for ya = �/m. Hence, we can apply the KKT conditions to
find the minimizer of this program. The Lagrangian for f(y) =

P
a
ya(ya+�a), g(y) = ��

P
a
ya,

and ha(y) = �ya, is

L(y, �,µ) = f(y) + �g(y) +
mX

a=1

µa · ha(y),

where, in the dual program, µa is the variable for ya > 0 conditions and � is for the single equality
condition. From the KKT conditions, we have ya’s are the minimizer of this function if

C1. (stationarity) 8a 2 [m], 2 · ya + ↵a � µa � � = 0

C2. (primal feasibility) (1) 8a 2 [m], ya > 0 and (2)
P

m

a=1 = �

C3. (dual feasibility) 8a 2 [m], µa > 0

C4. (complementary slackness) 8a 2 [m], µa · ya = 0.

By C1 and C3, we have

ya 6 1

2
(�� ↵a) .

For ya 6= 0, we can multiply C1 by ya and using C4 (i.e. ya · µa = 0), we get

ya 6= 0 ) ya =
1

2
(�� ↵a)

Therefore, ya = max{0, 1
2 (�� ↵a)}. Let |C⇤| be the number of non-zero ya’s (i.e. the number of

candidates with non-zero appearances among the top-` votes of T ). Furthermore, by C2, we have

mX

a=1

ya =
mX

a=1

1

2
max{0, �� ↵a} = � ) � =

1

|C⇤|

0

@2� +

|C⇤|X

a=1

↵a

1

A (5)

Since ↵1 6 ↵2 6 . . . 6 ↵m, the final ya’s will form a decreasing series y1 > y2 > · · · > y|C⇤| >
y|C⇤|+1 = · · · ym = 0 with |C⇤| many non-zero values. This is similar to a water-filling argument.
Initial levels are ↵a, and the water fills up from the bottom to level � with a total water amount of 2�.

Deriving a Lower Bound. Now, we use the findings above to get a lower bound as follows
mX

a=1

ya(ya + ↵a) >
mX

a=1

ya(ya + ↵a/2)

>
|C⇤|X

a=1

ya

✓
1

2
(�� ↵a) + ↵a/2

◆

> �

2

|C⇤|X

a=1

ya =
� · �
2

=
�

2
· 1

|C⇤|

0

@2� +

|C⇤|X

a=1

↵a

1

A .

> min
|C⇤|2[m]

�

2|C⇤| ·

0

@2� +

|C⇤|X

a=1

↵a

1

A .
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= min
|C⇤|2[m]

s` · |T |`
2|C⇤| ·

0

@2s` · |T |` + (n� |T |) ·
|C⇤|X

a=1

sm�i+1

1

A .

Combined with Equation (2), we have

swT (f
rand
~s

) > ⌧ · |T |`
2nksk1

min
|C⇤|2[m]

1

|C⇤|

0

@2s` · |T |` + (n� |T |) ·
|C⇤|X

a=1

sm�i+1

1

A .

A.1.4 Proof of Lemma 4

Lemma 4. For any preference profile ~�, consistent utility profile ~u 2 C(~�), and alternative a 2 A,
we have sw(a) 6 (Borda(a) + n)/m.

Proof. Fix an alternative a and agent i. By the unit-sum assumption, we have

ui(a) 6
1

ranki(a)
6 m� ranki(a) + 1

m
=

Borda(a, i) + 1

m
.

By summing over all agents, we get sw(a) 6 Borda(a)+n

m
.

A.2 Distortion of Common Scoring Rules

Here, we use the insights and high-level strategies laid out above to analyze common randomized
positional scoring rules. At first, we derive only a lower bound on their minimum welfare and an
upper bound on their distortion, and later we show that our bounds are tight.

A.2.1 Randomized Plurality

Lemma 10. The minimum welfare of the randomized plurality (randomized dictatorship) rule is
min-sw(f rand

~splu
) > n

m2 .

Proof. For a 2 A, let plu(a) = score(a,~splu) be the score of alternative a. Then, sw(a) > plu(a) · 1
m

,
since each voter deems a utility of at least 1

m
for their top alternative. Then,

sw(fplu) =
X

a2A

plu(a)

n
· sw(a) > 1

n

X

a2A

plu(a)2

m

(1)
> 1

n

 
X

a2A

plu(a)

m

!2

> n

m2
,

where inequality (1) holds by the AM-QM inequality,and we used
P

a2A
plu(a) = n in the last

inequality.1

Theorem 8. The distortion of the randomized plurality rule is O(m
p

m).

Proof. For an alternative a 2 A, let N+
a
✓ N be the set of agents whose top alternative is a. Then,

we have |N+
a
| = plu(a), and

sw
N

+
a
(a⇤) =

X

i2N
+
a

ui(a
⇤) 6 |N+

a
| = plu(a),

where the inequality comes from the unit-sum assumption that utilities are at most 1. Moreover,
sw

N
+
a
(a) > sw

N
+
a
(a⇤), since voters in N+

a
prefer a to a⇤. Thus,

sw(f rand
~splu

) =
X

a2A

plu(a)

n
· sw(a) > 1

n

X

a2A

sw
N

+
a
(a⇤) · sw

N
+
a
(a⇤)

> 1

n
· 1

m

 
X

a2A

sw
N

+
a
(a⇤)

!2

=
sw(a⇤)2

n · m ,

1This is an instantiation of Lemma 9 for k = ` = 1, ⌧ = 1
m

, |T | = n.
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where the second inequality holds by the AM-QM inequality. Consequently,

dist(fplu) 6
n · m
sw(a⇤)

.

Furthermore, by Lemma 10 we have dist(f rand
~splu

) 6 sw(a⇤)
n/m2 . Combining the two bounds, we have

dist(f rand
~splu

) 6 min

⇢
m2 · sw(a⇤)

n
,

n · m
sw(a⇤)

�
6
s

m2 · sw(a⇤)

n
· n · m
sw(a⇤)

6 m
p

m.

A.2.2 Randomized k-Approval

Lemma 11. The minimum welfare of the randomized k-approval rule is,

• when k 6 pm, min-sw(f rand
~sk-approval

) > n

4m · k

m
,

• and when k >
p

m, min-sw(f rand
~sBorda

) > n

4(m�k+1) ·
1
k

.

Proof. When k = m, f rand
~sk-approval

is equivalent to selecting an alternative uniformly at random, which
achieves a social welfare of exactly n

m
. Now, suppose k 6 m� 1.

Fix any preference profile ~� and consistent utility profile ~u 2 C(~�). First, similar to the analysis
of randomized Borda in Lemma 3, we make a few modifications to the preference profile that are
guaranteed to not increase the welfare, and then invoke Lemma 2. For conciseness, let ~s = ~sk-approval,
and f = f rand

~sk-approval
.

Simplify the preference and utility profiles. By Lemma 6, to obtain a lower bound, we assume
without loss of generality that each agent i has a dichotomous utility, i.e. ui 2 { i,`}`2[m]. Partition
N = N1 [N2, where N1 = {ui = i,` | i 2 N, ` 6 k} and N2 = {ui = i,` | i 2 N, ` > k}.

Case |N1| > |N2|. Fix an agent i 2 N1. Let Ai be the set of top ` alternatives in �i and
ai 2 argmin

a2Ai
score(a,~s) be the alternative in Ai with the lowest score (equivalently, with the

lowest probability of selection under f ). Note that
P

a2Ai
ui(a) = 1. Now,

ui(f) >
X

a2Ai

score(a,~s)

nk~sk1
· ui(a)

(1)
> score(ai,~s)

nk~sk1
·
 
X

a2Ai

ui(a)

!
> score(ai,~s)

nk~sk1
· 1,

where (1) follows from the definition of ai. This can be rewritten as u0
i
(f(~�0)), where ~�0 is a

preference profile in which each agent i 2 N1 ranks ai first, and ~u0 is a partial utility profile in
which each agent i 2 N1 has utility of 1 for her top alternative and 0 for the rest. For i 2 N2,
we assume they have 0 utility for all alternatives. Summing the above for all agents, we have
sw(f(~�), ~u) > sw(f(~�0), ~u0). Now, to lower bound it, we invoke Lemma 2 with ~s  ~sk-approval,
~�  ~�0, ~u ~u0, T = N1, ⌧  1, and ` 1. Using k~sk1 = k, this gives us

sw(f(~�0), ~u0) > 1 ·
n

2 · 1
2n · k · min

h2[m]

1

h

⇣
2 · n

2
· 1 + n

2
·max{0, h� (m� k)}

⌘

=
n

8k
· min
h2[m]

✓
2 + max{0, h� (m� k)}

h

◆

> n

8k
·min

⇢
2

m� k
,

3

m� k + 1
,

4

m� k + 2
, . . . ,

k + 2

m

�

(1)
> n

8k
· 2

m� k + 1
=

n

4k(m� k + 1)
,

where (1) holds for k 2 [m� 1].

Case |N1| 6 |N2|. Any agent i 2 N2 has a utility of at least 1
`
> 1

m
for each of her top k alternatives.

This can be considered as a utility profile ~u0 where agents i 2 N2 have a utility of 1
m

for their top k
alternatives and 0 for the rest, and agents i 2 N1 have a 0 utility for all alternatives. Now, we invoke
Lemma 9 with k  k, ~�  ~�, ~u ~u0, T  N2, ⌧  1

m
, ` k. Since k~sk = k, we have

sw(f(~�), ~u) > 1

m
·
�
n

2

�2

nm
· k2

k
=

nk

4m2
.
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Since either of the two cases must hold,

sw(f(~�), ~u) > min

⇢
n

4k(m� k + 1)
,

nk

4m2

�
,

which completes the proof.

Lemma 12. The distortion of the randomized k-approvals rule is

• O
�
m

p
m

k

p
k

�
when k 6 m1/3,

• O(m) when m1/3 6 k 6 pm,

• and O(k
p

m� k + 1) when k >
p

m.

Proof. Fix any preference profile ~� and consistent utility profile ~u 2 C(~�). Let a⇤ 2
argmax

a2A
sw(a, ~u) be an optimal alternative. Partition the agents N = N+[N� based on whether

they approve a⇤ or not, i.e. N+ = {i 2 N | ranki(a⇤) 6 k} and N� = {i 2 N | ranki(a⇤) > k}.
Furthermore, sw(a⇤) = swN+(a⇤) + swN�(a⇤). We derive distortion bounds for two cases based
on the comparison of swN+(a⇤) and swN�(a⇤), and report the maximum of the two bounds as the
upper bound. Before the case analysis, recall that by following strategy 3 and Lemma 11, we have

sw(f rand
~sk-approval

) > min-sw(f rand
~sk-approval

) > min

⇢
nk

4m2
,

n

4k(m� k + 1)

�
= g(n, m)

) dist(f(~�), ~u) 6 sw(a⇤)

g(n, m)
. (6)

Case swN+(a⇤) > swN�(a⇤). Since swN+(a⇤) 6 |N+|, it follows that sw(a⇤) 6 2 · swN+(a⇤) 6
2|N+|. By Equation (6), we have

dist(f(~�), ~u) 6 2|N+|
g(n, m)

.

By strategy 2 and that Pr[a⇤ 2 f(~�)] = |N+|
nk

, we get

dist(f(~�), ~u) 6 nk

|N+| .

Putting the two together we have

dist(f(~�), ~u) 6 min

⇢
2|N+|
g(n, m)

,
nk

|N+|

�
(1)
6

s
2|N+|
g(n, m)

· nk

|N+| =

s
2nk

g(n, m)
,

where (1) follows from the inequality min{a, b} 6
p

a · b for a, b > 0. By expanding g(n, m), we
have

dist(f(~�), ~u) 6

8
<

:

q
2nk

nk/(4m2) =
p
8 · m, if k 2 [1,

p
m],

q
2nk

n/(4k(m�k+1) =
p
8 · k
p

m� k + 1 if k 2 [
p

m, m].
(7)

Case swN+(a⇤) < swN�(a⇤). Similar to the previous case, sw(f(~�), ~u) 6 2 · swN�(f(~�), ~u).
The key insight in this case is to apply strategy 2 (analyzing the welfare above a⇤ in N�). First,
construct a new utility profile by rounding down the utilities to the closest power of two, i.e.,
u0
i
(a⇤) = 2blog2 ui(a

⇤)c and replace utilities less than 1
4m2 with 0. This way,

sw(a⇤) 6 2 · swN�(a⇤, ~u), and swN�(a⇤, ~u) 6 2 · swN�(a⇤, ~u0) +
n

m2

Now, we subdivide N� based on their utility for a⇤. Since ranki(a⇤) > k + 1 for all i 2 N�,
ui(a⇤) 6 1

k+1 (otherwise agent’s total utility for her top k + 1 alternatives exceeds one). For

z 2
h
blog2 1

k+1c, blog2
1

m2 c
i
, let N�

z
= {i 2 Ni | u0

i
(a⇤) = 2z}. For each group, let ~u0

z
be the

utility profile where agents i 2 N�
z

have utility of 2z for their top k votes and value the rest at 0,
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and agents i 2 N \ N�
z

have utility of 0 for all agents. Note that this is a decomposition of the ~u0,
and each nonzero utilities is only considered in one of the ~u0

z
’s. Now, we invoke Lemma 9 with

~s ~sk-approval, ~�  ~�, ~u ~u0
z
, ` k, k  k, T  N�

z
, ⌧  2z , and we have

sw(f(~�), ~u0
z
) > 2z · |T |2

nm
· k2

k
= 2z · |N

�
z
|2 · k

nm
.

Since the utilities above are disjoint, we can combine the bounds above and derive

sw(f(~�), ~u0) >
X

z

2z · |N
�
z
|2 · k

nm
.

We use the above combined with the absolute welfare guarantee in Equation (6), to derive the
distortion guarantee as follows.

dist(f(~�), ~u) =
sw(a⇤, ~u)

sw(f(~�), ~u))

6 4 · swN�(a⇤) + 2n
m2

sw(f(~�)

6 4 ·
P

z
2z · |N�

z
|+ 2n

m2

max
�P

z
2z · k

nm
· |N�

z |2 , g(n, m)
 

6 2n

m2 · g(n, m)
+ 4

X

z

2z · |N�
z
|

max{2z · k

nm
· |N�

z |2, g(n, m)}

6 8 + 4
X

z

2z · |N�
z
|

max{2z · k

nm
· |N�

z |2, g(n, m)}
(since g(n, m) > n

4m2
)

6 8 + 4
X

z

min

⇢
nm

|N�
z | · k

,
2z|N�

z
|

g(n, m)

�

6 8 + 4
X

z

s
nm

|N�
z | · k

· 2
z|N�

z |
g(n, m)

(min{a, b} 6
p

ab)

(1)
6 8 + 4

r
nm

k · g(n, m)
·
Xdlog2(m

2)e

z=�dlog2(k+1)e
(2z)

1
2

6 8 +
4p
k
·
r

nm

g(n, m)
· 4p

k + 1
(2z 6 1

k + 1
),

where (1) holds due to the following
Xdlog2(m

2)e

z=�dlog2(k+1)e
(2z)

1
2 6 1p

k + 1
·

1X

j=0

2�
j

2 6 1p
k + 1

· 2
1X

j=0

2�j 6 4p
k + 1

.

By expanding g(n, m), we have

dist(f(~�), ~u) 6 8 +

8
<

:

16
k
·
q

nm

nk/(m2) = 16 · m
p
m

k

p
k

, if k 2 [1,
p

m],

16
k
·
q

nm

n/(4k(m�k+1)) = 32 ·
p

m(m�k+1)p
k

, if k 2 [
p

m, m].
(8)

Now, by taking the pairwise maximum of Equations (7) and (8) we derive the following distortion
upper bounds,

dist(f(~�), ~u) 6

8
><

>:

O(m
p
m

k

p
k
) if k 2 [1, m1/3],

O(m) if k 2 [m1/3,
p

m],
O(k
p

m� k + 1) if k 2 [
p

m, m].

A.2.3 Randomized Harmonic

Boutilier et al. [22] proposed the rule that executes the randomized harmonic rule with probability
1/2 and selects an alternative uniformly at random with the remaining probability 1/2. They main
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contribution was to show that this rule achieves O(
p

m logm) distortion (tightness of this bound was
shown by Ebadian et al. [19]), very close to their lower bound of ⌦(

p
m). We show that the latter

half (uniform selection) of this rule, which is often critized as impractical, is largely unnecessary.
Simply executing the randomized harmonic rule achieves a distortion of ⇥(

p
m logm), which is

only a ⇥(
p
logm) factor larger. Let us first prove a lower bound on its minimum welfare.

Lemma 13. The minimum welfare of the randomized harmonic rule is min-sw(f rand
~sharmonic

) > n

mHm

.

Proof. Fix a preference profile ~� and utility profile ~u. Since all agents give a score of at least 1
m

to
all the alternatives, score(a) > n

m
. Therefore, by k~sharmonick1 = Hm, we have Pr[a 2 f rand

~sharmonic
] =

score(a)
nk~sk1

> 1
mHm

, and sw(f(~�), ~u) > 1
mHm

·
P

a2A
sw(a) = n

mHm

.

Now, we show a well-known useful fact about harmonic scores.
Lemma 14 ([22]). For any preference profile ~�, consistent utility profile ~u 2 C(~�), and alternative
a 2 A, we have sw(a, ~u) 6 score(a,~sharmonic).

Proof. Fix an agent i 2 N . Then,

scorei(a) =
1

ranki(a)
> ui(a),

where the inequality is due to the unit-sum assumption, i.e. otherwise agent i’s total utility for her top
ranki(a) alternatives exceeds one. Summing above for all agents yields the sought goal.

Lemma 15. The distortion of the randomized harmonic rule is O(
p

mHm).

Proof. Fix a preference profile ~� and utility profile ~u. Let a⇤ 2 argmax
a2A

sw(a, ~u) be an optimal
alternative. By strategy 3 (absolute welfare guarantee), we have

dist(f rand
~sharmonic

(~�), ~u) 6 sw(a⇤)

n/(mHm)
6 mHm · score(a⇤)

n
,

where the last inequality holds due to Lemma 14. Furthermore, by strategy 2 (probability of a⇤), we
have

dist(f rand
~sharmonic

(~�), ~u) 6 nHm

score(a⇤)
.

Putting the two together, we have

dist(f rand
~sharmonic

(~�), ~u) 6 min

⇢
mHm · score(a⇤)

n
,

nHm

score(a⇤)

�

6
s

mHm · score(a⇤)

n
· nHm

score(a⇤)
= Hm

p
m,

where the last inequality is due to min{a, b} 6
p

ab for a, b > 0. Since this holds for all preference
and utility profiles, dist(f rand

~sharmonic
) 6 Hm ·

p
m.

A.3 Lower Bounds

Next, we prove tightness of the distortion upper bounds obtained above. We do this by deriving a few
general bounds.
Theorem 9. The distortion of any randomized positional scoring rule f rand

~s
with sm 6 s1/

p
m is

⌦
�k~sk1

s1
·
p

t⇤
�
, where t⇤ = argmax

t2[m]

�
t |

P
t

j=1 sm�j+1 6 s1
 

.

Proof. Consider the preference profile ~� where alternative a⇤ appears as the top choice of n/
p

t⇤ of
the agents and the bottom of the list of the rest of them. Now consider set A1 of t⇤ alternatives. Each
member of A1 appears as the top choice of (n�n/

p
t⇤)/t⇤ agents. Whenever a member of A1 is not

the top choice of an agent, she appears in the bottom t⇤ places of his ranking. We create a symmetric
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setting among these alternatives. Now think of the utility profile ~u in which each agent has utility of 1
for his top choice and zero for the rest. We have sw(a⇤, ~u) = np

t⇤
, for a 2 A1, sw(a, ~u) = n

t⇤ and
the rest of the alternatives have zero social welfare. In addition for any positional scoring voting rule
f rand
~s

, we have

Pr[f rand
~s

(~�) = a⇤] =
s1n/

p
t⇤ + sm(n� n/

p
t⇤)

nk~sk1
6 s1 + sm

p
t⇤

k~sk1
p

t⇤
6 2s1
k~sk1
p

t⇤
,

where the last inequality is due to the fact that sm
p

t⇤ 6 sm
p

m 6 s1. In addition, for a 2 A1,

Pr[f rand
~s

(~�) = a] =
n
⇣
s1 +

P
t

j=1 sm�j+1

⌘

nk~sk1|A1|
6 2s1
k~sk1t⇤

.

That implies

E
a⇠f

rand
~s

(~�)[sw(a, ~u)] =
X

a2A

Pr[f rand
~s

(~�) = a] · sw(a, ~u)

= Pr[f rand
~s

(~�) = a⇤] · sw(a⇤, ~u) +
X

a2A1

Pr[f rand
~s

(~�) = a] · sw(a, ~u)

6 2s1
k~sk1
p

t⇤
· np

t⇤
+ t⇤ · 2s1

k~sk1t⇤
· n

t⇤

6 4n

k~sk1t⇤
.

) dist(f rand
~s

) > dist(f rand
~s

,~�) >
n/

p
t⇤

4ns1/k~sk1t
⇤
> k~sk1

p
t⇤

4s1
= ⌦

✓
k~sk1
s1

·
p

t⇤
◆

.

Table 2: Lower bounds on the distortion of common randomized positional scoring rules, achieved
by Theorem 9.

Rule name Scoring vector ~s k~sk1 s1 t
⇤ Lower bound

Harmonic (1, 1
2 ,

1
3 , . . . ,

1
m
) Hm 1 >

m

2 ⌦ (
p
m logm)

Veto (1, 1, . . . , 1, 0) m� 1 1 2 ⌦ (m)

Half harmonic,

half uniform

(1+ Hm

m
,
1
2 + Hm

m
, . . . ,

Hm+1
m

) 2Hm 1 + Hm

m
>

m

2Hm
⌦
�p

m logm
�

k-approval (1, . . . , 1| {z }
k ones

, 0, . . . , 0) k 1 m� k + 1 ⌦
�
k
p
m� k + 1

�

Plurality (1, 0, . . . , 0) 1 1 m ⌦ (
p
m)

Borda (m� 1,m� 2, . . . , 0) m(m�1)
2 m� 1 >

p
m ⌦

⇣
m

5
4

⌘

Corollary 10. The lower bounds on the distortion of common randomized positional scoring rules
implied by Theorem 9 are shown in Table 2. These are tight for the randomized harmonic rule, the
randomized k-approval rule with k = ⌦(

p
m), and the randomized veto rule.

Next, we derive another general lower bound, which would help us establish the tightness for some
more randomized positional scoring rules.
Theorem 11. Let ~s be a scoring vector with at most k non-zero values, i.e. 8j 2 [k + 1, m], sj = 0.
Then, f rand

~s
incurs a distortion of at least dist(f rand

~s
) = ⌦

⇣
m

p
m

k

p
k

⌘
.
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Proof. Assume that m� 1 is divisible by 3. Let a⇤ be some alternative and partition the rest of the
alternatives into three sets A1, A2, A3, each of size (m�1)/3. In addition we partition the agents into
two sets N1 of size n

p
k/m and N2 = N \ N1. Consider the preference profile where members

of N1 fill the top k positions of their rankings with members of A1 and the rest of the agents have
members of A2 in the top k position of their rankings (the preference profile is symmetric among
the members of each set, i.e., each member of Ai appears in the j-th position of |Ni|/(|Ai| · k)
agents). Every agent has a⇤ in the k + 1-th position, and all the members of A3 after that (up to rank
k + 1 + m/3). We do not care about the rest of the preference profile.

Now consider the utility profile ~u where members of N1 have a utility of 1/(k+1) for their top k+1
alternatives and members of N2 have a utility of 1/(k + 1+m/3) for each of their top k + 1+m/3
alternatives. We have

sw(a⇤, ~u) = |N1|
1

k + 1
+ |N2|

1

k + 1 + m/3
>

n
q

k

m

k + 1
>

np
km

,

a1 2 A1 =) sw(a1, ~u) =
|N1|
|A1|

k

k + 1
=

nk
q

k

m

m(k + 1)/3
<

3n
p

k

m
p

m
,

a2 2 A2 =) sw(a2, ~u) =
|N2|
|A2|

k

k + 1 + m/3
=

nk

✓
1�

q
k

m

◆

m(k + 1 + m/3)/3
<

9nk

m2
.

On the other hand, if we consider the probability given to each candidate we have:

Pr
a⇠f

rand
~s

(~�)[a = a⇤] = 0,

Pr
a⇠f

rand
~s

(~�)[a 2 A1] =
|N1|
n

=

r
k

m
,

Pr
a⇠f

rand
~s

(~�)[a 2 A2] < 1,

which means

E
a⇠f

rand
~s

(~�)[sw(a, ~u)] 6
r

k

m
· 3n
p

k

m
p

m
+ 1 · 9nk

m2
=

12nk

m2
,

and that implies:

dist(f rand
~s

(~�), ~u) > sw(a⇤, ~u)

E
a⇠f

rand
~s

(~�)[sw(a, ~u)]
>

np
km

12nk
m2

=
m
p

m

12k
p

k
2 ⌦

✓
m
p

m

k
p

k

◆
.

The theorem above immediately shows that our analysis for randomized k-approvals rules with
k 2 [m1/3] in Lemma 12 is in fact tight.

Corollary 12. The randomized k-approval rule with k 2 [m1/3] incurs a distortion of ⌦
�
m

p
m

k

p
k

�
.

The results above do not match our upper bound of O(m) for the randomized k-approval rule when
k 2 [m1/3,

p
m]. In the following, we separately establish a matching lower bound of ⌦(m) for this

case as well.
Lemma 16. The randomized k-approval rule with k 2 [m1/3,

p
m] incurs a distortion of ⌦(m).

Proof. Suppose m� 1 is divisible by 2. Let a⇤ be an alternative. Partition the rest of the alternatives
into two subsets of A1, A2 each of size (m�1)/2. Then, construct a preference profile as follows. Let
nk

m
agents N1 have a⇤ as their top vote. Divide the other top k � 1 top alternatives of N1 and all the

top k alternatives of N \ N1 among A1. This way,

8a 2 A1, score(a) 6 nk

|A1|
) Pr[a] 6 1

|A1|
,

and Pr[a⇤] = |N1|
nk

. Divide the k + 1 to m/2-th ranks of all voters among alternatives A2 and fill the
bottom of the ranking arbitrarily. This way, for all a 2 A2, Pr[a] = 0 since they have a score of 0.

25



Furthermore, suppose N1 have a utility of 1 for a⇤ and 0 for the rest, and N \ N1 have a utility of 2
m

for their top m

2 alternatives. This way,

8a 2 A1 sw(a) 6 nk

|A1|
· 2

m
.

Then,

sw(f rand
~sk-approval

) 6 Pr[a⇤] · sw(a⇤) +
X

a2A1

Pr[a] · sw(a) +
X

a2A1

Pr[a] · sw(a)

6 |N1|
nk

· |N1|+ |A1| ·
1

|A1|
· 2nk

|N1| · m
.

Hence,

dist(f rand
~sk-approval

(~�)) > |N1|
1
nk

· |N1|2 + 2nk
|N1|·m

> min

⇢
nk

|N1|
,
|N1|m
2nk

�
,

which for the choice of |N1| = nk

m
gives a lower bound of ⌦(m).

Finally, it remains to show that our lower bounds on minimum welfare of these randomized positional
scoring rules are also tight. This follows easily because our distortion upper bounds are essentially
derived as a function of the minimum welfare bounds, and one can check that in each case an
asymptotically better lower bound on minimum welfare would translate to an asymptotically better
upper bound on distortion, which is not possible because we have already established tightness of our
distortion bounds for the common randomized positional scoring rules.
Corollary 13. The minimum welfare bounds presented in Table 1 for the randomized versions of
plurality, Borda, harmonic, veto, and k-approval rules are asymptotically tight.

A.4 Randomized Approval Mixture Rules

As a step towards analyzing the distortion of randomized positional scoring rules for any scoring
vector, we present our distortion bounds for approval mixture scores, which are tight up to logarithmic
factors.
Definition 14 (Approval Mixture Scores). For k1 < k2 < . . . < kR 2 [m], the approval mixture
score denoted by {k1, . . . , kR}-mix-approval is defined as

~s{k1,...,kR}-mix-approval =
1

R

RX

r=1

~skr-approval

k~skr-approvalk1
,

that is the uniform mixture of the kr-approval scores.

This class of scores generalizes our results for randomized k-approvals (hence, plurality, veto).

A.4.1 Minimum Welfare Analysis

Lemma 17. Fix any constant ✏ > 0 and k1 < k2 . . . < kR 2 [(1� ✏)m]. The minimum welfare of
the randomized approval mixture rule with ~s{k1,...,kR}-mix-approval scoring vector is

min-sw(f rand
~s{k1,...,kR}-mix-approval

) = ⌦

 
n

m
· 1

R log2 m
min

⇢
1

k1
,

r
k1
k2

,

r
k2
k3

, · · · ,

r
kR�1

kR
,
kR
m

�!
.

Proof. Fix any preference profile ~� and consistent utility profile ~u 2 C(~�). For conciseness, we use
~s = ~s{k1,...,kR}-mix-approval.

Similar to the analysis in Lemma 11, to obtain a lower bound, by Lemma 6 we may assume without
loss of generality that agents have dichotomous utilities, i.e. ui 2 { i,`}`2[m]. To obtain a lower
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bound, we construct a new partial utility profile ~u0 by rounding down the utilities to the nearest power
of two, i.e. u0

i
2 1

2 · { i,2z}z2[blog2 mc]. Now, we partition agents by their utility vectors to logm
many groups, i.e. for z 2 [blog2 mc], define Nz = {i | u0

i
= i,2z}. Furthermore, decompose ~u0 to

{~u0
z
}z2[logm] where ~u0

z
is ~u0 except that agents in N \ Nz have 0 utility for all alternatives. Now, we

derive welfare lower bounds for each group by invoking Lemma 9 with ~�  ~�, ~u ~u0
z
, ` 1

2 · 1
2z ,

T  Nz , ⌧  2z . We assign parameter k based on the different cases below.

Case 2z 2 [k1]. Invoking Lemma 9 with above and k  k1, we have

sw(f rand
~sk1 -approval

, ~u0
z
) > 1

2
· 1

2z
· |Nz|2

nm
· (2

z)2

k1
=

|Nz|2 · 2z

2nmk1
.

Since 2z > 1,

sw(f~s) >
1

R
· sw(f rand

~sk1 -approval
) > |Nz|2

2R · nm
· 1

k1
.

Case 2z 2 [kr, kr+1]. Invoking Lemma 9 with above and k  kr, we have

sw(f rand
~skr -approval

, ~u0
z
) > 1

2
· 1

2z
· |Nz|2

nm
· (min{2z, kr})2

kr
=

|Nz|2

2nm
· kr
2z

.

By invoking Lemma 9 for k  kr+1, we have

sw(f rand
~skr+1 -approval

, ~u0
z
) > 1

2
· 1

2z
· |Nz|2

nm
· (min{2z, kr+1})2

kr+1
=

|Nz|2

2nm
· 2z

kr+1
.

Thus,

sw(f rand
~s

, ~u0
z
) > 1

R
·
⇣
sw(f rand

~skr -approval
, ~u0

z
) + sw(f rand

~skr+1 -approval
, ~u0

z
)
⌘

> 1

R
· |Nz|2

2nm

✓
kr
2z

+
2z

kr+1

◆
(1)
> |Nz|2

R · nm
·

s
kr

kr+1
,

where (1) follows from the AM-GM inequality.

Case 2z 2 [kR, m]. Invoking Lemma 9 with above and k  kR, we have

sw(f rand
~sk1 -approval

, ~u0
z
) > 1

2
· 1

2z
· |Nz|2

nm
· (min{2z, kR})2

kR
=

|Nz|2

2nm
· kR
2z

.

Since 2z 6 m, we have

sw(f~s) >
1

R
· sw(f rand

~sk2 -approval
) > |Nz|2

2R · nm
· kR

m
.

For at least one value of z 2 [log2 m] we have |Nz| > n

logm
, by the pigeon-hole principle. Thus, we

can take the minimum of the three cases above with |Nz| > n

logm
to obtain a lower bound as follow

sw(f rand
~s

) >
�

n

logm

�2

2R · nm
min

(
1

k1
,minr2[R�1]

(s
kr

kr+1

)
,
kR
m

)

=
n

2R · m log2 m
·min

(
1

k1
,

r
k1
k2

,

r
k2
k3

, . . . ,

r
kR�1

kR
,
kR
m

)
.

A.4.2 Distortion Analysis

Theorem 15. Fix any constant ✏ > 0 and k1 < k2 . . . < kR 2 [(1 � ✏)m]. The distortion of the
randomized approval mixture rule with ~s{k1,...,kR}-mix-approval scoring vector is

O

 
R logm ·

r
n

g
·

s

max

⇢
k1,min

✓
k2
k1

,
m

(k1)2

◆
, . . . ,min

✓
kR

kR�1
,

m

(kR�1)2

◆
,

m

(kR)2

�!
,

where g = min-sw(f rand
~s{k1,...,kR}-mix-approval

).
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Proof. Fix any preference profile ~� and consistent utility profile ~u 2 C(~�). Let a⇤ 2
argmax

a2A
sw(a, ~u) be an optimal alternative.

Partition the agents based on their score to a⇤, i.e., for r 2 [1, R] define Nr = {i 2 N | ranki(a⇤) 2
[kr�1, kr]} (k0 = 1) and let NR+1 = {i 2 N | ranki(a⇤) 2 [kR, m]} be the agents who give score
of 0 to a⇤. Furthermore,

sw(a⇤) =
X

r2[R]

swNr
(a⇤) 6 R ·maxr2[R] swNr

(a⇤). (9)

Suppose the maximum above is achieved at Nr⇤ . Next, we show upper bounds on distortion based
on the value of r⇤, and report the maximum of all as a distortion upper bound. Before doing so, to
obtain an upper bound on the distortion, we round down agents utility to the nearest power of two,
ignore utilities less than 1

m2 (replace with 0). Call the new utility profile ~u0. Then,

sw(a⇤, ~u) 6 2 · sw(a⇤, ~u0) +
n

m2
and sw(f(~�), ~u) 6 sw(f(~�), ~u0)

) dist(f(~�), ~u) 6 n/m2

sw(f(~�), ~u)
+ 2 · dist(f(~�), ~u0) 6 4 + 2 · dist(f(~�), ~u0)

where the last inequality is due to Lemma 7.

Strategy 1 (Welfare above a⇤). Now, we subdivide each group Nr based on their utility for
a⇤ and derive welfare lower bounds by invoking Lemma 9. Fix r 2 [2, R + 1] and for
z 2

h
blog2 1

kr�1+1c, blog2
1

m2 c
i
, let Nr,z = {i 2 Nr | u0

i
(a⇤) = 2z}. Since for agents i 2 Nr,

ranki(a⇤) > kr�1 + 1, u0
i
(a⇤) 6 1

k+1 (otherwise, the unit-sum assumption is violated since her total
utility for her top kr�1 + 1 alternatives exceeds one). Now, for each subgroup, we invoke Lemma 9
with ~s ~sk(r�1)-approval, T  Nr,z , ~�  ~�, ⌧  2z , ` kr�1, k  kr�1, and we have

sw(f(~�), ~u0
z
) > 2z · |T |2

nm
· (kr�1)2

kr�1
= 2z · |Nr,z|2 · kr�1

nm
(10)

Strategy 2 (Probability of a⇤). Following strategy 2, for r 2 [1, R], we have

Pr[a⇤ 2 f(~�)] > 1

R
· |Nr|

nkr
) dist(f(~�), ~u0) 6 R · nkr

|Nr|
. (11)

Strategy 3 (Absolute Welfare Guarantee). Following strategy 3 and by Lemma 17, we have

sw(f) > min-swn,m(f) = g(n, m) ) dist(f(~�), ~u0) 6 sw(a⇤)

g(n, m)
. (12)

We are ready to show distortion upper bounds based on the choice of r⇤.

Case r⇤ = 1. In this case, we only apply strategies 2 and 3 to Nr⇤ (not the subgroups). By Equation (9)
we have sw(a, ~u) 6 R · swN1(a, ~u). Furthermore, swN1(a

⇤) 6 |N1|. Then, by Equations (11) and
(12),

dist(f(~�), ~u0) 6 min

⇢
R · |N1|
g(n, m)

, R · nk1
|N1|

�
6 R ·

s
nk1

g(n, m)
. (13)

Case r⇤ 2 [2, R]. We use all the three strategies here. By the pigeonhole principle, there exists a
z⇤ 2 [logm2] such that swNr⇤ (a

⇤) 6 2 logm · swNr⇤,z⇤ (a
⇤) 6 2 logm · 2z · |Nr⇤,z⇤ |. Thus, by

Equation (10) in strategy 1,

dist(f(~�), ~u0) 6 2R logm · 2z · |Nr⇤,z⇤ |
2z · |Nr⇤,z⇤ |2·k(r⇤�1)

nm

= 2R logm · nm

|Nr⇤,z⇤ | · k(r⇤�1)

Combined with Equation (11) in strategy 2 we get

dist(f(~�), ~u0) 6 2R logm ·min

⇢
nm

|Nr⇤,z⇤ | · k(r⇤�1)
,

nkr⇤

|Nr⇤,z⇤ |

�
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Putting together with Equation (12) in strategy 3 we get

dist(f(~�), ~u0) 6 min

⇢
2R logm · 2

z
⇤ · |Nr⇤,z⇤ |
g(n, m)

, 2R logm ·min

⇢
nm

|Nr⇤,z⇤ | · k(r⇤�1)
,

nkr⇤

|Nr⇤,z⇤ |

��
.

6 2R logm ·

s
n

g(n, m)
· 1

kr�1
·min

⇢
m

kr⇤�1
, kr⇤

�

Case r⇤ = R + 1. This case follows exactly like the previous case except that we cannot apply
strategy 2, since probability of selection and the score of a⇤ from ranks below kR is 0. Thus,

dist(f(~�), ~u0) 6 2R logm ·

s
n

g(n, m)
· 1

kr�1
· m

kR
.

Now, we report an upper bound on distortion by taking the maximum of all cases. Hence,

dist(f(~�), ~u) 6 4 + 2 · dist(f(~�), ~u0)

6 4 + 4 · R logm ·
r

n

g(n, m)
·

s

max

⇢
k1,min

⇢
k2
k1

,
m

(k2)2

�
, . . .min

⇢
kR

kR�1
,

m

(kR)2

�
,
kR
m

�
.

Deriving Distortion of the Randomized t-Truncated Harmonic Rules. Next, we apply the result
above to a natural extension of the harmonic scores, which was recently used by Gkatzelis et al. [27].
Define the t-truncated harmonic scoring vector as follows

~st-harmonic = (1, 1/2, . . . , 1/t, 0, . . . , 0),

for which the first t scores is equal to the ~sharmonic and the rest is 0. For simplicity, suppose t is a
power of two. By rounding the scores, we have

~s 0
t-harmonic = (1, 1/2, 1/4, 1/4, 1/8, . . . , 1/t, 0, . . . , 0),

Now, take the {1, 2, . . . , log2 t}-mix-approval scoring vector. Since si =
1

log t

Plog t

j=dlog ie
1
2j It holds

that
s0
i
6 si 6 log t · s0

i
,

by Lemma 1 we can approximate dist(f rand
~st-harmonic

) up to O(logm) factor by analyzing the randomized
{1, 2, . . . , log2 t}-mix-approval rule. To analyze this rule, we utilize the bounds from Theorem 15
and Lemma 17. Note that kr

kr�1
= 2 for all r 2 [2, R], k1 = 1, and kR = t. Then,

min-sw(f rand
{1,2,...,log2 t}-mix-approval) = ⌦
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m
· 1

log t · log2 m
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2
,

r
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m

)!

= ⌦

✓
n

m
· 1

log t · log2 m
· t
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◆
= g

Furthermore, dist(f rand
{1,2,...,log2 t}-mix-approval) is at most

O
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�
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log t · logm ·
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m
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�◆

= O(polylog(t, m) ·
r

m2

t
·max

⇢
1,

r
m

t2

�
)

=

(
O(m

p
m

t
p
t

· polylog(t, m)) if t 6 pm,

O( mp
t
· polylog(t, m)) if t 2 [

p
m, m].
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B Random k-Committee Member Rules

B.1 Lower Bound

We begin by proving a lower bound on the distortion of any randomized rule with a support size of at
most k, including, but not limited to, the ones that pick the winner uniformly at random from this
support.
Theorem 16. For k 2 [m/3], any randomized voting rule that has a support size of at most k incurs
a distortion of at least ⌦(m2/k2).

Proof. Consider voting rule f , which has a support of size at most k. We create a preference profile
~� and argue that the distortion of any such voting rule on this preference profile is at least m

2/6k2.
Partition the alternatives into two sets, A1 with size m� k, and A2 with size k. In ~� each member of
A1 appears as the top choice of n/(m� k) agents, and each member of A2 appears as the second
choice of n/k agents, in a way that each pair appears in the top-2 positions of n/(k(m� k)) agents.
If the rule gives positive probability to all members of A2, then consider the utility profile where
each agent has utility 1 for her top choice and 0 for the rest. The social welfare of all alternatives
with positive probability is zero, hence the distortion of this voting rule is unbounded. Now we
can assume that there exists a⇤ 2 A2, that has probability zero in the output. Let A+

1 ✓ A1 be the
set of alternatives in A1 that get positive probability in f(~�), and A�

1 = A1 \ A+
1 . Consider the

utility profile agents that have members of A+
1 as their top choice has the utility of 1/m for all the

alternatives, agents that have members of A�
1 as their top choice and a⇤ as their second choice have

utility 1/2 for their top 2 alternatives and 0 for the rest, and other agents have utility 1 for their top
choice and 0 for the rest. In this utility profile, we have

sw(a⇤) > 1

2
· |A�

1 |n
k(m� k)

> (m� 2k)n

2k(m� k)
> n

4k
,

and for a0 2 A+
1 [A2 \ {a⇤}:

sw(a0) 6 1

m
· |A

+
1 |n

m� k
6 3k

2m2
.

That gives a bound on the social welfare of any alternative with positive probability and implies that
Ea⇠f(~�)[sw(c)] 6 3k

2m2 which means dist(f(~�),~�) > n/4k

3k/2m2 = m
2

6k2 .

We are now ready to prove the desired lower bound for random k-committee member rules.
Theorem 3. For k 2 [m], any random k-committee member rule incurs ⌦(max(k, m2/k2)) distor-
tion. This lower bound is at least ⌦(m2/3) for all k.

Proof. First, consider the preference profile where all the agents have the same ranking with a⇤ as
their top choice. Now consider the utility profile where each agent has utility 1 for his top choice
and zero for the rest. In this utility profile, if the selected committee does not include a⇤ then the
distortion is unbounded, and if a⇤ is part of the committee then the distortion is k. On the other
hand, by Theorem 16 we have the lower bound of ⌦(m2/k2) which gives us the desired bound of
⌦
⇣
max

⇣
k, m

2

k2

⌘⌘
.

B.2 Upper Bound

Our algorithm uses the notion of Approximately Stable Committees introduced by Jiang et al. [48]
and used by Ebadian et al. [19] in the design of the Stable Committee Rule.
Definition 17 (Approximately Stable Committee[48]). A committee X ✓ A of size k is ↵-stable w.r.t.
preference profile ~� if for any candidate a 2 A we have |i 2 N : a �i X| 6 ↵ · n

k
, where a �i X

means that voter i prefers a to every member of X .
Theorem 18 ([48]). Given any preference profile and k 2 [m], a 16-stable committee of size k exists.

30



ALGORITHM 1: Top-Biased Stable k-Committee
Input: Preference profile ~�, Committee size k

Output: Shortlisted Committee of size k

1 Astable  an approximately stable committee of size k/3
2 Aplu  top k/3 alternatives with the highest plurality score
3 N1  voters whose top vote is among Aplu

4 Agreedy  ;
5 for i 2 N1 do hits(i) = 1
6 for t = 1 to k/3 do
7 A A \ (Aplu [Agreedy [Astable)
8 for i 2 N1 do
9 Si  top m/(hits(i) + 1) alternatives of i among A

10 a
⇤  argmax

a2A
|{i 2 N1 | a 2 Si}|

11 Agreedy  Agreedy [ {a⇤}
12 for i 2 N1 and a

⇤ 2 Si do
13 hits(i) hits(i) + 1
14 return Aplu [Agreedy [Astable

Algorithm 1 starts with selecting an approximately stable committee of size k/3 and k/3 alternatives
with the highest plurality scores. Then, to gain more social welfare from the alternatives N1 whom
top alternative is selected by the algorithm, it proceeds as follows. Initialize hits(i) to one. The point
of the hits count is that we can ensure a welfare of hits(i)

m
by when the procedure ends. Initially, we

can ensure a welfare of 1
m

for all agents in N1. Next, the sets Si are set to be the top m/2 alternatives
of agents in N1. We will show that picking any of these alternatives will guarantee a welfare of at
least 2

m
for a user. The algorithm makes a greedy choice a⇤ that hits the highest number of agents

and adds that alternative to the selected committee and increases the hit number of the agents hit by
a⇤. After the second hit, it updates the sets Si to be the top m/3 remaining alternatives of the hit
agent. Then m/4 after the thirds, and so forth. The algorithm selects the remaining k/3 alternatives
of the committee as described.

B.2.1 Absolute Welfare Lower Bound

For the absolute welfare lower bound analysis, we will show that for each voter i 2 N1 we can
guarantee a utility of at least hits(i)/m. First, we present a helpful technical lemma.
Lemma 18. Consider agent i 2 N with preference profile �i and utility function ui, and a set
A0 ✓ A of alternatives. If A0 includes the top choice of i, and for any 2 6 ` 6 t at least t� ` + 2
members of A0 appear in the top m/` choices of i, then the total utility of i for members of A0 is at
least t/m, i.e.

P
a2A0 ui(a) > t/m.

Proof. We can write ui as a weighted sum of m dichotomous utility functions, i.e. ui =
P

m

j=1 ↵j i,j ,
where

P
m

j=1 ↵j = 1. For j 2 [m] we define

g(j) =

⇢
t� dm/je+ 2 j > m/t,
1 o.w.,

as a lower bound on the number of members of A0 that appear in the top j positions of this agent’s
preference ranking. Each of these alternatives gets 1/j utility in i,j . If we sum it up for all values of
j, we have

ui(a) >
X

j>ranki(a)

↵j/j =)
X

a2A0

ui(a) >
mX

j=1

↵j

g(j)

j
.

For j < m/t, g(j)/j > t/m, and after that t�dm/je+2
j

is increasing up to j = 2m/t+2, decreasing
afterwards, and is minimized at j = m. That means g(j)/j is always greater than t/m, which implies

X

a2A0

ui(a) >
mX

j=1

↵j

g(j)

j
> t

m

mX

j=1

↵j =
t

m
.
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Theorem 19. For k 2 [m], there exists a deterministic k-committee selection voting rule f⇤
k

, that for
any pair of ~�, ~u guarantees

P
a2f

⇤
k
(~�) sw(a, ~u) > nk

p
k

6m2 .

Proof. Let bA be the set of alternatives returned by Algorithm 1. First, we show by Lemma 18 that
for all agents i 2 N1,

P
a2 bA ui(a) > hits(i)/m. That is because Aplu includes the top choice of

members of N1. In addition by changing Si in line 9 of the Algorithm 1, we make sure that the
i-th hit in an agent’s preference ranking is among his m/i top alternatives. This means that at the
end if there are t hits in an agent’s ranking, then for any 2 6 ` 6 t at least t � ` + 2 members of
Agreedy [Aplu appear in that agent’s top m/` positions.

Consequently, we have
X

a2 bA

sw(a) >
X

i2N1

hits(i)

m
. (14)

Lower bound on the total number of hits. Next, we show
P

i2N1
hits(i) > |N1| ·

p
k. Let

a1, a2, . . . , ak/3 be the sequence of alternatives greedily picked in the algorithm (lines 6-13). For
t 2 [k/3], let hitst(i) be the number of hits of voter i at the beginning of iteration t and ht be the
number of voters that were hit by at during the t-th iteration. Let hmin = mint2[k/3] ht. Indeed we
have X

i2N1

hits(i) =
X

t2[k/3]

ht > hmin · k/3. (15)

Moreover, since at iteration t we pick the candidate which hits the highest number of agents, ht is at
least as much as the average total |Si|’s, i.e.

ht >
1

m
·
X

i2N1

|Si| >
1

m
·
X

i2N1

m

hitst(i) + 1
> |N1|2P

i2N1
hitst(i) + |N1|

,

where the last transition follows from the AM-HM inequality. Since the RHS is minimized at time
t = k/3 (the sum in the denominator is non-decreasing), and by Equation (15), we have

3

k
·
X

i2N1

hits(i) > hmin > |N1|2P
i2N1

hits(i) + |N1|

Denote ↵ =
P

i2N1
hits(i). Then, we have ↵ · (↵ + |N1|) > k

3 |N1|2, which holds only if

X

i2N1

hits(i) = ↵ > 1

2
· |N1|

⇣p
1 + 4k/3� 1

⌘
> |N1|

p
k/3, (16)

where the last transition holds for k > 1.

Deriving the bound. Moreover, |N1| > nk/3m, since the k/3 alternatives with the highest number
of top votes must have a total of at least k/3m fraction of the n top votes. This observation combined
with Equations (14) and (16) yields

X

a2 bA

sw(a) > 1

3
p
3
· nk
p

k

m2
.

B.2.2 Distortion Analysis

The goal of this section is to prove the following theorem.
Theorem 4. There is a polynomial-time computable random k-committee member rule with distortion
O(max{k, m2/(k

p
k)}). This is minimized at k = m4/5, where the bound becomes O(m4/5).

Proof. We select k

3 members of the committee using f⇤
k

3
from Theorem 19 rule and for the rest, we

select a 16-stable committee of size k

3 .
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For a preference profile ~� and utility profile ~u, let a⇤ be the optimal alternative, and X ✓ A be a
committee of size k selected by our rule. By Theorem 18 we know that |i 2 N : a⇤ �i X| 6 48n

k
.

That means for at least n� 48n
k

agents, at least one member of the selected committee gets as much
utility as a⇤. The maximum utility that a⇤ can get from the rest of the agents is 48n

k
. That means:

sw(a⇤, ~u) 6
X

a2X

sw(a, ~u) +
48n

k
.

Let U[X] be a uniform distribution over the members of X , we have

dist(U[X], ~u) =
sw(a⇤, ~u)

1
|X|

P
a2X

sw(a, ~u)

=
2k · sw(a⇤, ~u)

2
P

a2X
sw(a, ~u)

6 2ksw(a⇤, ~u)

max(0, sw(a⇤, ~u)� 48n
k
) +

n
k

3

p
k

3

6m2

(by Theorem 19)

6 2ksw(a⇤, ~u)

max(0, sw(a⇤, ~u)� 48n
k
) + nk

p
k

32m2

.

Now we consider two cases, first if sw(a⇤, ~u) > 96n
k

. In this case we have

dist(U[X], ~u) 6 2ksw(a⇤, ~u)

max(0, sw(a⇤, ~u)� 48n
k
) + nk

p
k

32m2

6 2ksw(a⇤, ~u)

sw(a⇤, ~u)� 48n
k

6 4ksw(a⇤, ~u)

sw(a⇤, ~u)
= 4k = O (k) .

Then we consider the other case where sw(a⇤, ~u) < 96n
k

. Here we have

dist(U[X], ~u) 6 2ksw(a⇤, ~u)

max(0, sw(a⇤, ~u)� 48n
k
) + nk

p
k

32m2

6 2ksw(a⇤, ~u)
nk

p
k

32m2

6 2k 96n
k

nk

p
k

32m2

= O

✓
m2

k
p

k

◆
.

These two bounds together give us the desired lower bound of O(max{k, m2/(k
p

k)}).

C Additional Experimental Results

In this section, we provide some complementary results that give a better perspective on the empirical
efficiency of the rules we study. The setup of these experiments is the same as described in Section 5.

C.1 Additional Results for the Mallows Model

Figures 2a to 2c show the average distortion of different rules for different values of � with m 2
{5, 25, 50}, respectively. For m = 5, we find that randomized plurality is better than every other rule,
regardless of the value of �. But as m grows larger, we can see that random committee member rules
begin to perform almost as well as randomized positional scoring rules for � 6 0.5. In addition, as
we have seen in Section 5, when � grows large (moving towards the impartial culture), randomized
positional scoring rules outperform deterministic and random committee member rules as well as the
uniform benchmark. Overall, these plots reinforce the claim we made in Section 5 that there almost
always seems to be an explainable randomized rule that achieves better efficiency than deterministic
rules.

Figure 2d is the counterpart of Figure 1d presented in Section 5, where instead of plotting the (average)
best value of k against �, we plot the (average) distortion achieved at the said best value of k against
�, for various random committee member rules. In a sense, this shows the limit of how well each
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Figure 2: All figures show results averaged over 150 runs along with the standard
error. Figures 2a to 2c share the legend on the left.

random committee member rule can perform, when paired with its corresponding optimal k. As we
can see, all the four rules we consider achieve approximately the same average distortion under these
optimized conditions, which increases almost linearly with �.

Figure 3 shows the value of k that yields the minimum distortion for different scoring vectors
as a function of m, averaged over 100 runs and fixing the value of � 2 {0.1, 0.5, 1}. Recall that
theoretically, the value of k that optimizes the worst-case distortion is between ⌦(m2/3) and O(m4/5).
For optimizing the average distortion, it turns out that the best k is close to 1 when � is small, but as
� grows the best k gets closer to m. The growth as a function of m is highly sublinear for small �,
but almost linear for large �.

We have also presented the (average) distortion achieved at these best values of k. Once again, we
can notice that while the average distortion certainly grows with m, the different random committee
member rules we consider perform about the same when paired with their optimal k. This average
distortion is small when � is small, and is approximately

p
m for � = 1. An interesting observation

is that for relatively small values of � (i.e., � = 0.1 and � = 0.5), the distortion is very similar to
the (average) best value of k. This indicates that for these values of �, it may be the case that the
optimal alternative is almost always part of the committee, for all four of the employed voting rules.
Further, since k is small, not much preference information is observed. Hence, the worst case social
welfare of any other alternatives included in the committee can be very small, bringing the distortion
of choosing a random committee member close to the inverse of the probability of choosing the
optimal alternative from the committee, which is k.

C.2 Results for Polya-Eggenberger Urn and Plackett-Luce Models

In addition to the Mallows model, we generate preference profiles from the Polya-Eggenberger Urn
model [51] and the Plackett-Luce model [52, 53].

Polya-Eggenberger Urn Model. The urn model takes a non-negative parameter ↵ which determines
the extent to which rankings are correlated. To generate a preference profile from the urn model
with parameter ↵, we start with a pool of all m! possible rankings. At step i, we randomly pick the
ranking of the ith voter from the pool and put it back in the pool together with ↵m! copies of that
ranking. For ↵ = 0, the model picks a random ranking for each agent which is equivalent to the
impartial culture, and the Mallows model with � = 1. For each combination of n = 100 agents,
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(a) Best value of k based on m, for � = 0.1.
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(b) Average distortion with best k based on m, for
� = 0.1.
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(c) Best value of k based on m, for � = 0.5.
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(d) Average distortion with best k based on m, for
� = 0.5.
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(e) Best value of k based on m, for � = 1.
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(f) Average distortion with best k based on m, for � =
1.

Figure 3: All figures show results averaged over 100 runs along with the standard error.

↵ 2 {0.01, 0.1, 0.5} and m 2 [5, 18] alternatives, we generate 150 different instances. We used the
PrefLib tools package2[54], which has a limitation of at most m < 20 alternatives.

Plackett-Luce Model. For experiments with the Plackett-Luce model, we generate preference
profiles as follows. First, we sample a distribution over candidates p ⇠ Dirichlet(1, . . . , 1) from
the symmetric Dirichlet distribution where the concentration parameter is 1 for all candidates. Then
from a subset A0 ✓ A, we draw alternative a 2 A0 with probability proportional to pa, that is
Pr(a | A0, p) = paP

a02A0 pa0
. We generate the preference ranking of each agent i separately in an

iterative manner from the top alternative to the bottom one as follows. The kth ranked alternative of
agent i is selected among Ai,k = A \ {�i(1), . . . , �i(k � 1)} with probabilities Pr(a | Ai,k, p). For
n = 100 and m 2 {5, 10, . . . , 50} we generate 150 instances.

Results. The results for the two models described are presented in Figure 4. For the Plackett-Luce
model and the urn model with smaller values of � = 0.01, we observe results similar to those of
the Mallows model with ↵ = 1 (the impartial culture). The randomized positional scoring rules

2https://github.com/PrefLib/preflibtools
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(b) Urn model with ↵ = 0.01.
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(c) Urn model with ↵ = 0.1.
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(d) Urn model with ↵ = 0.5.

Figure 4: Average distortion of different rules under other statistical models. All
figures show distortion averaged over 150 runs along with the standard error.

outperform the randomized committee member rules, which in turn outperform the deterministic
rules. The urn model with ↵ = 0 is exactly the impartial culture, thus the result for ↵ = 0.01 is as
expected.

Results for the urn model with higher values of ↵ are more intriguing. The order among the
three families of rules is similar to the Mallows results and another similarity between these two
models is that randomized plurality generally performs very well. However, there are crucial
differences. For instance, in the Mallows experiments, there are no significant differences among
different deterministic rules or between different randomized committee member rules. In contrast,
clear distinctions surface in the urn experiments, with plurality-based rules demonstrating superior
performance.
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